JP6650108B2 - Surface coated cutting tool with excellent chipping and wear resistance - Google Patents

Surface coated cutting tool with excellent chipping and wear resistance Download PDF

Info

Publication number
JP6650108B2
JP6650108B2 JP2015252586A JP2015252586A JP6650108B2 JP 6650108 B2 JP6650108 B2 JP 6650108B2 JP 2015252586 A JP2015252586 A JP 2015252586A JP 2015252586 A JP2015252586 A JP 2015252586A JP 6650108 B2 JP6650108 B2 JP 6650108B2
Authority
JP
Japan
Prior art keywords
layer
average
layer thickness
carbonitride
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015252586A
Other languages
Japanese (ja)
Other versions
JP2016124098A (en
Inventor
佐藤 賢一
佐藤  賢一
翔 龍岡
翔 龍岡
健志 山口
健志 山口
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2016124098A publication Critical patent/JP2016124098A/en
Application granted granted Critical
Publication of JP6650108B2 publication Critical patent/JP6650108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件で行った場合でも、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示す表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides an excellent hard coating layer even when cutting various kinds of steel or cast iron at a high speed and under a high-speed intermittent heavy cutting condition in which a high load such as an intermittent or impact is applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter, referred to as a coated tool) which exhibits excellent chipping resistance and wear resistance and exhibits excellent cutting performance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
前記(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られている。
2. Description of the Related Art Conventionally, generally, a substrate (hereinafter, these are collectively referred to as a tool substrate) formed of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium cermet (hereinafter, referred to as TiCN) -based cermet is generally provided on a surface of the substrate. ,
(A) The lower layer is a Ti carbide (hereinafter, referred to as TiC) layer, a nitride (hereinafter, also referred to as TiN) layer, a carbonitride (hereinafter, referred to as TiCN) layer, and a carbonate (hereinafter, referred to as TiCO). ) Layer, and a Ti compound layer comprising one or more of a carbon oxynitride (hereinafter, referred to as TiCNO) layer,
(B) an aluminum oxide layer (hereinafter, referred to as an Al 2 O 3 layer) having an α-type crystal structure in a state where the upper layer is chemically vapor-deposited;
There is known a coating tool obtained by vapor-depositing a hard coating layer composed of the above (a) and (b).

しかし、前述した従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削ではすぐれた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、硬質被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題点があった。
そこで、硬質被覆層の剥離、チッピングを抑制するために、上部層に改良を加えた各種の被覆工具が提案されている。
However, the above-mentioned conventional coated tool exhibits excellent wear resistance in continuous cutting or interrupted cutting of various types of steel or cast iron, for example. There is a problem that peeling and chipping easily occur and the tool life is shortened.
Therefore, various kinds of coating tools in which the upper layer is improved in order to suppress peeling and chipping of the hard coating layer have been proposed.

例えば、特許文献1には、工具基体の表面に、周期律表の4a、5a、6a属金属の炭化物、窒化物、炭窒化物の一種以上からなる非酸化膜を形成し、この上にα−Alを主とする酸化膜が形成したアルミナ被覆工具において、前記非酸化膜と前記酸化膜との間に周期律表の4a、5a、6a属金属の酸化物、酸炭化物、酸窒化物および酸炭窒化物の酸化物系の単層皮膜または多層皮膜からなるfcc構造を持つ結合層を形成し、かつ、非酸化膜と結合相がエピタキシャル関係にあるようにしたアルミナ被覆工具とすることによって、工具基体とアルミナ被膜との密着強度を高め、耐欠損性、耐剥離性、耐摩耗性を向上させる被覆工具が提案されている。 For example, in Patent Document 1, a non-oxide film made of at least one of carbides, nitrides, and carbonitrides of metals belonging to Groups 4a, 5a, and 6a of the periodic table is formed on the surface of a tool base. in the alumina coated tool having an oxide film was formed to a -al 2 O 3 as the main, the 4a of the periodic table between the non-oxide layer and the oxide film, 5a, oxides of 6a genus metal oxycarbide, acid An alumina-coated tool that forms a bonding layer having an fcc structure composed of an oxide-based single-layer coating or a multilayer coating of nitride and oxycarbonitride, and has a non-oxide film and a bonding phase in an epitaxial relationship; By doing so, a coated tool has been proposed in which the adhesion strength between the tool base and the alumina coating is increased, and the fracture resistance, the peel resistance, and the wear resistance are improved.

また、例えば、特許文献2には、工具基体の表面に、1種以上の金属元素を含む窒化物,炭化物,炭窒化物からなり、これらの中から選ばれた化学組成の異なる2層以上が積層された硬質皮膜を有する切削工具において、表面側最外層の組成が(VTi1−u)(N1−v)、但し0.25≦u≦0.75,0.6≦v≦1であり、また、表面から第2番目の層の組成が、(AlTi1−x)(N1−y)、但し0.25≦x≦0.75,0.6≦y≦1であって、各層の厚さが0.4μm以上で、皮膜全体の厚さが0.8〜50μmであると共に、いずれの層も実質的に岩塩型結晶構造からなり、かつ、各層の結晶組織が界面で実質的にエピタキシャル成長していることによって、硬質皮膜の耐摩耗性及び密着性を向上させることが提案されている。 In addition, for example, Patent Document 2 discloses that at least two layers having different chemical compositions selected from nitride, carbide, and carbonitride containing one or more metal elements are provided on the surface of a tool base. in the cutting tool having a laminated hard coating, the composition of the surface-side outermost layer (V u Ti 1-u) (N v C 1-v), where 0.25 ≦ u ≦ 0.75,0.6 ≦ v ≦ 1 and the composition of the second layer from the surface is (Al x Ti 1-x ) (N y C 1-y ), provided that 0.25 ≦ x ≦ 0.75, 0.6 ≦ y ≦ 1, the thickness of each layer is 0.4 μm or more, the thickness of the entire coating is 0.8 to 50 μm, and each of the layers substantially has a rock salt type crystal structure; and Since the crystal structure of each layer is substantially epitaxially grown at the interface, the wear resistance and adhesion of the hard coating are improved. It has been proposed that

特開平10−18039号公報JP-A-10-18039 特開2001−181826号公報JP 2001-181826 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化すると共に、高切り込み、高送り等の断続重切削等で切刃には、衝撃的・断続的な高負荷が作用する傾向にあるが、前述の従来の被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速断続切削条件で用いた場合には、硬質被覆層の耐摩耗性が十分ではないため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkably improved. On the other hand, there is a strong demand for labor saving, energy saving, and lower cost for cutting, and with this, cutting has been further accelerated, and high cutting, high feed, etc. In cutting heavy cutting, etc., the cutting edge tends to receive a high impact and intermittent load.However, in the case of the above-mentioned conventional coated tool, this is required for continuous cutting under normal conditions such as steel or cast iron. There is no problem when used for cutting or intermittent cutting, but especially when used under high-speed intermittent cutting conditions, the wear resistance of the hard coating layer is not sufficient, and the service life can be shortened in a relatively short time is the current situation.

そこで、本発明者らは、前述のような観点から、工具基体表面上に形成した下部層を構成するTi化合物の結晶粒とその上に形成した上部層を構成するTiとAlの複合窒化物または複合炭窒化物(以下、場合により、TiAlCNと略記する)の結晶粒との間のエピタキシャル関係を制御することに、硬質被覆層全体としての耐チッピング性、耐摩耗性向上を図るべく鋭意研究を重ねた。
その結果、
(1)下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、NaCl型面心立方晶(以下、単に「立方晶」という場合もある。)の結晶構造を有するTi化合物層(好ましくは、Tiの炭窒化物(以下、「TiCN」と記す場合もある。)層)の結晶粒と、上部層を構成するTiAlCN層の結晶粒について、それぞれの結晶粒の{422}の法線が、基体表面の法線方向となす傾斜角の度数分布を測定した場合、前記法線方向に対して0〜10度の傾斜角区分に度数のピークが存在するとともに、該区分の傾斜角度数分布割合が、度数全体の30%以上であり、
(2)下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層(好ましくは、Tiの炭窒化物(TiCN)層)の結晶粒のうち、基体表面の法線方向と{422}の法線がなす傾斜角が0〜10度である結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、{422}の法線方向が基体表面の法線方向となす傾斜角が0〜10度であるTiAlCN結晶粒が存在し、かつ、この結晶粒が基体表面の法線方向と{422}の法線方向がなす傾斜角が0〜10度であるTiAlCN結晶粒の50%以上であることにより、下部層と上部層のエピタキシャル成長した結晶粒の形成割合を高め、しかも、基体表面の法線方向と{422}の法線がなす傾斜角が0〜10度である結晶粒の形成割合を高めることによって、硬さおよび下部層と上部層との付着強度が向上し、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件においても、硬質被覆層はすぐれた密着強度を有するとともに、すぐれた耐チッピング性、耐摩耗性を発揮するという知見を得た。
In view of the above, the present inventors have developed a Ti compound crystal grain constituting the lower layer formed on the surface of the tool base and a composite nitride of Ti and Al constituting the upper layer formed thereon. In addition, in order to control the epitaxial relationship between the composite carbonitride (hereinafter sometimes abbreviated as TiAlCN) and the crystal grains thereof, intensive research has been made to improve the chipping resistance and wear resistance of the entire hard coating layer. Was piled up.
as a result,
(1) Ti having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and having a NaCl-type face-centered cubic (hereinafter sometimes simply referred to as “cubic”) crystal structure. Regarding the crystal grains of the compound layer (preferably, a layer of Ti carbonitride (hereinafter sometimes referred to as “TiCN” in some cases)) and the crystal grains of the TiAlCN layer constituting the upper layer, {422 of each crystal grain When the frequency distribution of the inclination angle formed by the normal of} and the normal direction of the surface of the substrate is measured, the peak of the frequency is present in the inclination angle section of 0 to 10 degrees with respect to the normal direction, Is 30% or more of the whole frequency,
(2) A Ti compound layer (preferably a Ti carbonitride (TiCN) layer) having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and having a cubic structure. Of these, in the region of the upper layer corresponding to the maximum width in the direction parallel to the substrate surface of the crystal grain having an inclination angle of 0 to 10 degrees between the normal direction of the substrate surface and the normal of {422}, {422} There are TiAlCN crystal grains having an inclination angle of 0 to 10 degrees with respect to the normal direction of the substrate surface, and this crystal grain is different from the normal direction of the substrate surface by {422}. When the inclination angle is 50% or more of the TiAlCN crystal grains of 0 to 10 degrees, the formation ratio of the epitaxially grown crystal grains of the lower layer and the upper layer is increased, and the normal direction of the substrate surface and {422} Shape of crystal grains with a tilt angle of 0 to 10 degrees formed by the normal of By increasing the ratio, the hardness and the adhesion strength between the lower layer and the upper layer are improved, and even at high speed, high-speed intermittent cutting conditions where intermittent and impactful high loads act on the cutting edge It has been found that the layer has excellent adhesion strength and exhibits excellent chipping resistance and abrasion resistance.

本発明は、上記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1〜20μmの合計平均層厚を有するTi化合物層であって、かつ、その内の1層は、1μm以上で且つ合計平均層厚の50%以上の平均層厚を有するTi化合物層であり、
(b)前記上部層は、1〜20μmの平均層厚を有するTiとAlの複合窒化物または複合炭窒化物層であり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層を、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(d)前記下部層のうち、合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒はNaCl型面心立方晶の結晶構造を有し、また、前記上部層のTiとAlの複合窒化物または複合炭窒化物層の結晶粒は、NaCl型面心立方晶構造単相またはNaCl型面心立方晶構造と六方晶構造の混相からなる結晶構造を有し、
(e)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の個々の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、基体表面の法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層のいずれにおいても、0〜10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合を示し、
(f)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する下部層と上部層との界面を介して、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が隣接して存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
(2)前記下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層は、Tiの炭窒化物層であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
"(1) A hard coating comprising a lower layer and an upper layer on the surface of a tool substrate made of either a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. In a surface-coated cutting tool having a layer formed thereon,
(A) The lower layer has a total average layer thickness of 1 to 20 μm including one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer. And one of the layers is a Ti compound layer having an average layer thickness of 1 μm or more and 50% or more of the total average layer thickness,
(B) the upper layer is a composite nitride or carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm;
(C) forming a composite nitride or composite carbonitride layer of Ti and Al,
Composition formula: (Ti 1-x Al x ) ( CyN 1-y )
In this case, the average content ratio X ave of Al in the total amount of Ti and Al and the average content ratio Y ave of C in the total amount of C and N (where X ave and Y ave are atomic ratios) Satisfy 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005, respectively.
(D) In the lower layer, the crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness have a NaCl-type face-centered cubic crystal structure, and the Ti of the upper layer has The crystal grains of the composite nitride or composite carbonitride layer of Al and Al have a crystal structure composed of a NaCl-type face-centered cubic structure single phase or a mixed phase of a NaCl-type face-centered cubic structure and a hexagonal structure,
(E) a crystal grain of a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and a composite nitride or composite carbonitride of Ti and Al having the cubic structure of the upper layer When the crystal orientation of each crystal grain of the object layer is analyzed from the longitudinal section direction using an electron beam backscatter diffraction device, the method of {422} plane, which is the crystal plane of the crystal grain with respect to the normal direction of the substrate surface, is used. The inclination angles formed by the lines are measured, and among the measurement inclination angles, the measurement inclination angles that are within the range of 0 to 45 degrees with respect to the normal direction of the substrate surface are divided at intervals of 0.25 degrees. When the frequencies present in the sections are totaled, a composite nitride of Ti and Al having the cubic structure of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the cubic structure of the upper layer is obtained. In the composite or composite carbonitride layer, With the highest peak is present in the tilt angle sections of the range of 0 degrees, the sum of the frequencies present in the range of the 0 to 10 degrees, it indicates the percentage of more than 30% of the total power at the inclination angle frequency distribution,
(F) In the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer, the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface is 0 to 10 degrees. Through the interface between the lower layer and the upper layer corresponding to the maximum width of the crystal grains in the direction parallel to the surface of the substrate within the range, the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface is Crystal grains of the composite nitride or carbonitride layer of Ti and Al having the cubic structure within the range of 0 to 10 degrees are adjacent to each other , and the crystal grains are normal to the surface of the substrate. 50% of the total area of the crystal grains of the Ti and Al composite nitride or composite carbonitride layer having the cubic structure in which the inclination angle of the normal line of the {422} plane with respect to the direction is in the range of 0 to 10 degrees. A surface coated cutting tool occupying the above area ratio.
(2) The surface-coated cutting tool according to (1), wherein the Ti compound layer having an average thickness of 50% or more of the total average thickness of the lower layer is a Ti carbonitride layer. .
(3) An outermost surface layer including at least an aluminum oxide layer having an average layer thickness of 1 to 25 μm is further formed on the surface of the upper layer made of the composite nitride or carbonitride layer of Ti and Al. The surface-coated cutting tool according to the above (1) or (2), wherein "
It is characterized by the following.

以下に、本発明の被覆工具の硬質被覆層の構成層について詳細に説明する。   Hereinafter, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail.

図1に、本発明の硬質被覆層の層構造の概略模式図を示すが、図1においては、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層としては、立方晶構造のTiCN層を形成し、その上に、TiAlCN層からなる上部層を形成している。
図1からもわかるように、上部層と下部層の界面には、結晶粒が恰も界面を貫いて成長しているような結晶組織形態が観察される。
本発明でいう「下部層の結晶粒と上部層の結晶粒が{422}面の法線方向にエピタキシャル成長している」とは、このような結晶組織形態をいう。
FIG. 1 shows a schematic diagram of the layer structure of the hard coating layer of the present invention. In FIG. 1, a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer is cubic. A TiCN layer having a crystal structure is formed, and an upper layer made of a TiAlCN layer is formed thereon.
As can be seen from FIG. 1, a crystal structure morphology is observed at the interface between the upper layer and the lower layer, as if crystal grains were growing through the interface.
In the present invention, “the crystal grains of the lower layer and the crystal grains of the upper layer are epitaxially grown in the normal direction of the {422} plane” refers to such a crystal structure form.

下部層(Ti化合物層):
Ti化合物層(例えば、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層)は、基本的にはTiAlCN層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようになるほか工具基体および上部層のTiAlCN層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。しかしながら、その合計平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を1〜20μmと定めた。
さらに、下部層の{422}配向を引き継いで上部層をエピタキシャル成長させ、硬質被覆層の付着強度を向上させるために、前記下部層は、少なくとも立方晶構造を有し、平均層厚が1μm以上であって、かつ、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層(例えば、Tiの炭化物層、窒化物層、炭窒化物層、炭窒酸化物層があげられる)の結晶粒が、{422}配向を備えることが必要である。なお、{422}配向を備えるTi化合物層の平均層厚が1μm未満であるとき、または、下部層の合計平均層厚の50%未満であると、下部層の{422}配向性を引き継いだ上部層のエピタキシャル成長が不十分となり、上部層の耐チッピング性とともに付着強度の向上が図れない。
Lower layer (Ti compound layer):
A Ti compound layer (for example, a Ti carbide (TiC) layer, a nitride (TiN) layer, a carbonitride (TiCN) layer, a carbon oxide (TiCO) layer, and a carbonitride oxide (TiCNO) layer) is basically Is present as a lower layer of the TiAlCN layer. The excellent high-temperature strength of the hard coating layer allows the hard coating layer to have a high-temperature strength, and adheres to both the tool base and the TiAlCN layer of the upper layer. Has an effect of maintaining the adhesion to the tool base. However, if the total average layer thickness is less than 1 μm, the above effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, thermoplastic deformation occurs particularly in high-speed interrupted cutting with high heat generation. The total average layer thickness was determined to be 1 to 20 μm, since it easily occurs and causes uneven wear.
Furthermore, in order to take over the {422} orientation of the lower layer and epitaxially grow the upper layer and improve the adhesion strength of the hard coating layer, the lower layer has at least a cubic structure, and has an average layer thickness of 1 μm or more. And a Ti compound layer (for example, a Ti carbide layer, a nitride layer, a carbonitride layer, and a carbonitride layer) having an average thickness of 50% or more of the total average thickness of the lower layer. )) Must have a {422} orientation. When the average thickness of the Ti compound layer having the {422} orientation is less than 1 μm or less than 50% of the total average thickness of the lower layer, the {422} orientation of the lower layer is inherited. The epitaxial growth of the upper layer becomes insufficient, and the chipping resistance and the adhesion strength of the upper layer cannot be improved.

下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層としては、TiCN結晶粒からなるTiCN層を形成することが好ましい。
例えば、{422}配向性を有する下部層のTiCN層は、通常の化学蒸着装置を使用して、例えば、
反応ガス組成(容量%):TiCl 2.0〜2.5%、N 5〜10%、CO 0〜2%、CHCN 0.4〜0.6%、残部H
反応雰囲気温度:750〜800℃、
反応雰囲気圧力:5〜10kPa、
の条件で目標平均層厚になるまで化学蒸着することによって形成することができる。
As the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer, it is preferable to form a TiCN layer composed of TiCN crystal grains.
For example, the lower TiCN layer having the {422} orientation can be formed using a general chemical vapor deposition apparatus, for example,
Reaction gas composition (volume%): TiCl 4 2.0~2.5%, N 2 5~10%, CO 0~2%, CH 3 CN 0.4~0.6%, remainder H 2,
Reaction atmosphere temperature: 750-800 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
Under the conditions described above, by chemical vapor deposition until the target average layer thickness is reached.

上部層(立方晶構造単相または立方晶構造と六方晶構造の混相の結晶構造を有するTiAlCN層):
本発明の硬質被覆層の上部層は、化学蒸着された1〜20μmの平均層厚を有する立方晶構造単相または立方晶構造と六方晶構造の混相の結晶構造を有するTiAlCN層からなる。
本発明の上部層を構成するTiAlCN層は、{422}配向性を有するため、硬さが高く、すぐれた耐摩耗性を発揮するが、その平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、結晶粒が粗大化し、チッピングを発生しやすくなる。
したがって、上部層を構成するTiAlCN層の平均層厚は1〜20μmと定めた。
なお、上部層は、立方晶構造単層ばかりでなく、立方晶構造と六方晶構造の混相からなるTiAlCN層であってよい。
Upper layer (TiAlCN layer having a cubic single-phase structure or a mixed-phase crystal structure of a cubic structure and a hexagonal structure):
The upper layer of the hard coating layer of the present invention comprises a chemical vapor deposited TiAlCN layer having a cubic single-phase structure having an average layer thickness of 1 to 20 μm or a mixed crystal structure of a cubic structure and a hexagonal structure.
Since the TiAlCN layer constituting the upper layer of the present invention has {422} orientation, it has high hardness and exhibits excellent wear resistance. However, when the average layer thickness is less than 1 μm, the layer thickness is small. When the wear resistance over a long period of use cannot be sufficiently ensured, on the other hand, when the average layer thickness exceeds 20 μm, the crystal grains become coarse and chipping easily occurs.
Therefore, the average layer thickness of the TiAlCN layer constituting the upper layer was determined to be 1 to 20 μm.
The upper layer may be a TiAlCN layer having a mixed phase of a cubic structure and a hexagonal structure as well as a single layer having a cubic structure.

本発明の上部層を構成するTiAlCN層を、組成式:(Ti1−xAl)(N1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足する。
ここで、Alの平均含有割合Xave (原子比)が0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xaveが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。
したがって、Alの平均含有割合Xave (原子比)は、0.60≦Xave≦0.95とする。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合(原子比)Yaveは、0≦Yave≦0.005の範囲の微量であるとき、上部層と下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の含有割合Yaveが0≦Yave≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下する。
したがって、C成分の含有割合Yave (原子比)は、0≦Yave≦0.005とする。
When the TiAlCN layer constituting the upper layer of the present invention is represented by a composition formula: (Ti 1-x Al x ) (N 1-y C y ), the average content ratio X of Al to the total amount of Ti and Al The content ratios Y ave (where X ave and Y ave are both atomic ratios) of the total amount of C and N of ave and C are 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ Satisfies 0.005.
If the average content ratio X ave (atomic ratio) of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness. , The abrasion resistance is not sufficient. On the other hand, when the average content ratio X ave of Al exceeds 0.95, the content ratio of Ti relatively decreases, thereby causing embrittlement and deteriorating chipping resistance.
Therefore, the average Al content X ave (atomic ratio) is set to 0.60 ≦ X ave ≦ 0.95.
When the average content ratio (atomic ratio) Y ave of the C component contained in the composite nitride or carbonitride layer is a trace amount in the range of 0 ≦ Y ave ≦ 0.005, the upper layer and the lower layer The impact of cutting is alleviated by improving the adhesion of the steel and the lubricity, and as a result, the fracture resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved. On the other hand, when the content ratio Y ave of the C component deviates from the range of 0 ≦ Y ave ≦ 0.005, the toughness of the composite nitride or carbonitride layer is reduced, so that the chipping resistance and chipping resistance are reduced. I do.
Therefore, the content ratio Y ave (atomic ratio) of the C component is set to 0 ≦ Y ave ≦ 0.005.

下部層と上部層の結晶粒の{422}面についての傾斜角度数分布:
本発明の下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層、さらに、上部層の立方晶構造を有するTiAlCN層の個々の結晶粒の結晶方位について、電子線後方散乱回折装置を用いて、その縦断面方向から解析した場合、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合となる傾斜角度数分布形態を示すことが必要である。
ここで、下部層あるいは上部層のいずれかでも、{422}面についての傾斜角度数分布が前記の範囲を外れると、硬質被覆層全体としての{422}面配向性が低下し、硬さが低下することによって耐摩耗性が損なわれる。
さらに、下部層および上部層それぞれの{422}面配向性に加えて、下部層と上部層のエピタキシャル成長を促すためには、前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する下部層と上部層との界面を介して、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiAlCN層の結晶粒が隣接して存在し、かつ、該TiAlCNの結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiAlCN層の結晶粒全体の面積の50%以上の面積割合を占めることが必要である。
つまり、下部層と上部層との間でエピタキシャル成長しているTiAlCN結晶粒の面積割合が、立方晶構造を有するTiAlCN層の結晶粒全体の50%未満である場合には、エピタキシャル成長が十分でないため、下部層と上部層との密着強度向上が図られず、高速断続切削等において剥離等の異常損傷を発生しやすくなるからである。
本発明で定めた下部層の{422}面配向、上部層の{422}面配向とともに、さらに、下部層と上部層間での{422}面配向を有する結晶粒のエピタキシャル成長を促進させることによって、下部層と上部層の密着強度が向上するとともに、硬質被覆層全体としての硬さが向上する。
その結果、このような被覆工具は、例えば、合金鋼の高速断続切削等に供した場合であっても、チッピング、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
図2、図3に、本発明の下部層と上部層について求めた傾斜角度数分布の一例を示すが、図2は、本発明の下部層の合計平均層厚の50%以上の平均層厚を有する立方晶構造のTiCN結晶粒について求めたグラフであり、図3は、上部層の立方晶構造のTiAlCN結晶粒について求めたグラフである。
Number distribution of angle of inclination of {422} plane of crystal grains of lower layer and upper layer:
Electron beam back scattering of the crystal orientation of individual crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer of the present invention and the TiAlCN layer having a cubic structure of the upper layer. When analyzed from the longitudinal section direction using a diffractometer, the normal to the {422} plane, which is the crystal plane of the crystal grain, with respect to the normal to the tool base surface (the direction perpendicular to the tool base surface in the polished cross section). Is measured, and among the inclination angles, the inclination angles within a range of 0 to 45 degrees with respect to the normal direction are divided at intervals of 0.25 degrees, and the frequencies existing in each division When the total of the frequencies in the inclination angle distribution within the range of 0 to 10 degrees has the highest peak, and the total of the frequencies existing in the range of 0 to 10 degrees is 30% of the total frequencies in the inclination angle number distribution, Number of tilt angle distribution forms with above ratio It is necessary to show.
Here, in either the lower layer or the upper layer, if the inclination angle number distribution for the {422} plane is out of the above range, the {422} plane orientation of the entire hard coating layer is reduced, and the hardness is reduced. The wear resistance is impaired by the decrease.
Furthermore, in order to promote the epitaxial growth of the lower layer and the upper layer in addition to the {422} plane orientation of the lower layer and the upper layer, a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness is required. in a lower layer and an upper layer inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface corresponding to the maximum width in a direction parallel to the grain of the substrate surface is in the range of 0 degrees the interface through the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is present adjacent crystal grains of TiAlCN layer having a cubic crystal structure is in the range of 0 degrees And, the TiAlCN crystal grains have a tilt angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface within the range of 0 to 10 degrees. 50% or more of the area Mel that there is a need.
That is, if the area ratio of the TiAlCN crystal grains epitaxially growing between the lower layer and the upper layer is less than 50% of the entire crystal grains of the TiAlCN layer having a cubic structure, the epitaxial growth is not sufficient. This is because the adhesion strength between the lower layer and the upper layer cannot be improved, and abnormal damage such as peeling easily occurs in high-speed interrupted cutting or the like.
By promoting the {422} plane orientation of the lower layer and the {422} plane orientation of the upper layer defined by the present invention, and further promoting the epitaxial growth of crystal grains having the {422} plane orientation between the lower layer and the upper layer. The adhesion strength between the lower layer and the upper layer is improved, and the hardness of the hard coating layer as a whole is improved.
As a result, such a coated tool suppresses the occurrence of chipping, peeling, and the like even when subjected to, for example, high-speed interrupted cutting of an alloy steel, and exhibits excellent wear resistance.
2 and 3 show examples of the distribution of the number of inclination angles obtained for the lower layer and the upper layer of the present invention. FIG. 2 shows the average layer thickness of 50% or more of the total average layer thickness of the lower layer of the present invention. FIG. 3 is a graph obtained for a cubic TiCN crystal grain having an upper layer, and FIG. 3 is a graph obtained for a cubic TiAlCN crystal grain of an upper layer.

最表面層:
本発明は、1〜20μmの平均層厚を有する立方晶単相あるいは立方晶と六方晶の混相の結晶構造を有するTiAlCN層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層をさらに被覆形成することができる。
最表面層の酸化アルミニウム層は、硬質被覆層の高温硬さと耐熱性を高めるが、最表面層の平均層厚が1μm未満では前記特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が25μmを越えると、切削時に発生する高熱と切刃に作用する断続的かつ衝撃的高負荷によって、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになるため、その平均層厚は1〜25μmとすることが望ましい。
Top layer:
The present invention relates to an oxidation method having an average layer thickness of 1 to 25 μm on the surface of an upper layer composed of a cubic single phase having an average layer thickness of 1 to 20 μm or a TiAlCN layer having a cubic and hexagonal mixed phase crystal structure. The outermost surface layer including at least the aluminum layer can be further coated.
The aluminum oxide layer as the outermost layer increases the high-temperature hardness and heat resistance of the hard coating layer, but if the average layer thickness of the outermost layer is less than 1 μm, the hard coating layer cannot have the above characteristics sufficiently. If the average layer thickness exceeds 25 μm, the high heat generated during cutting and the intermittent and impactful high load acting on the cutting edge tend to cause thermoplastic deformation, which causes uneven wear, and accelerate the wear. Therefore, the average layer thickness is desirably 1 to 25 μm.

成膜方法:
本発明の下部層及び最表面層は、例えば、通常の化学蒸着方法、装置によって形成することができる。
例えば、平均層厚が1μm以上、かつ、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層として、TiC層、TiN層、TiCN層等を形成する場合には、通常の化学蒸着装置を使用して、
反応ガス組成(容量%):TiCl 2〜2.5%、N 5〜10%、CO 0〜2%、CHCN 0.4〜0.6%、残部H
反応雰囲気温度:750〜800℃、
反応雰囲気圧力:5〜10kPa、
の条件で目標平均層厚になるまで化学蒸着することによって、{422}面配向性を有するTiC層、TiN層、TiCN層等を成膜することができる。
また、上部層についても、通常の化学蒸着方法によって形成することもできるが、例えば、次のような蒸着法によって成膜することもできる。
即ち、工具基体を装着した化学蒸着反応装置へ、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群Bを、おのおの別々のガス供給管から反応装置内へ供給し、工具基体表面における反応ガス組成をガス群Aとガス群Bの供給条件を調節して制御し、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚、目標組成のTiAlCN層を成膜することができる。
Film formation method:
The lower layer and the outermost surface layer of the present invention can be formed by, for example, an ordinary chemical vapor deposition method and apparatus.
For example, when a TiC layer, a TiN layer, a TiCN layer, or the like is formed as a Ti compound layer having an average layer thickness of 1 μm or more and an average layer thickness of 50% or more of the total average layer thickness of the lower layer, usually, Using the chemical vapor deposition equipment of
Reaction gas composition (% by volume): TiCl 4 2 to 2.5%, N 2 5 to 10%, CO 0 to 2%, CH 3 CN 0.4 to 0.6%, balance H 2 ,
Reaction atmosphere temperature: 750-800 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
By performing chemical vapor deposition until the target average layer thickness is obtained under the conditions described above, a TiC layer, a TiN layer, a TiCN layer, and the like having a {422} plane orientation can be formed.
Also, the upper layer can be formed by a normal chemical vapor deposition method. For example, the upper layer can be formed by the following vapor deposition method.
That is, a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , and H 2 were supplied to a chemical vapor deposition reactor equipped with a tool base. , Each of which is supplied from a separate gas supply pipe into the reaction apparatus, the composition of the reaction gas on the surface of the tool base is controlled by adjusting the supply conditions of the gas group A and the gas group B, and the reaction atmosphere pressure: 2 to 5 kPa, the reaction atmosphere By performing the thermal CVD method at a temperature of 700 to 900 ° C. for a predetermined time, a TiAlCN layer having a predetermined target layer thickness and a target composition can be formed.

本発明の被覆工具は、下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層の結晶粒の{422}面の法線と基体表面の法線方向とのなす傾斜角が0〜10度の範囲である傾斜角度数分布が30%以上であり、また、上部層の立方晶構造を有するTiAlCN結晶粒についても、その{422}面の法線と基体表面の法線方向とのなす傾斜角が0〜10度の範囲である傾斜角度数分布が30%以上であり、さらに、下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層の結晶粒の{422}面とエピタキシャル成長する上部層のTiAlCN結晶粒の面積割合が、基体表面の法線方向となす傾斜角が0〜10度であるTiAlCN結晶粒全体の50%以上であることにより、下部層および上部層の硬さが向上し、さらに下部層と上部層の付着強度が向上し、その結果、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件においても、硬質被覆層はすぐれた耐チッピング性を示すとともに、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。   The coated tool of the present invention has an average layer thickness of 50% or more of the total average layer thickness of the lower layer, and has a normal to the {422} plane of the crystal grains of the Ti compound layer having a cubic structure and the substrate surface. The tilt angle number distribution with respect to the normal direction is 0% to 10 °, the tilt angle number distribution is 30% or more, and the {422} plane of TiAlCN crystal grains having a cubic crystal structure in the upper layer is also provided. The inclination angle number distribution in which the inclination angle between the normal line of the substrate and the normal direction of the surface of the substrate is in the range of 0 to 10 degrees is 30% or more, and the average of the total average layer thickness of the lower layer is 50% or more. The inclination ratio between the area ratio of the {422} plane of the crystal grains of the Ti compound layer having the layer thickness and the cubic structure and the TiAlCN crystal grains of the epitaxially grown upper layer to the normal direction of the substrate surface is 0. At more than 50% of the whole TiAlCN grains which is -10 degrees As a result, the hardness of the lower layer and the upper layer is improved, and the bonding strength between the lower layer and the upper layer is improved. As a result, a high-speed, intermittent and impactful high load acts on the cutting edge. Even under high-speed intermittent cutting conditions, the hard coating layer exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of use.

本発明の硬質被覆層の層構造の概略模式図を示す。FIG. 1 shows a schematic diagram of a layer structure of a hard coating layer of the present invention. 本発明の下部層と上部層について求めた傾斜角度数分布のうち、下部層の合計平均層厚の50%以上の平均層厚を有する立方晶構造のTiCN結晶粒について求めたグラフの一例を示す。FIG. 3 shows an example of a graph obtained for a cubic structure TiCN crystal grain having an average layer thickness of 50% or more of the total average layer thickness of the lower layer in the inclination angle number distribution obtained for the lower layer and the upper layer of the present invention. . 本発明の下部層と上部層について求めた傾斜角度数分布のうち、上部層の立方晶構造のTiAlCN結晶粒について求めたグラフの一例を示す。FIG. 5 shows an example of a graph obtained for TiAlCN crystal grains having a cubic structure of the upper layer in the distribution of the number of inclination angles obtained for the lower layer and the upper layer of the present invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 1 to 3 μm were prepared, and these raw material powders were mixed as shown in Table 1. After mixing with the composition, wax was added, and the mixture was ball-milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact having a predetermined shape at a pressure of 98 MPa. Vacuum sintering at a predetermined temperature in the range of 141470 ° C. for 1 hour, and after sintering, manufacture WC-based cemented carbide tool bases A to C having insert shapes of ISO standard SEEN1203AFSN, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, and Co powder each having an average particle size of 0.5 to 2 μm And Ni powder were prepared, and the raw material powders were blended in the composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa for 1 hour at a temperature of 1500 ° C., and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was produced.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
まず、表3に示される形成条件で、表7に示される下部層を形成し、
次いで、表5、表6に示される形成条件A〜J、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.5〜3.0%、H:50〜75%、ガス群BとしてTiCl:0.1〜0.15%、AlCl:0.3〜0.5%、N:0〜2%、C:0〜0.05%、H:残、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス供給Aとガス供給Bの位相差0.10〜0.20秒として、所定時間、熱CVD法を行って上部層を形成することにより、本発明被覆工具1〜10を作製した。
なお、本発明被覆工具8〜10については、表3に示される形成条件で、表7に示される最表面層を形成した。
Next, using a chemical vapor deposition apparatus on the surface of these tool bases A to D,
First, under the formation conditions shown in Table 3, the lower layer shown in Table 7 was formed.
Next, the formation conditions A to J shown in Tables 5 and 6, that is, from the gas group A consisting of NH 3 and H 2 , and TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , and H 2 The reaction gas composition (volume% based on the total of the gas group A and the gas group B) as the gas group B and the method of supplying each gas is NH 3 : 1.5 to 3.0% as the gas group A. , H 2 : 50 to 75%, as gas group B: TiCl 4 : 0.1 to 0.15%, AlCl 3 : 0.3 to 0.5%, N 2 : 0 to 2%, C 2 H 4 : 0 to 0.05%, H 2 : residual, reaction atmosphere pressure: 2 to 5 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 Seconds, a phase difference of 0.10 to 0.20 seconds between gas supply A and gas supply B, In the meantime, the coated tools 1 to 10 of the present invention were produced by performing a thermal CVD method to form an upper layer.
For the coated tools 8 to 10 of the present invention, the outermost surface layer shown in Table 7 was formed under the forming conditions shown in Table 3.

また、比較の目的で、工具基体A〜Dの表面に、通常の化学蒸着装置を用い、表4に示される形成条件で、表8に示される下部層を形成し、表5、表6に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1〜10と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。
なお、比較被覆工具8〜10については、本発明被覆工具8〜10と同様に、表4に示される形成条件で、表8に示される上部層を形成した。
For the purpose of comparison, the lower layer shown in Table 8 was formed on the surface of the tool bases A to D under the forming conditions shown in Table 4 using a normal chemical vapor deposition apparatus. Under the conditions shown and the target layer thickness (μm) shown in Table 8, a hard coating layer including at least a composite nitride or carbonitride layer of Ti and Al was formed by vapor deposition in the same manner as the coated tools 1 to 10 of the present invention. .
For the comparative coated tools 8 to 10, the upper layers shown in Table 8 were formed under the forming conditions shown in Table 4 in the same manner as the coated tools 8 to 10 of the present invention.

本発明被覆工具1〜10、比較被覆工具1〜10の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。   The cross section of each of the constituent layers of the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10 in the direction perpendicular to the tool base was measured using a scanning electron microscope (magnification 5000 times), and 5 points in the observation visual field were measured. Were measured and averaged to obtain an average layer thickness. As a result, the average layer thickness was substantially the same as the target layer thickness shown in Tables 7 and 8.

また、上部層のTiAlCN層のAlの平均含有割合Xaveについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合Xaveを求めた。
また、Cの平均含有割合Yaveについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YaveはTiAlCN層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYaveとして求めた。
For the average Al content X ave of the TiAlCN layer of the upper layer, the electron beam was irradiated from the sample surface side in a sample whose surface was polished using an electron-beam probe-micro-analyzer (EPMA). Irradiation was performed, and the average content ratio Xave of Al was determined from the average of 10 points of the analysis results of the characteristic X-rays obtained.
In addition, the average C content Y ave was determined by Secondary-Ion-Mass-Spectroscopy (SIMS). An ion beam was irradiated to a range of 70 μm × 70 μm from the sample surface side, and the concentration emitted in the depth direction was measured for components emitted by the sputtering action. The average C content Y ave indicates the average value of the TiAlCN layer in the depth direction. However, the C content ratio excludes the unavoidable C content ratio that is included even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is set to 0 is determined as the inevitable C content ratio, and C 2 H 4 is intentionally determined. The value obtained by subtracting the unavoidable C content from the content (atomic ratio) of the C component contained in the TiAlCN layer obtained when the material was supplied was determined as Y ave .

また、硬質被覆層の傾斜角度数分布については、まず、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体表面と垂直方向に関しては1μmの測定範囲、また、工具基体表面と水平方向には50μmの範囲に亘り0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶構造を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、最高ピークが存在する傾斜角区分を求めるとともに、0〜10度の範囲内に存在する度数の割合を求めた。
表7および表8に、その結果を示す。
Regarding the distribution of the number of inclination angles of the hard coating layer, first, the field emission was performed with the cross section of the Ti compound layer of the lower layer having an average layer thickness of 50% or more of the total average layer thickness used as the polished surface. Is set in the column of a scanning electron microscope, and an electron beam with an acceleration voltage of 10 kV and an irradiation current of 1 nA at an incident angle of 70 ° is 1 μm in a direction perpendicular to the surface of the tool base. In the horizontal direction, each crystal grain having a cubic crystal structure existing in the measurement range is irradiated at an interval of 0.1 μm / step over a range of 50 μm, and the tool is irradiated with a tool using an electron beam backscatter diffraction imager. An inclination angle formed by a normal to a {422} plane, which is a crystal plane of the crystal grain, with respect to a normal to the base surface (a direction perpendicular to the tool base surface in the cross-section polished surface) is measured, and based on the measurement result, And the measured inclination angle , The measured tilt angle in the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, and the frequencies present in each section are totaled to determine the tilt angle section where the highest peak exists. , And the ratio of frequencies existing in the range of 0 to 10 degrees was determined.
Tables 7 and 8 show the results.

次に、硬質被覆層の上部層の傾斜角度数分布についても、上部層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体表面と垂直方向に関しては0.5μmの測定範囲、また、工具基体表面と水平方向には100μmの範囲に亘り0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶構造を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、最高ピークが存在する傾斜角区分を求めるとともに、0〜10度の範囲内に存在する度数の割合を求めた。
表7および表8に、その結果を示す。
Next, the distribution of the number of inclination angles of the upper layer of the hard coating layer was also set in a column of a field emission scanning electron microscope with the cross section of the upper layer being a polished surface, and 10 kV at an incident angle of 70 degrees. An electron beam having an acceleration voltage of 1 nA was applied at an irradiation current of 0.5 μm in a direction perpendicular to the surface of the tool base, and an interval of 0.1 μm / step in a range of 100 μm in a direction horizontal to the surface of the tool base. Then, the individual grains having a cubic crystal structure existing in the measurement range are irradiated, and the normal line of the tool base surface (the direction perpendicular to the tool base surface in the cross-section polished surface) is irradiated using an electron backscatter diffraction imager. The inclination angle formed by the normal to the {422} plane, which is the crystal plane of the crystal grain, is measured, and based on the measurement result, the inclination angle is in the range of 0 to 45 degrees. Measurement inclination angle every 0.25 degree pitch With partitioning, by aggregating the frequencies present in each segment, along with determining the tilt angle sections highest peak is present, to determine the percentage of power that exists in the range of 0 degrees.
Tables 7 and 8 show the results.

また、硬質被覆層の下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒と上部層のTiAlCN結晶粒について、電界放出型走査電子顕微鏡を用いて個々の結晶粒の結晶方位を解析し、工具基体表面の法線に対する個々の結晶粒の{422}面の法線がなす傾斜角を測定するとともに、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層における該結晶粒の基体表面に平行な方向の最大幅に対応する下部層と上部層との界面を介して、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が隣接して存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることに該当するか否かを判定する。
すなわち、本発明被覆工具1〜10、比較被覆工具1〜10について、上部層と下部層の界面からの下部層の厚さ方向へ下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層1.0μmを含む範囲、また、上部層の厚さ方向へ1.0μm、さらに、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(2.0μm以上×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、2.0以上×50μmの測定領域を0.1μm/stepの間隔で、工具基体表面の法線に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層における該結晶粒の基体表面に平行な方向の最大幅に対応する下部層と上部層との界面を介して、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が隣接して存在することで本発明に規定するエピタキシャル関係を確認し、かつ、該結晶粒は、該測定領域である2.0以上×50μmの領域における基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めるか否かを求め、本発明に規定するかを判定する。
また前記電子後方散乱解析装置による測定で、下部層が立方晶である事を確認し、上部層のTiAlCNが立方晶又は立方晶と六方晶の混合である事を確認した。
表7、表8にこれらの値を示す。
Further, the crystal grains of the Ti compound layer having an average thickness of 50% or more of the total average thickness of the lower layer of the hard coating layer and the TiAlCN crystal grains of the upper layer are individually crystallized using a field emission scanning electron microscope. Analyzing the crystal orientation of the grains, measuring the inclination angle formed by the normal of the {422} plane of each crystal grain with respect to the normal of the tool substrate surface, and measuring the average layer thickness of 50% or more of the total average layer thickness of the lower layer Through the interface between the lower layer and the upper layer corresponding to the maximum width of the crystal grains in the direction parallel to the substrate surface in the Ti compound layer having a thickness, the normal of the {422} plane to the normal direction of the substrate surface Crystal grains of the Ti and Al composite nitride or composite carbonitride layer having a cubic structure having an inclination angle in the range of 0 to 10 degrees are present adjacent to each other , and the crystal grains are formed on the surface of the substrate. Of the normal to the {422} plane with respect to the normal Occupies at least 50% of the total area of the crystal grains of the composite nitride or composite carbonitride layer of Ti and Al having the cubic structure in the range of 0 to 10 degrees. Is determined.
That is, for the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10, the average layer thickness of 50% or more of the total average layer thickness of the lower layer in the thickness direction of the lower layer from the interface between the upper layer and the lower layer is set to Range of 1.0 μm in the thickness direction of the upper layer, and a measurement range (2.0 μm or more × 50 μm) of a polished cross section of 50 μm in a direction parallel to the surface of the tool base. An electron beam with an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 ° is set on the polished surface within a measurement range of each of the polished surfaces by being set in a column of a field emission scanning electron microscope. Each of the grains having a cubic crystal lattice is irradiated, and a measurement area of 2.0 or more × 50 μm is measured at an interval of 0.1 μm / step with an electron backscattering diffraction imager at a normal of the surface of the tool base. On the other hand, in the crystal plane of the crystal grain, The inclination angle formed by the normal line of the {422} plane was measured, and the maximum width in the direction parallel to the substrate surface of the crystal grains in the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer was measured. Ti and Al having the cubic structure in which the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees through the corresponding interface between the lower layer and the upper layer. The presence of adjacent crystal grains of the composite nitride or carbonitride layer confirms the epitaxial relationship defined in the present invention, and the crystal grains are at least 2.0 × 50 μm in the measurement region. Of the Ti and Al composite nitride or composite carbonitride layer having the cubic structure, in which the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface in the region is in the range of 0 to 10 degrees. Occupies 50% or more of the total area of crystal grains Seeking whether, determines prescribed in the present invention.
In addition, the measurement by the electron backscattering analyzer confirmed that the lower layer was cubic, and that the TiAlCN of the upper layer was cubic or a mixture of cubic and hexagonal.
Tables 7 and 8 show these values.







つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10と比較被覆工具1〜10について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。   Next, the coated tools 1 to 10 of the present invention and the comparative coated tools 1 to 10 were clamped with a fixing jig at the tip of a tool steel cutter having a cutter diameter of 125 mm. As shown below, dry high-speed face milling, which is a type of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. Table 9 shows the results.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験:乾式高速正面フライス、センターカット切削加工、
被削材:JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度:980 min−1
切削速度:385 m/min、
切り込み:1.5 mm、
一刃送り量:0.15 mm/刃、
切削時間:8分、
Tool base: Tungsten carbide based cemented carbide, titanium carbonitride based cermet,
Cutting test: Dry high-speed face milling, center cut cutting,
Work material: JIS SCM440 block material of width 100mm, length 400mm,
Rotation speed: 980 min -1 ,
Cutting speed: 385 m / min,
Notch: 1.5 mm,
Feed amount per blade: 0.15 mm / blade
Cutting time: 8 minutes,


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体E〜Gをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle size of 1 to 3 μm are prepared. Compounded in the composition shown in Table 10, further added wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed. Vacuum sintering is performed at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm to obtain an ISO standard. Tool bases E to G made of a WC-based cemented carbide having an insert shape of CNMG120412 were manufactured, respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体Hを形成した。   In addition, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared as raw material powders, These raw material powders were blended according to the blending composition shown in Table 11, wet-mixed in a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa, and the green compact was compressed to a nitrogen pressure of 1.3 kPa. Sintering is performed in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.09 mm to form a TiCN base having an insert shape of ISO standard CNMG120412. A tool base H made of cermet was formed.

つぎに、これらの工具基体E〜Gおよび工具基体Hの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3、表5及び表6に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表12に示される本発明被覆工具11〜20を製造した。
なお、本発明被覆工具18〜20については、表3に示される形成条件で、表12に示すような上部層を形成した。
Next, on the surfaces of the tool bases E to G and the tool base H, at least (Ti 1) was obtained by using a chemical vapor deposition apparatus in the same manner as in Example 1 under the conditions shown in Tables 3, 5 and 6. -x Al x) (by C y N 1-y) layer is deposited formed at the target layer thickness of the hard coating layer containing was prepared present invention coated tool 11 to 20 shown in Table 12.
For the coated tools 18 to 20 of the present invention, upper layers as shown in Table 12 were formed under the forming conditions shown in Table 3.

また、比較の目的で、同じく工具基体E〜Gおよび工具基体Hの表面に、通常の化学蒸着装置を用い、表4、表5及び表6に示される条件かつ表13に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表13に示される比較被覆工具11〜20を製造した。
なお、本発明被覆工具18〜20と同様に、比較被覆工具18〜20については、表4に示される形成条件で、表13に示される上部層を形成した。
For the purpose of comparison, the surface of the tool bases E to G and the tool base H were similarly subjected to the conditions shown in Tables 4, 5 and 6 and the target layer thicknesses shown in Table 13 by using a normal chemical vapor deposition apparatus. Then, comparative coated tools 11 to 20 shown in Table 13 were produced by vapor-depositing and forming a hard coating layer in the same manner as the coated tool of the present invention.
In addition, similarly to the coated tools 18 to 20 of the present invention, for the comparative coated tools 18 to 20, the upper layers shown in Table 13 were formed under the forming conditions shown in Table 4.

本発明被覆工具11〜20および比較被覆工具11〜20の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12および表13に示される目標層厚と実質的に同じ平均層厚を示した。   The cross sections of the constituent layers of the coated tools 11 to 20 of the present invention and the comparative coated tools 11 to 20 were measured by using a scanning electron microscope (magnification: 5000 times), and the layer thicknesses at five points in the observation visual field were measured and averaged. When the average layer thickness was obtained by using the above method, the average layer thickness was substantially the same as the target layer thickness shown in Tables 12 and 13.

上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、実施例1と同様にして求めた。
また、硬質被覆層の下部層および上部層の立方晶結晶構造を有する結晶粒の{422}面の法線が、工具基体表面の法線対してなす傾斜角および傾斜角度数分布については、実施例1と同様にして求めた。
さらに、界面を介して相互に隣接する下部層の結晶粒の{422}面の法線方向に対してエピタキシャル成長をなす上部層のTiAlCN結晶粒の面積割合については、実施例1と同様にして求めた。
表12、表13にこれらの値を示す。
The average Al content X ave and the average C content Y ave of the TiAlCN layer of the upper layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyser: EPMA). .
The inclination angle and the inclination angle number distribution formed by the normal line of the {422} plane of the crystal grains having the cubic crystal structure of the lower layer and the upper layer of the hard coating layer with respect to the normal line of the tool base surface are described. It was determined in the same manner as in Example 1.
Further, the area ratio of the TiAlCN crystal grains of the upper layer epitaxially growing in the normal direction of the {422} plane of the crystal grains of the lower layer adjacent to each other via the interface was obtained in the same manner as in Example 1. Was.
Tables 12 and 13 show these values.



つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜20および比較被覆工具11〜20について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:390 m/min、
切り込み:1.0 mm、
送り:0.1 mm/rev、
切削時間:5 分、
(通常の切削速度は、 220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:325 m/min、
切り込み:1.5 mm、
送り:0.1 mm/rev、
切削時間:5 分、
(通常の切削速度は、 200m/min)、
表14に、切削試験の結果を示す。
Next, with the coated tools 11 to 20 of the present invention and the comparative coated tools 11 to 20 in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the following will be described. A dry high-speed intermittent cutting test of carbon steel and a wet high-speed intermittent cutting test of cast iron were performed, and the flank wear width of the cutting edge was measured in each case.
Cutting condition 1:
Work material: JIS S45C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 390 m / min,
Cut: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220m / min),
Cutting condition 2:
Work material: JIS FCD700 Four rods with longitudinal grooves at equal intervals in the longitudinal direction,
Cutting speed: 325 m / min,
Notch: 1.5 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200m / min),
Table 14 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表15に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As raw material powders, cBN powder, TiN powder, TiC powder, Al powder, and Al 2 O 3 powder, each having an average particle diameter in the range of 0.5 to 4 μm, are prepared. These raw material powders are shown in Table 15. The mixture was blended into the composition, wet-mixed in a ball mill for 80 hours, dried, and then press-molded at a pressure of 120 MPa into a compact having a diameter of 50 mm × thickness: 1.5 mm. Is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to prepare a pre-sintered body for a cutting blade. This pre-sintered body is prepared separately. An ordinary ultra-high pressure sintering apparatus in a state of being superposed on a WC-based cemented carbide support piece having a size of 50 mm × thickness: 2 mm, having the following composition: Co: 8 mass%, WC: remaining composition And normal pressure, 4 Pa, temperature: at a predetermined temperature in the range of 1200 to 1400 ° C., ultra-high pressure sintering under the condition of holding time: 0.8 hour, and after sintering, the upper and lower surfaces are polished using a diamond grindstone. WC: 5% by mass, TaC: 5% by mass, WC: Remaining composition and shape of JIS standard CNGA120412 (thickness: 4.76 mm x inscribed circle diameter: 12.7 mm In the brazing portion (corner portion) of the insert body made of a WC-based cemented carbide having a rhombus shape, Zr: 37.5%, Cu: 25%, and Ti: After brazing using a brazing material of a Zr-Cu alloy and processing the outer periphery to a predetermined size, the cutting edge portion is subjected to a honing process with a width of 0.13 mm and an angle of 25 °, and further subjected to finish polishing to obtain an ISO. Standard CNGA12 Tool substrate b having a 412 insert shape, The filtrate was produced, respectively.


つぎに、これらの工具基体イ、ロの表面に、化学蒸着装置を用い、実施例1と同様に、表3に示される形成条件で、表16に示される下部層を形成し、表5、表6に示される条件で、所定時間、熱CVD法を行って上部層を形成することにより、本発明被覆工具21〜26を作製した。
なお、本発明被覆工具25〜26については、表3に示される形成条件で、表16に示される上部層を形成した。
Next, the lower layers shown in Table 16 were formed on the surfaces of these tool bases A and B using a chemical vapor deposition apparatus under the forming conditions shown in Table 3 in the same manner as in Example 1. The coated tools 21 to 26 of the present invention were produced by performing a thermal CVD method for a predetermined time under the conditions shown in Table 6 to form an upper layer.
In addition, about the coated tools 25-26 of this invention, the upper layer shown in Table 16 was formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表4に示される形成条件で、表17に示される下部層を形成し、表5、表6に示される条件で、所定時間、熱CVD法を行って上部層を形成することにより、比較被覆工具21〜26を作製した。
なお、比較被覆工具25〜26については、表4に示される形成条件で、表17に示される上部層を形成した。
For the purpose of comparison, the lower layers shown in Table 17 were formed on the surfaces of the tool bases A and B using the usual chemical vapor deposition apparatus under the forming conditions shown in Table 4, and Tables 5 and 6 were formed. The comparative coating tools 21 to 26 were produced by performing a thermal CVD method for a predetermined time under the conditions shown in FIG.
In addition, about the comparative coating tools 25-26, the upper layer shown in Table 17 was formed on the formation conditions shown in Table 4.

また、本発明被覆工具21〜26、比較被覆工具21〜26の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。   In addition, the cross sections of the coated tools 21 to 26 of the present invention and the comparative coated tools 21 to 26 were measured using a scanning electron microscope, and the layer thickness at five points in the observation visual field was measured and averaged to obtain an average layer thickness. .

上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、実施例1と同様にして求めた。
また、硬質被覆層の下部層および上部層の立方晶結晶構造を有する結晶粒の{422}面の法線が、工具基体表面の法線対してなす傾斜角および傾斜角度数分布については、実施例1と同様にして求めた。
さらに、界面を介して相互に隣接する下部層の結晶粒の{422}面の法線方向に対してエピタキシャル成長をなす上部層のTiAlCN結晶粒の面積割合については、実施例1と同様にして求めた。
表16、表17にこれらの値を示す。
The average Al content X ave and the average C content Y ave of the TiAlCN layer of the upper layer were determined in the same manner as in Example 1 using an electron-beam microanalyzer (Electron-Probe-Micro-Analyser: EPMA). .
The inclination angle and the inclination angle number distribution formed by the normal line of the {422} plane of the crystal grains having the cubic crystal structure of the lower layer and the upper layer of the hard coating layer with respect to the normal line of the tool base surface are described. It was determined in the same manner as in Example 1.
Further, the area ratio of the TiAlCN crystal grains of the upper layer epitaxially growing in the normal direction of the {422} plane of the crystal grains of the lower layer adjacent to each other via the interface was obtained in the same manner as in Example 1. Was.
Tables 16 and 17 show these values.

つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具21〜26、比較被覆工具21〜26について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 255 m/min、
切り込み: 0.10 mm、
送り: 0.12 mm/rev、
切削時間: 4分、
表18に、前記切削試験の結果を示す。
Next, the coated tools 21 to 26 of the present invention and the comparative coated tools 21 to 26 will be described below in a state where each of the various coated tools is screwed to the tip of a tool steel tool with a fixing jig. Then, a dry high-speed intermittent cutting test of a carburized and quenched alloy steel was performed, and the flank wear width of the cutting edge was measured.
Work material: JIS SCr420 (hardness: HRC62), four longitudinally grooved round bars at regular intervals in the longitudinal direction,
Cutting speed: 255 m / min,
Cut: 0.10 mm,
Feed: 0.12 mm / rev,
Cutting time: 4 minutes,
Table 18 shows the results of the cutting test.


表7〜9、12〜14、16〜18に示される結果から、本発明被覆工具1〜26は、界面を介して隣接する下部層の{422}配向を示す結晶粒と上部層の{422}配向を示すTiAlCN結晶粒がエピタキシャル成長をすることで、界面での付着密度が向上すると同時に、硬質被覆層が高硬度となるため、高熱発生を伴い、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件に用いた場合でも、硬質被覆層の耐チッピング性にすぐれるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較被覆工具1〜26では、高速断続切削加工においては、硬質被覆層のチッピング、欠損、剥離等の異常損傷の発生、耐摩耗性の低下により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 9, 12 to 14, and 16 to 18, the coated tools 1-26 of the present invention showed that the crystal grains exhibiting the {422} orientation of the lower layer and the {422} of the upper layer adjacent to each other via the interface. TiEpitaxial growth of TiAlCN crystal grains showing orientation improves the adhesion density at the interface and increases the hardness of the hard coating layer, resulting in high heat generation and intermittent / impact impact on the cutting edge. Even when used in high-speed intermittent cutting conditions in which a high load acts, the hard coating layer has excellent chipping resistance and exhibits excellent wear resistance over a long period of use.
On the other hand, in the comparative coated tools 1-26, in high-speed intermittent cutting, the occurrence of abnormal damage such as chipping, chipping, peeling, etc. of the hard coating layer, and a decrease in wear resistance resulted in a relatively short service life. It is clear that

本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に断続的・衝撃的負荷な高負荷が作用する高速断続切削という厳しい切削条件下でも、すぐれた耐チッピング性、耐摩耗性が発揮されるものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   The coated tool of the present invention is not limited to continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, and severe cutting conditions such as high-speed intermittent cutting in which a high load such as intermittent / impact load acts on the cutting edge. Even under the condition, excellent chipping resistance and abrasion resistance are exhibited, so that it can sufficiently respond to high performance of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction. .

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1〜20μmの合計平均層厚を有するTi化合物層であって、かつ、その内の1層は、1μm以上で且つ合計平均層厚の50%以上の平均層厚を有するTi化合物層であり、
(b)前記上部層は、1〜20μmの平均層厚を有するTiとAlの複合窒化物または複合炭窒化物層であり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層を、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(d)前記下部層のうち、合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒はNaCl型面心立方晶の結晶構造を有し、また、前記上部層のTiとAlの複合窒化物または複合炭窒化物層の結晶粒は、NaCl型面心立方晶構造単相またはNaCl型面心立方晶構造と六方晶構造の混相からなる結晶構造を有し、
(e)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の個々の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、基体表面の法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層のいずれにおいても、0〜10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合を示し。
(f)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する下部層と上部層との界面を介して、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が隣接して存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
A hard coating layer consisting of a lower layer and an upper layer is formed on the surface of a tool base made of either a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. Surface coated cutting tools,
(A) The lower layer has a total average layer thickness of 1 to 20 μm including one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer. And one of the layers is a Ti compound layer having an average layer thickness of 1 μm or more and 50% or more of the total average layer thickness,
(B) the upper layer is a composite nitride or carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm;
(C) forming a composite nitride or composite carbonitride layer of Ti and Al,
Composition formula: (Ti 1-x Al x ) ( CyN 1-y )
In this case, the average content ratio X ave of Al in the total amount of Ti and Al and the average content ratio Y ave of C in the total amount of C and N (where X ave and Y ave are atomic ratios) Satisfy 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005, respectively.
(D) In the lower layer, the crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness have a NaCl-type face-centered cubic crystal structure, and the Ti of the upper layer has The crystal grains of the composite nitride or composite carbonitride layer of Al and Al have a crystal structure composed of a NaCl-type face-centered cubic structure single phase or a mixed phase of a NaCl-type face-centered cubic structure and a hexagonal structure,
(E) a crystal grain of a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and a composite nitride or composite carbonitride of Ti and Al having the cubic structure of the upper layer When the crystal orientation of each crystal grain of the object layer is analyzed from the longitudinal section direction using an electron beam backscatter diffraction device, the method of {422} plane, which is the crystal plane of the crystal grain with respect to the normal direction of the substrate surface, is used. The inclination angles formed by the lines are measured, and among the measurement inclination angles, the measurement inclination angles that are within the range of 0 to 45 degrees with respect to the normal direction of the substrate surface are divided at intervals of 0.25 degrees. When the frequencies present in the sections are totaled, a composite nitride of Ti and Al having the cubic structure of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the cubic structure of the upper layer is obtained. In the composite or composite carbonitride layer, With the highest peak is present in the tilt angle sections of the range of 0 degrees, the sum of the frequencies present in the range of the 0 to 10 degrees, it indicates the percentage of more than 30% of the total power at the inclination angle frequency distribution.
(F) In the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer, the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface is 0 to 10 degrees. Through the interface between the lower layer and the upper layer corresponding to the maximum width of the crystal grains in the direction parallel to the surface of the substrate within the range, the inclination angle of the normal line of the {422} plane with respect to the normal direction of the substrate surface is Crystal grains of the composite nitride or carbonitride layer of Ti and Al having the cubic structure within the range of 0 to 10 degrees are adjacent to each other , and the crystal grains are normal to the surface of the substrate. 50% of the total area of the crystal grains of the Ti and Al composite nitride or composite carbonitride layer having the cubic structure in which the inclination angle of the normal line of the {422} plane with respect to the direction is in the range of 0 to 10 degrees. A surface coated cutting tool occupying the above area ratio.
前記下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層は、Tiの炭窒化物層であることを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer is a Ti carbonitride layer. 前記TiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする請求項1または2に記載の表面被覆切削工具。   An uppermost layer including at least an aluminum oxide layer having an average layer thickness of 1 to 25 μm is further formed on the surface of the upper layer made of the composite nitride or composite carbonitride layer of Ti and Al. The surface-coated cutting tool according to claim 1 or 2, wherein
JP2015252586A 2014-12-26 2015-12-24 Surface coated cutting tool with excellent chipping and wear resistance Active JP6650108B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265550 2014-12-26
JP2014265550 2014-12-26

Publications (2)

Publication Number Publication Date
JP2016124098A JP2016124098A (en) 2016-07-11
JP6650108B2 true JP6650108B2 (en) 2020-02-19

Family

ID=56358548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252586A Active JP6650108B2 (en) 2014-12-26 2015-12-24 Surface coated cutting tool with excellent chipping and wear resistance

Country Status (1)

Country Link
JP (1) JP6650108B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241630B1 (en) * 2016-07-01 2017-12-06 株式会社タンガロイ Coated cutting tool
KR102509585B1 (en) * 2020-12-24 2023-03-14 한국야금 주식회사 Cvd film for cutting tool with enhanced wear resistance and chipping resistance
KR102497484B1 (en) * 2020-12-30 2023-02-08 한국야금 주식회사 Cvd film for cutting tool with excellent peel resistance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3872244B2 (en) * 1999-12-27 2007-01-24 三菱マテリアル神戸ツールズ株式会社 Hard film and hard film coated member with excellent wear resistance
JP4811781B2 (en) * 2005-06-02 2011-11-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5239296B2 (en) * 2007-11-02 2013-07-17 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5995082B2 (en) * 2012-12-27 2016-09-21 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent peeling and chipping resistance in high-speed intermittent cutting.
JP6268530B2 (en) * 2013-04-01 2018-01-31 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Also Published As

Publication number Publication date
JP2016124098A (en) 2016-07-11

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3269478B1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP2018114611A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2016083766A (en) Surface-coated cutting tool
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP6617917B2 (en) Surface coated cutting tool
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP2019005855A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2020131424A (en) Surface-coated cutting tool
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
WO2016084938A1 (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200101

R150 Certificate of patent or registration of utility model

Ref document number: 6650108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150