JP2019005855A - Surface-coated cutting tool having hard coating layer excellent in chipping resistance - Google Patents

Surface-coated cutting tool having hard coating layer excellent in chipping resistance Download PDF

Info

Publication number
JP2019005855A
JP2019005855A JP2017123969A JP2017123969A JP2019005855A JP 2019005855 A JP2019005855 A JP 2019005855A JP 2017123969 A JP2017123969 A JP 2017123969A JP 2017123969 A JP2017123969 A JP 2017123969A JP 2019005855 A JP2019005855 A JP 2019005855A
Authority
JP
Japan
Prior art keywords
layer
degrees
inclination angle
average
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017123969A
Other languages
Japanese (ja)
Other versions
JP6858346B2 (en
Inventor
佐藤 賢一
Kenichi Sato
佐藤  賢一
卓也 石垣
Takuya Ishigaki
卓也 石垣
光亮 柳澤
Mitsuaki Yanagisawa
光亮 柳澤
西田 真
Makoto Nishida
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017123969A priority Critical patent/JP6858346B2/en
Publication of JP2019005855A publication Critical patent/JP2019005855A/en
Application granted granted Critical
Publication of JP6858346B2 publication Critical patent/JP6858346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a surface-coated cutting tool having excellent chipping resistance for a long period even after application thereof to a high-speed high-feeding intermittent cutting work for an alloy steel and the like.SOLUTION: In a surface-coated cutting tool in which a hard coating layer is provided to a tool substrate, the hard coating layer has a laminated structure of layers A and B which are different from each other in orientation of the NaCl type face-centered cubic structure having an average layer thickness of 1 to 20 μm and are (TiAl)(CN) and (TiAl)(CN), respectively (here, 0.60≤x, s≤0.95, 0≤y and t≤0.005). When measuring the angles of inclination made by the normal lines on the {100} plane and {111} plane of the layers A and B, respectively and partitioning the angle of inclination in a range of 0-45 degrees to the normal line every 0.25 degree pitch to compile the frequencies existing in respective partitions and to obtain an inclination angle frequency distribution, a maximum peak exists in an inclination angle section within a range of 0-12 degrees. The sum of the frequencies existing in the above range indicates a ratio of 40% or more of the whole frequency in the above inclination frequency distribution.SELECTED DRAWING: Figure 1

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工で、硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。   The present invention is a high-speed, high-feed, intermittent cutting process involving high heat generation of alloy steel and the like, and a shocking load acting on the cutting edge, and the hard coating layer has excellent chipping resistance. The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool) that exhibits excellent cutting performance over use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただし、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is a coated tool in which a Ti-Al based composite nitride layer is formed by physical vapor deposition on the surface of a tool substrate (hereinafter collectively referred to as a tool substrate) as a hard coating layer. It is known to exhibit excellent wear resistance.
However, the above-mentioned coated tool formed by coating the conventional Ti—Al based composite nitride layer is relatively excellent in wear resistance, but is likely to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、工具基体表面に、NaCl型の面心立方構造を有し組成式:(Ti1−XAl)(C1−Y)で表わされる(但し、原子比で、Alの平均組成Xavgは0.60≦Xavg≦0.95、Cの平均組成Yavgは、0≦Yavg≦0.005)TiAlCN層を少なくとも含む硬質被覆層を形成し、該TiAlCN層について、電子線後方散乱回折装置を用いて、工具基体表面の法線方向に対するTiAlCN結晶粒の{111}面の法線がなす傾斜角を測定して傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0〜12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であり、さらに、TiAlCN層の層厚方向に垂直な面内で三角形状を有し、該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、該層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織を形成することにより、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等において硬質被覆層の耐チッピング性を高めた被覆工具が提案されている。 For example, Patent Document 1 has a NaCl-type face-centered cubic structure on the surface of a tool base and is represented by a composition formula: (Ti 1-X Al X ) (C Y N 1-Y ) (provided that the atomic ratio is The average composition X avg of Al is 0.60 ≦ X avg ≦ 0.95, the average composition Y avg of C is 0 ≦ Y avg ≦ 0.005) and a hard coating layer including at least a TiAlCN layer is formed, For the TiAlCN layer, using an electron beam backscattering diffractometer, the inclination angle number distribution was determined by measuring the inclination angle formed by the normal of the {111} face of the TiAlCN crystal grain with respect to the normal direction of the tool base surface, The highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is 45% or more of the entire frequencies in the inclination angle frequency distribution, Furthermore, the in-plane perpendicular to the thickness direction of the TiAlCN layer A structure having a triangular shape and a facet formed by an equivalent crystal plane represented by {111} of the crystal grains occupies an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. A coating tool with improved chipping resistance of a hard coating layer in high-speed interrupted cutting and the like that is accompanied by high heat generation such as stainless steel and an impact load on the cutting edge has been proposed. .

また、特許文献2には、前記特許文献1と同様に、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等において硬質被覆層の耐チッピング性を高めるため、工具基体の表面に、組成式:(Ti1−XAl)(C1−Y)で表わされ(但し、原子比で、Alの平均組成Xavgは0.60≦Xavg≦0.95、Cの平均組成Yavgは、0≦Yavg≦0.005)、かつ、NaCl型の面心立方構造を有するTiAlCN層を少なくとも含む硬質被覆層を形成し、該TiAlCN層について、電子線後方散乱回折装置を用いて、工具基体表面の法線方向に対するTiAlCN結晶粒の{100}面の法線がなす傾斜角を測定して傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0〜12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であり、さらに、TiAlCN層の層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し、該ファセットが結晶粒の{100}で表される等価な結晶面のうちの一つに形成され、該ファセットが層厚方向に垂直な面内において全体の50%以上の面積割合を占める組織を形成した被覆工具が提案されている。
また、前記被覆工具において、TiAlCN層についてXRD解析を行ったとき、立方晶構造に由来するピーク強度Ic{200}と六方晶構造に由来するピーク強度Ih{200}との間に、Ic{200}/Ih{200}≧3.0の関係が成立する場合には、耐摩耗性向上効果がより高まるとされている。
Further, in Patent Document 2, as in Patent Document 1, high heat generation of stainless steel or the like is accompanied, and chipping resistance of the hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting blade. In order to enhance the property, the surface of the tool base is represented by the composition formula: (Ti 1-X Al X ) (C Y N 1-Y ) (provided that the average composition X avg of Al is 0. 60 ≦ X avg ≦ 0.95, the average composition Y avg of C is 0 ≦ Y avg ≦ 0.005), and a hard coating layer including at least a TiAlCN layer having a NaCl-type face-centered cubic structure is formed, When the TiAlCN layer was measured for the tilt angle number distribution by measuring the tilt angle formed by the normal of the {100} plane of the TiAlCN crystal grain with respect to the normal direction of the tool base surface using an electron beam backscatter diffraction device , Tilt angle in the range of 0-12 degrees The sum of the frequencies having the highest peak in the minute and within the range of 0 to 12 degrees is 45% or more of the entire frequencies in the tilt angle distribution, and is perpendicular to the thickness direction of the TiAlCN layer. A polygonal facet that does not have an angle of less than 90 degrees in a plane, and the facet is formed on one of the equivalent crystal planes represented by {100} of the crystal grain, A coated tool having a structure that occupies an area ratio of 50% or more of the entire surface in a plane perpendicular to the layer thickness direction has been proposed.
Further, when XRD analysis is performed on the TiAlCN layer in the coated tool, Ic {200 between the peak intensity Ic {200} derived from the cubic structure and the peak intensity Ih {200} derived from the hexagonal structure. } / Ih {200} ≧ 3.0 holds true, the effect of improving wear resistance is further enhanced.

また、特許文献3には、工具の耐摩耗性を改善するために、工具基体上にCVDで形成された3〜25μmの耐摩耗コーティング層を形成し、該コーティング層は、少なくとも、Ti1−xAlで表した場合に、0.70≦x<1、0≦y<0.25および0.75≦z<1,15を満足する1.5〜17μmの層厚を有するTiAlCN層を備え、該層は、150nm未満のラメラ間隔のラメラ構造、同一結晶構造を有し、TiとAlが交互に異なった化学量を有するTi1−xAlが周期的に交互に配置されたTi1−xAlで構成され、さらに、Ti1−xAl層は少なくとも90体積%以上が面心立方構造であり、該層のTC値は、TC(111)>1.5を満足し、{111}面のX線回折ピーク強度の半価幅は1度未満である被覆工具が提案されている。 Further, in Patent Document 3, in order to improve the wear resistance of a tool, a 3 to 25 μm wear-resistant coating layer formed by CVD is formed on a tool substrate, and the coating layer includes at least Ti 1-1. when expressed in x Al x C y N z, the thickness of 1.5~17μm that satisfies 0.70 ≦ x <1,0 ≦ y < 0.25 and 0.75 ≦ z <1, 15 The TiAlCN layer has a lamellar structure with a lamellar spacing of less than 150 nm, the same crystal structure, and Ti 1-x Al x C y N z with Ti and Al having different stoichiometry. manner is composed of alternately arranged Ti 1-x Al x C y N z, further, Ti 1-x Al x C y N z layer is at least 90 vol% or more is face-centered cubic structure, said layer TC value satisfies TC (111)> 1.5, { Half value width of the X-ray diffraction peak intensity of 11} plane coated tool have been proposed less than 1 degree.

特開2015−163423号公報Japanese Patent Laying-Open No. 2015-163423 特開2015−163424号公報Japanese Patent Laying-Open No. 2015-163424 国際公開第2015/135802号International Publication No. 2015/135802

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性等の耐異常損傷性が求められるとともに、長期の使用が可能な高寿命が求められている。
しかし、前記特許文献1〜3で提案されている被覆工具では、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工において、耐チッピング性が未だ十分ではなく、満足できる切削性能を長期の使用にわたり備えるとはいえない。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tools are even more resistant to abnormal damage such as chipping resistance. In addition to demanding properties, there is a need for a long life that can be used for a long time.
However, the coated tools proposed in Patent Documents 1 to 3 are accompanied by high heat generation of alloy steel and the like, and in high-speed high-feed intermittent cutting where an impact load is applied to the cutting edge, chipping resistance However, it is not sufficient, and it cannot be said that satisfactory cutting performance is provided over a long period of use.

そこで、本発明は前記課題を解決し、合金鋼等の高速高送り断続切削加工に供した場合であっても、長期の使用にわたって優れた耐チッピング性を発揮する被覆工具を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-mentioned problems and to provide a coated tool that exhibits excellent chipping resistance over a long period of use even when subjected to high-speed, high-feed intermittent cutting such as alloy steel. And

本発明者らは、TiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」あるいは「(Ti1−xAl)(C1−y)」で示すことがある)層を少なくとも含む硬質被覆層を工具基体表面に設けた被覆工具の耐チッピング性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 The present inventors have disclosed a composite nitride or composite carbonitride (hereinafter referred to as “TiAlCN” or “(Ti 1-x Al x ) (C y N 1-y )”) layer of Ti and Al. As a result of intensive studies to improve the chipping resistance of a coated tool provided with a hard coating layer containing at least a hard coating layer on the surface of the tool base, the following findings were obtained.

すなわち、{100}面の法線方向に配向の割合が高いTiAlCN層と{111}面の法線方向に配向の割合が高いTiAlCN層とを交互にそれぞれ1層以上積層した硬質被覆層は、各層の積層数が奇数であっても、耐チッピング性が向上しているとの事実を見出した。   That is, a hard coating layer in which one or more TiAlCN layers having a high orientation ratio in the normal direction of the {100} plane and one or more TiAlCN layers having a high orientation ratio in the normal direction of the {111} plane are alternately laminated, It has been found that the chipping resistance is improved even when the number of stacked layers is an odd number.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとA1の複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、配向性の異なる2層から成る積層構造を有しており、積層構造を形成するTiとA1の複合窒化物または複合炭窒化物層A層、B層とした場合、
A層およびB層の層厚は0.5μm以上であり、それぞれの組成式を(Ti1−xAl)(C1−y)、(Ti1−sAl)(C1−t)で表したとき、該A層、該B層におけるAlのTiとAlの合量に占める含有割合xおよびs並びにCのCとNの合量に占める含有割合yおよびt(但し、x、s、y、tは、いずれも原子比)が、それぞれ、0.60≦x≦0.95、0.60≦s≦0.95、0≦y≦0.005、0≦t≦0.005を満足し、
(c)前記A層内のNaCl型の面心立方構造を有するTiとA1との複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を示し、
(d)前記B層内のNaCl型の面心立方構造を有するTiとA1との複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を示すことを特徴とする表面被覆切削工具。
(2)前記A層、前記B層の少なくとも一方の結晶粒にはTiとAlの周期的な濃度変化が存在し、原子比で表したA1の含有割合が周期的に変化する値の極大値の平均値と極小値の平均値との差は0.03〜0.25であり、Alの含有割合の変化の周期が3〜100nmであることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記A層の平均Al含有割合xと前記B層の平均Al含有割合sとの差の絶対値|x−s|が0.10以下であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5)前記硬質被覆層の上部に少なくとも1.0〜25.0μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)〜(4)のいずれかに記載の表面被覆切削工具。」
である。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body ,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and A1 having an average layer thickness of 1.0 to 20.0 μm,
(B) The composite nitride or composite carbonitride layer has a laminated structure composed of two layers having different orientations, and Ti and A1 composite nitride or composite carbonitride layer A forming the laminated structure. In the case of layer and B layer,
The layer thicknesses of the A layer and the B layer are 0.5 μm or more, and the respective composition formulas are (Ti 1-x Al x ) (C y N 1-y ), (Ti 1-s Al s ) (C t N 1-t ), the content ratios x and s in the total amount of Ti and Al in the A layer and the B layer, and the content ratios y and t in the total amount of C and N in C (however, , X, s, y, and t are all atomic ratios) are 0.60 ≦ x ≦ 0.95, 0.60 ≦ s ≦ 0.95, 0 ≦ y ≦ 0.005, and 0 ≦ t, respectively. ≦ 0.005 is satisfied,
(C) The crystal orientation of the crystal grains of the composite nitride or composite carbonitride of Ti and A1 having the NaCl-type face-centered cubic structure in the A layer is determined by using the electron beam backscatter diffractometer. When analyzing from the above, the inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured. When the inclination angle within the range of degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the inclination angle classification within the range of 0 to 12 degrees The sum of the frequencies existing in the range of 0 to 12 degrees indicates a ratio of 40% or more of the entire frequencies in the tilt angle frequency distribution,
(D) The crystal orientation of the composite nitride or composite carbonitride crystal grain of Ti and A1 having the NaCl-type face-centered cubic structure in the B layer is measured in the longitudinal section direction using an electron beam backscattering diffractometer. When analyzing from the above, the inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured. When the inclination angle within the range of degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the inclination angle classification within the range of 0 to 12 degrees The surface-coated cutting tool is characterized in that the highest peak is present and the sum of the frequencies within the range of 0 to 12 degrees represents a ratio of 40% or more of the total frequencies in the tilt angle frequency distribution.
(2) There is a periodic concentration change of Ti and Al in at least one of the crystal grains of the A layer and the B layer, and the maximum value in which the content ratio of A1 expressed by an atomic ratio changes periodically. The surface coating according to (1), characterized in that the difference between the average value and the average minimum value is 0.03 to 0.25, and the period of change in the Al content is 3 to 100 nm. Cutting tools.
(3) The absolute value | x−s | of the difference between the average Al content ratio x of the A layer and the average Al content ratio s of the B layer is 0.10 or less (1) or ( The surface-coated cutting tool according to 2).
(4) It consists of one layer or two or more layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the hard coating layer, And the lower layer containing the Ti compound layer which has a total average layer thickness of 0.1-20.0 micrometers exists, The surface-coated cutting tool in any one of (1)-(3) characterized by the above-mentioned.
(5) In any one of (1) to (4), an upper layer including an aluminum oxide layer having an average layer thickness of at least 1.0 to 25.0 μm exists above the hard coating layer. The surface-coated cutting tool described. "
It is.

本発明の被覆工具は、組成の異なる、{100}面の法線方向へ配向の割合が高いTiAlCN層(A層)と{111}面の法線方向へ配向の割合が高いTiAlCN層(B層)とを交互にそれぞれ1層以上積層したことにより、積層数が奇数であっても、耐摩耗性と耐チッピング性が大きく向上し、また、積層構造によるクラックの進展の抑制・耐欠損性の向上がなされ、高速高送り断続切削加工であっても長期にわたって優れた切削性能を発揮するという顕著な効果を奏する。
この効果を奏する理由は、{100}面の法線方向へ配向性が高いA層が有する高い硬度と{111}面の法線方向へ配向の割合が高いB層が有する高い靭性との相乗によりもたらされると推定している。
The coated tool of the present invention comprises a TiAlCN layer (A layer) having a different orientation ratio in the normal direction of the {100} plane and a TiAlCN layer (B) having a higher orientation ratio in the normal direction of the {111} plane. Layer) are alternately laminated one by one, so that even if the number of layers is an odd number, the wear resistance and chipping resistance are greatly improved. Thus, even if it is a high-speed, high-feed, intermittent cutting process, there is a remarkable effect of exhibiting excellent cutting performance over a long period of time.
The reason for this effect is the synergy between the high hardness of the A layer having high orientation in the normal direction of the {100} plane and the high toughness of the B layer having a high orientation ratio in the normal direction of the {111} plane. Is estimated to be brought by.

本発明の被覆工具の断面模式図である。It is a cross-sectional schematic diagram of the coated tool of this invention. 実施例1で作製した本発明被覆工具8で測定されたA層における工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計することにより求めた傾斜角度数分布の一例を示す。The inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the surface of the tool base in the layer A measured with the inventive coated tool 8 produced in Example 1, The number of inclination angles obtained by dividing the inclination angles in the range of 0 to 45 degrees with respect to the normal direction among the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each division An example of distribution is shown. 実施例1で作製した本発明被覆工具8で測定されたB層における工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計することにより求めた傾斜角度数分布の一例を示す。The inclination angle formed by the normal of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the surface of the tool base in the B layer measured with the inventive coated tool 8 produced in Example 1, The number of inclination angles obtained by dividing the inclination angles in the range of 0 to 45 degrees with respect to the normal direction among the inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each division An example of distribution is shown.

次に、本発明の被覆工具の硬質被覆層について、より詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in more detail.

1.硬質被覆層を構成するA、B各層の厚さと両層の和の平均厚さ:
硬質被覆層を構成するA、B各層の厚さは、0.5μm以上とする。その理由は、0.5μm未満であると、積層構造としても各層の持つ特性が十分に発揮できない虞があるためである。一方、各層の厚さの上限は特に制約がないが、後述する両層の和の平均層厚によって制約を受ける。すなわち、各層は、それぞれ、1層以上積層する必要があるため、19.5(=20−0.5)μmが事実上の上限となる。
両層の和の平均層厚は、1〜20μmである。下限値1μmは、各層の厚さの和の下限値である0.5μmの和(1=0.5+0.5)に対応したものである。一方、上限値20μmは、20μmを超えると、被覆工具として刃先の鋭利さを確保し、加工精度を得てバリを防ぎ、加工面品位を確保することが難しくなるためである。
1. The thickness of each layer of A and B constituting the hard coating layer and the average thickness of the sum of both layers:
The thickness of each layer A and B constituting the hard coating layer is 0.5 μm or more. The reason is that if the thickness is less than 0.5 μm, the characteristics of each layer may not be sufficiently exhibited even in a laminated structure. On the other hand, the upper limit of the thickness of each layer is not particularly limited, but is limited by the average layer thickness of the sum of both layers described later. That is, since each layer needs to be laminated one or more layers, 19.5 (= 20−0.5) μm is the practical upper limit.
The average layer thickness of the sum of both layers is 1 to 20 μm. The lower limit value of 1 μm corresponds to the sum of 0.5 μm (1 = 0.5 + 0.5) which is the lower limit value of the sum of the thicknesses of the respective layers. On the other hand, if the upper limit value of 20 μm exceeds 20 μm, it is difficult to ensure the sharpness of the cutting edge as a coated tool, obtain processing accuracy, prevent burrs, and ensure the quality of the processed surface.

ここで、各層の厚さ、両層の和の平均層厚は、工具基体に垂直な方向の断面(縦断面)を研磨し、研磨した断面を走査型電子顕微鏡を用いて適切な倍率(例えば、倍率5000倍)で測定し、観察視野内の5点の層厚を測って平均して求めることができる。   Here, the thickness of each layer and the average layer thickness of both layers are determined by polishing a cross section (longitudinal cross section) in a direction perpendicular to the tool base, and using the scanning electron microscope to obtain an appropriate magnification (for example, , Magnification 5000 times), and can be obtained by measuring and averaging the five layer thicknesses within the observation field.

2.各層のTiAlCN層の平均組成:
本発明におけるTiAlCN層は、
A層(Ti1−xAl)(C1−y)、B層(Ti1−sAl)(C1−t)とも
AlのTiおよびAlの合量に占める含有割合(以下、「Alの平均含有割合」という)x、s、
CのCとNの合量に占める平均含有割合(以下、「Cの平均含有割合」という)y、tが、
それぞれ、0.60≦x≦0.95、0.60≦s≦0.95、0≦y≦0.005、0≦t≦0.005(但し、x、s、y、tはいずれも原子比である)を満足するように定める。
その理由は、Alの平均含有割合x、sが0.60未満であると、TiAlCN層は硬さに劣るため高速高送り断続切削加工に供した場合には、耐摩耗性が十分でなく、さらに、Alの平均含有割合x、sが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。
したがって、Alの平均含有割合x、s平均含有割合は、0.60≦x≦0.95、0.60≦s≦0.95と定めた。
加えて、TiAlCN層に含まれるCの平均含有割合y、tは、0≦y≦0.005、0≦t≦0.005の範囲であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlCN層の耐チッピング性が向上する。一方、Cの平均含有割合zが0≦y≦0.005、0≦t≦0.005の範囲を逸脱すると、TiAlCN層の靭性が低下するため耐チッピング性が逆に低下するため好ましくない。
したがって、Cの平均含有割合s、tは、0≦y≦0.005、0≦t≦0.005と定めた。
2. Average composition of TiAlCN layers in each layer:
The TiAlCN layer in the present invention is
Containing a percentage of A layer (Ti 1-x Al x) (C y N 1-y), B layer (Ti 1-s Al s) total amount of (C t N 1-t) with Al Ti and Al (Hereinafter referred to as “average content ratio of Al”) x, s,
The average content ratio (hereinafter referred to as “the average content ratio of C”) y and t in the total amount of C and N of C are:
0.60 ≦ x ≦ 0.95, 0.60 ≦ s ≦ 0.95, 0 ≦ y ≦ 0.005, 0 ≦ t ≦ 0.005 (where x, s, y, and t are all (Atomic ratio).
The reason is that when the average Al content ratio x, s is less than 0.60, the TiAlCN layer is inferior in hardness, so when subjected to high-speed high-feed intermittent cutting, the wear resistance is not sufficient, Further, when the average Al content ratio x, s exceeds 0.95, the Ti content ratio is relatively decreased, leading to embrittlement and lowering of chipping resistance.
Therefore, the average Al content ratio x and the s average content ratio were determined as 0.60 ≦ x ≦ 0.95 and 0.60 ≦ s ≦ 0.95.
In addition, when the average content ratios y and t of C contained in the TiAlCN layer are in the range of 0 ≦ y ≦ 0.005 and 0 ≦ t ≦ 0.005, the adhesion between the TiAlCN layer and the tool substrate or the lower layer As a result, the impact at the time of cutting is reduced by improving the lubricity, and as a result, the chipping resistance of the TiAlCN layer is improved. On the other hand, if the average content ratio z of C deviates from the range of 0 ≦ y ≦ 0.005 and 0 ≦ t ≦ 0.005, the toughness of the TiAlCN layer is lowered and the chipping resistance is lowered, which is not preferable.
Accordingly, the average content ratios s and t of C are determined as 0 ≦ y ≦ 0.005 and 0 ≦ t ≦ 0.005.

ここで、TiAlCN層のAlの平均含有割合x、sは、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から照射し、膜厚方向に線分析を行って得られたオージェ電子の解析結果の5本を用いて各層の平均からAlの平均含有割合xおよびsを求めることができる。
Cの平均含有割合y、tについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めることができる。イオンビームを縦断面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合y、tはTiAlCN層についての深さ方向の平均値を示す。
ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外する。
Here, the average content ratios x and s of Al in the TiAlCN layer are obtained by irradiating an electron beam from the vertical cross section side in a sample obtained by polishing a sample cross section using Auger Electron Spectroscopy (AES). The average content x and s of Al can be obtained from the average of each layer using five of the analysis results of Auger electrons obtained by performing line analysis in the direction.
The average C content y and t can be determined by secondary ion mass spectrometry (Secondary-Ion-Mass- Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the longitudinal section side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. Average content ratios y and t of C indicate average values in the depth direction of the TiAlCN layer.
However, the content ratio of C excludes an unavoidable content ratio of C that is included even if a gas containing C is not intentionally used as a gas raw material.

3.A層およびB層において、TiとA1との複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する結晶粒の結晶面である{100}面の法線(A層)または{111}面の法線(B層)がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上:
A層およびB層が、それぞれ、この所定の傾斜角度数分布を有するとき、両層を積層構造とすることで高速高送り断続切削加工においても優れた耐摩耗性と耐チッピング性を発揮する。しかも、クラックの進展が抑制され、耐欠損性が飛躍的に向上する。
これは、A層の{100}面の法線方向へ配向の割合が高いことにより高硬度が与えられ、B層の{111}面の法線方向へ配向の割合が高いことにより硬度を保ちつつ靭性が与えられるためと推定している。
ここで、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を解析する際に、基体表面の法線に対する傾斜角が12度より大きい結晶面は{100}面の法線方向、または、{111}面の法線方向に配向しているとみなすことができず、{100}面の法線方向、または、{111}面の法線方向への配向が強く、かつ硬度または靭性が低下しない範囲が0〜12度までであることから、測定によって度数を求める傾斜角区分の範囲を0〜12度と定めた。
3. When the crystal orientation of the crystal grains of the composite nitride or composite carbonitride of Ti and A1 in the A layer and the B layer is analyzed from the longitudinal sectional direction using an electron beam backscattering diffractometer, the method of the tool base surface The inclination angle formed by the normal line of the {100} plane (A layer) or the normal line of the {111} plane (B layer), which is the crystal plane of the crystal grain with respect to the line direction, is measured, On the other hand, when the inclination angle in the range of 0 to 45 degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the range of 0 to 12 degrees is obtained. And the sum of the frequencies existing in the range of 0 to 12 degrees is 40% or more of the entire frequencies in the tilt angle frequency distribution:
When each of the A layer and the B layer has this predetermined inclination angle number distribution, both layers have a laminated structure, thereby exhibiting excellent wear resistance and chipping resistance even in high-speed high-feed intermittent cutting. In addition, the progress of cracks is suppressed, and the fracture resistance is greatly improved.
This is because the hardness is given by the high orientation ratio in the normal direction of the {100} plane of the A layer, and the hardness is maintained by the high orientation ratio in the normal direction of the {111} plane of the B layer. It is presumed that toughness is given.
Here, when analyzing the crystal orientation of each crystal grain using an electron beam backscattering diffractometer, the crystal plane whose inclination angle with respect to the normal of the substrate surface is greater than 12 degrees is the normal direction of the {100} plane, Alternatively, it cannot be regarded as oriented in the normal direction of the {111} plane, the orientation in the normal direction of the {100} plane, or the normal direction of the {111} plane is strong, and the hardness or Since the range in which the toughness does not decrease is from 0 to 12 degrees, the range of the inclination angle section for obtaining the frequency by measurement was set to 0 to 12 degrees.

ここで、A層およびB層の傾斜角度数分布は次のように求めた。
まず、立方晶構造のTiとAlの複合窒化物層または複合炭窒化物層を含む硬質被覆層の工具基体表面に垂直な断面(縦断面)を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットした。前記研磨面(断面研磨面)において、工具基体表面と水平方向に長さ100μm、工具基体表面と垂直な方向に膜厚に対して、十分な長さの範囲を測定範囲とし、この測定範囲の研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に0.01μm/stepの間隔で照射し、得られた電子線後方散乱回折像に基づき、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、A層については前記結晶粒の結晶面である{100}面の法線がなす傾斜角を、B層については前記結晶粒の結晶面である{111}面の法線がなす傾斜角を各測定点(電子線を照射した点)毎にそれぞれ測定した。そして、この測定結果に基づいて、測定された傾斜角のうち、0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布を求めた。得られた傾斜角度数分布から、0〜12度の範囲内に存在する度数の最高ピークの有無を確認し、かつ0〜45度の範囲内に存在する度数(傾斜角度数分布における度数全体)に対する0〜12度の範囲内に存在する度数の割合を求めた。なお、傾斜角度分布グラフにおいて、前記0〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の50%以上であることがより好ましい。
Here, the inclination angle number distribution of the A layer and the B layer was obtained as follows.
First, field-emission scanning electrons with a cross section (longitudinal section) perpendicular to the tool base surface of a hard coating layer including a composite nitride layer or composite carbonitride layer of cubic structure Ti and Al as a polished surface It was set in the lens barrel of the microscope. On the polishing surface (cross-section polishing surface), the measurement range is a sufficient length range with respect to the film thickness in the direction perpendicular to the tool substrate surface and a length of 100 μm in the horizontal direction with respect to the tool substrate surface. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface and an irradiation current of 1 nA, each crystal grain having a cubic crystal lattice existing within the measurement range of the cross-sectional polished surface is 0.01 μm / step. Based on the electron beam backscatter diffraction image obtained by irradiation at intervals, the A layer is the crystal plane of the crystal grain with respect to the normal of the substrate surface (direction perpendicular to the substrate surface in the cross-section polished surface) The inclination angle formed by the normal line of the {100} plane and the inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, for the B layer for each measurement point (point irradiated with the electron beam) Each was measured. And based on this measurement result, among the measured inclination angles, the inclination angles within the range of 0 to 45 degrees are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. By doing so, the inclination angle number distribution was obtained. From the obtained inclination angle frequency distribution, the presence or absence of the highest peak of the frequency existing in the range of 0 to 12 degrees is confirmed, and the frequency existing in the range of 0 to 45 degrees (the entire frequency in the inclination angle frequency distribution) The ratio of the frequency existing in the range of 0 to 12 degrees with respect to was determined. In the inclination angle distribution graph, the total number of frequencies existing in the range of 0 to 12 degrees is more preferably 50% or more of the entire frequencies in the inclination angle frequency distribution.

4.Al含有割合の極大値の平均値と極小値の平均値との差とAl含有割合の変化の周期:
硬質被覆層を構成する立方晶構造を有する少なくとも一部の結晶粒において、TiとAlの周期的な含有割合の変化が結晶成長方向に少なくとも部分的に存在する箇所があってもよい。この箇所において、周期的な含有割合の変化として、原子比で表したAl含有割合の極大値の平均値と極小値の平均値との差が0.03〜0.25であり、このAl含有割合の変化の周期が3〜100nmであることが望ましい。この範囲のAlの含有割合変化および周期であれば、十分な硬度や耐欠損性の向上をより一層期待することができる。
4). The difference between the average value of the maximum value and the average value of the minimum value of the Al content ratio and the period of change in the Al content ratio:
In at least some of the crystal grains having a cubic structure constituting the hard coating layer, there may be a portion where a change in the periodic content ratio of Ti and Al is present at least partially in the crystal growth direction. In this part, as a change in the periodic content ratio, the difference between the average value of the maximum value and the average value of the minimum value of the Al content ratio expressed in atomic ratio is 0.03 to 0.25, and this Al content It is desirable that the ratio change period is 3 to 100 nm. If the Al content ratio change and period are in this range, it is possible to further expect a sufficient improvement in hardness and fracture resistance.

Al含有割合の周期的な変化の有無と周期的な変化の極大値と極小値の差、および周期幅は、透過型電子顕微鏡(倍率200000倍)を用いた複合窒化物層または複合炭窒化物層の微小領域の観察にて確認した。例えば、エネルギー分散型X線分光法(EDS)を用いて、工具基体表面に垂直な断面(縦断面)における400nm×400nmの領域について面分析を行い、立方晶結晶粒において縞状に色の濃淡の変化が見られたとき、前記立方晶結晶粒内に、TiAlCNにおけるTiとAlの周期的な組成変化が存在する。このような濃淡の変化が見られた結晶粒について、前記面分析の結果に基づいて濃淡から10周期分程度の組成変化が測定範囲に入る様に倍率を設定した上で、工具基体表面の法線方向に沿ってEDSによる線分析を5周期分の範囲で行い、Alの含有割合の周期的な変化の極大値と極小値のそれぞれの平均値の差を求め、さらに該5周期の極大値間の平均間隔をTiとAlの周期的な組成変化の周期として求めた。 The presence or absence of periodic change in the Al content ratio, the difference between the maximum value and the minimum value of the periodic change, and the period width are the composite nitride layer or composite carbonitride using a transmission electron microscope (magnification 200000 times) It confirmed by observation of the micro area | region of a layer. For example, using an energy dispersive X-ray spectroscopy (EDS), a surface analysis is performed on a 400 nm × 400 nm region in a cross section (longitudinal cross section) perpendicular to the tool base surface, and the color density of the cubic crystal grains is striped. In the cubic crystal grains, there is a periodic composition change of Ti and Al in TiAlCN. For the crystal grains in which such a change in density is observed, the magnification is set so that the composition change of about 10 cycles from the density is within the measurement range based on the result of the surface analysis, and then the method of the tool base surface is set. A line analysis by EDS is performed in the range of 5 cycles along the line direction, and the difference between the average value of the maximum value and the minimum value of the periodic change in the Al content ratio is obtained. The average interval between them was determined as the period of periodic composition change of Ti and Al.

5.A層とB層との平均Al含有割合の差の絶対値|x−s|:
A層の平均Al含有割合とB層の平均Al含有割合との差の絶対値|x−s|は、0.1以下であることが望ましい。それは、この値以下であると、A層とB層との界面における付着強度が向上し、耐チッピング性のより一層の向上が期待できるからである。
5. Absolute value of difference in average Al content ratio between A layer and B layer | xs |:
The absolute value | x−s | of the difference between the average Al content ratio of the A layer and the average Al content ratio of the B layer is preferably 0.1 or less. This is because if it is less than this value, the adhesion strength at the interface between the A layer and the B layer is improved, and a further improvement in chipping resistance can be expected.

6.成膜方法(条件)
本発明のTiAlCN層は、例えば、工具基体もしくはTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上の上に、A層、B層形成用の反応ガス組成のガスを所定の条件で供給し、成膜することによって得ることができる。
例えば、ガス組成を表す%は容量%として、
A層({100}面の法線方向に配向)
ガス群A
NH:2.0〜3.0%、H:65〜75%
ガス群B
AlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0.0〜0.5%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:0〜7秒
1周期当たりのガス供給時間:0.00〜0.35秒
ガス群Aとガス群Bの供給の位相差:0.00〜0.30秒
B層({111}面の法線方向に配向)
ガス群A
NH:1.0〜1.5%、N:0.0〜5.0%、H:55〜60%
ガス群B
AlCl:0.6〜0.9%、TiCl:0.2〜0.3%、A1(CH:0.0〜0.5%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:0〜7秒
1周期当たりのガス供給時間:0.00〜0.35秒、
ガス群Aとガス群Bの供給の位相差:0.00〜0.30秒
をあげることができる。
なお、前記供給周期と1周期あたりのガス供給時間およびガス群Aとガス群Bの供給の位相差が0秒であることはガス群Aとガス群Bのガスが分離せずに供給されていることを意味する。
6). Deposition method (conditions)
The TiAlCN layer of the present invention is, for example, for forming an A layer and a B layer on at least one of a tool substrate or a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer. It can be obtained by supplying a gas having the above reaction gas composition under predetermined conditions and forming a film.
For example,% representing gas composition is volume%,
A layer (oriented in the normal direction of {100} plane)
Gas group A
NH 3: 2.0~3.0%, H 2 : 65~75%
Gas group B
AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0 %, H 2 : residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 0 to 7 seconds Gas supply time per cycle: 0.00 to 0.35 seconds Phase difference in supply of gas group A and gas group B: 0.00 to 0.30 seconds B layer ({111} Oriented in the normal direction of the surface)
Gas group A
NH 3: 1.0~1.5%, N 2 : 0.0~5.0%, H 2: 55~60%
Gas group B
AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, A1 (CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0 %, H 2 : residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 0 to 7 seconds Gas supply time per cycle: 0.00 to 0.35 seconds,
Phase difference of supply of gas group A and gas group B: 0.00 to 0.30 seconds can be raised.
Note that the phase difference between the supply cycle, the gas supply time per cycle, and the supply of the gas group A and the gas group B is 0 second, indicating that the gases of the gas group A and the gas group B are supplied without being separated. Means that

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超高圧焼結体を用いたインサート切削工具に適用したものについて述べるが、工具基体として、TiCN基サーメット、cBN基超高圧焼結体を用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, a tool base applied to an insert cutting tool using a WC-based ultrahigh-pressure sintered body will be described. As a tool base, TiCN-based cermet, cBN-based ultrahigh-pressure sintered The same applies to the case where the body is used, and the same applies when applied to a drill or an end mill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SDKN1504AETNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, tool bases A to C made of WC-base cemented carbide with ISO standard SDKN1504AETN insert shape are manufactured. did.

次に、これら工具基体A〜Cの表面に、CVD装置を用いて、TiAlCN層を形成し、表6に示される本発明被覆工具1〜10を得た。
成膜条件は、表2、3に記載したとおりであるが、概ね、次のとおりである。
A層({100}面の法線方向に配向)
ガス群A
NH:2.0〜3.0%、H:65〜75%
ガス群B
AlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0.0〜0.5%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:0〜7秒
1周期当たりのガス供給時間:0.00〜0.35秒
ガス群Aとガス群Bの供給の位相差:0.00〜0.30秒
B層({111}面の法線方向に配向)
ガス群A
NH:1.0〜1.5%、N:0.0〜5.0%、H:55〜60%
ガス群B
AlCl:0.6〜0.9%、TiCl:0.2〜0.3%、A1(CH:0.0〜0.5%、N:0.0〜12.0%、H:残
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:0〜7秒
1周期当たりのガス供給時間:0.00〜0.35秒、
ガス群Aとガス群Bの供給の位相差:0.00〜0.30秒
なお、本発明被覆工具は4〜9は、表4に記載された成膜条件により、表5に示された下部層および/または上部層を形成した。
Next, a TiAlCN layer was formed on the surfaces of the tool bases A to C by using a CVD apparatus, and the inventive coated tools 1 to 10 shown in Table 6 were obtained.
The film formation conditions are as described in Tables 2 and 3, and are generally as follows.
A layer (oriented in the normal direction of {100} plane)
Gas group A
NH 3: 2.0~3.0%, H 2 : 65~75%
Gas group B
AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0 %, H 2 : residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 0 to 7 seconds Gas supply time per cycle: 0.00 to 0.35 seconds Phase difference in supply of gas group A and gas group B: 0.00 to 0.30 seconds B layer ({111} Oriented in the normal direction of the surface)
Gas group A
NH 3: 1.0~1.5%, N 2 : 0.0~5.0%, H 2: 55~60%
Gas group B
AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, A1 (CH 3 ) 3 : 0.0 to 0.5%, N 2 : 0.0 to 12.0 %, H 2 : residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 0 to 7 seconds Gas supply time per cycle: 0.00 to 0.35 seconds,
Phase difference in supply of gas group A and gas group B: 0.00 to 0.30 sec. Note that 4 to 9 of the present coated tool are shown in Table 5 according to the film forming conditions described in Table 4. A lower layer and / or an upper layer were formed.

また、比較の目的で、工具基体A〜Cの表面に、表2、3に示される条件によりCVDを行うことにより、表6に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜10を製造した。なお、比較のため形成条件E´、F´については積層構造とせずにそれぞれA層またはB層の単層で蒸着形成した。
なお、比較被覆工具4〜9については、表4に示される形成条件により、表5に示された下部層および/または上部層を形成した。
For comparison purposes, a hard coating layer including a TiAlCN layer shown in Table 6 is formed by vapor deposition on the surfaces of the tool bases A to C according to the conditions shown in Tables 2 and 3 for comparative coating. Tools 1-10 were manufactured. For comparison, the formation conditions E ′ and F ′ were vapor-deposited with a single layer of layer A or layer B without a laminated structure.
In addition, about the comparison coating tools 4-9, the lower layer and / or the upper layer which were shown in Table 5 were formed by the formation conditions shown in Table 4.

また、前記本発明被覆工具1〜10、比較被覆工具1〜10の硬質被覆層について、前述した方法を用いて、A層およびB層の平均Al含有割合xおよびsと平均C含有割合yおよびtを算出した。さらに、前述の方法で得られたA層およびB層における基体表面の法線に対してA層については{100}面の、B層については{111}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角度数の最高ピークが0〜12度に存在するかを確認すると共に、傾斜角が0〜12度の範囲内に存在する度数の割合を求めた。加えて、TiとAlの組成変化の工具基体表面の法線方向に沿った周期の有無とAl含有割合の極大値の平均と極小値の平均との差、その周期幅についても、前述と同様の方法で測定した。なお、周期関連事項の測定は、工具基体側の層から刃先側の層へ、順に周期性の有無を計測し、周期性を有することを最初に発見した層、すなわち、最も基体側に存在する層の周期とAl含有割合の極大値と極小値の平均との差を求めた。これらの結果を表6にまとめた。 Moreover, about the hard coating layers of the present invention coated tools 1 to 10 and comparative coated tools 1 to 10, the average Al content ratios x and s of the A layer and the B layer and the average C content ratio y and t was calculated. Further, the inclination angles formed by the normal of the {100} plane for the A layer and the normal of the {111} plane for the B layer with respect to the normal of the substrate surface in the A layer and B layer obtained by the above-described method In the number distribution, it was confirmed whether or not the highest peak of the tilt angle number was present at 0 to 12 degrees, and the ratio of the frequency at which the tilt angle was within the range of 0 to 12 degrees was determined. In addition, the presence or absence of the period along the normal direction of the tool base surface of the Ti and Al composition change, the difference between the average of the maximum value and the average of the minimum value of the Al content ratio, and the period width thereof are the same as described above. It measured by the method of. In addition, the measurement of the period-related items is performed by measuring the presence or absence of periodicity in order from the tool base layer to the cutting edge side layer, and the layer first found to have periodicity, that is, the most base side. The difference between the layer period and the average of the maximum and minimum values of the Al content was determined. These results are summarized in Table 6.

続いて、前記本発明被覆工具および比較被覆工具について、いずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、合金鋼の乾式高速高送り正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験:乾式高速正面フライス、センターカット切削加工
被削材:JIS・SCM430幅100mm、長さ400mmのブロック材
回転速度:764min−1
切削速度:300m/min
切り込み:2.5mm
一刃送り量:3.0mm/刃
切削時間:8分
(通常の切削速度は、150〜200m/min、通常の一刃送り量:1.0〜2.0mm/刃)
表7に、切削試験の結果を示す。なお、比較被覆工具1〜10については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Subsequently, with respect to the coated tool of the present invention and the comparative coated tool, a dry high-speed high-feed front milling machine of alloy steel as shown below in a state where both are clamped to a tool steel cutter tip having a cutter diameter of 125 mm by a fixing jig. Then, a center cut cutting test was performed, and the flank wear width of the cutting edge was measured.
Cutting test: dry high-speed face milling, center-cut cutting work material: JIS / SCM430 block material with a width of 100 mm and a length of 400 mm Rotating speed: 764 min −1
Cutting speed: 300 m / min
Cutting depth: 2.5mm
Single blade feed: 3.0 mm / blade cutting time: 8 minutes (normal cutting speed is 150 to 200 m / min, normal single blade feed: 1.0 to 2.0 mm / blade)
Table 7 shows the results of the cutting test. In addition, about the comparison coated tools 1-10, since it reached the lifetime due to chipping generation | occurrence | production, the time until it reaches a lifetime is shown.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. It mix | blended with the compounding composition shown by Table 8, and also added the wax, ball mill mixed in acetone for 24 hours, and dried under reduced pressure. Then, it was press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and this green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the tool bases α to γ made of WC-base cemented carbide having the insert shape of ISO standard CNMG120212 were manufactured by performing honing of R: 0.07 mm on the cutting edge part.

次に、これらの工具基体α〜γの表面に、実施例1と同様の方法により表2および表3に示される条件で、CVD装置を用いて、TiAlCN層を形成し、表10に示される本発明被覆工具11〜20を得た。
なお、本発明被覆工具は14〜19は、表4に記載された成膜条件により、表9に示された下部層および/または上部層を形成した。
Next, a TiAlCN layer is formed on the surfaces of these tool bases α to γ using the CVD apparatus under the conditions shown in Tables 2 and 3 in the same manner as in Example 1, and shown in Table 10. The present invention coated tools 11 to 20 were obtained.
In addition, 14-19 of this invention coated tool formed the lower layer and / or the upper layer which were shown in Table 9 by the film-forming conditions described in Table 4.

また、実施例1と同様に、比較の目的で、工具基体α〜γの表面に、表2および3に示される条件によりCVD法を用いることにより、表10に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具11〜20を製造した。
なお、比較被覆工具14〜19については、表4に示される形成条件により、表9に示された下部層および/または上部層を形成した。
Similarly to Example 1, for the purpose of comparison, the hard coating containing the TiAlCN layer shown in Table 10 is used on the surface of the tool base α to γ by using the CVD method under the conditions shown in Tables 2 and 3. Comparative coating tools 11-20 were produced by vapor deposition of layers.
In addition, about the comparison coating tools 14-19, the lower layer and / or the upper layer which were shown in Table 9 were formed by the formation conditions shown in Table 4.

また、実施例1と同様に、前記本発明被覆工具11〜20、比較被覆工具11〜20の硬質被覆層について、A層およびB層の平均Al含有割合x、sと平均C含有割合y、tを算出し、さらに、前述の方法で得られたA層およびB層におけるそれぞれ{100}面の法線および{111}面の法線が基体表面の法線に対してなす傾斜角の度数分布において、傾斜角度数の最高ピークが0〜12度に存在するかを確認すると共に、傾斜角が0〜12度の範囲内に存在する度数の割合、およびTiとAlの組成変化の工具基体表面の法線方向に沿った周期の有無とAl含有割合の極大値の平均と極小値の平均の差、その周期幅について測定した。これらの結果を表10にまとめた。 Moreover, similarly to Example 1, about the hard coating layer of the said invention coated tool 11-20 and the comparative coating tool 11-20, the average Al content rate x of a A layer and a B layer, s, and the average C content rate y, t is calculated, and the frequency of the inclination angle formed by the normal of the {100} plane and the normal of the {111} plane with respect to the normal of the substrate surface in the A layer and the B layer obtained by the above-described method, respectively. In the distribution, it is confirmed whether the highest peak of the inclination angle exists in the range of 0 to 12 degrees, the ratio of the frequency in which the inclination angle is in the range of 0 to 12 degrees, and the tool base of the composition change of Ti and Al The presence or absence of a period along the normal direction of the surface, the difference between the average of the maximum value and the average of the minimum value of the Al content ratio, and the period width thereof were measured. These results are summarized in Table 10.

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜20、比較被覆工具11〜20について、以下に示す、炭素鋼の乾式高速断続切削試験(切削条件1)、鋳鉄の湿式高速断続切削試験(切削条件2)を実施し、いずれも切刃の逃げ面摩耗幅を測定した。その結果を表11に示す。なお、比較被覆工具11〜20については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。 Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 11 to 20 and comparative coated tools 11 to 20 are shown below. A dry high-speed intermittent cutting test (cutting condition 1) of carbon steel and a wet high-speed intermittent cutting test (cutting condition 2) of cast iron were carried out, and both measured the flank wear width of the cutting edge. The results are shown in Table 11. In addition, about the comparison coated tools 11-20, since it reached the lifetime due to chipping generation | occurrence | production, the time until it reaches a lifetime is shown.

切削条件1:
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒
切削速度:320m/min
切り込み:2.5mm
一刃送り量:0.4mm/刃
切削時間:5分
(通常の切削速度は、220m/min、通常の一刃送り量:0.25mm/刃)
Cutting condition 1:
Work material: JIS · S15C lengthwise equal length 4 vertical grooved round bar Cutting speed: 320m / min
Cutting depth: 2.5mm
Single-blade feed rate: 0.4 mm / blade Cutting time: 5 minutes (normal cutting speed is 220 m / min, normal single-blade feed rate: 0.25 mm / blade)

切削条件2:
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒
切削速度:300m/min
切り込み:2.5mm
一刃送り量:0.4mm/刃
切削時間:5分
(通常の切削速度は、250m/min、通常の一刃送り量:0.25mm/刃)
Cutting condition 2:
Work material: JIS / FCD450 in the longitudinal direction, four equally spaced round bars with a vertical groove Cutting speed: 300 m / min
Cutting depth: 2.5mm
Single blade feed rate: 0.4 mm / tooth Cutting time: 5 minutes (normal cutting speed is 250 m / min, normal single blade feed rate: 0.25 mm / tooth)

表7、表11に示される結果から、本発明被覆工具1〜20は、いずれも硬質被覆層が優れた耐チッピング性を有しているため、合金鋼等の高速高送り切削加工に用いた場合であってチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1〜20は、合金鋼等の高速高送り断続切削加工に用いた場合であってチッピングが発生し、短時間で使用寿命に至っている。   From the results shown in Tables 7 and 11, the coated tools 1 to 20 of the present invention were used for high-speed high-feed cutting such as alloy steel because the hard coating layer has excellent chipping resistance. In this case, chipping does not occur and excellent wear resistance is exhibited over a long period of time. On the other hand, comparative coated tools 1 to 20 that do not satisfy even one of the matters defined in the coated tool of the present invention are used for high-speed high-feed intermittent cutting of alloy steel and the like, and chipping is performed. Has occurred and has reached the end of its service life in a short time.

前述のように、本発明の被覆工具は、合金鋼以外の高速高送り断続切削加工の被覆工具として用いることができ、しかも、長期にわたって優れた耐摩耗性を発揮するから、切削装置の高性能化並びに切削加工の省力化及び省エネ化、さらには低コスト化に十分に満足できる対応ができるものである。   As described above, the coated tool of the present invention can be used as a coated tool for high-speed, high-feed, intermittent cutting other than alloy steel, and exhibits excellent wear resistance over a long period of time. It is possible to satisfactorily satisfy the demands for energy saving and cutting, energy saving, and cost reduction.

Claims (5)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとA1の複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、配向性の異なる2層から成る積層構造を有しており、積層構造を形成するTiとA1の複合窒化物または複合炭窒化物層A層、B層とした場合、
A層およびB層の層厚は0.5μm以上であり、それぞれの組成式を(Ti1−xAl)(C1−y)、(Ti1−sAl)(C1−t)で表したとき、該A層、該B層におけるAlのTiとAlの合量に占める含有割合xおよびs並びにCのCとNの合量に占める含有割合yおよびt(但し、x、s、y、tは、いずれも原子比)が、それぞれ、0.60≦x≦0.95、0.60≦s≦0.95、0≦y≦0.005、0≦t≦0.005を満足し、
(c)前記A層内のNaCl型の面心立方構造を有するTiとA1との複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を示し、
(d)前記B層内のNaCl型の面心立方構造を有するTiとA1との複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を示すことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and A1 having an average layer thickness of 1.0 to 20.0 μm,
(B) The composite nitride or composite carbonitride layer has a laminated structure composed of two layers having different orientations, and Ti and A1 composite nitride or composite carbonitride layer A forming the laminated structure. In the case of layer and B layer,
The layer thicknesses of the A layer and the B layer are 0.5 μm or more, and the respective composition formulas are (Ti 1-x Al x ) (C y N 1-y ), (Ti 1-s Al s ) (C t N 1-t ), the content ratios x and s in the total amount of Ti and Al in the A layer and the B layer, and the content ratios y and t in the total amount of C and N in C (however, , X, s, y, and t are all atomic ratios) are 0.60 ≦ x ≦ 0.95, 0.60 ≦ s ≦ 0.95, 0 ≦ y ≦ 0.005, and 0 ≦ t, respectively. ≦ 0.005 is satisfied,
(C) The crystal orientation of the crystal grains of the composite nitride or composite carbonitride of Ti and A1 having the NaCl-type face-centered cubic structure in the A layer is determined by using the electron beam backscatter diffractometer. When analyzing from the above, the inclination angle formed by the normal line of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured. When the inclination angle within the range of degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the inclination angle classification within the range of 0 to 12 degrees The sum of the frequencies existing in the range of 0 to 12 degrees indicates a ratio of 40% or more of the entire frequencies in the tilt angle frequency distribution,
(D) The crystal orientation of the composite nitride or composite carbonitride crystal grain of Ti and A1 having the NaCl-type face-centered cubic structure in the B layer is measured in the longitudinal section direction using an electron beam backscattering diffractometer. When analyzing from the above, the inclination angle formed by the normal line of the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface is measured. When the inclination angle within the range of degrees is divided into pitches of 0.25 degrees and the frequencies existing in each division are totaled to obtain the inclination angle number distribution, the inclination angle classification within the range of 0 to 12 degrees The surface-coated cutting tool is characterized in that the highest peak is present and the sum of the frequencies within the range of 0 to 12 degrees represents a ratio of 40% or more of the total frequencies in the tilt angle frequency distribution.
前記A層、前記B層の少なくとも一方の結晶粒にはTiとAlの周期的な濃度変化が存在し、原子比で表したA1の含有割合が周期的に変化する値の極大値の平均値と極小値の平均値との差は0.03〜0.25であり、Alの含有割合の変化の周期が3〜100nmであることを特徴とする請求項1に記載の表面被覆切削工具。 At least one of the crystal grains of the A layer and the B layer has a periodic concentration change of Ti and Al, and the average value of the maximum value of the value in which the content ratio of A1 expressed by an atomic ratio changes periodically. 2. The surface-coated cutting tool according to claim 1, wherein a difference between the average value of the minimum value and the minimum value is 0.03 to 0.25, and a period of change in the Al content ratio is 3 to 100 nm. 前記A層の平均Al含有割合xと前記B層の平均Al含有割合sとの差の絶対値|x−s|が0.10以下であることを特徴とする請求項1または2に記載の表面被覆切削工具。   3. The absolute value | x−s | of the difference between the average Al content ratio x of the A layer and the average Al content ratio s of the B layer is 0.10 or less. Surface coated cutting tool. 前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1〜3のいずれか一項に記載の表面被覆切削工具。 Between the tool base and the hard coating layer, one or two or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer are formed, and 0 The surface-coated cutting tool according to any one of claims 1 to 3, wherein there is a lower layer including a Ti compound layer having a total average layer thickness of 1 to 20.0 µm. 前記硬質被覆層の上部に少なくとも1.0〜25.0μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1〜4のいずれか一項に記載の表面被覆切削工具。 5. The surface according to claim 1, wherein an upper layer including an aluminum oxide layer having an average layer thickness of at least 1.0 to 25.0 μm is present on the hard coating layer. Coated cutting tool.
JP2017123969A 2017-06-26 2017-06-26 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer Active JP6858346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123969A JP6858346B2 (en) 2017-06-26 2017-06-26 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123969A JP6858346B2 (en) 2017-06-26 2017-06-26 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Publications (2)

Publication Number Publication Date
JP2019005855A true JP2019005855A (en) 2019-01-17
JP6858346B2 JP6858346B2 (en) 2021-04-14

Family

ID=65025675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123969A Active JP6858346B2 (en) 2017-06-26 2017-06-26 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Country Status (1)

Country Link
JP (1) JP6858346B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166683A1 (en) * 2019-02-14 2020-08-20 三菱マテリアル株式会社 Surface-coated cutting tool
WO2020213257A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
JP7492678B2 (en) 2020-08-07 2024-05-30 三菱マテリアル株式会社 Surface-coated cutting tools

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033723A1 (en) * 2008-04-24 2011-02-10 Korloy Inc. Multi-layer hard file for indexable insert
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2015163424A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP6037255B1 (en) * 2016-04-08 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2018144139A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2018144138A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033723A1 (en) * 2008-04-24 2011-02-10 Korloy Inc. Multi-layer hard file for indexable insert
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2015163424A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP6037255B1 (en) * 2016-04-08 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP2018144139A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2018144138A (en) * 2017-03-03 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020166683A1 (en) * 2019-02-14 2020-08-20 三菱マテリアル株式会社 Surface-coated cutting tool
WO2020213257A1 (en) * 2019-04-17 2020-10-22 住友電工ハードメタル株式会社 Cutting tool
JP7492678B2 (en) 2020-08-07 2024-05-30 三菱マテリアル株式会社 Surface-coated cutting tools

Also Published As

Publication number Publication date
JP6858346B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
US10265785B2 (en) Surface-coated cutting tool and method for producing the same
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2016083766A (en) Surface-coated cutting tool
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6617917B2 (en) Surface coated cutting tool
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
WO2018135513A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
WO2016084938A1 (en) Surface-coated cutting tool
WO2018181123A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7015978B2 (en) Surface-coated cutting tools with excellent wear resistance with a hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210307

R150 Certificate of patent or registration of utility model

Ref document number: 6858346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150