WO2018181123A1 - Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance - Google Patents

Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance Download PDF

Info

Publication number
WO2018181123A1
WO2018181123A1 PCT/JP2018/012025 JP2018012025W WO2018181123A1 WO 2018181123 A1 WO2018181123 A1 WO 2018181123A1 JP 2018012025 W JP2018012025 W JP 2018012025W WO 2018181123 A1 WO2018181123 A1 WO 2018181123A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
average
composite
cutting tool
nitride
Prior art date
Application number
PCT/JP2018/012025
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 賢一
光亮 柳澤
卓也 石垣
西田 真
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018024752A external-priority patent/JP6935058B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2018181123A1 publication Critical patent/WO2018181123A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention is a high-speed, high-feed, intermittent cutting process involving high heat generation such as alloy steel and an impact load on the cutting edge, and the hard coating layer has excellent chipping resistance and wear resistance.
  • the present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool) that exhibits excellent cutting performance over a long period of use.
  • WC tungsten carbide
  • TiCN titanium carbonitride
  • cBN cubic boron nitride
  • Patent Document 1 has a NaCl-type face-centered cubic structure on the surface of a tool base and is represented by a composition formula: (Ti 1-X Al X ) (C Y N 1-Y )
  • the average composition X avg of Al is 0.60 ⁇ X avg ⁇ 0.95
  • the average composition Y avg of C is 0 ⁇ Y avg ⁇ 0.005)
  • a hard coating layer including at least a TiAlCN layer is formed
  • the TiAlCN layer is used to determine the tilt angle distribution by measuring the tilt angle formed by the normal of the ⁇ 111 ⁇ plane of the TiAlCN crystal grain with respect to the normal direction of the tool base surface using an electron beam backscatter diffraction device
  • the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is 45% or more of the entire degrees in the inclination angle frequency distribution.
  • a structure having a triangular shape and a facet formed by an equivalent crystal plane represented by ⁇ 111 ⁇ of the crystal grains occupies an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction.
  • a coating tool with improved chipping resistance of a hard coating layer in high-speed interrupted cutting and the like that is accompanied by high heat generation such as stainless steel and an impact load on the cutting edge has been proposed. .
  • Patent Document 2 As in Patent Document 1, high heat generation of stainless steel or the like is accompanied, and chipping resistance of the hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge.
  • the composition formula (Ti 1-X Al X ) (C Y N 1-Y ) (however, in terms of atomic ratio, the average composition X avg of Al is 0.60 ⁇ X avg ⁇ 0.95, the average composition Y avg of C is 0 ⁇ Y avg ⁇ 0.005), and a hard coating layer including at least a TiAlCN layer having a NaCl-type face-centered cubic structure is formed, and the TiAlCN When the inclination angle number distribution was obtained by measuring the inclination angle formed by the normal of the ⁇ 100 ⁇ plane of the TiAlCN crystal grain with respect to the normal direction of the tool base surface using an electron beam backscatter diffraction apparatus,
  • a coated tool having a structure that occupies an area ratio of 50% or more of the whole in a plane perpendicular to the thickness direction has been proposed. Further, when XRD analysis is performed on the TiAlCN layer in the coated tool, Ic ⁇ 200 between the peak intensity Ic ⁇ 200 ⁇ derived from the cubic structure and the peak intensity Ih ⁇ 200 ⁇ derived from the hexagonal structure. ⁇ / Ih ⁇ 200 ⁇ ⁇ 3.0 holds true, the effect of improving wear resistance is further enhanced.
  • a 3 to 25 ⁇ m wear-resistant coating layer formed by CVD is formed on a tool substrate, and the coating layer includes at least Ti 1-1.
  • the layer thickness 1.5 to 17 ⁇ m satisfying 0.70 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.25 and 0.75 ⁇ z ⁇ 1.15 is satisfied.
  • TiAlCN layer having said layer has a lamellar structure of the lamellar spacing of less than 150 nm, the cutting edge is the same crystal structure have, Ti and Al Ti 1-x Al x having a stoichiometry is different alternately It is composed of Ti 1-x Al x C y N z in which C y N z is alternately and periodically arranged, and the Ti 1-x Al x C y N z layer has a face-centered cubic structure of at least 90% by volume or more.
  • the TC value of the layer is TC (111)> 1 5 satisfied, the half value width of the X-ray diffraction peak intensity of ⁇ 111 ⁇ plane is coated tool have been proposed less than 1 degree.
  • the present invention provides a coated tool that solves the above-described problems and exhibits excellent chipping resistance and wear resistance over a long period of use even when subjected to high-speed high-feed interrupted cutting such as alloy steel.
  • the purpose is to do.
  • the present inventors have disclosed a composite nitride or composite carbonitride (hereinafter, referred to as “TiAlCN” or “(Ti 1-x Al x ) (C y N 1-y )”) layer of Ti and Al.
  • TiAlCN composite nitride or composite carbonitride
  • (Ti 1-x Al x ) (C y N 1-y )) layer of Ti and Al As a result of intensive research aimed at improving the chipping resistance and wear resistance of the coated tool provided with a hard coating layer containing at least a hard coating layer on the surface of the tool base, the following findings were obtained.
  • the TiAlCN crystal grains constituting the TiAlCN layer have high toughness in high-speed high-feed intermittent cutting such as alloy steel, they do not have sufficient chipping resistance and wear resistance.
  • the inventors of the present invention have intensively studied the lattice strain in each crystal lattice of the TiAlCN crystal grains constituting the TiAlCN layer. As a result, the present inventors have included a crystal grain having an NaCl-type face-centered cubic structure and the NaCl.
  • a TiAlCN layer that is a composite nitride or composite carbonitride containing a predetermined amount of Me, that is, a NaCl-type face center of the TiAlMeCN layer.
  • ⁇ A measured for crystal grains having a cubic structure is 0.007 to 0.050 mm, both excellent chipping resistance and wear resistance characteristics are obtained in high-speed, high-feed, interrupted cutting processing of alloy steel and the like. It has been found that it is possible to have both, and if at least one of Si and B is further added, the hardness of the TiAlMeCN layer, that is, the wear resistance is further improved.
  • the present invention has been made based on the above findings, “(1) Surface-coated cutting in which a hard coating layer is provided on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body
  • the hard coating layer is a composite nitride or composite charcoal of Ti, Al, and Me (wherein Me is at least one of Zr, V, and Cr) having an average layer thickness of 1.0 to 20.0 ⁇ m.
  • nitride layer Including at least a nitride layer, the composite nitride or composite carbonitride, Composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z )
  • the ratio z (where x, y, and z are atomic ratios) are 0.60 ⁇ x ⁇ 0.95, 0.005 ⁇ y ⁇ 0.100, 0.60 ⁇ x + y ⁇ 0.95, respectively.
  • the present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate, and includes at least a TiAlMeCN layer having an average layer thickness of 1.0 to 20.0 ⁇ m as the hard coating layer.
  • a hard coating layer is provided on the surface of a tool substrate, and includes at least a TiAlMeCN layer having an average layer thickness of 1.0 to 20.0 ⁇ m as the hard coating layer.
  • the TiAlMeCN layer containing Me has an appropriate lattice strain (0.007 ⁇ ⁇ ⁇ A ⁇ 0.050 ⁇ ) and high hardness is achieved, high heat generation such as alloy steel is generated.
  • the TiAlMeCN layer has excellent chipping resistance and exhibits excellent wear resistance over a long period of use when subjected to high-speed, high-feed, intermittent cutting with an impact load on the cutting edge. To do.
  • the hard coating layer of the present invention includes at least a TiAlMeCN layer represented by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ) (where Me is Zr, V, Cr) And at least one of Si and B may be added).
  • This TiAlMeCN layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1.0 to 20.0 ⁇ m.
  • the average layer thickness is set to 1.0 to 20.0 ⁇ m.
  • the TiAlMeCN layer in the present invention is The content of Al in the total amount of Ti, Al and Me (hereinafter referred to as the “average content ratio of Al”) x, The content of Me in the total amount of Ti, Al and Me (hereinafter referred to as “the average content of Me”) y, The average content ratio (hereinafter referred to as “average content ratio of C”) z of the total amount of C and C in C is: 0.60 ⁇ x ⁇ 0.95, 0.005 ⁇ y ⁇ 0.100, 0.60 ⁇ x + y ⁇ 0.95, 0.0000 ⁇ z ⁇ 0.0050 (where x, y, and z are Both are determined so as to satisfy the atomic ratio).
  • the average Al content ratio x is less than 0.60, the TiAlMeCN layer is inferior in hardness, so that when it is subjected to high-speed high-feed intermittent cutting such as alloy steel, the wear resistance is not sufficient.
  • the average content ratio y of Me is less than 0.005
  • chipping resistance which is an effect of adding Me (Zr, Cr, V) and hardness which is an effect of adding Si or / and B which are optionally added Is not sufficiently exhibited, and when it exceeds 0.100, Se segregates to the grain boundary, and the toughness is lowered to deteriorate the chipping resistance.
  • the average content ratio x of Al and the average content ratio y of Me exceeds 0.60, and if it exceeds 0.95, the content ratio of Ti is relatively reduced. , Resulting in embrittlement and reduced chipping resistance. Therefore, the average content ratio x of Al and the average content ratio y of Me were determined as 0.60 ⁇ x ⁇ 0.95, 0.005 ⁇ y ⁇ 0.100, and 0.60 ⁇ x + y ⁇ 0.95.
  • the average content ratio z of C contained in the TiAlMeCN layer is a minute amount in the range of 0.0000 ⁇ z ⁇ 0.0050, the adhesion between the TiAlMeCN layer and the tool substrate or the lower layer is improved, and By improving lubricity, the impact during cutting is relieved, and as a result, the chipping resistance and fracture resistance of the TiAlMeCN layer are improved.
  • the average content ratio z of C deviates from the range of 0.0000 ⁇ z ⁇ 0.0050, the toughness of the TiAlMeCN layer is lowered, and chipping resistance and fracture resistance are adversely lowered.
  • the average content ratio z of C was determined to be 0.0000 ⁇ z ⁇ 0.0050. Further, when the average content ratio s of Cl contained in the TiAlMeCN layer is in the range of 0.0001 ⁇ s ⁇ 0.0040, the lubricity can be enhanced without reducing the toughness of the layer. That is, if the average chlorine content is less than 0.0001, the effect of improving lubricity is small. On the other hand, if the average chlorine content exceeds 0.0040, chipping resistance is lowered, which is not preferable. Therefore, the average Cl content is defined as 0.0001 ⁇ s ⁇ 0.0040.
  • lattice strain by controlling film formation conditions is introduced into cubic TiAlMeCN crystal grains of the TiAlMeCN layer, and further, by adding Me, the chipping resistance and wear resistance of the TiAlCN layer are improved.
  • the introduction of lattice strain and the addition of Me by controlling the film forming conditions can be performed by, for example, a thermal CVD method using NH 3 in forming a TiAlMeCN layer. Specifically, it is as follows.
  • At least one of gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , N 2 , H 2, ZrCl 4 , CrCl 2 , and VCl 4 is optionally added to SiCl 4.
  • a gas group B made of at least one of BCl 3 (hereinafter sometimes referred to as “MeCl x ”) is supplied into the reaction apparatus from a separate gas supply pipe, and the reaction apparatus of the gas group A and the gas group B is supplied.
  • the gas is supplied in such a manner that gas flows for a time shorter than that period at a constant time interval, and the gas supply time for the gas group A and the gas group B is less than the gas supply time.
  • the N 2, AlCl 3, Al ( CH 3) 3 is a gas component
  • feed ratio N 2 / (AlCl 3 + Al CH 3) 3) is by chemical vapor deposition to adjust the supply amount of the gas components to be a relatively large value, it is possible to form a TiAlMeCN layer predetermined lattice strain is introduced.
  • ⁇ A tends to increase generally.
  • Reaction gas composition (volume% with respect to the total of gas group A and gas group B): Gas group A: NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%, Gas group B: AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0.30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al ( CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining, N 2 / (AlCl 3 + Al (CH 3 ) 3 ): 3.0 to 24.0 Reaction atmosphere pressure: 4.5 to 5.0 kPa, Reaction atmosphere temperature: 700 to 900 ° C.
  • Supply cycle 6.0 to 9.0 seconds
  • Gas supply time per cycle 0.15 to 0.25 seconds
  • Phase difference in supply of gas group A and gas group B 0.10 to 0.20 seconds
  • the cubic lattice strain in the TiAlMeCN layer formed as described above can be measured by the following method, and the lattice strain index ⁇ A can be obtained as follows. First, X-ray diffraction is performed on the TiAlMeCN layer, and X-ray diffraction spectra for the (111) plane and the (200) plane of the TiAlMeCN crystal grains are obtained.
  • the TiAlMeCN layer having the lattice strain index ⁇ A defined above has high hardness due to the presence of lattice strain in the layer by controlling the film formation conditions in addition to lattice strain related to improvement of toughness and chipping resistance by adding Me. As a result, excellent wear resistance is exhibited. However, when ⁇ A is less than 0.007 mm, the lattice distortion is small, so the effect of improving the hardness is not sufficient. On the other hand, when ⁇ A exceeds 0.050 mm, Since the strain becomes excessive and the fracture resistance at the time of cutting is reduced, the ⁇ A is set in the range of 0.007 ⁇ ⁇ ⁇ A ⁇ 0.050 ⁇ .
  • the present invention is the interplanar spacing of the (111) plane and the (200) plane obtained by performing X-ray diffraction on the crystal grains having the NaCl-type face-centered cubic structure constituting the TiAlMeCN layer.
  • the absolute value ⁇ A of the difference between the lattice constants A (111) and A (200) calculated from d (111) and d (200) is increased.
  • the present inventors have found that a coated tool excellent in both chipping resistance and wear resistance can be obtained by improving the wear resistance and applying this to a tool.
  • the average grain width W of each crystal grain having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is 0.10 to 2
  • the hardness and toughness of the crystal grains are improved, which is combined with the effect of the TiAlCN layer as a hard coating layer.
  • even more excellent characteristics can be exhibited. That is, by setting the average particle width W to 0.10 ⁇ m or more and 2.00 ⁇ m or less, the reactivity with the work material is reduced, the wear resistance is exhibited, the toughness is improved, and the chipping resistance is improved.
  • the average particle width W is more preferably 0.10 to 2.00 ⁇ m.
  • the average aspect ratio A is more preferably 2.0 to 10.0.
  • the average aspect ratio A refers to the surface of the tool base when the longitudinal section of the hard coating layer is observed in a range including a width of 100 ⁇ m and a height including the entire hard coating layer using a scanning electron microscope.
  • Lower layer and upper layer In the present invention, by providing the TiAlMeCN layer as the hard coating layer, it has sufficient chipping resistance and wear resistance, but Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide When a lower layer comprising a Ti compound layer comprising one or more of the layers and having a total average layer thickness of 0.1 to 20.0 ⁇ m is provided, and / or an upper portion including at least an aluminum oxide layer When the layers are provided with a total average layer thickness of 1.0 to 25.0 ⁇ m, combined with the effects exhibited by these layers, it is possible to exhibit further excellent characteristics.
  • Ti consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and having a total average layer thickness of 0.1 to 20.0 ⁇ m
  • a lower layer including a compound layer When a lower layer including a compound layer is provided, if the total average layer thickness of the lower layer is less than 0.1 ⁇ m, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20.0 ⁇ m, the crystal grains are likely to be coarsened. , Chipping is likely to occur. Moreover, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 ⁇ m, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25.0 ⁇ m, the crystal grains tend to be coarsened and chipping occurs. It tends to occur.
  • the coated tool of the present invention will be specifically described with reference to examples.
  • the case where a WC-based cemented carbide or TiCN-based cermet is used as the tool substrate will be described.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 0.1 to 3 ⁇ m were prepared. These raw material powders are shown in Table 1. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact in a vacuum of 5 Pa , Sintered in a vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool base A made of a WC-base cemented carbide having an insert shape of JDMT140520ZDSR manufactured by Mitsubishi Materials Corp. C was produced respectively.
  • a TiAlMeCN layer was formed on the surfaces of these tool bases A to D by CVD using a CVD apparatus.
  • the CVD conditions are as follows. Formation conditions A to K shown in Tables 4 and 5, that is, from a gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , MeCl x , N 2 , Al (CH 3 ) 3 , H 2
  • the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as NH 3 : 2.0 to 6.0% as the gas group A.
  • the average layer thickness, the average Al content ratio x, the Me average content ratio y, the C average content ratio z, and the Cl average content ratio s shown in Table 7 are formed.
  • Invention coated tools 1-16 were produced.
  • the lower layer and / or the upper layer shown in Table 6 were formed under the formation conditions shown in Table 3.
  • the average layer thickness ( ⁇ m) shown in Table 8 is obtained by performing chemical vapor deposition on the surfaces of the tool bases A to D under the formation conditions A ′ to J ′ shown in Tables 4 and 5.
  • Comparative coating tools 1 to 16 were manufactured by vapor-depositing a hard coating layer having at least a TiAlMeCN layer and a TiAlCN layer. Similar to the coated tools 4 to 13 of the present invention, the comparative coated tools 4 to 13 were formed with the lower layer and / or the upper layer shown in Table 6 under the forming conditions shown in Table 3.
  • the cross section (longitudinal cross section) in the direction perpendicular to the tool base of each component layer of the coated tools 1 to 16 and comparative coated tools 1 to 16 of the present invention is measured using a scanning electron microscope (magnification 5000 times).
  • the average layer thickness was obtained by measuring and averaging the five layer thicknesses in the observation field, all were the average layer thicknesses shown in Table 7 and Table 8.
  • the average Al content x, the average Me content y, and the average Cl content s of the TiAlMeCN layer and the TiAlCN layer are measured with an electron beam microanalyzer (Electron-Probe-Micro- Using an analyzer (EPMA), a sample whose surface is polished is irradiated with an electron beam from the sample surface side, and an average content ratio x, y of Al, Me, and Cl is obtained from an average of 10 points of the analysis result of the characteristic X-ray obtained. And s were determined.
  • the average content ratio z of C was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average content ratio z of C shows the average value of the depth direction about a TiAlMeCN layer and a TiAlCN layer.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • Tables 7 and 8 show the values of x, y, z, and s obtained above (all of x, y, z, and s are atomic ratios).
  • a (111) and A (200) corresponding to the lattice constant were calculated from the following equations.
  • Tables 7 and 8 show the values of d (111), d (200), A (111), A (200) and ⁇ A determined above.
  • the surface of the tool substrate is aligned with the surface of the tool substrate in a horizontal direction using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate.
  • Each having a cubic structure in a (Ti 1-xy Al x Me y ) (C z N 1-z ) layer constituting a composite nitride or composite carbonitride layer existing in a range of 100 ⁇ m in length Are observed from the cross section side of the film perpendicular to the surface of the tool substrate, the particle width w in the direction parallel to the substrate surface, and the particle length l in the direction perpendicular to the substrate surface are measured, and the aspect ratio of each crystal grain is measured.
  • Tables 7 and 8 show the values of W and A determined above.
  • coated tools 1 to 16 and the comparative coated tools 1 to 16 according to the present invention are clamped at the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig.
  • the dry high-speed face milling which is a kind of high-speed, high-feed intermittent cutting of alloy steel, shown in FIG.
  • Tool substrate WC-based cemented carbide, TiCN-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: Block material of JIS / SCM415 width 100mm, length 400mm, Rotational speed: 764 min ⁇ 1 Cutting speed: 300 m / min, Cutting depth: 2.0 mm, Single blade feed rate: 3.0 mm / tooth, (Normal single blade feed is 2.0mm / tooth) Cutting time: 8 minutes Table 9 shows the results.
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 0.1 to 3 ⁇ m are prepared as raw material powders.
  • NbC powder WC powder
  • Co powder and Ni powder all having an average particle diameter of 0.1 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • reaction gas composition (capacity% relative to the total of the gas group A and the gas group B) is As gas group A, NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%, as gas group B, AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0.
  • the average layer thickness, the average Al content ratio x, the average Me content ratio y, the average C content ratio z, and the average Cl content ratio s shown in Table 13 are shown.
  • Invention coated tools 17-32 were produced.
  • the lower layer and the upper layer shown in Table 12 were formed under the formation conditions shown in Table 3.
  • Comparative coating tools 17 to 32 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention. Similar to the coated tools 20 to 29 of the present invention, the comparative coated tools 20 to 29 were formed with the lower layer and / or the upper layer shown in Table 12 under the forming conditions shown in Table 3.
  • each component layer of the inventive coated tool 17-32 and comparative coated tool 17-32 is measured using a scanning electron microscope (magnification 5000 times), and the layer thicknesses at five points in the observation field are measured and averaged. When the average layer thickness was determined, the average layer thicknesses shown in Table 13 and Table 14 were all shown.
  • the coated tools 17 to 32 of the present invention and the comparative coated tools 17 to 32 are shown below.
  • Cutting condition 1 Work material: JIS-S35C lengthwise equal length 4 round fluted round bars, Cutting speed: 300 m / min, Cutting depth: 1.5 mm, Feed: 0.5 mm / rev, Cutting time: 5 minutes, (Normal feed is 0.25mm / rev),
  • Cutting condition 2 Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves, Cutting speed: 280 m / min, Cutting depth: 1.5 mm, Feed: 0.5 mm / rev, Cutting time: 5 minutes, (Normal feed is 0.25mm / rev), Table 15 shows the results of the cutting test.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 0.1 to 3 ⁇ m were prepared. These raw material powders are shown in Table 16. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact in a vacuum of 5 Pa , Sintered under vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, tool bases P to R made of WC-base cemented carbide having an ISO standard SOMT120416PDER insert shape Each was manufactured.
  • reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%, Gas Group B as AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0.30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al (CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.
  • the present invention is also applied to the surfaces of the tool bases P to R using the CVD apparatus with the formation conditions A ′ to H ′ shown in Tables 4 and 5 and the average layer thickness shown in Table 19.
  • Comparative coating tools 33 to 40 shown in Table 19 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool.
  • the lower layer and / or the upper layer shown in Table 17 were formed for the comparative coated tools 35 to 38 under the formation conditions shown in Table 3.
  • each component layer of the inventive coated tool 33 to 40 and comparative coated tool 33 to 40 is measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured and averaged.
  • the average layer thickness was determined, the average layer thicknesses shown in Table 18 and Table 19 were all shown.
  • coated tools 33 to 40 of the present invention and the comparative coated tools 33 to 40 will be described below in a state where all the various coated tools are clamped to the tip of a cutter made of tool steel having a cutter diameter of 50 mm by a fixing jig.
  • the dry high-speed face milling which is a kind of high-speed, high-feed intermittent cutting of alloy steel, shown in FIG.
  • Tool base WC-based cemented carbide
  • Cutting test Dry high-speed face milling, center cut cutting
  • Work material Block material of JIS / SCM435 width 35mm, length 200mm, Rotational speed: 1592 min ⁇ 1
  • Cutting speed 250 m / min
  • Cutting depth 1.0 mm
  • Single blade feed rate 1.0 mm / tooth
  • Cutting time 5 minutes Table 20 shows the results.
  • the coated tool of the present invention has a predetermined Al content ratio, Me content ratio, C content ratio, and Cl content ratio in the cubic crystal grains of the TiAlMeCN layer.
  • the lattice strain satisfying 0.007 ⁇ ⁇ ⁇ A ⁇ 0.050 ⁇ is formed, the hardness is high. As a result, high heat generation occurs, and the cutting blade is subjected to intermittent / impact high loads. Even when used for high-speed, high-feed, intermittent cutting that acts, it exhibits excellent wear resistance over a long period of use without the occurrence of chipping or chipping.
  • the cubic crystal grains constituting the TiAlMeCN layer and the TiAlCN layer satisfy a predetermined Al content rate, Me content rate, C content rate, Cl content rate, 0.007 ⁇ ⁇ ⁇ A ⁇ 0.050 ⁇ . It is clear that the comparative coated tool in which no lattice strain is formed reaches the end of its life in a short time due to the occurrence of abnormal damage such as chipping or the progress of wear in high-speed and high-feed intermittent cutting.
  • the coated tool of the present invention can be used as a coated tool for various work materials as well as high-speed and high-feed intermittent cutting of alloy steel, and has excellent cutting performance over a long period of use. Therefore, it is possible to sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting process, and the cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance when used for high-speed high-feed intermittent cutting of alloy steels and the like. The surface-coated cutting tool is a cutting tool having a hard coating containing (Ti1-x―yAlxMey)(CzN1-z) (Me is at least one among Zr, V, and Cr, 0.60≤x<0.95, 0.005≤y≤0.100, 0.60<x+y≤0.95, and 0.0000≤z≤0.0050) on the surface of a tool base, wherein the average content s of Cl in the total amount of atoms constituting a TiAlMeCN phase satisfies 0.0001≤s≤0.0040, and the absolute value ΔA of the difference between A(111) and A(200), which are defined as A(111)=31/2d(111) and A(200)=2d(200) from the calculation of interplanar spacings d(111) and d(200) of NaCl-type structured grains in the TiAlMeCN layer, satisfies 0.007Å≤ΔA≤0.050Å.

Description

硬質被覆層が優れた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具Surface coated cutting tool with hard coating layer providing excellent chipping and wear resistance
 本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工で、硬質被覆層が優れた耐チッピング性、耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある。)に関するものである。 The present invention is a high-speed, high-feed, intermittent cutting process involving high heat generation such as alloy steel and an impact load on the cutting edge, and the hard coating layer has excellent chipping resistance and wear resistance. Thus, the present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a coated tool) that exhibits excellent cutting performance over a long period of use.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、優れた耐摩耗性を発揮することが知られている。
 ただ、前記従来のTi-Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition on the surface of a tool base (hereinafter collectively referred to as a tool base) as a hard coating layer, These are known to exhibit excellent wear resistance.
However, although the above-mentioned coated tool with the conventional Ti—Al based composite nitride layer is relatively excellent in wear resistance, it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.
 例えば、特許文献1には、工具基体表面に、NaCl型の面心立方構造を有し組成式:(Ti1-XAl)(C1-Y)で表される(ただし、原子比で、Alの平均組成Xavgは0.60≦Xavg≦0.95、Cの平均組成Yavgは、0≦Yavg≦0.005)TiAlCN層を少なくとも含む硬質被覆層を形成し、該TiAlCN層について、電子線後方散乱回折装置を用いて、工具基体表面の法線方向に対するTiAlCN結晶粒の{111}面の法線がなす傾斜角を測定して傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0~12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であり、さらに、TiAlCN層の層厚方向に垂直な面内で三角形状を有し、該結晶粒の{111}で表される等価な結晶面で形成されたファセットが、該層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織を形成することにより、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等において硬質被覆層の耐チッピング性を高めた被覆工具が提案されている。 For example, Patent Document 1 has a NaCl-type face-centered cubic structure on the surface of a tool base and is represented by a composition formula: (Ti 1-X Al X ) (C Y N 1-Y ) The average composition X avg of Al is 0.60 ≦ X avg ≦ 0.95, the average composition Y avg of C is 0 ≦ Y avg ≦ 0.005) and a hard coating layer including at least a TiAlCN layer is formed, When the TiAlCN layer is used to determine the tilt angle distribution by measuring the tilt angle formed by the normal of the {111} plane of the TiAlCN crystal grain with respect to the normal direction of the tool base surface using an electron beam backscatter diffraction device The highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is 45% or more of the entire degrees in the inclination angle frequency distribution. In addition, in the plane perpendicular to the thickness direction of the TiAlCN layer A structure having a triangular shape and a facet formed by an equivalent crystal plane represented by {111} of the crystal grains occupies an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. A coating tool with improved chipping resistance of a hard coating layer in high-speed interrupted cutting and the like that is accompanied by high heat generation such as stainless steel and an impact load on the cutting edge has been proposed. .
 また、特許文献2には、前記特許文献1と同様、ステンレス鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工等において硬質被覆層の耐チッピング性を高めるため、工具基体の表面に、組成式:(Ti1-XAl)(C1-Y)で表され(ただし、原子比で、Alの平均組成Xavgは0.60≦Xavg≦0.95、Cの平均組成Yavgは、0≦Yavg≦0.005)、かつ、NaCl型の面心立方構造を有するTiAlCN層を少なくとも含む硬質被覆層を形成し、該TiAlCN層について、電子線後方散乱回折装置を用いて、工具基体表面の法線方向に対するTiAlCN結晶粒の{100}面の法線がなす傾斜角を測定して傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0~12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であり、さらに、TiAlCN層の層厚方向に垂直な面内で90度未満の角度を有さない多角形状のファセットを有し、該ファセットが結晶粒の{100}で表される等価な結晶面のうちの一つに形成され、該ファセットが層厚方向に垂直な面内において全体の50%以上の面積割合を占める組織を形成した被覆工具が提案されている。
 また、前記被覆工具において、TiAlCN層についてXRD解析を行ったとき、立方晶構造に由来するピーク強度Ic{200}と六方晶構造に由来するピーク強度Ih{200}との間に、Ic{200}/Ih{200}≧3.0の関係が成立する場合には、耐摩耗性向上効果がより高まるとされている。
Further, in Patent Document 2, as in Patent Document 1, high heat generation of stainless steel or the like is accompanied, and chipping resistance of the hard coating layer in high-speed intermittent cutting processing in which an impact load is applied to the cutting edge. In order to increase the surface of the tool base, it is represented by the composition formula: (Ti 1-X Al X ) (C Y N 1-Y ) (however, in terms of atomic ratio, the average composition X avg of Al is 0.60 ≦ X avg ≦ 0.95, the average composition Y avg of C is 0 ≦ Y avg ≦ 0.005), and a hard coating layer including at least a TiAlCN layer having a NaCl-type face-centered cubic structure is formed, and the TiAlCN When the inclination angle number distribution was obtained by measuring the inclination angle formed by the normal of the {100} plane of the TiAlCN crystal grain with respect to the normal direction of the tool base surface using an electron beam backscatter diffraction apparatus, Inclined angle in the range of ~ 12 degrees The sum of the frequencies existing in the range of 0 to 12 degrees is 45% or more of the entire frequencies in the inclination angle frequency distribution, and is perpendicular to the thickness direction of the TiAlCN layer. A polygonal facet having no angle of less than 90 degrees in the plane, the facet formed on one of the equivalent crystal planes represented by {100} of the crystal grains, the facet being a layer A coated tool having a structure that occupies an area ratio of 50% or more of the whole in a plane perpendicular to the thickness direction has been proposed.
Further, when XRD analysis is performed on the TiAlCN layer in the coated tool, Ic {200 between the peak intensity Ic {200} derived from the cubic structure and the peak intensity Ih {200} derived from the hexagonal structure. } / Ih {200} ≧ 3.0 holds true, the effect of improving wear resistance is further enhanced.
 また、特許文献3には、工具の耐摩耗性を改善するために、工具基体上にCVDで形成された3~25μmの耐摩耗コーティング層を形成し、該コーティング層は、少なくとも、Ti1-xAlで表した場合に、0.70≦x<1、0≦y<0.25および0.75≦z<1.15を満足する1.5~17μmの層厚を有するTiAlCN層を備え、該層は、150nm未満のラメラ間隔のラメラ構造を有し、刃先は、同一結晶構造を有し、TiとAlが交互に異なった化学量を有するTi1-xAlが周期的に交互に配置されたTi1-xAlで構成され、さらに、Ti1-xAl層は少なくとも90体積%以上が面心立方構造であり、該層のTC値は、TC(111)>1.5を満足し、{111}面のX線回折ピーク強度の半価幅は1度未満である被覆工具が提案されている。 Further, in Patent Document 3, in order to improve the wear resistance of a tool, a 3 to 25 μm wear-resistant coating layer formed by CVD is formed on a tool substrate, and the coating layer includes at least Ti 1-1. When expressed as x Al x C y N z , the layer thickness of 1.5 to 17 μm satisfying 0.70 ≦ x <1, 0 ≦ y <0.25 and 0.75 ≦ z <1.15 is satisfied. comprising a TiAlCN layer having said layer has a lamellar structure of the lamellar spacing of less than 150 nm, the cutting edge is the same crystal structure have, Ti and Al Ti 1-x Al x having a stoichiometry is different alternately It is composed of Ti 1-x Al x C y N z in which C y N z is alternately and periodically arranged, and the Ti 1-x Al x C y N z layer has a face-centered cubic structure of at least 90% by volume or more. The TC value of the layer is TC (111)> 1 5 satisfied, the half value width of the X-ray diffraction peak intensity of {111} plane is coated tool have been proposed less than 1 degree.
特開2015-163423号公報Japanese Patent Laying-Open No. 2015-163423 特開2015-163424号公報Japanese Patent Laying-Open No. 2015-163424 国際公開第2015/135802号International Publication No. 2015/135802
 近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
 しかし、前記特許文献1~3で提案されている被覆工具では、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工において、耐チッピング、耐摩耗性が未だ十分ではなく、満足できる切削性能を長期の使用にわたり備えるとはいえない。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance is required over a long period of use.
However, the coated tools proposed in Patent Documents 1 to 3 are accompanied by high heat generation of alloy steel and the like, and in high-speed high-feed intermittent cutting where an impact load is applied to the cutting blade, chipping resistance, The wear resistance is not yet sufficient, and it cannot be said that satisfactory cutting performance is provided over a long period of use.
 そこで、本発明は前記課題を解決し、合金鋼等の高速高送り断続切削等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Accordingly, the present invention provides a coated tool that solves the above-described problems and exhibits excellent chipping resistance and wear resistance over a long period of use even when subjected to high-speed high-feed interrupted cutting such as alloy steel. The purpose is to do.
 本発明者らは、TiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」あるいは「(Ti1-xAl)(C1-y)」で示すことがある)層を少なくとも含む硬質被覆層を工具基体表面に設けた被覆工具の耐チッピング性、耐摩耗性の改善を図るべく、鋭意研究を重ねた結果、次のような知見を得た。 The present inventors have disclosed a composite nitride or composite carbonitride (hereinafter, referred to as “TiAlCN” or “(Ti 1-x Al x ) (C y N 1-y )”) layer of Ti and Al. As a result of intensive research aimed at improving the chipping resistance and wear resistance of the coated tool provided with a hard coating layer containing at least a hard coating layer on the surface of the tool base, the following findings were obtained.
 TiAlCN層を構成するTiAlCN結晶粒は、合金鋼等の高速高送り断続切削加工において、高靱性を有するものの、十分な耐チッピング性、耐摩耗性を有するものではなかった。
 本発明者らは、TiAlCN層を構成するTiAlCN結晶粒において、結晶粒の各結晶格子における格子歪について鋭意研究したところ、NaCl型の面心立方構造を有する結晶粒を含有し、かつ、該NaCl型の面心立方構造を有する結晶粒についてX線回折を行って、(111)面と(200)面の面間隔を算出し、それぞれをd(111)およびd(200)とした場合、d(111)とd(200)から算出されるそれぞれの格子定数A(111)とA(200)の差の値の絶対値ΔAを0.007~0.050Åの範囲内とした場合に、当該TiAlCN層の耐摩耗性が向上することを既に見出している。
 本発明者は、さらに進んで、前記TiAlCN層を構成するTiAlCN結晶粒に元素をさらに添加した場合の耐摩耗性について検討したところ、十分な耐チッピング性と耐摩耗性の両特性を兼ね備えた被覆工具を得るためには、TiAlCN結晶粒の結晶粒界の強化、靱性の向上、耐酸化性の向上がさらに必要であることを見出し、元素として所定量のZrを添加することにより結晶粒界が強化されること、所定量のVを添加することにより靱性がより向上すること、所定量のCrを添加することにより耐酸化性が向上することを見出した。
 また、所定量のSi、Bの少なくとも一つをさらに含有させれば、当該TiAlCN層の耐摩耗性がより一層向上することを見出した。
 したがって、MeをZr、V、Crの少なくとも一つを表すものとした場合、所定量Meを含有した、複合窒化物または複合炭窒化物であるTiAlCN層、すなわち、TiAlMeCN層のNaCl型の面心立方構造を有する結晶粒について測定した前記ΔAが0.007~0.050Åであるときに、合金鋼等の高速高送り断続切削加工等において、優れた耐チッピング性と耐摩耗性の両特性を相兼ね備えること、また、Si、Bの少なくとも一つをさらに添加すれば、より一層のTiAlMeCN層の硬さ、すなわち、耐摩耗性を向上することを知見したのである。
Although the TiAlCN crystal grains constituting the TiAlCN layer have high toughness in high-speed high-feed intermittent cutting such as alloy steel, they do not have sufficient chipping resistance and wear resistance.
The inventors of the present invention have intensively studied the lattice strain in each crystal lattice of the TiAlCN crystal grains constituting the TiAlCN layer. As a result, the present inventors have included a crystal grain having an NaCl-type face-centered cubic structure and the NaCl. X-ray diffraction is performed on crystal grains having a face-centered cubic structure of the mold to calculate the spacing between the (111) plane and the (200) plane, and d (111) and d (200) respectively, When the absolute value ΔA of the difference between the lattice constants A (111) and A (200) calculated from (111) and d (200) is within the range of 0.007 to 0.050 mm, It has already been found that the wear resistance of the TiAlCN layer is improved.
The present inventor has further studied the wear resistance when an element is further added to the TiAlCN crystal grains constituting the TiAlCN layer, and the coating has both sufficient chipping resistance and wear resistance characteristics. In order to obtain a tool, it has been found that strengthening of grain boundaries of TiAlCN crystal grains, improvement of toughness, and improvement of oxidation resistance are further required. By adding a predetermined amount of Zr as an element, the grain boundaries are formed. It has been found that toughness is further improved by adding a predetermined amount of V, and that oxidation resistance is improved by adding a predetermined amount of Cr.
Further, it has been found that if at least one of a predetermined amount of Si and B is further contained, the wear resistance of the TiAlCN layer is further improved.
Therefore, when Me represents at least one of Zr, V, and Cr, a TiAlCN layer that is a composite nitride or composite carbonitride containing a predetermined amount of Me, that is, a NaCl-type face center of the TiAlMeCN layer. When ΔA measured for crystal grains having a cubic structure is 0.007 to 0.050 mm, both excellent chipping resistance and wear resistance characteristics are obtained in high-speed, high-feed, interrupted cutting processing of alloy steel and the like. It has been found that it is possible to have both, and if at least one of Si and B is further added, the hardness of the TiAlMeCN layer, that is, the wear resistance is further improved.
 本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0~20.0μmのTi、AlおよびMe(但し、Meは、Zr、V、Crの少なくとも一つである)の複合窒化物または複合炭窒化物層を少なくとも含み、該複合窒化物または複合炭窒化物を、
組成式:(Ti1-x―yAlMe)(C1-z
で表した場合、AlのTi、AlおよびMeの合量に占める含有割合x、MeのTi、AlおよびMeの合量に占める含有割合y、並びに、CのCとNの合量に占める含有割合z(但し、x、yおよびzはいずれも原子比)は、それぞれ、0.60≦x<0.95、0.005≦y≦0.100、0.60<x+y≦0.95、0.0000≦z≦0.0050を満足し、
(b)前記複合窒化物または複合炭窒化物を構成する原子の合量に占めるClの平均含有割合s(但し、sは原子比)が、0.0001≦s≦0.0040を満足し、
(c)前記複合窒化物または複合炭窒化物層について、X線回折装置を用いて測定した、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する結晶粒の(111)面および(200)面のX線回折スペクトルから、それぞれの面間隔d(111)およびd(200)の値を算出し、算出されたd(111)およびd(200)の値から、
 A(111)=31/2d(111)、
 A(200)=2d(200)
で定義されるA(111)およびA(200)を算出し、A(111)とA(200)の差の絶対値ΔA=|A(111)-A(200)|を求めた場合、
ΔAが、0.007Å~0.050Åを満足することを特徴とする表面被覆切削工具。
(2)前記Meとして、SiまたはBの少なくとも一つをさらに含むことを特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物または複合炭窒化物層は縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.10~2.00μm、平均アスペクト比Aが2.0~10.0である柱状組織を有することを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体と前記Ti、AlおよびMeの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする(1)~(3)のいずれかに記載の表面被覆切削工具。
(5)前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で存在することを特徴とする(1)~(4)のいずれかに記載の表面被覆切削工具。」
である。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting in which a hard coating layer is provided on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body In the tool
(A) The hard coating layer is a composite nitride or composite charcoal of Ti, Al, and Me (wherein Me is at least one of Zr, V, and Cr) having an average layer thickness of 1.0 to 20.0 μm. Including at least a nitride layer, the composite nitride or composite carbonitride,
Composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z )
The content ratio x of the total content of Ti, Al and Me in Al, the content ratio y of the total content of Ti, Al, and Me in Me, and the content of C in the total content of C and N The ratio z (where x, y, and z are atomic ratios) are 0.60 ≦ x <0.95, 0.005 ≦ y ≦ 0.100, 0.60 <x + y ≦ 0.95, respectively. 0.0000 ≦ z ≦ 0.0050 is satisfied,
(B) The average content ratio s of Cl (where s is an atomic ratio) in the total amount of atoms constituting the composite nitride or composite carbonitride satisfies 0.0001 ≦ s ≦ 0.0040,
(C) With respect to the composite nitride or composite carbonitride layer, (111) crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer measured using an X-ray diffractometer. ) Surface and (200) surface X-ray diffraction spectra, respectively, to calculate the values of the surface spacing d (111) and d (200), from the calculated d (111) and d (200) values,
A (111) = 3 1/2 d (111),
A (200) = 2d (200)
When A (111) and A (200) defined by the above are calculated and the absolute value ΔA = | A (111) −A (200) | of the difference between A (111) and A (200) is obtained,
A surface-coated cutting tool characterized in that ΔA satisfies 0.007 to 0.050 mm.
(2) The surface-coated cutting tool according to (1), further including at least one of Si or B as the Me.
(3) When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction, the average grain size of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer The surface-coated cutting tool according to (1) or (2) above, which has a columnar structure having a width W of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10.0.
(4) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti, Al, and Me Any one of (1) to (3), characterized in that there is a lower layer comprising a Ti compound layer consisting of one or more of these layers and having a total average layer thickness of 0.1 to 20.0 μm A surface-coated cutting tool according to claim 1.
(5) The upper layer including at least an aluminum oxide layer is present at a total average layer thickness of 1.0 to 25.0 μm above the composite nitride or composite carbonitride layer (1) to The surface-coated cutting tool according to any one of (4). "
It is.
 本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層として、平均層厚1.0~20.0μmのTiAlMeCN層を少なくとも含み、該TiAlMeCN層を、組成式:(Ti1-x―yAlMe)(C1-z)で表した場合、AlのTi、AlおよびMeの合量に占める含有割合x、MeのTi、AlおよびMeの合量に占める含有割合y、CのCとNの合量に占める含有割合z、並びにClの平均含有割合s(但し、x、y、zおよびsはいずれも原子比)が、それぞれ、0.60≦x<0.95、0.005≦y≦0.100、0.60<x+y≦0.95、0.0000≦z≦0.0050、0.0001≦s≦0.0040を満足し、また、TiAlMeCN層のNaCl型の面心立方構造を有する結晶粒についてX線回折を行い、(111)面および(200)面の面間隔d(111)およびd(200)を算出して、さらに、A(111)およびA(200)を算出し、A(111)とA(200)の差の絶対値ΔAを求めたとき、ΔAが、0.007Å≦ΔA≦0.050Åを満足する。
 したがって、本発明の表面被覆切削工具は、Meを含有するTiAlMeCN層が適度の格子歪(0.007Å≦ΔA≦0.050Å)を備え、高硬度化が図られるため、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工に供した場合、TiAlMeCN層が優れた耐チッピング性を備えるとともに、長期の使用にわたって優れた耐摩耗性を発揮する。
The present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate, and includes at least a TiAlMeCN layer having an average layer thickness of 1.0 to 20.0 μm as the hard coating layer. When expressed by the formula: (Ti 1-xy Al x Me y ) (C z N 1-z ), the content ratio x in the total amount of Ti, Al, and Me in Al, Me Ti, Al, and Me The content ratio y in the total amount of C, the content ratio z in the total amount of C and C in C, and the average content ratio s of Cl (wherein x, y, z and s are atomic ratios) are respectively 0.60 ≦ x <0.95, 0.005 ≦ y ≦ 0.100, 0.60 <x + y ≦ 0.95, 0.0000 ≦ z ≦ 0.0050, 0.0001 ≦ s ≦ 0.0040 Satisfied and the NaCl type of the TiAlMeCN layer X-ray diffraction is performed on the crystal grains having a face-centered cubic structure, and the interplanar spacings d (111) and d (200) between the (111) plane and the (200) plane are calculated, and A (111) and A ( 200) and the absolute value ΔA of the difference between A (111) and A (200) is obtained, ΔA satisfies 0.007Å ≦ ΔA ≦ 0.050Å.
Therefore, in the surface-coated cutting tool of the present invention, since the TiAlMeCN layer containing Me has an appropriate lattice strain (0.007Å ≦ ΔA ≦ 0.050Å) and high hardness is achieved, high heat generation such as alloy steel is generated. In addition, the TiAlMeCN layer has excellent chipping resistance and exhibits excellent wear resistance over a long period of use when subjected to high-speed, high-feed, intermittent cutting with an impact load on the cutting edge. To do.
 本発明について、以下に詳細に説明する。 The present invention will be described in detail below.
TiAlMeCN層の平均層厚:
 本発明の硬質被覆層は、組成式:(Ti1-x―yAlMe)(C1-z)で表されるTiAlMeCN層を少なくとも含む(但し、MeはZr、V、Crの少なくとも一つであり、さらに、Si、Bの少なくとも1つを加えたものであってもよい)。このTiAlMeCN層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0~20.0μmのとき、その効果が際立って発揮される。これは、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlMeCN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなるという理由による。
 したがって、その平均層厚を1.0~20.0μmと定めた。
Average thickness of the TiAlMeCN layer:
The hard coating layer of the present invention includes at least a TiAlMeCN layer represented by the composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z ) (where Me is Zr, V, Cr) And at least one of Si and B may be added). This TiAlMeCN layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1.0 to 20.0 μm. This is because when the average layer thickness is less than 1.0 μm, the layer thickness is too thin to ensure sufficient wear resistance over a long period of use, whereas when the average layer thickness exceeds 20.0 μm, TiAlMeCN This is because the crystal grains of the layer are easily coarsened and chipping is likely to occur.
Therefore, the average layer thickness is set to 1.0 to 20.0 μm.
TiAlMeCN層の平均組成:
 本発明におけるTiAlMeCN層は、
AlのTi、AlおよびMeの合量に占める含有割合(以下、「Alの平均含有割合」という)x、
MeのTi、AlおよびMeの合量に占める含有割合(以下、「Meの平均含有割合」という)y、
CのCとNの合量に占める平均含有割合(以下、「Cの平均含有割合」という)zが、
それぞれ、0.60≦x<0.95、0.005≦y≦0.100、0.60<x+y≦0.95、0.0000≦z≦0.0050(但し、x、y、zはいずれも原子比)を満足するように定める。
 その理由は、Alの平均含有割合xが0.60未満であると、TiAlMeCN層は硬さに劣るため、合金鋼等の高速高送り断続切削に供した場合には、耐摩耗性が十分でない。
 Meの平均含有割合yが0.005未満であると、Me(Zr、Cr、V)の添加効果である耐チッピング性および任意に添加するSiまたは/およびBの添加効果である硬さの向上が十分に発揮されず、また、0.100を超えるとMeの粒界への偏析等が生じ、靱性が低下して耐チッピング性が損なわれる。
 さらに、Alの平均含有割合xとMeの平均含有割合yとの和は、0.60を超えることは明らかであり、さらに0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。
 したがって、Alの平均含有割合xおよびMeの平均含有割合yは、0.60≦x<0.95、0.005≦y≦0.100、0.60<x+y≦0.95と定めた。
 加えて、TiAlMeCN層に含まれるCの平均含有割合zは、0.0000≦z≦0.0050の範囲の微量であるとき、TiAlMeCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてTiAlMeCN層の耐チッピング性、耐欠損性が向上する。一方、Cの平均含有割合zが0.0000≦z≦0.0050の範囲を逸脱すると、TiAlMeCN層の靱性が低下するため耐チッピング性、耐欠損性が逆に低下するため好ましくない。
 したがって、Cの平均含有割合zは、0.0000≦z≦0.0050と定めた。
 また、TiAlMeCN層に含まれるClの平均含有割合sは、0.0001≦s≦0.0040の範囲であるとき、層の靭性を低下させずに潤滑性を高めることができる。すなわち、平均塩素含有割合が0.0001未満であると潤滑性向上効果は少なく、一方、平均塩素含有割合が0.0040を超えると、耐チッピング性が低下するため好ましくない。
 したがって、Clの平均含有割合sは、0.0001≦s≦0.0040と定めた。
Average composition of TiAlMeCN layer:
The TiAlMeCN layer in the present invention is
The content of Al in the total amount of Ti, Al and Me (hereinafter referred to as the “average content ratio of Al”) x,
The content of Me in the total amount of Ti, Al and Me (hereinafter referred to as “the average content of Me”) y,
The average content ratio (hereinafter referred to as “average content ratio of C”) z of the total amount of C and C in C is:
0.60 ≦ x <0.95, 0.005 ≦ y ≦ 0.100, 0.60 <x + y ≦ 0.95, 0.0000 ≦ z ≦ 0.0050 (where x, y, and z are Both are determined so as to satisfy the atomic ratio).
The reason is that if the average Al content ratio x is less than 0.60, the TiAlMeCN layer is inferior in hardness, so that when it is subjected to high-speed high-feed intermittent cutting such as alloy steel, the wear resistance is not sufficient. .
When the average content ratio y of Me is less than 0.005, chipping resistance which is an effect of adding Me (Zr, Cr, V) and hardness which is an effect of adding Si or / and B which are optionally added Is not sufficiently exhibited, and when it exceeds 0.100, Se segregates to the grain boundary, and the toughness is lowered to deteriorate the chipping resistance.
Furthermore, it is clear that the sum of the average content ratio x of Al and the average content ratio y of Me exceeds 0.60, and if it exceeds 0.95, the content ratio of Ti is relatively reduced. , Resulting in embrittlement and reduced chipping resistance.
Therefore, the average content ratio x of Al and the average content ratio y of Me were determined as 0.60 ≦ x <0.95, 0.005 ≦ y ≦ 0.100, and 0.60 <x + y ≦ 0.95.
In addition, when the average content ratio z of C contained in the TiAlMeCN layer is a minute amount in the range of 0.0000 ≦ z ≦ 0.0050, the adhesion between the TiAlMeCN layer and the tool substrate or the lower layer is improved, and By improving lubricity, the impact during cutting is relieved, and as a result, the chipping resistance and fracture resistance of the TiAlMeCN layer are improved. On the other hand, when the average content ratio z of C deviates from the range of 0.0000 ≦ z ≦ 0.0050, the toughness of the TiAlMeCN layer is lowered, and chipping resistance and fracture resistance are adversely lowered.
Therefore, the average content ratio z of C was determined to be 0.0000 ≦ z ≦ 0.0050.
Further, when the average content ratio s of Cl contained in the TiAlMeCN layer is in the range of 0.0001 ≦ s ≦ 0.0040, the lubricity can be enhanced without reducing the toughness of the layer. That is, if the average chlorine content is less than 0.0001, the effect of improving lubricity is small. On the other hand, if the average chlorine content exceeds 0.0040, chipping resistance is lowered, which is not preferable.
Therefore, the average Cl content is defined as 0.0001 ≦ s ≦ 0.0040.
TiAlMeCN層を構成するNaCl型の面心立方構造(以下、単に、「立方晶」ともいう)を有するTiAlMeCN結晶粒の格子歪の指標:
 本発明では、TiAlMeCN層の立方晶のTiAlMeCN結晶粒内に、成膜条件の制御による格子歪を導入し、さらに、Me添加により、TiAlCN層の耐チッピング性、耐摩耗性を向上させる。
 この成膜条件の制御による格子歪みの導入およびMeの添加は、例えば、TiAlMeCN層の成膜に際し、NHを用いた熱CVD法によることができる。
 具体的にいえば、次のとおりである。
 用いるCVD装置へは、NHとHからなるガス群Aと、TiCl、AlCl、N、HおよびZrCl、CrCl、VClの少なくとも一つに、必要に応じてSiClまたはBClの少なくとも一つ(以下、「MeCl」で示すことがある)からなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間以下となる時間の位相差が生じるようにして、工具基体表面に反応ガスを供給し、さらに、ガス成分であるN、AlCl、Al(CHについて、供給比N/(AlCl+Al(CH)が比較的大きな値となるように各ガス成分の供給量を調整して化学蒸着することによって、所定の格子歪が導入されたTiAlMeCN層を形成することができる。なお、前記供給比N/(AlCl+Al(CH)が大きくなると、概ねΔAが大きくなる傾向がみられる。
Index of lattice strain of TiAlMeCN crystal grains having a NaCl-type face-centered cubic structure (hereinafter, also simply referred to as “cubic crystal”) constituting the TiAlMeCN layer:
In the present invention, lattice strain by controlling film formation conditions is introduced into cubic TiAlMeCN crystal grains of the TiAlMeCN layer, and further, by adding Me, the chipping resistance and wear resistance of the TiAlCN layer are improved.
The introduction of lattice strain and the addition of Me by controlling the film forming conditions can be performed by, for example, a thermal CVD method using NH 3 in forming a TiAlMeCN layer.
Specifically, it is as follows.
For the CVD apparatus to be used, at least one of gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , N 2 , H 2, ZrCl 4 , CrCl 2 , and VCl 4 is optionally added to SiCl 4. Alternatively, a gas group B made of at least one of BCl 3 (hereinafter sometimes referred to as “MeCl x ”) is supplied into the reaction apparatus from a separate gas supply pipe, and the reaction apparatus of the gas group A and the gas group B is supplied. For example, the gas is supplied in such a manner that gas flows for a time shorter than that period at a constant time interval, and the gas supply time for the gas group A and the gas group B is less than the gas supply time. as the phase difference occurs in the supply reactive gases to the tool substrate surface, further, the N 2, AlCl 3, Al ( CH 3) 3 is a gas component, feed ratio N 2 / (AlCl 3 + Al CH 3) 3) is by chemical vapor deposition to adjust the supply amount of the gas components to be a relatively large value, it is possible to form a TiAlMeCN layer predetermined lattice strain is introduced. In addition, as the supply ratio N 2 / (AlCl 3 + Al (CH 3 ) 3 ) increases, ΔA tends to increase generally.
 ここで、前記化学蒸着の具体的な条件は、一例として次のとおりである。
反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%):
 ガス群A: NH:2.0~6.0%、H:65~75%、
 ガス群B: AlCl:0.50~0.90%、TiCl:0.20~0.30%、MeCl:0.10~0.20%、N:3~12%、Al(CH:0.00~0.10%、H:残、
 N/(AlCl+Al(CH):3.0~24.0
 反応雰囲気圧力: 4.5~5.0kPa、
 反応雰囲気温度: 700~900℃、
 供給周期: 6.0~9.0秒、
 1周期当たりのガス供給時間: 0.15~0.25秒、
 ガス群Aとガス群Bの供給の位相差: 0.10~0.20秒
Here, specific conditions for the chemical vapor deposition are as follows as an example.
Reaction gas composition (volume% with respect to the total of gas group A and gas group B):
Gas group A: NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%,
Gas group B: AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0.30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al ( CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining,
N 2 / (AlCl 3 + Al (CH 3 ) 3 ): 3.0 to 24.0
Reaction atmosphere pressure: 4.5 to 5.0 kPa,
Reaction atmosphere temperature: 700 to 900 ° C.
Supply cycle: 6.0 to 9.0 seconds,
Gas supply time per cycle: 0.15 to 0.25 seconds,
Phase difference in supply of gas group A and gas group B: 0.10 to 0.20 seconds
 前記で成膜したTiAlMeCN層における立方晶の格子歪は、次のような方法で測定することができ、また、格子歪の指標ΔAは、次のようにして求めることができる。
 まず、TiAlMeCN層について、X線回折を行い、TiAlMeCN結晶粒の(111)面および(200)面についてのX線回折スペクトルを求める。
 次に、(111)面および(200)面について測定したX線回折スペクトルから、ブラッグの式:2dsinθ=nλ(なお、dは、格子面間隔、θはブラッグ角、2θは回折角、λは入射X線の波長、nは整数)を用いて、(111)面および(200)面の格子面間隔d(111)およびd(200)を算出する。
 次いで、A(111)およびA(200)を、
 A(111)=31/2d(111)、
 A(200)=2d(200)、
と定義し、前記で算出したd(111)およびd(200)の値から、A(111)とA(200)の値を求める。
 そして、格子歪の指標ΔAは、A(111)とA(200)の差の絶対値、すなわち、
 ΔA=|A(111)-A(200)|
として求めることができる。
 そして、ΔAが、0.007Å≦ΔA≦0.050Åを満足する場合に、TiAlMeCN層は高硬度を具備するようになり、その結果、高熱発生を伴い、切刃に対して衝撃的な負荷が作用する高速高送り断続切削加工に供した場合であっても、優れた耐摩耗性を発揮する。
The cubic lattice strain in the TiAlMeCN layer formed as described above can be measured by the following method, and the lattice strain index ΔA can be obtained as follows.
First, X-ray diffraction is performed on the TiAlMeCN layer, and X-ray diffraction spectra for the (111) plane and the (200) plane of the TiAlMeCN crystal grains are obtained.
Next, from the X-ray diffraction spectra measured for the (111) plane and the (200) plane, Bragg's equation: 2 d sin θ = nλ (where d is the lattice spacing, θ is the Bragg angle, 2θ is the diffraction angle, and λ is Using the wavelength of the incident X-ray, where n is an integer, the lattice spacings d (111) and d (200) between the (111) plane and the (200) plane are calculated.
A (111) and A (200) are then
A (111) = 3 1/2 d (111),
A (200) = 2d (200),
And the values of A (111) and A (200) are obtained from the values of d (111) and d (200) calculated above.
The lattice strain index ΔA is the absolute value of the difference between A (111) and A (200), that is,
ΔA = | A (111) −A (200) |
Can be obtained as
When ΔA satisfies 0.007Å ≦ ΔA ≦ 0.050Å, the TiAlMeCN layer comes to have a high hardness. As a result, high heat generation occurs and an impact load is applied to the cutting edge. Even when subjected to high-speed, high-feed, intermittent cutting that acts, it exhibits excellent wear resistance.
 前記で定めた格子歪みの指標ΔAを備えるTiAlMeCN層は、Me添加による靭性、耐チッピング性の向上に関連する格子歪みに加えて、成膜条件の制御による層内の格子歪の存在により高硬度を示し、その結果、優れた耐摩耗性を発揮するが、ΔAが0.007Å未満では、格子歪が小さいため、硬さ向上効果が十分でなく、一方、ΔAが0.050Åを超えると格子歪が過大になるため、切削加工時の耐欠損性が低下するため、前記ΔAは、0.007Å≦ΔA≦0.050Åの範囲内とする。 The TiAlMeCN layer having the lattice strain index ΔA defined above has high hardness due to the presence of lattice strain in the layer by controlling the film formation conditions in addition to lattice strain related to improvement of toughness and chipping resistance by adding Me. As a result, excellent wear resistance is exhibited. However, when ΔA is less than 0.007 mm, the lattice distortion is small, so the effect of improving the hardness is not sufficient. On the other hand, when ΔA exceeds 0.050 mm, Since the strain becomes excessive and the fracture resistance at the time of cutting is reduced, the ΔA is set in the range of 0.007Å ≦ ΔA ≦ 0.050Å.
結晶組織:
 本発明は、前記したとおり、前記TiAlMeCN層を構成する、NaCl型の面心立方構造を有する結晶粒において、X線回折を行い、得られる(111)面および(200)面の面間隔である、d(111)とd(200)から算出されるそれぞれの格子定数A(111)とA(200)の差の絶対値ΔAを所定の範囲に調整することにより、TiAlCN層の硬さを高め、耐摩耗性を向上でき、これを工具に適用すると耐チッピング性と耐摩耗性の両特性にすぐれた被覆工具が得られることを見出したものである。
 特に、前記TiAlMeCN層を縦断面方向から観察した際に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.10~2.00μm、平均アスペクト比Aが2.0~10.0である柱状組織を有する場合には、結晶粒の硬さおよび靭性が向上し、硬質被覆層として前記TiAlCN層が奏する効果と相俟って、より一層の優れた特性を発揮することができる。
 すなわち、平均粒子幅Wを0.10μm以上、2.00μm以下とすることにより、被削材との反応性を減少させ、耐摩耗性を発揮させるとともに、靱性の向上を図り、耐チッピング性をより向上させることができる。
 よって、平均粒子幅Wを0.10~2.00μmとすることがより好ましい。
 また、平均アスペクト比Aが2.0以上、10.0以下とし、十分な柱状組織を有することにより、小さな等軸結晶の脱落が生じにくく、十分な耐摩耗性を発揮することができ、また、10.0以下では、結晶粒の強度が増すため、耐チッピング性がより向上する。
 よって、平均アスペクト比Aは、2.0~10.0とすることがより好ましい。
 なお、本発明では、平均アスペクト比Aとは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行う際に、工具基体表面と垂直な被覆層断面側(縦断面)から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出する。
Crystal structure:
As described above, the present invention is the interplanar spacing of the (111) plane and the (200) plane obtained by performing X-ray diffraction on the crystal grains having the NaCl-type face-centered cubic structure constituting the TiAlMeCN layer. , By adjusting the absolute value ΔA of the difference between the lattice constants A (111) and A (200) calculated from d (111) and d (200) to a predetermined range, the hardness of the TiAlCN layer is increased. The present inventors have found that a coated tool excellent in both chipping resistance and wear resistance can be obtained by improving the wear resistance and applying this to a tool.
In particular, when the TiAlMeCN layer is observed from the longitudinal cross-sectional direction, the average grain width W of each crystal grain having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is 0.10 to 2 In the case of having a columnar structure with an average aspect ratio A of 2.0 to 10.0, the hardness and toughness of the crystal grains are improved, which is combined with the effect of the TiAlCN layer as a hard coating layer. Thus, even more excellent characteristics can be exhibited.
That is, by setting the average particle width W to 0.10 μm or more and 2.00 μm or less, the reactivity with the work material is reduced, the wear resistance is exhibited, the toughness is improved, and the chipping resistance is improved. It can be improved further.
Therefore, the average particle width W is more preferably 0.10 to 2.00 μm.
In addition, by having an average aspect ratio A of 2.0 or more and 10.0 or less and having a sufficient columnar structure, it is difficult for small equiaxed crystals to fall off, and sufficient wear resistance can be exhibited. If it is 10.0 or less, since the strength of the crystal grains is increased, the chipping resistance is further improved.
Therefore, the average aspect ratio A is more preferably 2.0 to 10.0.
In the present invention, the average aspect ratio A refers to the surface of the tool base when the longitudinal section of the hard coating layer is observed in a range including a width of 100 μm and a height including the entire hard coating layer using a scanning electron microscope. Observed from the cross section side (longitudinal section) of the vertical coating layer, the particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured, and the aspect ratio a (= l / W), the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain is the average grain width W Calculate as
下部層および上部層:
 本発明では、硬質被覆層として前記TiAlMeCN層を設けることによって十分な耐チッピング性、耐摩耗性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で設けられた場合には、これらの層が奏する効果と相俟って、一層優れた特性を発揮することができる。
 Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
In the present invention, by providing the TiAlMeCN layer as the hard coating layer, it has sufficient chipping resistance and wear resistance, but Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide When a lower layer comprising a Ti compound layer comprising one or more of the layers and having a total average layer thickness of 0.1 to 20.0 μm is provided, and / or an upper portion including at least an aluminum oxide layer When the layers are provided with a total average layer thickness of 1.0 to 25.0 μm, combined with the effects exhibited by these layers, it is possible to exhibit further excellent characteristics.
Ti consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and having a total average layer thickness of 0.1 to 20.0 μm When a lower layer including a compound layer is provided, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20.0 μm, the crystal grains are likely to be coarsened. , Chipping is likely to occur. Moreover, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25.0 μm, the crystal grains tend to be coarsened and chipping occurs. It tends to occur.
 次に、本発明の被覆工具を実施例により具体的に説明する。
 なお、以下の実施例では、工具基体として、WC基超硬合金あるいはTiCN基サーメットを用いた場合について説明するが、cBN基超高圧焼結体を工具基体として用いた場合も同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In the following examples, the case where a WC-based cemented carbide or TiCN-based cermet is used as the tool substrate will be described. However, the same applies when a cBN-based ultrahigh pressure sintered body is used as the tool substrate.
<実施例1>
 原料粉末として、いずれも0.1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、三菱マテリアル社製JDMT140520ZDSRのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
<Example 1>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 0.1 to 3 μm were prepared. These raw material powders are shown in Table 1. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact in a vacuum of 5 Pa , Sintered in a vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool base A made of a WC-base cemented carbide having an insert shape of JDMT140520ZDSR manufactured by Mitsubishi Materials Corp. C was produced respectively.
 また、原料粉末として、いずれも0.1~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、三菱マテリアル社製JDMT140520ZDSRのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all of TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.1 to 2 μm And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN base cermet having an insert shape of JDMT140520ZDSR manufactured by Mitsubishi Materials Corporation was produced. did.
 次に、これらの工具基体A~Dの表面に、CVD装置を用い、TiAlMeCN層をCVDにより形成した。
 CVD条件は、次のとおりである。
 表4、表5に示される形成条件A~K、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、MeCl、N、Al(CH、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.50~0.90%、TiCl:0.20~0.30%、MeCl:0.10~0.20%、N:3~12%、Al(CH:0.00~0.10%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期6.0~9.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの供給の位相差0.10~0.20秒とし、また、N、AlCl、Al(CHの供給比N/(AlCl+Al(CH)を3.0~24.0として、所定時間、熱CVD法による蒸着形成を行った。
 前記の条件でTiAlMeCN層を形成することにより、表7に示す平均層厚、Alの平均含有割合x、Meの平均含有割合y、Cの平均含有割合z、Clの平均含有割合sを有する本発明被覆工具1~16を製造した。
 なお、本発明被覆工具4~13については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
Next, a TiAlMeCN layer was formed on the surfaces of these tool bases A to D by CVD using a CVD apparatus.
The CVD conditions are as follows.
Formation conditions A to K shown in Tables 4 and 5, that is, from a gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , MeCl x , N 2 , Al (CH 3 ) 3 , H 2 As the gas group B and the gas supply method, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as NH 3 : 2.0 to 6.0% as the gas group A. , H 2 : 65 to 75%, AlCl 3 : 0.50 to 0.90% as gas group B, TiCl 4 : 0.20 to 0.30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al (CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply Period 6.0 to 9.0 seconds, gas supply time per period 0.15 0.25 seconds, a phase difference 0.10-0.20 seconds of the feed gas group A and the gas group B, also, N 2, AlCl 3, Al (CH 3) 3 feed ratio of N 2 / (AlCl 3 + Al (CH 3 ) 3 ) was set to 3.0 to 24.0, and vapor deposition was performed by a thermal CVD method for a predetermined time.
By forming the TiAlMeCN layer under the above-mentioned conditions, the average layer thickness, the average Al content ratio x, the Me average content ratio y, the C average content ratio z, and the Cl average content ratio s shown in Table 7 are formed. Invention coated tools 1-16 were produced.
For the inventive coated tools 4 to 13, the lower layer and / or the upper layer shown in Table 6 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、工具基体A~Dの表面に、表4、表5に示される形成条件A’~J’で化学蒸着を行うことにより、表8に示される平均層厚(μm)を有し、少なくともTiAlMeCN層およびTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1~16を製造した。
 なお、本発明被覆工具4~13と同様に、比較被覆工具4~13については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
For comparison purposes, the average layer thickness (μm) shown in Table 8 is obtained by performing chemical vapor deposition on the surfaces of the tool bases A to D under the formation conditions A ′ to J ′ shown in Tables 4 and 5. Comparative coating tools 1 to 16 were manufactured by vapor-depositing a hard coating layer having at least a TiAlMeCN layer and a TiAlCN layer.
Similar to the coated tools 4 to 13 of the present invention, the comparative coated tools 4 to 13 were formed with the lower layer and / or the upper layer shown in Table 6 under the forming conditions shown in Table 3.
 また、本発明被覆工具1~16、比較被覆工具1~16の各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される平均層厚であった。 Further, the cross section (longitudinal cross section) in the direction perpendicular to the tool base of each component layer of the coated tools 1 to 16 and comparative coated tools 1 to 16 of the present invention is measured using a scanning electron microscope (magnification 5000 times). When the average layer thickness was obtained by measuring and averaging the five layer thicknesses in the observation field, all were the average layer thicknesses shown in Table 7 and Table 8.
 さらに、TiAlMeCN層およびTiAlCN層(yが0.0001未満)のAlの平均含有割合x、Meの平均含有割合y、Clの平均含有割合sについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAl、MeおよびClの平均含有割合x、yおよびsを求めた。
 Cの平均含有割合zについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合zはTiAlMeCN層およびTiAlCN層についての深さ方向の平均値を示す。
 ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。
 表7、表8に、前記で求めたx、y、z、および、sの値を示す(x、y、z、および、sは、いずれも原子比)。
Further, the average Al content x, the average Me content y, and the average Cl content s of the TiAlMeCN layer and the TiAlCN layer (y is less than 0.0001) are measured with an electron beam microanalyzer (Electron-Probe-Micro- Using an analyzer (EPMA), a sample whose surface is polished is irradiated with an electron beam from the sample surface side, and an average content ratio x, y of Al, Me, and Cl is obtained from an average of 10 points of the analysis result of the characteristic X-ray obtained. And s were determined.
The average content ratio z of C was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average content ratio z of C shows the average value of the depth direction about a TiAlMeCN layer and a TiAlCN layer.
However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
Tables 7 and 8 show the values of x, y, z, and s obtained above (all of x, y, z, and s are atomic ratios).
 加えて、TiAlMeCN層およびTiAlCN層の縦断面に垂直な方向から、X線回折を行い、立方晶構造の結晶粒の(111)面および(200)面のX線回折スペクトルから、ブラッグの式:2dsinθ=nλに基づき、それぞれの格子面間隔d(111)とd(200)を算出した。
 ここで、前記d(111)とd(200)から、格子定数に相当するA(111)およびA(200)を次の式から算出した。
 A(111)=31/2d(111)、
 A(200)=2d(200)、
 次いで、前記A(111)とA(200)の差の絶対値を、格子歪の指標ΔAとして求めた。
 表7、表8に、前記で求めたd(111)、d(200)、A(111)、A(200)およびΔAの値を示す。
 なお、X線回折は、測定条件: Cu-Kα線(λ=1.5418Å)を線源として、測定範囲(2θ):30~50度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepという条件で測定した。
In addition, X-ray diffraction is performed from the direction perpendicular to the longitudinal section of the TiAlMeCN layer and the TiAlCN layer, and the Bragg equation is obtained from the X-ray diffraction spectra of the (111) plane and the (200) plane of the cubic crystal grains: Based on 2 d sin θ = nλ, the respective lattice spacings d (111) and d (200) were calculated.
Here, from the above d (111) and d (200), A (111) and A (200) corresponding to the lattice constant were calculated from the following equations.
A (111) = 3 1/2 d (111),
A (200) = 2d (200),
Next, the absolute value of the difference between A (111) and A (200) was determined as a lattice strain index ΔA.
Tables 7 and 8 show the values of d (111), d (200), A (111), A (200) and ΔA determined above.
X-ray diffraction is measured using a measurement condition: Cu—Kα ray (λ = 1.5418 mm) as a radiation source, measurement range (2θ): 30 to 50 degrees, scan step: 0.013 degrees, measurement time per step : Measurement was performed under the condition of 0.48 sec / step.
 また、本発明被覆工具1~16および比較被覆工具1~16について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ100μmの範囲に存在する複合窒化物または複合炭窒化物層を構成する(Ti1-x―yAlMe)(C1-z)層中の立方晶構造を有する個々の結晶粒について、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。表7、表8に、前記で求めたWおよびAの値を示す。 Further, for the coated tools 1 to 16 of the present invention and the comparative coated tools 1 to 16, the surface of the tool substrate is aligned with the surface of the tool substrate in a horizontal direction using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate. Each having a cubic structure in a (Ti 1-xy Al x Me y ) (C z N 1-z ) layer constituting a composite nitride or composite carbonitride layer existing in a range of 100 μm in length Are observed from the cross section side of the film perpendicular to the surface of the tool substrate, the particle width w in the direction parallel to the substrate surface, and the particle length l in the direction perpendicular to the substrate surface are measured, and the aspect ratio of each crystal grain is measured. a (= l / w) is calculated, the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain is Average particle width W It was calculated. Tables 7 and 8 show the values of W and A determined above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~16、比較被覆工具1~16について、以下に示す、合金鋼の高速高送り断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, the coated tools 1 to 16 and the comparative coated tools 1 to 16 according to the present invention are clamped at the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. The dry high-speed face milling, which is a kind of high-speed, high-feed intermittent cutting of alloy steel, shown in FIG.
 工具基体:WC基超硬合金、TiCN基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM415幅100mm、長さ400mmのブロック材、
 回転速度:764 min-1
 切削速度:300 m/min、
 切り込み:2.0 mm、
 一刃送り量:3.0 mm/刃、
(通常の一刃送り量は2.0mm/刃)
 切削時間:8分、
 表9に、その結果を示す。
Tool substrate: WC-based cemented carbide, TiCN-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: Block material of JIS / SCM415 width 100mm, length 400mm,
Rotational speed: 764 min −1
Cutting speed: 300 m / min,
Cutting depth: 2.0 mm,
Single blade feed rate: 3.0 mm / tooth,
(Normal single blade feed is 2.0mm / tooth)
Cutting time: 8 minutes
Table 9 shows the results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<実施例2>
 原料粉末として、いずれも0.1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
<Example 2>
WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 0.1 to 3 μm are prepared as raw material powders. Was added to the blending composition shown in Table 10, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and press-molded into a compact of a predetermined shape at a pressure of 98 MPa. By subjecting the body to vacuum sintering at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm Tool bases α to γ made of a WC-base cemented carbide having an insert shape of ISO standard CNMG120212 were manufactured.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 また、原料粉末として、いずれも0.1~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 Also, as the raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.1 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 次に、これらの工具基体α~γおよび工具基体δの表面に、CVD装置を用い、表4、表5に示される形成条件A~K、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、MeCl、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.50~0.90%、TiCl:0.20~0.30%、MeCl:0.10~0.20%、N:3~12%、Al(CH:0.00~0.10%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期6.0~9.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの位相差0.10~0.20秒とし、また、N、AlCl、Al(CHの供給比N/(AlCl+Al(CH)を3.0~24.0として、所定時間、熱CVD法による蒸着形成を行った。
 前記の条件でTiAlMeCN層を形成することにより、表13に示す平均層厚、Alの平均含有割合x、Meの平均含有割合y、Cの平均含有割合z、Clの平均含有割合sを有する本発明被覆工具17~32を製造した。
 なお、本発明被覆工具20~29については、表3に示される形成条件で、表12に示される下部層および上部層を形成した。
Next, on the surfaces of the tool base α to γ and the tool base δ, using a CVD apparatus, formation conditions A to K shown in Tables 4 and 5, that is, a gas group A composed of NH 3 and H 2 and , TiCl 4 , AlCl 3 , MeCl x , N 2 , H 2 , and as a method for supplying each gas, the reaction gas composition (capacity% relative to the total of the gas group A and the gas group B) is As gas group A, NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%, as gas group B, AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0. 30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al (CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining, reaction atmosphere pressure: 4. 5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 6 0 to 9.0 seconds, the gas supply time 0.15-0.25 sec per cycle, and phase difference 0.10-0.20 seconds gases group A and the gas group B, also, N 2, AlCl 3 , Al (CH 3 ) 3 supply ratio N 2 / (AlCl 3 + Al (CH 3 ) 3 ) was 3.0 to 24.0, and vapor deposition was performed by a thermal CVD method for a predetermined time.
By forming the TiAlMeCN layer under the above-described conditions, the average layer thickness, the average Al content ratio x, the average Me content ratio y, the average C content ratio z, and the average Cl content ratio s shown in Table 13 are shown. Invention coated tools 17-32 were produced.
For the coated tools 20 to 29 of the present invention, the lower layer and the upper layer shown in Table 12 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体α~γおよび工具基体δの表面に、CVD装置を用い、表4および表5に示される形成条件A’~J’、かつ表14に示される平均層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具17~32を製造した。
 なお、本発明被覆工具20~29と同様に、比較被覆工具20~29については、表3に示される形成条件で、表12に示される下部層および/または上部層を形成した。
For comparison purposes, CVD devices were used on the surfaces of the tool bases α to γ and tool base δ, and the formation conditions A ′ to J ′ shown in Tables 4 and 5 and the average layers shown in Table 14 were used. Comparative coating tools 17 to 32 shown in Table 14 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
Similar to the coated tools 20 to 29 of the present invention, the comparative coated tools 20 to 29 were formed with the lower layer and / or the upper layer shown in Table 12 under the forming conditions shown in Table 3.
 本発明被覆工具17~32、比較被覆工具17~32の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される平均層厚を示した。 The cross-section of each component layer of the inventive coated tool 17-32 and comparative coated tool 17-32 is measured using a scanning electron microscope (magnification 5000 times), and the layer thicknesses at five points in the observation field are measured and averaged. When the average layer thickness was determined, the average layer thicknesses shown in Table 13 and Table 14 were all shown.
 また、前記本発明被覆工具17~32、比較被覆工具17~32のTiAlMeCN層、TiAlCN層について、実施例1に示される方法と同様の方法を用いて、x、y、z、s、d(111)、d(200)、A(111)、A(200)、ΔA、結晶粒の平均粒子幅Wおよび平均アスペクト比Aを求めた。
 表13および表14に、その結果を示す。
Further, for the TiAlMeCN layer and the TiAlCN layer of the inventive coated tools 17 to 32 and the comparative coated tools 17 to 32, x, y, z, s, d ( 111), d (200), A (111), A (200), ΔA, average grain width W and average aspect ratio A of the crystal grains.
Tables 13 and 14 show the results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具17~32、比較被覆工具17~32について、以下に示す、炭素鋼・鋳鉄の湿式高速高送り断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
 被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:300 m/min、
 切り込み:1.5 mm、
 送り:0.5 mm/rev、
 切削時間:5 分、
(通常の送りは0.25mm/rev)、
切削条件2:
 被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:280 m/min、
 切り込み:1.5 mm、
 送り:0.5 mm/rev、
 切削時間:5 分、
(通常の送りは0.25mm/rev)、
 表15に、前記切削試験の結果を示す。
Next, in the state where all of the various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the coated tools 17 to 32 of the present invention and the comparative coated tools 17 to 32 are shown below. We conducted wet high-speed, high-feed, intermittent cutting tests of carbon steel and cast iron, and measured the flank wear width of the cutting blades.
Cutting condition 1:
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 300 m / min,
Cutting depth: 1.5 mm,
Feed: 0.5 mm / rev,
Cutting time: 5 minutes,
(Normal feed is 0.25mm / rev),
Cutting condition 2:
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 280 m / min,
Cutting depth: 1.5 mm,
Feed: 0.5 mm / rev,
Cutting time: 5 minutes,
(Normal feed is 0.25mm / rev),
Table 15 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<実施例3>
 原料粉末として、いずれも0.1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表16に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SOMT120416PDERのインサート形状をもったWC基超硬合金製の工具基体P~Rをそれぞれ製造した。
<Example 3>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder each having an average particle diameter of 0.1 to 3 μm were prepared. These raw material powders are shown in Table 16. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact in a vacuum of 5 Pa , Sintered under vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, tool bases P to R made of WC-base cemented carbide having an ISO standard SOMT120416PDER insert shape Each was manufactured.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 次に、これらの工具基体P~Rの表面に、CVD装置を用い、表4、表5に示される形成条件A~K、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、MeCl、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0~6.0%、H:65~75%、ガス群BとしてAlCl:0.50~0.90%、TiCl:0.20~0.30%、MeCl:0.10~0.20%、N:3~12%、Al(CH:0.00~0.10%、H:残、反応雰囲気圧力:4.5~5.0kPa、反応雰囲気温度:700~900℃、供給周期6.0~9.0秒、1周期当たりのガス供給時間0.15~0.25秒、ガス群Aとガス群Bの位相差0.10~0.20秒とし、また、N、AlCl、Al(CHの供給比N/(AlCl+Al(CH)を3.0~24.0として、所定時間、熱CVD法による蒸着形成を行った。
 前記の条件でTiAlMeCN層を形成することにより、表18に示す平均層厚、Alの平均含有割合x、Meの平均含有割合y、Cの平均含有割合z、Clの平均含有割合sを有する本発明被覆工具33~40を製造した。
 なお、本発明被覆工具35~38については、表3に示される形成条件で、表17に示される下部層および上部層を形成した。
Next, on the surfaces of these tool bases P to R, using a CVD apparatus, formation conditions A to K shown in Tables 4 and 5, that is, a gas group A composed of NH 3 and H 2 , TiCl 4 , As a gas group B composed of AlCl 3 , MeCl x , N 2 , and H 2 , and a method for supplying each gas, the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B) NH 3 : 2.0 to 6.0%, H 2 : 65 to 75%, Gas Group B as AlCl 3 : 0.50 to 0.90%, TiCl 4 : 0.20 to 0.30%, MeCl x : 0.10 to 0.20%, N 2 : 3 to 12%, Al (CH 3 ) 3 : 0.00 to 0.10%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5. 0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 6.0 to 9.0 seconds Gas supply time 0.15-0.25 sec per cycle, and phase difference 0.10-0.20 seconds gases group A and the gas group B, also, N 2, AlCl 3, Al (CH 3) 3 The supply ratio N 2 / (AlCl 3 + Al (CH 3 ) 3 ) was 3.0 to 24.0, and vapor deposition was performed by a thermal CVD method for a predetermined time.
By forming the TiAlMeCN layer under the above-mentioned conditions, the average layer thickness, the average Al content ratio x, the Me average content ratio y, the C average content ratio z, and the Cl average content ratio s shown in Table 18 are formed. Invention coated tools 33-40 were produced.
For the inventive coated tools 35 to 38, the lower layer and the upper layer shown in Table 17 were formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体P~Rの表面に、CVD装置を用い、表4および表5に示される形成条件A’~H’、かつ表19に示される平均層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表19に示される比較被覆工具33~40を製造した。
 なお、本発明被覆工具35~38と同様に、比較被覆工具35~38については、表3に示される形成条件で、表17に示される下部層および/または上部層を形成した。
For comparison purposes, the present invention is also applied to the surfaces of the tool bases P to R using the CVD apparatus with the formation conditions A ′ to H ′ shown in Tables 4 and 5 and the average layer thickness shown in Table 19. Comparative coating tools 33 to 40 shown in Table 19 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool.
As with the coated tools 35 to 38 of the present invention, the lower layer and / or the upper layer shown in Table 17 were formed for the comparative coated tools 35 to 38 under the formation conditions shown in Table 3.
 本発明被覆工具33~40、比較被覆工具33~40の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される平均層厚を示した。 The cross-section of each component layer of the inventive coated tool 33 to 40 and comparative coated tool 33 to 40 is measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured and averaged. When the average layer thickness was determined, the average layer thicknesses shown in Table 18 and Table 19 were all shown.
 また、前記本発明被覆工具33~40、比較被覆工具33~40のTiAlMeCN層、TiAlCN層について、実施例1に示される方法と同様の方法を用いて、x、y、z、s、d(111)、d(200)、A(111)、A(200)、ΔA、結晶粒の平均粒子幅Wおよび平均アスペクト比Aを求めた。
 表18および表19に、その結果を示す。
Further, for the TiAlMeCN layer and the TiAlCN layer of the inventive coated tools 33 to 40 and comparative coated tools 33 to 40, x, y, z, s, d ( 111), d (200), A (111), A (200), ΔA, average grain width W and average aspect ratio A of the crystal grains.
Tables 18 and 19 show the results.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 次に、前記各種の被覆工具をいずれもカッタ径50mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具33~40、比較被覆工具33~40について、以下に示す、合金鋼の高速高送り断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, the coated tools 33 to 40 of the present invention and the comparative coated tools 33 to 40 will be described below in a state where all the various coated tools are clamped to the tip of a cutter made of tool steel having a cutter diameter of 50 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed, high-feed intermittent cutting of alloy steel, shown in FIG.
 工具基体:WC基超硬合金
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM435幅35mm、長さ200mmのブロック材、
 回転速度:1592 min-1
 切削速度:250 m/min、
 切り込み:1.0 mm、
 一刃送り量:1.0 mm/刃、
 (通常の一刃送り量は0.5mm/刃)
切削時間:5分、
 表20に、その結果を示す。
Tool base: WC-based cemented carbide Cutting test: Dry high-speed face milling, center cut cutting,
Work material: Block material of JIS / SCM435 width 35mm, length 200mm,
Rotational speed: 1592 min −1
Cutting speed: 250 m / min,
Cutting depth: 1.0 mm,
Single blade feed rate: 1.0 mm / tooth,
(Normal feed rate is 0.5mm / tooth)
Cutting time: 5 minutes
Table 20 shows the results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表9、表15および表20に示される結果から、本発明の被覆工具は、TiAlMeCN層の立方晶の結晶粒が所定のAl含有割合、Me含有割合、C含有割合、Cl含有割合を有し、かつ、0.007Å≦ΔA≦0.050Åを満足する格子歪が形成されていることから高硬度であり、その結果、高熱発生を伴い、かつ、切れ刃に断続的・衝撃的高負荷が作用する高速高送り断続切削加工に用いた場合でも、チッピング、欠損の発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。 From the results shown in Table 9, Table 15 and Table 20, the coated tool of the present invention has a predetermined Al content ratio, Me content ratio, C content ratio, and Cl content ratio in the cubic crystal grains of the TiAlMeCN layer. In addition, since the lattice strain satisfying 0.007Å ≦ ΔA ≦ 0.050Å is formed, the hardness is high. As a result, high heat generation occurs, and the cutting blade is subjected to intermittent / impact high loads. Even when used for high-speed, high-feed, intermittent cutting that acts, it exhibits excellent wear resistance over a long period of use without the occurrence of chipping or chipping.
 これに対して、TiAlMeCN層およびTiAlCN層を構成する立方晶の結晶粒において、所定のAl含有割合、Me含有割合、C含有割合、Cl含有割合、0.007Å≦ΔA≦0.050Åを満足する格子歪が形成されていない比較被覆工具は、高速高送り断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。 On the other hand, the cubic crystal grains constituting the TiAlMeCN layer and the TiAlCN layer satisfy a predetermined Al content rate, Me content rate, C content rate, Cl content rate, 0.007Å ≦ ΔA ≦ 0.050Å. It is clear that the comparative coated tool in which no lattice strain is formed reaches the end of its life in a short time due to the occurrence of abnormal damage such as chipping or the progress of wear in high-speed and high-feed intermittent cutting.
 前述のように、本発明の被覆工具は、合金鋼の高速高送り断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分に満足する対応ができるものである。 As described above, the coated tool of the present invention can be used as a coated tool for various work materials as well as high-speed and high-feed intermittent cutting of alloy steel, and has excellent cutting performance over a long period of use. Therefore, it is possible to sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting process, and the cost reduction.

Claims (5)

  1.  炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
    (a)前記硬質被覆層は、平均層厚1.0~20.0μmのTi、AlおよびMe(但し、Meは、Zr、V、Crの少なくとも一つである)の複合窒化物または複合炭窒化物層を少なくとも含み、該複合窒化物または複合炭窒化物を、
     組成式:(Ti1-x―yAlMe)(C1-z
    で表した場合、AlのTi、AlおよびMeの合量に占める含有割合x、MeのTi、AlおよびMeの合量に占める含有割合y、並びに、CのCとNの合量に占める含有割合z(但し、x、yおよびzはいずれも原子比)は、それぞれ、0.60≦x<0.95、0.005≦y≦0.100、0.60<x+y≦0.95、0.0000≦z≦0.0050を満足し、
    (b)前記複合窒化物または複合炭窒化物を構成する原子の合量に占めるClの平均含有割合s(但し、sは原子比)が、0.0001≦s≦0.0040を満足し、
    (c)前記複合窒化物または複合炭窒化物層について、X線回折装置を用いて測定した、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する結晶粒の(111)面および(200)面のX線回折スペクトルから、それぞれの面間隔d(111)およびd(200)の値を算出し、算出されたd(111)およびd(200)の値から、
     A(111)=31/2d(111)、
     A(200)=2d(200)
    で定義されるA(111)およびA(200)を算出し、A(111)とA(200)の差の絶対値ΔA=|A(111)-A(200)|を求めた場合、
    ΔAが、0.007Å~0.050Åを満足することを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
    (A) The hard coating layer is a composite nitride or composite charcoal of Ti, Al, and Me (wherein Me is at least one of Zr, V, and Cr) having an average layer thickness of 1.0 to 20.0 μm. Including at least a nitride layer, the composite nitride or composite carbonitride,
    Composition formula: (Ti 1-xy Al x Me y ) (C z N 1-z )
    The content ratio x of the total content of Ti, Al and Me in Al, the content ratio y of the total content of Ti, Al, and Me in Me, and the content of C in the total content of C and N The ratio z (where x, y, and z are atomic ratios) are 0.60 ≦ x <0.95, 0.005 ≦ y ≦ 0.100, 0.60 <x + y ≦ 0.95, respectively. 0.0000 ≦ z ≦ 0.0050 is satisfied,
    (B) The average content ratio s of Cl (where s is an atomic ratio) in the total amount of atoms constituting the composite nitride or composite carbonitride satisfies 0.0001 ≦ s ≦ 0.0040,
    (C) With respect to the composite nitride or composite carbonitride layer, (111) crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer measured using an X-ray diffractometer. ) Surface and (200) surface X-ray diffraction spectra, respectively, to calculate the values of the surface spacing d (111) and d (200), from the calculated d (111) and d (200) values,
    A (111) = 3 1/2 d (111),
    A (200) = 2d (200)
    When A (111) and A (200) defined by the above are calculated and the absolute value ΔA = | A (111) −A (200) | of the difference between A (111) and A (200) is obtained,
    A surface-coated cutting tool characterized in that ΔA satisfies 0.007 to 0.050 mm.
  2.  前記Meとして、SiまたはBの少なくとも一つをさらに含むことを特徴とする請求項1に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, further comprising at least one of Si or B as the Me.
  3.  前記複合窒化物または複合炭窒化物層は、縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.10~2.00μm、平均アスペクト比Aが2.0~10.0である柱状組織を有することを特徴とする請求項1または2に記載の表面被覆切削工具。 The composite nitride or composite carbonitride layer has an average grain width W of individual grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer when observed from the longitudinal cross-sectional direction. The surface-coated cutting tool according to claim 1 or 2, wherein the surface-coated cutting tool has a columnar structure having an average aspect ratio A of 0.10 to 2.00 μm and an average aspect ratio A of 2.0 to 10.0.
  4.  前記工具基体と前記Ti、AlおよびMeの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1~3のいずれか1項に記載の表面被覆切削工具。 Between the tool base and the Ti, Al and Me composite nitride or composite carbonitride layer, a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride oxide layer 4. The lower layer comprising a Ti compound layer comprising one layer or two layers or more and having a total average layer thickness of 0.1 to 20.0 μm is present. Surface coated cutting tool.
  5.  前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で存在することを特徴とする請求項1~4のいずれか1項に記載の表面被覆切削工具。 5. The upper layer including at least an aluminum oxide layer is present at a total average layer thickness of 1.0 to 25.0 μm above the composite nitride or composite carbonitride layer. The surface-coated cutting tool according to claim 1.
PCT/JP2018/012025 2017-03-27 2018-03-26 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance WO2018181123A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017060785 2017-03-27
JP2017-060785 2017-03-27
JP2018-024752 2018-02-15
JP2018024752A JP6935058B2 (en) 2017-03-27 2018-02-15 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Publications (1)

Publication Number Publication Date
WO2018181123A1 true WO2018181123A1 (en) 2018-10-04

Family

ID=63676153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012025 WO2018181123A1 (en) 2017-03-27 2018-03-26 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance

Country Status (1)

Country Link
WO (1) WO2018181123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165084A (en) * 2018-10-11 2021-07-23 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent welding resistance, plastic deformation resistance and abnormal damage resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2008238344A (en) * 2007-03-27 2008-10-09 Kyocera Corp Cutting tool, its manufacturing method, and cutting method
JP2010125539A (en) * 2008-11-26 2010-06-10 Kyocera Corp Cutting tool
JP2012201955A (en) * 2011-03-28 2012-10-22 Ngk Spark Plug Co Ltd Coated sintered-body, and method for manufacturing coated sintered-body
JP2016068252A (en) * 2014-09-30 2016-05-09 三菱マテリアル株式会社 Surface coated cutting tool excellent in chipping resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2008238344A (en) * 2007-03-27 2008-10-09 Kyocera Corp Cutting tool, its manufacturing method, and cutting method
JP2010125539A (en) * 2008-11-26 2010-06-10 Kyocera Corp Cutting tool
JP2012201955A (en) * 2011-03-28 2012-10-22 Ngk Spark Plug Co Ltd Coated sintered-body, and method for manufacturing coated sintered-body
JP2016068252A (en) * 2014-09-30 2016-05-09 三菱マテリアル株式会社 Surface coated cutting tool excellent in chipping resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TODT ET AL.: "Superior oxidation resistance, mechanical properties and residual stresses of an Al-rich nanolamellar Ti0.05A10.95N coating prepared by CVD", SURFACE & COATINGS TECHNOLOGY, vol. 258, 11 July 2014 (2014-07-11), pages 1119 - 1127, XP029020164 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113165084A (en) * 2018-10-11 2021-07-23 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent welding resistance, plastic deformation resistance and abnormal damage resistance
CN113165084B (en) * 2018-10-11 2024-04-05 三菱综合材料株式会社 Surface-coated cutting tool having hard coating layer exhibiting excellent resistance to fusion bonding, plastic deformation and abnormal damage

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
WO2016047581A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
US11040402B2 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
WO2018042740A1 (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and peeling resistance
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP7231885B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6617917B2 (en) Surface coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6935058B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
WO2018135513A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2016124098A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
WO2018181123A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
WO2020067402A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18776818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18776818

Country of ref document: EP

Kind code of ref document: A1