JP7231885B2 - A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance - Google Patents

A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Download PDF

Info

Publication number
JP7231885B2
JP7231885B2 JP2019146495A JP2019146495A JP7231885B2 JP 7231885 B2 JP7231885 B2 JP 7231885B2 JP 2019146495 A JP2019146495 A JP 2019146495A JP 2019146495 A JP2019146495 A JP 2019146495A JP 7231885 B2 JP7231885 B2 JP 7231885B2
Authority
JP
Japan
Prior art keywords
layer
crystal grains
composite
tool
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019146495A
Other languages
Japanese (ja)
Other versions
JP2020055097A (en
Inventor
卓也 石垣
光亮 柳澤
大樹 中村
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2019/038092 priority Critical patent/WO2020067402A1/en
Priority to CN201980062729.2A priority patent/CN112770858B/en
Priority to US17/279,429 priority patent/US20210402486A1/en
Priority to EP19866532.5A priority patent/EP3858524A4/en
Publication of JP2020055097A publication Critical patent/JP2020055097A/en
Application granted granted Critical
Publication of JP7231885B2 publication Critical patent/JP7231885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time

Description

本発明は、鋳鉄・合金鋼等の高速断続切削加工に用いても、硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention provides a surface-coated cutting tool (hereinafter referred to as , sometimes referred to as coated tools).

従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合炭窒化物層を物理蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi-Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の潤滑性の改善についての種々の提案がなされている。
Conventionally, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is a coated tool in which a Ti—Al-based composite carbonitride layer is formed as a hard coating layer by physical vapor deposition on the surface of a tool substrate (hereinafter collectively referred to as the tool substrate). It is known to exhibit excellent wear resistance.
However, although the conventional coated tool coated with the Ti—Al-based composite carbonitride layer has relatively excellent wear resistance, it is prone to abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made to improve the lubricity of the hard coating layer.

例えば、特許文献1には、基体上にCVDにより成膜された、厚さが1~16μmで85体積%以上のfcc構造の結晶粒を有する硬質皮膜であるTi1-xAl層(0.40≦x≦0.95、0≦y≦0.10、0.85≦z≦1.15)を有し、該層の結晶粒界には六方晶構造のAlNを有するTi1-oAl(0.95≦o≦1.00、0≦p≦0.10、0.85≦q≦1.15、o-x≧0.05)が析出している被覆工具が記載されている。 For example, in Patent Document 1, Ti 1-x Al x C y N, which is a hard coating having a thickness of 1 to 16 μm and 85% by volume or more of fcc structure crystal grains, is deposited on a substrate by CVD. It has a z layer (0.40≤x≤0.95, 0≤y≤0.10, 0.85≤z≤1.15), and has AlN with a hexagonal crystal structure at the grain boundary of the layer Ti 1-o Al o C p N q (0.95≦o≦1.00, 0≦p≦0.10, 0.85≦q≦1.15, ox≧0.05) was precipitated. A coated tool is described.

また、例えば、特許文献2には、複数の結晶粒と前記結晶粒の間の非晶質相とを含み、
前記結晶粒は、それぞれ、fcc構造を有するTi1-xAlxN層と、fcc構造を有するTi1-yAlyN層とが交互に積層された構造を有しており、前記Ti1-xAlxN層のAl組成比xは、0≦x<1の関係を満たし、前記Ti1-yAlyN層のAl組成比yは、0<y≦1の関係を満たし、前記Al組成比xと前記Al組成比yとは、(y-x)≧0.2の関係を満たし、前記非晶質相は、TiおよびAlの少なくとも一方の炭化物、窒化物または炭窒化物を含む、硬質皮膜を有する被覆工具が記載されている。
Further, for example, Patent Document 2 includes a plurality of crystal grains and an amorphous phase between the crystal grains,
Each of the crystal grains has a structure in which a Ti 1-x Al x N layer having an fcc structure and a Ti 1-y Al y N layer having an fcc structure are alternately laminated, and the Ti 1 The Al composition ratio x of the -x Al x N layer satisfies the relationship of 0≦x<1, and the Al composition ratio y of the Ti 1-y Al y N layer satisfies the relationship of 0<y≦1. The Al composition ratio x and the Al composition ratio y satisfy the relationship (y−x)≧0.2, and the amorphous phase is a carbide, nitride or carbonitride of at least one of Ti and Al. A coated tool having a hard coating comprising:

国際特許公開2017/016826号International Patent Publication No. 2017/016826 特開2016-3368号公報Japanese Patent Application Laid-Open No. 2016-3368

特許文献1及び2に記載された硬質皮膜は、結晶粒界に六方晶、非晶質相という一般的に強度を低下させる相を有しているため、より負荷の高い高速断続切削に供した場合はチッピングが発生しやすく、満足する切削性能を発揮することは難しい。 The hard coatings described in Patent Documents 1 and 2 have hexagonal and amorphous phases at grain boundaries that generally reduce strength, so they were subjected to high-speed interrupted cutting with a higher load. In such cases, chipping is likely to occur, making it difficult to achieve satisfactory cutting performance.

そこで、本発明は、鋳鉄・合金鋼等の高速断続切削加工に用いても、硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する切削工具を提供することを目的とする。 Therefore, the present invention provides a cutting tool that exhibits excellent cutting performance over a long period of use by providing a hard coating layer with excellent chipping resistance even when used for high-speed interrupted cutting of cast iron, alloy steel, etc. intended to

本発明者は、硬質被覆層としてのTiとAlとの複合窒化物層または複合炭窒化物層(以下、複合窒化物層または複合炭窒化物層をTiAlCN層とも表記する)の耐チッピング性向上について鋭意検討を行ったところ、粒径の大きい結晶粒の間に適度に小さな結晶粒(微結晶粒)が存在すると、粒径の大きな結晶粒が与える耐摩耗性を維持しつつ、切削時のクラックの伝播が阻害され、鋳鉄・合金鋼等の高速断続切削加工において耐チッピング性が向上するという新規な知見を得た。 The present inventors have improved the chipping resistance of a composite nitride layer or composite carbonitride layer of Ti and Al as a hard coating layer (hereinafter, the composite nitride layer or composite carbonitride layer is also referred to as a TiAlCN layer). As a result of intensive investigation, when moderately small crystal grains (microcrystalline grains) exist between large grains, while maintaining the wear resistance provided by large grains, during cutting New knowledge was obtained that crack propagation is inhibited and chipping resistance is improved in high-speed interrupted cutting of cast iron and alloy steel.

本発明は、この知見に基づくものであって、
「(1)工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚2.0~20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層を組成式:(Ti(1-x)Al)(C(1-y))で表した場合、AlのTiとAlの合量に占める平均含有割合xavgとCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)がそれぞれ、0.60≦xavg≦0.95、0.00≦yavg≦0.05を満足し、
(c)前記複合窒化物層または複合炭窒化物層は、該層の縦断面を観察した場合に、複合窒化物または複合炭窒化物のNaCl型の面心立方構造を有する結晶粒が占める面積割合が90面積%以上を満足し、
(d)さらに、前記複合窒化物層または複合炭窒化物層を層厚方向に上層側と下層側に二等分した上層側の領域において、前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dを求めた場合、該結晶粒径dが0.01μm<d≦0.20μmの結晶粒が前記上層側の領域の複合窒化物層または複合炭窒化物層の全面積に対する面積割合で10~40面積%存在し、
(e)加えて、前記二等分した上層側の領域において、前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dが0.01μm<d≦0.20μmの結晶粒同士が隣接し、つながった各領域の工具基体表面に平行な方向の最大長さLの平均値L(dsum)がL(dsum)≦5.0μm、
を満足する表面被覆切削工具。
(2)前記複合窒化物層または複合炭窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める面積割合が95面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物層または複合炭窒化物層を構成する結晶粒のうちの前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dが0.20μm<dの結晶粒について、アスペクト比Aが2~20である結晶粒が前記複合窒化物層または複合炭窒化物層の全面積に対する面積割合で30面積%以上存在することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記複合窒化物層または複合炭窒化物層を構成する結晶粒のうちの前記NaCl型の面心立方構造を有する結晶粒の{111}面の法線と工具基体表面に対して垂直な方向とがなす傾斜角を測定して傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0~12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であることを特徴とする(1)~(3)のいずれかに記載の表面被覆切削工具。」
である。
The present invention is based on this finding,
"(1) In a surface-coated cutting tool having a hard coating layer on the surface of the tool substrate,
(a) the hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al with an average layer thickness of 2.0 to 20.0 μm,
(b) When the composite nitride layer or composite carbonitride layer is represented by the composition formula: (Ti (1-x) Al x ) (C y N (1-y) ), the combination of Ti and Al of Al The average content ratio x avg in the amount and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are both atomic ratios) are respectively 0.60≦x avg ≦0. 95, satisfying 0.00≦y avg ≦0.05,
(c) The composite nitride layer or composite carbonitride layer has an area occupied by crystal grains having a NaCl-type face-centered cubic structure of the composite nitride or composite carbonitride layer when the longitudinal section of the layer is observed. The ratio satisfies 90 area% or more,
(d) Further, in an upper layer side region obtained by bisected the composite nitride layer or composite carbonitride layer into an upper layer side and a lower layer side in the layer thickness direction, individual crystal grains having the NaCl type face-centered cubic structure When the crystal grain size d is obtained, the area of the crystal grains with the crystal grain size d of 0.01 μm < d ≤ 0.20 μm with respect to the total area of the composite nitride layer or composite carbonitride layer in the upper layer side region present in a proportion of 10 to 40 area %,
(e) In addition, in the bisected upper layer side, crystal grains having a crystal grain size d of 0.01 μm < d ≤ 0.20 μm of each crystal grain having a face-centered cubic structure of the NaCl type are separated from each other. The average value L (dsum) of the maximum length L in the direction parallel to the tool base surface of each adjacent and connected region is L (dsum) ≤ 5.0 µm,
A surface-coated cutting tool that satisfies
(2) The composite nitride layer or the composite carbonitride layer according to (1), wherein the area ratio of crystal grains having the NaCl-type face-centered cubic structure is 95 area% or more. Surface coated cutting tools.
(3) Crystal grains having a crystal grain size d of 0.20 μm<d of each crystal grain having the NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride layer or the composite carbonitride layer , wherein crystal grains having an aspect ratio A of 2 to 20 are present in an area ratio of 30 area% or more with respect to the total area of the composite nitride layer or composite carbonitride layer (1) or (2) A surface-coated cutting tool as described.
(4) The normal to the {111} plane of the crystal grains having the NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride layer or the composite carbonitride layer and perpendicular to the tool substrate surface When the inclination angle number distribution is obtained by measuring the inclination angle formed by the direction of The surface-coated cutting tool according to any one of (1) to (3), wherein the total frequency is 45% or more of the total frequency in the inclination angle frequency distribution. ”
is.

本発明の被覆工具は、硬質被覆層が優れた耐チッピング性を備え、長期の使用にわたって優れた切削性能を発揮する。 The coated tool of the present invention has a hard coating layer with excellent chipping resistance, and exhibits excellent cutting performance over long-term use.

本発明の硬質被覆層の縦断面(工具基体表面に垂直な断面)の模式図であり、結晶粒径dが0.01μm<d≦0.20μmに当たるものを微粒組織、0.20μm≦dに当たるものを粗粒組織と表記している。各組織の形状や寸法は実際の組織を写生したものではない。It is a schematic diagram of a longitudinal section (a cross section perpendicular to the surface of the tool substrate) of the hard coating layer of the present invention, where the crystal grain size d corresponds to 0.01 μm < d ≤ 0.20 μm corresponds to the fine grain structure, and 0.20 μm ≤ d corresponds to it. is described as a coarse-grained structure. The shape and dimensions of each tissue are not a sketch of the actual tissue.

以下、本発明の切削工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「~」を用いて表現する場合、その範囲は上限および下限の数値を含むものである。なお、下限の数値の単位は、上限の数値と同じものである。 The cutting tool of the present invention will be described in more detail below. In addition, in the description of the present specification and the scope of claims, when a numerical range is expressed using "-", the range includes the numerical values of the upper limit and the lower limit. The unit of the numerical value of the lower limit is the same as that of the numerical value of the upper limit.

硬質被覆層の平均層厚:
本発明の硬質被覆層は、組成式:(Ti(1-x)Al)(C(1-y))で表されるTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含む。このTiAlCN層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が2.0~20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が2.0μm未満では、層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。平均層厚は、4.0~12.0μmがより好ましい。
Average layer thickness of hard coating layer:
The hard coating layer of the present invention is a composite nitride layer or composite carbonitride layer of Ti and Al represented by the composition formula: (Ti (1-x) Al x ) (C y N (1-y) ) At least include. This TiAlCN layer has high hardness and excellent wear resistance, and its effect is conspicuous especially when the average layer thickness is 2.0 to 20.0 μm. The reason for this is that if the average layer thickness is less than 2.0 μm, the layer thickness is too thin to ensure sufficient wear resistance over long-term use. Crystal grains in the layer tend to coarsen, and chipping tends to occur. More preferably, the average layer thickness is 4.0 to 12.0 μm.

TiAlCN層の組成:
本発明のTiAlCN層は、上記組成式:(Ti(1-x)Al)(C(1-y))で表した場合、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0.00≦yavg≦0.05を満足するように組成を制御する。
その理由は、Alの平均含有割合xavgが0.60未満であると、TiAlCN層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合xavgが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。
また、TiAlCN層に含まれるC成分の平均含有割合yavgを0.00≦yavg≦0.05と定めたのは、Cが含有されていても、微量であれば硬さを向上させることができ、平均含有割合が0.05以下の範囲であれば耐チッピング性を保ちつつ硬さを向上させることができるためである。なお、ここでいうTiとAlの複合窒化物層または複合炭窒化物層(TiAlCN層)は微量のOやCl等の不可避的不純物を含んでいても前述の発明の効果を損なわない。
Composition of the TiAlCN layer:
The TiAlCN layer of the present invention is represented by the above composition formula: (Ti (1-x) Al x ) (C y N (1-y) ), the average content ratio of Al to the total amount of Ti and Al x avg and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are both atomic ratios) are 0.60 ≤ x avg ≤ 0.95 and 0.00 ≤ The composition is controlled to satisfy y avg ≦0.05.
The reason for this is that if the average Al content x avg is less than 0.60, the TiAlCN layer is inferior in oxidation resistance, so when subjected to high-speed intermittent cutting of alloy steel, etc., the wear resistance is not sufficient. . On the other hand, if the average Al content x avg exceeds 0.95, the amount of precipitated hexagonal crystals, which are inferior in hardness, increases and the hardness decreases, resulting in a decrease in wear resistance.
In addition, the reason why the average content ratio y avg of the C component contained in the TiAlCN layer is set to 0.00 ≤ y avg ≤ 0.05 is that even if C is contained, if it is a small amount, the hardness can be improved. This is because if the average content is in the range of 0.05 or less, the hardness can be improved while maintaining the chipping resistance. It should be noted that even if the composite nitride layer or composite carbonitride layer (TiAlCN layer) of Ti and Al referred to here contains a small amount of unavoidable impurities such as O and Cl, the effects of the invention described above are not impaired.

ここで、TiAlCN層のAlの平均含有割合xavgは、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から照射し、層厚方向に5本の線分析を行って得られたオージェ電子の解析結果を平均したものである。また、Cの平均含有割合yavgについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めることができる。すなわち、試料表面を研磨した試料において、TiAlCN層の表面側からイオンビームを70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の濃度測定を行う。まず、TiAlCN層についての層の深さ方向へ0.5μm以上侵入した箇所から0.1μm以下のピッチで少なくとも0.5μmの深さの測定を行ったデータの平均を求める。さらに、これを少なくとも試料表面の5箇所において繰り返し算出した結果を平均してCの平均含有割合yavgとして求める。 Here, the average content of Al in the TiAlCN layer x avg is obtained by using Auger Electron Spectroscopy (AES), irradiating an electron beam from the longitudinal section side of a sample whose cross section is polished, and measuring the layer thickness direction. It is the average of the analysis results of Auger electrons obtained by five-line analysis. Further, the average content ratio y avg of C can be obtained by secondary-ion-mass-spectroscopy (SIMS). That is, in a sample having a polished sample surface, an ion beam is irradiated in a range of 70 μm×70 μm from the surface side of the TiAlCN layer, and surface analysis by the ion beam and etching by the sputtered ion beam are alternately repeated, thereby increasing the depth direction. Concentration measurement is performed. First, the average of the data obtained by measuring a depth of at least 0.5 μm at a pitch of 0.1 μm or less from a portion intruded 0.5 μm or more in the depth direction of the TiAlCN layer is obtained. Furthermore, the results of repeated calculations at at least five points on the sample surface are averaged to determine the average C content yavg .

TiAlCN層内のNaCl型の面心立方晶構造を有する結晶粒の面積割合:
前記TiAlCN層にはNaCl型の面心立方晶構造を有する結晶粒(立方晶結晶粒ということがある)が存在することが必要であり、該層の縦断面を観察した場合に、その面積割合として少なくとも90面積%以上が好ましい。これにより、高硬度であるNaCl型の面心立方晶構造を有する結晶粒の面積比率が高くなり、硬さが向上する。さらに、この面積率は、95面積%以上がより好ましく、100面積%であってもよい。
Area ratio of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer:
It is necessary for the TiAlCN layer to have crystal grains (sometimes referred to as cubic crystal grains) having a NaCl-type face-centered cubic crystal structure. is preferably at least 90 area % or more. As a result, the area ratio of crystal grains having a high-hardness NaCl type face-centered cubic crystal structure is increased, and the hardness is improved. Furthermore, this area ratio is more preferably 95 area % or more, and may be 100 area %.

TiAlCN層を層厚方向に、上層側と下層側に二等分した上層側の領域におけるNaCl型の面心立方晶構造を有する結晶粒の粒径と面積割合:
TiAlCN層を層厚方向に、上層側と下層側に二等分した上層側の領域におけるNaCl型の面心立方晶構造を有する結晶粒個々の結晶粒径dが、0.01μm<d≦0.20μmとなる微結晶が存在することが好ましい。その理由は、0.20μm<dの大きな結晶粒の間に微結晶が存在し、この微結晶の結晶粒径が0.01μm以下であると粒径が小さすぎ、また、0.20μmを超えると結晶粒が大きくなって結晶粒界が減少するため、耐チッピング性の向上がなされないためである。
また、この微結晶の面積割合は、TiAlCN層の前記上層側の領域において、10~40面積%であることが好ましい。その理由は、10面積%未満となると微結晶が少なくなりクラック伝播の阻害が十分になされず、一方、40面積%を超えると切削時の微結晶粒の離脱が顕著になり、いずれも耐チッピング性の向上がなされないためである。
Grain size and area ratio of crystal grains having a NaCl-type face-centered cubic structure in the upper layer side region obtained by bisected the TiAlCN layer in the layer thickness direction into an upper layer side and a lower layer side:
The crystal grain size d of each crystal grain having a NaCl-type face-centered cubic structure in the upper layer side region obtained by bisected the TiAlCN layer in the layer thickness direction into an upper layer side and a lower layer side is 0.01 μm < d ≤ 0 It is preferred that crystallites of 0.20 μm are present. The reason for this is that microcrystals exist between large crystal grains of 0.20 μm<d, and if the crystal grain size of the microcrystals is 0.01 μm or less, the grain size is too small, and more than 0.20 μm. This is because the crystal grains become larger and the grain boundaries are reduced, so that the chipping resistance is not improved.
Further, the area ratio of the microcrystals is preferably 10 to 40 area % in the upper layer side region of the TiAlCN layer. The reason for this is that if it is less than 10 area%, the number of microcrystals decreases and crack propagation is not sufficiently inhibited. This is because there is no improvement in performance.

TiAlCN層を層厚方向に、上層側と下層側に二等分した上層側の領域におけるNaCl型の面心立方晶構造を有する結晶粒について、粒径dが0.01μm<d≦0.20μmの結晶粒同士が隣接し、つながった各領域の工具基体表面に平行な方向の最大長さLの平均値L(dsum):
TiAlCN層を層厚方向に、上層側と下層側に二等分した上層側の領域における結晶粒の結晶粒径dが0.01μm<d≦0.20μmの結晶粒同士が隣接して、つながった各領域(粒径dが0.01μm<d≦0.20μmの結晶粒のみで形成される領域)それぞれの工具基体表面に平行な方向の最大長さLの平均値L(dsum)が、0.2μm≦L(dsum)≦5.0μmを満足すことが好ましい。その理由は、L(dsum)が5.0μmを超えると、微結晶粒が工具基体表面に平行な方向に層状に存在することになり、耐チッピング性の向上が期待できず、L(dsum)が0.2μm未満であっても、微結晶粒の集まりが小さいもしくは少なく、耐チッピング性の向上が期待できないためである。なお、各領域における最大長さLとは、該領域を画定する結晶粒の粒界上の異なる2点を結んだ最大長さである。
Crystal grains having a NaCl-type face-centered cubic structure in the upper layer side region obtained by bisected the TiAlCN layer in the layer thickness direction into an upper layer side and a lower layer side have a grain size d of 0.01 µm < d ≤ 0.20 µm. The average value L (dsum) of the maximum length L in the direction parallel to the tool base surface of each region where the crystal grains are adjacent and connected:
Crystal grains having a crystal grain size d of 0.01 µm < d ≤ 0.20 µm in the upper layer side region obtained by bisected the TiAlCN layer in the layer thickness direction into upper layer side and lower layer side are adjacent to each other and connected. The average value L (dsum) of the maximum length L in the direction parallel to the tool base surface of each region (region formed only by crystal grains with a grain size d of 0.01 μm < d ≤ 0.20 μm) is It is preferable to satisfy 0.2 μm≦L(dsum)≦5.0 μm. The reason for this is that when L (dsum) exceeds 5.0 μm, fine crystal grains exist in layers in a direction parallel to the surface of the tool substrate, and improvement in chipping resistance cannot be expected, and L (dsum) is less than 0.2 μm, the aggregation of fine crystal grains is small or few, and improvement in chipping resistance cannot be expected. The maximum length L in each region is the maximum length connecting two different points on the grain boundaries of the crystal grains defining the region.

ここで、NaCl型の面心立方晶構造を有する結晶粒の結晶粒径、面積割合および前記最大長さLは、次のように測定する。TiAlCN層を層厚方向に、上層側と下層側に二等分した上層側の領域の縦断面において、工具基体表面に平行な方向に100μm、層厚方向に平均層厚を二等分した長さの範囲を測定範囲とする。この測定範囲を研磨し、電子線後方散乱回折像装置を用いて、この研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づきNaCl型の面心立方晶構造を有する結晶粒個々の結晶構造を解析する。すなわち、隣接する測定点(ピクセル)間で5度以上の方位差がある場合、そこを粒界と定義し、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。結晶粒径は、定義された結晶粒と同じ面積を有する円の直径と定義する。また、面積割合は、各結晶粒の面積の和の前記測定範囲の面積に対する割合とする。さらに、前記測定範囲において、結晶粒径dが0.01μm<d≦0.20μmの結晶粒同士が隣接して、つながった各領域を特定し、各領域においてその最大長さLを求め、その平均値L(dsum)を算出する。 Here, the crystal grain size, area ratio and maximum length L of crystal grains having a face-centered cubic crystal structure of NaCl type are measured as follows. In the vertical cross section of the upper layer side region that bisects the TiAlCN layer in the layer thickness direction into the upper layer side and the lower layer side, 100 μm in the direction parallel to the tool substrate surface and the length that bisects the average layer thickness in the layer thickness direction The range of height shall be the measurement range. This measurement range was polished, and an electron beam backscatter diffraction imaging apparatus was used to irradiate the polished surface with an electron beam at an incident angle of 70 degrees, an acceleration voltage of 15 kV, an irradiation current of 1 nA, and an electron beam at intervals of 0.01 μm. The crystal structure of each crystal grain having a NaCl-type face-centered cubic crystal structure is analyzed based on the electron beam backscatter diffraction image obtained by irradiation. That is, when there is an orientation difference of 5 degrees or more between adjacent measurement points (pixels), it is defined as a grain boundary, and a region surrounded by the grain boundary is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with respect to all adjacent pixels is not treated as a crystal grain, but a crystal grain in which two or more pixels are connected is treated as a crystal grain. Grain size is defined as the diameter of a circle having the same area as the defined grain. The area ratio is defined as the ratio of the sum of the areas of the crystal grains to the area of the measurement range. Furthermore, in the measurement range, each region where crystal grains having a grain size d of 0.01 μm < d ≤ 0.20 μm are adjacent and connected is specified, and the maximum length L is obtained in each region. An average value L (dsum) is calculated.

TiAlCN層内におけるNaCl型の面心立方構造を有する粒径dが0.20μm<dの結晶粒について、アスペクト比Aが2~20である結晶粒の面積割合:
NaCl型の面心立方構造を有する結晶粒個々の結晶粒径が0.20μm<dの結晶粒について、該層の縦断面を観察した場合に、アスペクト比Aが2~20である結晶粒が複合窒化物層または複合炭窒化物層の全面積に対する面積割合で30~90面積%で存在することが好ましい。この数値範囲とする理由は、結晶粒が適度なアスペクト比Aと面積割合を持つことによって、前記層の耐摩耗性と耐チッピング性を向上させることができるためである。すなわち、アスペクト比Aが2未満の結晶粒の面積割合が多い場合やアスペクト比Aが範囲内にあってもその面積割合が30%よりも低い場合は、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性の向上効果を発揮することができず、一方、アスペクト比Aが20を超える結晶粒の面積割合が多い場合、結晶粒そのものが強度を保つことができず、十分な耐チッピング性の向上効果が発揮できないためである。また、アスペクト比Aが前記範囲内であっても、その面積割合が高すぎるとTiAlCN層自体の靭性が向上するが、基材との耐剥離性が低下し、結果として耐チッピング性の向上効果を発揮できないためである。
Area ratio of crystal grains having an aspect ratio A of 2 to 20 for crystal grains having a NaCl-type face-centered cubic structure and a grain size d of 0.20 μm<d in the TiAlCN layer:
Regarding crystal grains having a NaCl-type face-centered cubic structure and having a crystal grain size of 0.20 μm<d, when the longitudinal section of the layer is observed, crystal grains having an aspect ratio A of 2 to 20 are found. It is preferably present in an area ratio of 30 to 90 area % with respect to the total area of the composite nitride layer or composite carbonitride layer. The reason why this numerical range is set is that the wear resistance and chipping resistance of the layer can be improved by the crystal grains having an appropriate aspect ratio A and area ratio. That is, when the area ratio of crystal grains having an aspect ratio A of less than 2 is large, or when the area ratio is lower than 30% even if the aspect ratio A is within the range, a sufficient columnar structure is not formed, Equiaxed crystals with a small aspect ratio fall off, and as a result, a sufficient wear resistance improvement effect cannot be exhibited. This is because the grains themselves cannot maintain their strength, and the chipping resistance cannot be sufficiently improved. Further, even if the aspect ratio A is within the above range, if the area ratio is too high, the toughness of the TiAlCN layer itself is improved, but the resistance to peeling from the substrate is reduced, resulting in the effect of improving chipping resistance. This is because

なお、アスペクト比Aは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、A=l/wとして算出する。 In addition, the aspect ratio A is obtained by observing a vertical cross section of the hard coating layer with a scanning electron microscope in a range where the width is 100 μm and the height includes the entire hard coating layer. , the particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured and calculated as A=l/w.

TiAlCN層内のNaCl型の面心立方構造を有する結晶粒の結晶面である{111}面の法線と工具基体表面に対して垂直な方向とがなす傾斜角の度数分布:
TiAlCN層内のNaCl型の面心立方構造を有する結晶粒の結晶面である{111}面の法線と工具基体表面に対して垂直な方向とがなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向に対して0~45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0~12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45~90%の割合を占めていることが好ましい。その理由は、この範囲にあると、結晶粒の向きが一定の範囲で同方位に揃うことにより、結晶粒界の強度が向上し、結果として耐摩耗性、耐チッピング性が共に向上するためである。すなわち、45%未満の場合は耐摩耗性が向上せず、90%超えの場合は耐チッピング性の向上が期待できず、結果として切削性能の向上効果を発揮できないためである。
Frequency distribution of the inclination angle between the normal to the {111} plane, which is the crystal plane of the crystal grains having the NaCl-type face-centered cubic structure in the TiAlCN layer, and the direction perpendicular to the tool substrate surface:
The tilt angle formed by the normal to the {111} plane, which is the crystal plane of the crystal grains having the NaCl-type face-centered cubic structure in the TiAlCN layer, and the direction perpendicular to the tool substrate surface is measured, and the measured tilt angle is Among them, the measured tilt angles within the range of 0 to 45 degrees with respect to the normal direction are divided into every 0.25 degree pitch, and the frequencies existing in each division are aggregated to obtain the tilt angle number distribution. When there is a maximum peak in the tilt angle section within the range of 0 to 12 degrees, and the sum of the frequencies existing within the range of 0 to 12 degrees is 45 to 90 of the total frequencies in the tilt angle distribution. %. The reason for this is that within this range, the orientation of the crystal grains aligns in the same direction within a certain range, which improves the strength of the grain boundaries, resulting in improved wear resistance and chipping resistance. be. That is, if it is less than 45%, wear resistance is not improved, and if it exceeds 90%, improvement in chipping resistance cannot be expected, and as a result, the effect of improving cutting performance cannot be exhibited.

ここで、前記傾斜角度分布は次のようにして求めるものである。
まず、NaCl型の面心立方晶構造のTiとAlの複合窒化物層または複合炭窒化物層を含む硬質被覆層の縦断面(工具基体表面に垂直な断面)を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットする。前記研磨面(断面研磨面)において、工具基体表面と水平方向に長さ100μm、工具基体表面と垂直な方向に層厚に対して、層厚と同等の長さの範囲を測定範囲とし、この測定範囲の研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在するNaCl型の面心立方構造を有する結晶粒個々に0.01μm/stepの間隔で照射し、得られた電子線後方散乱回折像に基づき、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定点(電子線を照射した点)毎にそれぞれ測定する。
Here, the inclination angle distribution is obtained as follows.
First, with the longitudinal section (the section perpendicular to the surface of the tool substrate) of the hard coating layer containing the composite nitride layer or composite carbonitride layer of Ti and Al having a face-centered cubic structure of NaCl type as a polishing surface, Set in the lens barrel of a field emission scanning electron microscope. On the polished surface (cross-sectional polished surface), the measurement range is a length of 100 μm in the horizontal direction to the tool substrate surface and a length equivalent to the layer thickness in the direction perpendicular to the tool substrate surface. An electron beam having an incident angle of 70 degrees and an acceleration voltage of 15 kV was applied to the polished surface of the measurement range with an irradiation current of 1 nA, and each crystal grain having a NaCl-type face-centered cubic structure existing within the measurement range of the cross-sectional polished surface. Based on the electron beam backscatter diffraction image obtained by irradiating at an interval of 0.01 μm/step, the crystal plane of the crystal grain with respect to the normal line of the substrate surface (the direction perpendicular to the substrate surface in the cross-sectional polished surface) is measured at each measurement point (point irradiated with the electron beam).

そして、この測定結果に基づいて、測定された傾斜角のうち、0~45度の範囲内にある傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布を求める。得られた傾斜角度数分布から、0~12度の範囲内に存在する度数の最高ピークの有無を確認し、かつ0~45度の範囲内に存在する度数(傾斜角度数分布における度数全体)に対する0~12度の範囲内に存在する度数の割合を求める。なお、傾斜角度分布グラフにおいて、前記0~12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の50%以上であることがより好ましい。
なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化している。
Then, based on the measurement results, the tilt angles within the range of 0 to 45 degrees are classified into pitches of 0.25 degrees, and the frequencies present in each division are counted. Then, the inclination angle number distribution is obtained. From the obtained tilt angle frequency distribution, confirm the presence or absence of the highest peak of the frequency existing within the range of 0 to 12 degrees, and the frequency existing within the range of 0 to 45 degrees (entire frequency in the tilt angle frequency distribution) Find the ratio of frequencies that exist within the range of 0 to 12 degrees for . In addition, in the inclination angle distribution graph, it is more preferable that the total number of frequencies existing within the range of 0 to 12 degrees is 50% or more of all the frequencies in the inclination angle number distribution.
In determining the distribution of the number of tilt angles, in the case of ideal random orientation, the number of tilt angles should be a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the tool substrate surface. is standardized to

その他の層:
硬質被覆層として、本発明の前記TiAlCN層は十分な耐チッピング性、耐摩耗性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.5μmの合計平均層厚を有するTi化合物層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム層を含む層が1.0~25.5μmの合計平均層厚で上部層として前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、一層優れた耐摩耗性および熱的安定性を発揮することができる。
ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.5μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.5μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Other layers:
As a hard coating layer, the TiAlCN layer of the present invention has sufficient chipping resistance and wear resistance. and/or at least an aluminum oxide layer when a lower layer comprising a Ti compound layer having a total average layer thickness of 0.1 to 20.5 μm is provided adjacent to the tool substrate is provided on the TiAlCN layer as an upper layer with a total average layer thickness of 1.0 to 25.5 μm, combined with the effects of these layers, further excellent wear resistance properties and thermal stability.
Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.5 μm, the crystal grains of the lower layer tend to coarsen, causing chipping. easier to do. When the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited, while when it exceeds 25.5 μm, the crystal grains of the upper layer tend to coarsen. , chipping is more likely to occur.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、またはcBN焼結体のいずれかであることが好ましい。これらの各種の基材の中でも、とりわけ、WC基超硬合金、サーメット(TiCN基サーメット)、cBN焼結体を選択することが好ましい。その理由は、これらが高温における硬度と強度とのバランスに優れ、切削工具の工具基体として優れているためである。
Tool substrate:
As the tool substrate, any conventionally known substrate for this type of tool substrate can be used as long as it does not interfere with the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body. Among these various base materials, it is particularly preferable to select WC-based cemented carbide, cermet (TiCN-based cermet), and cBN sintered body. The reason for this is that they have an excellent balance between hardness and strength at high temperatures and are excellent as tool substrates for cutting tools.

成膜方法(条件):
本発明のTiAlCN層は、例えば、工具基体もしくは当該工具基体上にあるTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上の上に、例えば、NHとNとHからなるガス群Aと、AlCl、TiCl、N、C、Hからなるガス群Bと、からなる2種の反応ガス(反応ガス(1)と反応ガス(2))をそれぞれ所定の位相差で供給することによって得ることができる。
反応ガスのガス組成の一例として、%は容量%(ガス群Aとガス群Bの和を全体としている)として、次の反応ガス(1)と反応ガス(2)を使用する。
Deposition method (conditions):
The TiAlCN layer of the present invention is formed, for example, on a tool substrate or at least one layer of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer on the tool substrate. , NH 3 , N 2 and H 2 and a gas group B consisting of AlCl 3 , TiCl 4 , N 2 , C 2 H 4 and H 2 (reactive gas ( 1) and the reaction gas (2)) can be obtained by supplying each with a predetermined phase difference.
As an example of the gas composition of the reaction gas, the following reaction gas (1) and reaction gas (2) are used, where % is volume % (the sum of gas group A and gas group B is taken as a whole).

反応ガス(1)
ガス群A:NH:2.0~3.0%、N:0.0~5.0%、H:50~60%
ガス群B:AlCl:0.60~1.00%、TiCl:0.10~0.40%、
:2.0~10.0%、C:0.0~3.0%、H:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:650~850℃
供給周期:4.00~30.00秒
1周期当たりのガス供給時間:0.30~0.90秒
ガス群Aとガス群Bの供給の位相差:0.10~0.30秒
Reactive gas (1)
Gas group A: NH 3 : 2.0 to 3.0%, N 2 : 0.0 to 5.0%, H 2 : 50 to 60%
Gas group B: AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.10 to 0.40%,
N 2 : 2.0 to 10.0%, C 2 H 4 : 0.0 to 3.0%, H 2 : residual Reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 650-850°C
Supply cycle: 4.00 to 30.00 seconds Gas supply time per cycle: 0.30 to 0.90 seconds Supply phase difference between gas group A and gas group B: 0.10 to 0.30 seconds

反応ガス(2)
ガス群A:NH:0.2~0.6%、N:0.0~5.0%、H:50~60%
ガス群B:AlCl:0.06~0.20%、TiCl:0.01~0.06%、
:2.0~10.0%、C:0.0~0.5%、H:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:650~850℃
供給周期:4.00~30.00秒
1周期当たりのガス供給時間:0.30~0.90秒
ガス群Aとガス群Bの供給の位相差:0.10~0.30秒
反応ガス(1)と反応ガス(2)の位相差:2.00~15.00秒
reaction gas (2)
Gas group A: NH 3 : 0.2-0.6%, N 2 : 0.0-5.0%, H 2 : 50-60%
Gas group B: AlCl 3 : 0.06 to 0.20%, TiCl 4 : 0.01 to 0.06%,
N 2 : 2.0 to 10.0%, C 2 H 4 : 0.0 to 0.5%, H 2 : residual Reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 650-850°C
Supply cycle: 4.00 to 30.00 seconds Gas supply time per cycle: 0.30 to 0.90 seconds Supply phase difference between gas group A and gas group B: 0.10 to 0.30 seconds Reactant gas Phase difference between (1) and reaction gas (2): 2.00 to 15.00 seconds

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、TiCN基サーメット、cBN基超高圧焼結体を用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, an insert cutting tool using a WC-based cemented carbide as a tool substrate will be described. It is the same when it is used, and it is the same when it is applied to drills and end mills.

<実施例1>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。
<Example 1>
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. After blending with the composition, wax is further added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintering is performed at a predetermined temperature within the range of ~1470°C for 1 hour, and after sintering, WC-based cemented carbide tool substrates A to C having an insert shape of ISO standard SEEN1203AFSN are produced respectively. bottom.

次に、これら工具基体A~Cの表面に、CVD装置を用いて、TiAlCN層をCVDにより形成し、表6に示される本発明被覆工具1~11を得た。
成膜条件は、表2および3に記載したとおりであるが、概ね、次のとおりである。ガス組成の%は容量%(ガス群Aとガス群Bの和を全体としている)である。
反応ガス(1)
ガス群A:NH:2.0~3.0%、N:0.0~5.0%、H:50~60%
ガス群B:AlCl:0.60~1.00%、TiCl:0.10~0.40%、
:2.0~10.0%、C:0.0~3.0%、H:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:650~850℃
供給周期:4.00~30.00秒
1周期当たりのガス供給時間:0.30~0.90秒
ガス群Aとガス群Bの供給の位相差:0.10~0.30秒
Next, a TiAlCN layer was formed on the surfaces of these tool substrates A to C by CVD using a CVD apparatus to obtain coated tools 1 to 11 of the present invention shown in Table 6.
The film-forming conditions are as described in Tables 2 and 3, and are roughly as follows. % of the gas composition is volume % (the sum of gas group A and gas group B is taken as a whole).
Reactive gas (1)
Gas group A: NH 3 : 2.0 to 3.0%, N 2 : 0.0 to 5.0%, H 2 : 50 to 60%
Gas group B: AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.10 to 0.40%,
N 2 : 2.0 to 10.0%, C 2 H 4 : 0.0 to 3.0%, H 2 : residual Reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 650-850°C
Supply cycle: 4.00 to 30.00 seconds Gas supply time per cycle: 0.30 to 0.90 seconds Supply phase difference between gas group A and gas group B: 0.10 to 0.30 seconds

反応ガス(2)
ガス群A:NH:0.2~0.6%、N:0.0~5.0%、H:50~60%
ガス群B:AlCl:0.06~0.20%、TiCl:0.01~0.06%、
:2.0~10.0%、C:0.0~0.5%、H:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:650~850℃
供給周期:4.00~30.00秒
1周期当たりのガス供給時間:0.30~0.90秒
ガス群Aとガス群Bの供給の位相差:0.10~0.30秒
反応ガス(1)と反応ガス(2)の位相差:2.00~15.00秒
なお、本発明被覆工具4~11は、表4に記載された成膜条件により、表5に示された下部層および/または上部層を形成した。
reaction gas (2)
Gas group A: NH 3 : 0.2-0.6%, N 2 : 0.0-5.0%, H 2 : 50-60%
Gas group B: AlCl 3 : 0.06 to 0.20%, TiCl 4 : 0.01 to 0.06%,
N 2 : 2.0 to 10.0%, C 2 H 4 : 0.0 to 0.5%, H 2 : residual Reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 650-850°C
Supply cycle: 4.00 to 30.00 seconds Gas supply time per cycle: 0.30 to 0.90 seconds Supply phase difference between gas group A and gas group B: 0.10 to 0.30 seconds Reactant gas Phase difference between (1) and reaction gas (2): 2.00 to 15.00 seconds. A layer and/or top layer was formed.

また、比較の目的で、工具基体A~Cの表面に、表2および3に示される条件によりCVDを行うことにより、表6に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1~11を製造した。
なお、比較被覆工具4~11については、表4に示される形成条件により、表5に示された下部層および/または上部層を形成した。
For the purpose of comparison, the surfaces of the tool substrates A to C were subjected to CVD under the conditions shown in Tables 2 and 3 to vapor-deposit a hard coating layer containing the TiAlCN layer shown in Table 6 to form a comparative coating. Tools 1-11 were produced.
For the comparative coated tools 4 to 11, the lower layer and/or the upper layer shown in Table 5 were formed under the forming conditions shown in Table 4.

さらに、前記本発明被覆工具1~11および比較被覆工具1~11の硬質被覆層について、前述した方法を用いて、Alの平均含有割合xavg、Nの平均含有割合yavgを求めた。NaCl型の面心立方構造の結晶粒の面積割合、アスペクト比Aが2~20である結晶粒の面積割合、さらには、{111}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角が0~12度の範囲内に存在する度数の割合を求めた。また、TiAlCN層の前記上層側領域において0.01μm<d≦0.20μmのNaCl型の面心立方構造の結晶粒の占める面積割合、工具基体表面に平行な方向の最大長さLの平均値L(dsum)を求めた。これらの結果を表6にまとめた。 Further, the average content of Al x avg and the average content of N y avg were obtained for the hard coating layers of the coated tools 1 to 11 of the present invention and the comparative coated tools 1 to 11 by the method described above. In the area ratio of crystal grains with a NaCl-type face-centered cubic structure, the area ratio of crystal grains with an aspect ratio A of 2 to 20, and the distribution of the number of inclination angles formed by the normal to the {111} plane, the inclination The ratio of the angles existing within the range of 0 to 12 degrees was obtained. In addition, in the upper layer side region of the TiAlCN layer, the average value of the area ratio occupied by crystal grains of the NaCl type face-centered cubic structure of 0.01 μm < d ≤ 0.20 μm, and the maximum length L in the direction parallel to the tool substrate surface L(dsum) was obtained. These results are summarized in Table 6.

なお、平均層厚は、本発明被覆工具1~11、比較被覆工具1~11の各構成層の縦断面(工具基体表面に垂直な方向の断面)を、走査型電子顕微鏡を用いて適切な倍率(例えば倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均して求め、そして、TiAlCN層の表面から平均層厚の半分の長さまでの領域を上層側の領域とした。 The average layer thickness was obtained by examining the vertical cross section (the cross section in the direction perpendicular to the surface of the tool substrate) of each constituent layer of the coated tools 1 to 11 of the present invention and the comparative coated tools 1 to 11 using a scanning electron microscope. Select a magnification (for example, 5000 times magnification) and observe, measure and average the layer thickness at five points in the observation field, and determine the upper layer from the surface of the TiAlCN layer to half the length of the average layer thickness. side area.

Figure 0007231885000001
Figure 0007231885000001

Figure 0007231885000002
Figure 0007231885000002

Figure 0007231885000003
Figure 0007231885000003

Figure 0007231885000004
Figure 0007231885000004

Figure 0007231885000005
Figure 0007231885000005

Figure 0007231885000006
Figure 0007231885000006

続いて、前記本発明被覆工具1~11および比較被覆工具1~11について、いずれもカッタ径100mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、合金鋼の乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。表7に、切削試験の結果を示す。なお、比較被覆工具1~11については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。 Subsequently, each of the coated tools 1 to 11 of the present invention and the comparative coated tools 1 to 11 was clamped to the tip of a tool steel cutter having a cutter diameter of 100 mm with a fixing jig, and the alloy steel shown below was used. Dry high-speed face milling and center-cut machining tests were carried out, and the flank wear width of the cutting edge was measured. Table 7 shows the results of the cutting test. The comparison coated tools 1 to 11 reached the end of their lives due to the occurrence of chipping, so the time until the end of their lives is shown.

切削試験1:乾式高速正面フライス、センターカット切削試験
カッタ径:100mm
被削材:JIS・SCM440 幅80mm、長さ400mmのブロック材
回転速度:1114min-1
切削速度:350m/min
切り込み:3.0mm
送り:0.3mm/刃
切削時間:8分
(通常の切削速度は、200m/min)
Cutting test 1: Dry high-speed face milling, center cut cutting test Cutter diameter: 100 mm
Work material: JIS/SCM440 block material with a width of 80 mm and a length of 400 mm Rotational speed: 1114 min -1
Cutting speed: 350m/min
Notch: 3.0mm
Feed: 0.3 mm/blade Cutting time: 8 minutes (normal cutting speed is 200 m/min)

Figure 0007231885000007
Figure 0007231885000007

<実施例2>
原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α~γをそれぞれ製造した。
<Example 2>
As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder, all having an average particle size of 1 to 3 μm, were prepared. The composition shown in Table 8 was blended, wax was further added, ball mill mixing was performed in acetone for 24 hours, and drying was performed under reduced pressure. After that, it was press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and the green compact was vacuum sintered under the condition of holding at a predetermined temperature in the range of 1370 to 1470° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edges were honed with a radius of curvature of 0.07 mm to produce WC-based cemented carbide tool substrates α to γ each having an insert shape conforming to ISO standard CNMG120412.

次に、これらの工具基体α~γの表面に、実施例1と同様の方法により表2および3に示される条件で、CVD装置を用いて、TiAlCN層を形成し、表10に示される本発明被覆工具12~22を得た。
なお、本発明被覆工具15~20、22は、表4に記載された成膜条件により、表9に示された下部層および/または上部層を形成した。
Next, on the surfaces of these tool substrates α to γ, a TiAlCN layer was formed using a CVD apparatus under the conditions shown in Tables 2 and 3 in the same manner as in Example 1. Invention coated tools 12-22 were obtained.
For the coated tools 15 to 20 and 22 of the present invention, the lower layer and/or the upper layer shown in Table 9 were formed under the film forming conditions shown in Table 4.

また、実施例1と同様に、比較の目的で、工具基体α~γの表面に、表2および3に示される条件によりCVD法を用いることにより、表10に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具12~22を製造した。
なお、比較被覆工具15~20、22については、表4に示される形成条件により、表9に示された下部層および/または上部層を形成した。
In the same manner as in Example 1, for the purpose of comparison, a hard coating containing a TiAlCN layer shown in Table 10 was applied to the surfaces of tool substrates α to γ by using the CVD method under the conditions shown in Tables 2 and 3. The layers were deposited to produce comparative coated tools 12-22.
For the comparative coated tools 15 to 20 and 22, the lower layer and/or the upper layer shown in Table 9 were formed under the forming conditions shown in Table 4.

また、実施例1と同様に、前記本発明被覆工具12~22、比較被覆工具12~22の硬質被覆層について、前述した方法を用いて、Alの平均含有割合xavg、Nの平均含有割合yavgを求めた。NaCl型の面心立方構造の結晶粒の面積割合、アスペクト比Aが2~20である結晶粒の面積割合、さらには、{111}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角が0~12度の範囲内に存在する度数の割合を求めた。また、TiAlCN層の前記上層側の領域において0.01μm<d≦0.20μmのNaCl型の面心立方構造の結晶粒の占める面積割合、工具基体表面に平行な方向の最大長さLの平均値L(dsum)を求めた。これらの結果を表10にまとめた。
なお、平均層厚と上層側の領域は、実施例1と同様とした。
Further, in the same manner as in Example 1, the average Al content x avg and the average N content of the hard coating layers of the coated tools 12 to 22 of the present invention and the comparative coated tools 12 to 22 were evaluated using the methods described above. yavg was determined. In the area ratio of crystal grains with a NaCl-type face-centered cubic structure, the area ratio of crystal grains with an aspect ratio A of 2 to 20, and the distribution of the number of inclination angles formed by the normal to the {111} plane, the inclination The ratio of the angles existing within the range of 0 to 12 degrees was obtained. In addition, in the upper layer side region of the TiAlCN layer, the area ratio occupied by the crystal grains of the NaCl type face-centered cubic structure of 0.01 μm < d ≤ 0.20 μm, the average of the maximum length L in the direction parallel to the tool substrate surface A value L(dsum) was determined. These results are summarized in Table 10.
Note that the average layer thickness and the region on the upper layer side were the same as in Example 1.

Figure 0007231885000008
Figure 0007231885000008

Figure 0007231885000009
Figure 0007231885000009

Figure 0007231885000010
Figure 0007231885000010

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具12~22、比較被覆工具12~22について、以下に示す、乾式断続切削試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表11に示す。なお、比較被覆工具12~22については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。 Next, the coated tools 12 to 22 of the present invention and the comparative coated tools 12 to 22 are shown below with each of the various coated tools screwed to the tip of the tool steel cutting tool with a fixing jig. A dry interrupted cutting test was performed to measure the flank wear width of the cutting edge. The results are shown in Table 11. The comparison coated tools 12 to 22 reached the end of their lives due to the occurrence of chipping, so the time until the end of their lives is shown.

切削試験:乾式高速断続切削加工
被削材:JIS・FCD600 長さ方向等間隔8本縦溝入り丸棒
切削速度:300m/min
切り込み:3.0mm
送り:0.3mm/rev
切削時間:5分
(通常の切削速度は、200m/min)
Cutting test: Dry high-speed interrupted cutting Work material: JIS FCD600 Round bar with 8 equally spaced longitudinal grooves Cutting speed: 300m/min
Notch: 3.0mm
Feed: 0.3mm/rev
Cutting time: 5 minutes (normal cutting speed is 200m/min)

Figure 0007231885000011
Figure 0007231885000011

表7、表11に示される結果から、本発明被覆工具1~22は、いずれも硬質被覆層が優れた耐チッピング性を有しているため、鋳鉄・合金鋼等の高速断続切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1~22は、鋳鉄・合金鋼等の高速断続切削加工に用いた場合にチッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Tables 7 and 11, the coated tools 1 to 22 of the present invention are all suitable for high-speed interrupted cutting of cast iron, alloy steel, etc., because the hard coating layer has excellent chipping resistance. It exhibits excellent wear resistance over a long period of time without chipping even when worn. On the other hand, the comparative coated tools 1 to 22, which did not satisfy even one of the items specified for the coated tool of the present invention, caused chipping when used for high-speed interrupted cutting of cast iron, alloy steel, etc. , the service life is reached in a short time.

前述のように、本発明の被覆工具は、鋳鉄・合金鋼以外の高速断続切削加工の被覆工具として用いることができ、しかも、長期にわたって優れた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化及び省エネ化、さらには低コスト化に十分に満足できる対応が可能である。 As described above, the coated tool of the present invention can be used as a coated tool for high-speed interrupted cutting of materials other than cast iron and alloy steel, and exhibits excellent wear resistance over a long period of time. It is possible to fully satisfy the improvement of the performance of the cutting process, the labor saving and energy saving of the cutting process, and the cost reduction.

Claims (4)

工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚2.0~20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層を組成式:(Ti(1-x)Al)(C(1-y))で表した場合、AlのTiとAlの合量に占める平均含有割合xavgとCのCとNの合量に占める平均含有割合yavg、(但し、xavg、yavgはいずれも原子比)がそれぞれ、0.60≦xavg≦0.95、0.00≦yavg≦0.05を満足し、
(c)前記複合窒化物層または複合炭窒化物層は、該層の縦断面を観察した場合に、複合窒化物または複合炭窒化物のNaCl型の面心立方構造を有する結晶粒が占める面積割合が90面積%以上を満足し、
(d)さらに、前記複合窒化物層または複合炭窒化物層を層厚方向に、上層側と下層側に二等分した上層側の領域において、前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dを求めた場合、該結晶粒径dが0.01μm<d≦0.20μmの結晶粒が前記上層側の領域の複合窒化物層または複合炭窒化物層の全面積に対する面積割合で10~40面積%存在し、
(e)加えて、前記二等分した上層側の領域において、前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dが0.01μm<d≦0.20μmの結晶粒同士が隣接し、つながった各領域の工具基体表面に平行な方向の最大長さLの平均値L(dsum)がL(dsum)≦5.0μm、
を満足する表面被覆切削工具。
In a surface-coated cutting tool having a hard coating layer on the surface of the tool substrate,
(a) the hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al with an average layer thickness of 2.0 to 20.0 μm,
(b) When the composite nitride layer or composite carbonitride layer is represented by the composition formula: (Ti (1-x) Al x ) (C y N (1-y) ), the combination of Ti and Al of Al The average content ratio x avg in the amount and the average content ratio y avg of C in the total amount of C and N (where x avg and y avg are both atomic ratios) are respectively 0.60 ≤ x avg ≤ 0 .95, satisfying 0.00≦y avg ≦0.05,
(c) The composite nitride layer or composite carbonitride layer has an area occupied by crystal grains having a NaCl-type face-centered cubic structure of the composite nitride or composite carbonitride layer when the longitudinal section of the layer is observed. The ratio satisfies 90 area% or more,
(d) Further, in the upper layer side region obtained by bisected the composite nitride layer or the composite carbonitride layer into an upper layer side and a lower layer side in the layer thickness direction, crystal grains having the NaCl type face-centered cubic structure When the individual crystal grain size d is obtained, the crystal grains with the crystal grain size d of 0.01 μm<d≦0.20 μm are included in the total area of the composite nitride layer or composite carbonitride layer in the upper layer side region. Exists in an area ratio of 10 to 40 area%,
(e) In addition, in the bisected upper layer side, crystal grains having a crystal grain size d of 0.01 μm < d ≤ 0.20 μm of each crystal grain having a face-centered cubic structure of the NaCl type are separated from each other. The average value L (dsum) of the maximum length L in the direction parallel to the tool base surface of each adjacent and connected region is L (dsum) ≤ 5.0 µm,
A surface-coated cutting tool that satisfies
前記複合窒化物層または複合炭窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める面積割合が95面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 The surface coating cutting according to claim 1, wherein the composite nitride layer or the composite carbonitride layer has an area ratio of 95 area% or more of the crystal grains having the NaCl type face-centered cubic structure. tool. 前記複合窒化物層または複合炭窒化物層を構成する結晶粒のうちの前記NaCl型の面心立方構造を有する結晶粒個々の結晶粒径dが0.20μm<dの結晶粒について、アスペクト比Aが2~20である結晶粒が前記複合窒化物層または複合炭窒化物層の全面積に対する面積割合で30面積%以上存在することを特徴とする請求項1または2に記載の表面被覆切削工具。 Among the crystal grains constituting the composite nitride layer or the composite carbonitride layer, the aspect ratio of the crystal grains having a crystal grain size d of 0.20 μm<d of each crystal grain having the NaCl type face-centered cubic structure 3. The surface coating cutting according to claim 1 or 2, wherein crystal grains having A of 2 to 20 are present in an area ratio of 30 area % or more with respect to the total area of the composite nitride layer or composite carbonitride layer. tool. 前記複合窒化物層または複合炭窒化物層を構成する結晶粒のうちの前記NaCl型の面心立方構造を有する結晶粒の{111}面の法線と工具基体表面に対して垂直な方向とがなす傾斜角を測定して傾斜角度数分布を求めたとき、0~12度の範囲内の傾斜角区分に最高ピークが存在し、かつ、0~12度の範囲内に存在する度数の合計は、前記傾斜角度数分布における度数全体の45%以上であることを特徴とする請求項1~3のいずれかに記載の表面被覆切削工具。 normal to the {111} plane of the crystal grains having the NaCl-type face-centered cubic structure among the crystal grains constituting the composite nitride layer or the composite carbonitride layer and the direction perpendicular to the tool substrate surface; When the inclination angle number distribution is obtained by measuring the inclination angle formed by the The surface-coated cutting tool according to any one of claims 1 to 3, wherein is 45% or more of all frequencies in the inclination angle frequency distribution.
JP2019146495A 2018-09-28 2019-08-08 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Active JP7231885B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2019/038092 WO2020067402A1 (en) 2018-09-28 2019-09-27 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
CN201980062729.2A CN112770858B (en) 2018-09-28 2019-09-27 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
US17/279,429 US20210402486A1 (en) 2018-09-28 2019-09-27 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
EP19866532.5A EP3858524A4 (en) 2018-09-28 2019-09-27 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018186044 2018-09-28
JP2018186044 2018-09-28

Publications (2)

Publication Number Publication Date
JP2020055097A JP2020055097A (en) 2020-04-09
JP7231885B2 true JP7231885B2 (en) 2023-03-02

Family

ID=70106060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019146495A Active JP7231885B2 (en) 2018-09-28 2019-08-08 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Country Status (2)

Country Link
JP (1) JP7231885B2 (en)
CN (1) CN112770858B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264196A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
WO2022264198A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
WO2022264197A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163423A (en) 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
WO2016052479A1 (en) 2014-09-30 2016-04-07 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chip resistance
JP2017508632A (en) 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
JP2017113834A (en) 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
EP3202515A1 (en) 2014-09-30 2017-08-09 Mitsubishi Materials Corporation Surface-coated cutting tool having excellent chip resistance
JP2018114611A (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104801941A (en) * 2014-01-29 2015-07-29 三菱综合材料株式会社 Surface coating cutting tool
JP6296298B2 (en) * 2014-08-28 2018-03-20 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) * 2014-09-25 2018-02-28 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) * 2014-09-25 2016-05-25 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015163423A (en) 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017508632A (en) 2014-03-11 2017-03-30 バルター アクチェンゲゼルシャフト TiAlCN layer with layered structure
WO2016052479A1 (en) 2014-09-30 2016-04-07 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chip resistance
EP3202515A1 (en) 2014-09-30 2017-08-09 Mitsubishi Materials Corporation Surface-coated cutting tool having excellent chip resistance
JP2017113834A (en) 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP2018114611A (en) 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance

Also Published As

Publication number Publication date
CN112770858B (en) 2023-05-16
CN112770858A (en) 2021-05-07
JP2020055097A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP7231885B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2017113835A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP2018114611A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
US20180154463A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6935058B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2016124098A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
WO2020166683A1 (en) Surface-coated cutting tool
WO2020067402A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
WO2018135513A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7453613B2 (en) surface coated cutting tools
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
WO2018181123A1 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230131

R150 Certificate of patent or registration of utility model

Ref document number: 7231885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150