JP7453613B2 - surface coated cutting tools - Google Patents

surface coated cutting tools Download PDF

Info

Publication number
JP7453613B2
JP7453613B2 JP2020011402A JP2020011402A JP7453613B2 JP 7453613 B2 JP7453613 B2 JP 7453613B2 JP 2020011402 A JP2020011402 A JP 2020011402A JP 2020011402 A JP2020011402 A JP 2020011402A JP 7453613 B2 JP7453613 B2 JP 7453613B2
Authority
JP
Japan
Prior art keywords
layer
face
cutting edge
normal direction
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011402A
Other languages
Japanese (ja)
Other versions
JP2020131424A (en
Inventor
達也 曽根
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to PCT/JP2020/005695 priority Critical patent/WO2020166683A1/en
Publication of JP2020131424A publication Critical patent/JP2020131424A/en
Application granted granted Critical
Publication of JP7453613B2 publication Critical patent/JP7453613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、特に、合金鋼等の高速断続切削加工において、硬質被覆層が優れた耐摩耗性を有しつつ耐欠損性、耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、「被覆工具」ということがある)に関するものである。 In particular, in high-speed interrupted cutting of alloy steel, etc., the hard coating layer has excellent wear resistance, chipping resistance, and chipping resistance, so that excellent cutting performance can be achieved over long periods of use. The present invention relates to a surface-coated cutting tool (hereinafter sometimes referred to as a "coated tool") that exhibits excellent performance.

従来、炭化タングステン(以下、「WC」で示す)基超硬合金等の工具基体の表面に、硬質被覆層として、Ti-Al系の複合窒化物層や複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
そして、前記硬質被覆層を被覆形成した被覆工具のさらなる耐摩耗性および耐チッピング性の向上のために、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, the surface of a tool base made of tungsten carbide (hereinafter referred to as "WC")-based cemented carbide is coated with a Ti-Al-based composite nitride layer or composite carbonitride layer as a hard coating layer by vapor deposition. There are formed coated tools which are known to exhibit excellent wear resistance.
In order to further improve the wear resistance and chipping resistance of coated tools coated with the hard coating layer, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、TiとAlの複合窒化物層(以下、TiAlN層ともいう)を含む硬質被覆層において、負荷の大きい切れ刃部分にAl量の少ないTiAlN膜を配置させ、膜の硬さをあえて小さくさせることにより、刃先の靭性を担保し、耐チッピング性を確保している被覆工具が記載されている。 For example, in Patent Document 1, in a hard coating layer containing a composite nitride layer of Ti and Al (hereinafter also referred to as a TiAlN layer), a TiAlN film with a small amount of Al is placed on the cutting edge portion where the load is large, and the film is A coated tool is described in which the hardness is deliberately reduced to ensure the toughness of the cutting edge and ensure chipping resistance.

また、例えば、特許文献2には、硬質被覆層において、結晶の成長方向と結晶の{111}面の法線方向を揃えることにより、鋳造材料の機械加工において極めて有利な性能を発揮する被覆工具が記載されている。 Furthermore, for example, Patent Document 2 discloses a coated tool that exhibits extremely advantageous performance in machining cast materials by aligning the crystal growth direction and the normal direction of the {111} plane of the crystal in the hard coating layer. is listed.

さらに、例えば、特許文献3には、TiとAlの複合炭窒化物層を有する被覆工具が記載され、該層の結晶成長優先方位が結晶学的{111}面との関係において存在することが、特に好ましいとされている。 Further, for example, Patent Document 3 describes a coated tool having a composite carbonitride layer of Ti and Al, and it is known that the preferential crystal growth orientation of the layer exists in relation to the crystallographic {111} plane. , is said to be particularly preferred.

特開2017-124463号公報JP 2017-124463 Publication 特表2016-522323号公報Special Publication No. 2016-522323 特表2017-508632号公報Special table 2017-508632 publication

近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にある。そのため、被覆工具には、より一層、耐チッピング性、耐欠損性等の耐異常損傷性とともに、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1~3で提案されている被覆工具では、合金鋼等の高速断続切削加工において、耐摩耗性、耐欠損性、耐チッピング性が未だ十分ではなく、満足できる工具寿命を有しているとはいえない。その理由は以下のとおりである。
In recent years, there has been a strong demand for labor-saving and energy-saving in cutting processes, and as a result, there has been a trend toward faster and more efficient cutting processes. Therefore, coated tools are required to have even greater resistance to abnormal damage such as chipping resistance and chipping resistance, as well as excellent wear resistance over long-term use.
However, the coated tools proposed in Patent Documents 1 to 3 do not yet have sufficient wear resistance, chipping resistance, and chipping resistance in high-speed interrupted cutting of alloy steel, etc., and do not have satisfactory tool life. I cannot say that I am doing so. The reason is as follows.

前記特許文献1に記載されているTiAlN層は、切削中に最も負荷のかかる刃先に硬度の小さい膜を配しているため、より負荷の大きい高速断続切削時には、刃先の偏摩耗やそれに起因する亀裂進展がなされ、所望の耐摩耗性、耐チッピング性を発揮できるとはいえない。 The TiAlN layer described in Patent Document 1 has a film with low hardness on the cutting edge, which is subjected to the greatest load during cutting, so during high-speed intermittent cutting with a higher load, uneven wear of the cutting edge and the resulting wear occur. Crack propagation occurs, and it cannot be said that the desired wear resistance and chipping resistance can be exhibited.

特許文献2および3に記載されている被覆工具では、硬質被覆層において、{111}面の法線方向の配向が強い組織がより適している旨が示されているが、この組織は、被削材の強度が大きい場合に、硬質被覆層の剥離や結晶粒の脱落を起点とする欠損やチッピングがしばしば生じ、耐欠損性、耐チッピング性が十分でない。 In the coated tools described in Patent Documents 2 and 3, it has been shown that a structure with strong orientation in the normal direction of the {111} plane is more suitable for the hard coating layer. When the strength of the cutting material is high, fractures and chipping often occur due to peeling of the hard coating layer and falling off of crystal grains, and the fracture resistance and chipping resistance are insufficient.

そこで、本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する合金鋼(特殊鋼)等の高速断続切削加工において、優れた耐摩耗性、耐欠損性、耐チッピング性を発揮する被覆工具を提供することを目的とする。ここで、高速断続切削加工とは、切削速度である200m/minよりも速い切削速度に於いて被削材と切削工具が切削と空転を繰り返す加工を指す。 Therefore, the present invention provides excellent wear resistance, chipping resistance, and chipping resistance in high-speed interrupted cutting of alloy steel (special steel), etc., which is accompanied by high heat generation and an impact load is applied to the cutting edge. The purpose is to provide a coated tool that exhibits excellent properties. Here, the high-speed intermittent cutting process refers to a process in which the workpiece and the cutting tool repeatedly cut and idle at a cutting speed higher than the cutting speed of 200 m/min.

本発明者は、刃先部分のTiAlN硬質被覆層(硬質皮膜)を構成する結晶粒に配向分布を持たせたときの高速断続切削加工の耐摩耗性、耐欠損性、耐チッピング性について鋭意検討を行った。その結果、刃先稜線近傍のすくい面および逃げ面の所定範囲に前記結晶粒の{111}面の法線方向に主に配向した層と、この層に対して刃先稜線から遠い所定範囲に同{100}面の法線方向に主に配向した層を有し、さらに、必要により、これらの層に加えて、同{110}面の法線方向に配向した層を配置するとき、耐摩耗性を確保しつつ、耐欠損性、耐チッピング性の優れた硬質被覆層を得ることができるとの新規な事項を知見した。 The present inventor has conducted intensive studies on the wear resistance, chipping resistance, and chipping resistance of high-speed interrupted cutting when the crystal grains constituting the TiAlN hard coating layer (hard coating) on the cutting edge have an orientation distribution. went. As a result, there is a layer mainly oriented in the normal direction of the {111} plane of the crystal grains in a predetermined range of the rake face and flank face near the cutting edge ridgeline, and a layer oriented mainly in the normal direction of the {111} plane of the crystal grains, and a predetermined area far from the cutting edge edge line with respect to this layer. 100} plane, and if necessary, in addition to these layers, a layer oriented in the normal direction of the {110} plane is arranged. A novel finding has been made that it is possible to obtain a hard coating layer with excellent chipping resistance and chipping resistance while ensuring the following properties.

本発明は、前記知見に基づく表面被覆切削工具であって、次のとおりのものである。
「(1)工具基体と、該工具基体の表面に設けた硬質被覆層を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚が1.0~20.0μmのTiとAlの複合窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合窒化物層の組成を組成式:(Ti(1-x)Al)Nで表した場合、AlのTiとAlの合量に占める平均含有割合x(但し、xは原子比)が、0.60≦x≦0.95を満足し、
(d)前記TiとAlの複合窒化物層は、前記工具基体の表面の法線方向に対して{111}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を、刃先稜線から逃げ面方向およびすくい面方向に、前記刃先稜線からの距離が50μmを超えない前記刃先稜線に最も近い点と、前記刃先稜線からの距離が100~500μmの前記刃先稜線に最も遠い点との間に連続的に有し、
(e)前記TiとAlの複合窒化物層は、前記配向した層の前記刃先稜線から最も遠い点を起点に、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が50~500μmの範囲の中の50μm以上の長さの領域において、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を有する、
ことを特徴とする表面被覆切削工具。
(2)前記TiとAlの複合窒化物層は、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が100~600μmの範囲の中の50μm以上の領域において、前記工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が20%以上を占める配向した層を有する前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める割合が50面積%以上であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
The present invention is a surface-coated cutting tool based on the above findings, and is as follows.
"(1) A surface-coated cutting tool having a tool base and a hard coating layer provided on the surface of the tool base,
(a) The hard coating layer includes at least a composite nitride layer of Ti and Al with an average layer thickness of 1.0 to 20.0 μm,
(b) the composite nitride layer of Ti and Al includes crystal grains having a NaCl-type face-centered cubic structure;
(c) When the composition of the composite nitride layer of Ti and Al is expressed by the composition formula: (Ti (1-x) Al x )N, the average content ratio of Al to the total amount of Ti and Al x (however, , x is the atomic ratio) satisfies 0.60≦x≦0.95,
(d) The composite nitride layer of Ti and Al has a face-centered surface of the NaCl type in which the angle of inclination of the normal direction of the {111} plane to the normal direction of the surface of the tool base is within 10°. An oriented layer in which crystal grains having a cubic structure account for 30% or more is arranged from the cutting edge ridge in the direction of the flank face and the rake face at a point closest to the cutting edge ridge whose distance from the cutting edge ridge does not exceed 50 μm; Continuously between the point farthest from the cutting edge ridge and having a distance of 100 to 500 μm from the cutting edge ridge,
(e) The composite nitride layer of Ti and Al has a distance of 50 in the direction away from the cutting edge ridge in the direction of the flank face and in the direction of the rake face, starting from the point farthest from the cutting edge ridge of the oriented layer. In a region having a length of 50 μm or more in the range of 500 μm or more, the inclination angle of the normal direction of the {100} plane to the normal direction of the surface of the tool base is within 10°. having an oriented layer in which 30% or more of crystal grains have a face-centered cubic structure;
A surface-coated cutting tool characterized by:
(2) The composite nitride layer of Ti and Al is formed on the tool base in a region where the distance in the direction away from the cutting edge ridgeline toward the flank face and the rake face is 50 μm or more within a range of 100 to 600 μm. has an oriented layer in which the NaCl-type crystal grains having a face-centered cubic structure account for 20% or more, and the inclination angle formed by the normal direction of the {110} plane with respect to the normal direction of the surface of is within 10 degrees. The surface-coated cutting tool according to (1) above.
(3) In the above (1) or (2), the composite nitride layer of Ti and Al has a ratio of 50% by area or more of crystal grains having a face-centered cubic structure of the NaCl type. Surface coated cutting tool as described. ”

本発明によれば、耐摩耗性を確保しつつ、耐欠損性、耐チッピング性の優れた被覆工具を得ることができる。 According to the present invention, it is possible to obtain a coated tool with excellent fracture resistance and chipping resistance while ensuring wear resistance.

本発明の表面被覆切削工具において、刃先稜線から逃げ面方向およびすくい面方向において配向した層の分布の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the distribution of layers oriented in the flank direction and the rake direction from the cutting edge ridge in the surface-coated cutting tool of the present invention.

本発明の表面被覆切削工具について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「A~B」(A、Bはともに数値)で表現するとき、その範囲は上限(B)および下限(A)の数値を含んでいる。また、上限(B)と下限(B)の単位は同じである。 The surface-coated cutting tool of the present invention will be explained in detail below. In this specification and claims, when a numerical range is expressed as "A to B" (A and B are both numerical values), the range includes the upper limit (B) and lower limit (A). . Moreover, the units of the upper limit (B) and the lower limit (B) are the same.

TiAlN層の平均層厚:
本発明の硬質被覆層は、後述する組成式:(Ti1-xAl)Nで表されるTiAlN層を少なくとも含む。このTiAlN層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が1.0~20.0μmのとき、その特性が際立って発揮される。その理由は、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたって耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなるためである。より好ましい平均層厚は2.0~10.0μmである。
Average layer thickness of TiAlN layer:
The hard coating layer of the present invention includes at least a TiAlN layer represented by the composition formula: (Ti 1-x Al x )N described below. This TiAlN layer has high hardness and excellent chipping resistance and abrasion resistance, and these characteristics are particularly noticeable when the average layer thickness is 1.0 to 20.0 μm. The reason is that if the average layer thickness is less than 1.0 μm, the layer thickness is too thin to ensure sufficient wear resistance over long-term use, whereas if the average layer thickness exceeds 20.0 μm, TiAlN This is because the crystal grains of the layer tend to become coarser and chipping tends to occur. A more preferable average layer thickness is 2.0 to 10.0 μm.

ここで、平均層厚の測定は、例えば、切削時に工具と被削材とが直接接触する領域内の逃げ面およびすくい面において、各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて倍率5000倍で観察し、観察視野内の5点を平均して求めることができる。 Here, the average layer thickness is measured, for example, in a cross section (longitudinal cross section) in the direction perpendicular to the tool base of each constituent layer at the flank and rake surfaces in the area where the tool and the workpiece come into direct contact during cutting. can be observed using a scanning electron microscope at a magnification of 5,000 times, and can be determined by averaging five points within the observation field.

NaCl型の面心立方構造
本発明のTiAlN層においてNaCl型の面心立方構造を有する結晶粒を含むことが好ましい。そして、本発明では、このNaCl型の面心立方構造結晶粒の存在割合(面積%)を、刃先稜線方向を法線とする断面に占める割合とし、その値は50面積%以上が好ましく、さらには70面積%以上がより好ましい。その理由は、高硬度であるNaCl型の面心立方構造の結晶粒の割合が六方晶構造の結晶粒に比して高くなり、硬さが向上するためである。なお、面積率の上限は100面積%(すべてNaCl型の面心立方構造である)であってもよい。
NaCl Type Face-Centered Cubic Structure The TiAlN layer of the present invention preferably contains crystal grains having a NaCl-type face-centered cubic structure. In the present invention, the existence ratio (area %) of these NaCl-type face-centered cubic crystal grains is defined as the ratio in the cross section normal to the direction of the cutting edge, and the value is preferably 50 area % or more, and is more preferably 70 area % or more. The reason for this is that the ratio of crystal grains having a face-centered cubic structure of the NaCl type, which has high hardness, is higher than that of crystal grains having a hexagonal crystal structure, and the hardness is improved. Note that the upper limit of the area ratio may be 100 area % (all have a NaCl type face-centered cubic structure).

TiAlN層の組成:
本発明におけるTiAlN層の組成は、組成式:(Ti1-xAl)Nで表した場合、AlのTiとAlの合量に占める平均含有割合(以下、「Alの平均含有割合」という)xが、0.60≦x≦0.95、(ただし、xは原子比)を満足することが好ましい。
Composition of TiAlN layer:
The composition of the TiAlN layer in the present invention is represented by the composition formula: (Ti 1-x Al ) x preferably satisfies 0.60≦x≦0.95 (where x is an atomic ratio).

その理由は、以下のとおりである。
Alの平均含有割合xが0.60未満であると、TiAlN層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合に、耐摩耗性が十分でなく、一方、0.95を超えると硬さに劣る六方晶の析出量が増大して硬さが低下し、耐摩耗性が低下する。したがって、0.60≦x≦0.95が好ましい。より好ましくは0.70≦x≦0.90である。なお、(Ti(1-x)Al)とNは、1:1で化合しているものに限らない。
The reason is as follows.
If the average Al content x is less than 0.60, the TiAlN layer will have poor oxidation resistance, and therefore will not have sufficient wear resistance when subjected to high-speed interrupted cutting of alloy steel, etc. When it exceeds 95, the amount of precipitated hexagonal crystals, which are inferior in hardness, increases, resulting in a decrease in hardness and a decrease in wear resistance. Therefore, 0.60≦x≦0.95 is preferable. More preferably, 0.70≦x≦0.90. Note that (Ti (1-x) Al x ) and N are not limited to a 1:1 combination.

刃先稜線から逃げ面およびすくい面方向に存在する{111}面の法線方向に配向したTiAlN層:
工具基体の表面の法線方向に対して、{111}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造の結晶粒の割合(後述する頻度割合)が30%以上を占める配向したTiAlN層({111}面の法線方向配向層ということがある)を有することが好ましい。そして、この{111}面の法線方向配向層は、刃先稜線から逃げ面およびすくい面方向に、刃先稜線からの距離が50μmを超えない点(刃先稜線に最も近い点)から刃先稜線からの距離が100~500μmの点(刃先稜線に最も遠い点)との間で連続的に存在する(図1に示す、逃げ面方向の存在領域(l)およびすくい面方向の存在領域(l’)の長さは異なっていてもよい)ことが好ましい。
TiAlN layer oriented in the normal direction of the {111} plane existing from the cutting edge ridge to the flank and rake faces:
The proportion of NaCl-type face-centered cubic structure crystal grains (frequency proportion described later) in which the inclination angle of the normal direction of the {111} plane is within 10° with respect to the normal direction of the surface of the tool base is 30 It is preferable to have an oriented TiAlN layer (sometimes referred to as a layer oriented in the normal direction of the {111} plane) that accounts for % or more. The normal orientation layer of the {111} plane is oriented in the direction from the cutting edge ridge to the flank and rake faces, from a point whose distance from the cutting edge ridge does not exceed 50 μm (the point closest to the cutting edge ridge) to the cutting edge ridge. It exists continuously between a point with a distance of 100 to 500 μm (the point farthest from the cutting edge ridge line) (Existence area in the flank direction (l) and Existence area in the rake face direction (l') shown in Fig. 1) may have different lengths).

ここで、{111}面の法線方向配向層について、配向する結晶粒の割合(頻度割合)が30%以上であること、および、前記刃先稜線に最も近い点と最も遠い点の間で連続的に存在することが好ましい理由は、これらを満足することによって、{111}面の法線方向配向層の特性が十分に発現して、耐欠損性、耐チッピング性が十分に発揮されるためである。 Here, regarding the layer oriented in the normal direction of the {111} plane, the proportion (frequency proportion) of oriented crystal grains is 30% or more, and the point closest to the cutting edge ridge line and the point farthest from the edge line are continuous. The reason why it is preferable that these conditions are satisfied is that by satisfying these conditions, the properties of the layer oriented in the normal direction of the {111} plane are fully expressed, and the fracture resistance and chipping resistance are fully exhibited. It is.

{111}面の法線方向配向層に対して刃先稜線から逃げ面方向およびすくい面方向に遠ざかる方向に存在する{100}面の法線方向に配向したTiAlN層:
前記{111}面の法線方向配向層における刃先稜線から最も遠い点を起点に、刃先稜線から逃げ面方向およびすくい面方向に遠ざかる方向の距離が50~500μmの範囲の中の50μm以上の長さの領域(図1に示す、逃げ面方向の領域の長さ(m)およびすくい面方向の領域の長さ(m’)は異なっていてもよい)において、工具基体の表面の法線方向に対して{100}面の法線方向のなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が30%以上を占める配向したTiAlN被覆層({100}面の法線方向配向層ということがある)を有することが好ましい。
A TiAlN layer oriented in the normal direction of the {100} plane, which exists in a direction away from the cutting edge ridge in the direction of the flank face and the rake face with respect to the layer oriented in the normal direction of the {111} plane:
A length of 50 μm or more in the range of 50 to 500 μm in a distance from the point farthest from the cutting edge ridge in the normal direction orientation layer of the {111} plane in the direction away from the cutting edge ridge in the direction of the flank face and the direction of the rake face. In the area of the width (the length (m) of the area in the flank direction and the length (m') of the area in the rake face direction shown in FIG. 1 may be different), the normal direction of the surface of the tool base An oriented TiAlN coating layer ( It is preferable to have a {100} plane normal orientation layer).

ここで、前記{100}面の法線方向配向層について、配向する結晶粒の割合(頻度割合)が30%以上であること、および、前記50μm以上の長さの領域に存在することが好ましい理由は、これらを満足することによって、{100}面の法線方向配向層の特性が十分に発現して、耐欠損性、耐チッピング性が十分に発揮されるためである。 Here, in the {100} plane normal direction orientation layer, it is preferable that the ratio (frequency ratio) of oriented crystal grains is 30% or more, and that the crystal grains exist in the region having a length of 50 μm or more. The reason is that by satisfying these requirements, the properties of the {100} plane normal orientation layer are fully expressed, and the fracture resistance and chipping resistance are fully exhibited.

{110}面の法線方向に配向したTiAlN層:
刃先稜線から、逃げ面方向およびすくい面方向に、100~600μmの範囲において、少なくとも50μm以上の領域において、工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内であるNaCl型の面心立方構造を有する結晶粒の割合(頻度割合)が20%以上を占める配向した層({110}面の法線方向配向層ということがある)が存在することが、より好ましい。
TiAlN layer oriented in the normal direction of the {110} plane:
An inclination angle formed by the normal direction of the {110} plane with respect to the normal direction of the surface of the tool base in a range of 100 to 600 μm from the cutting edge ridgeline in the direction of the flank face and the rake face direction, and in a region of at least 50 μm or more There is an oriented layer (sometimes referred to as a layer oriented in the normal direction of the {110} plane) in which the proportion (frequency proportion) of crystal grains having a NaCl-type face-centered cubic structure whose angle is within 10° is 20% or more. It is more preferable to do so.

前記結晶粒の割合(頻度割合)が20%以上とし、かつ、この{110}面法線方向配向層の長さを50μm以上の領域とする理由は、この数値範囲を満足すると、{110}面の法線方向配向層の特性が十分に発現し、耐欠損性、耐チッピング性がより一層向上するためである。 The reason why the ratio (frequency ratio) of the crystal grains is 20% or more and the length of the {110} plane normal direction orientation layer is 50 μm or more is that when this numerical range is satisfied, the {110} This is because the characteristics of the layer oriented in the normal direction of the surface are fully expressed, and the fracture resistance and chipping resistance are further improved.

なお、前記刃先稜線とは、逃げ面とすくい面とをそれぞれ平面で近似し、その平面を延長した場合に両延長平面が交差する交線をいい、刃先稜線からの距離は、刃先稜線を法線とする断面における刃先稜線との交点からそれぞれの断面上での逃げ面およびすくい面に沿った距離をいう。 Note that the cutting edge ridgeline refers to the intersection line where the flank and rake surfaces are each approximated by a plane, and when the planes are extended, the two extended planes intersect, and the distance from the cutting edge ridgeline is defined as This refers to the distance along the flank and rake faces on each cross section from the intersection with the cutting edge ridgeline in the cross section.

工具基体の表面の法線とNaCl型の面心立方構造を有する結晶粒の特定の結晶面の法線とのなす角度とその割合の測定:
工具基体の表面の法線とTiAlN層のNaCl型の面心立方構造を有する結晶粒の特定の結晶面({111}面、{110}面、{100}面)の法線となす角度の測定は、以下のように行う。まず、TiAlN層の刃先稜線方向を法線とする断面を研磨面として、電界放出型走査電子顕微鏡の鏡筒内にセットする。次に、前記研磨面に対して所定の観察範囲(例えば、工具基体の表面と平行方向に幅10μm、この幅の中点が25μm離れたもの)を設定する。
Measurement of the angle between the normal to the surface of the tool base and the normal to a specific crystal plane of a crystal grain having a NaCl-type face-centered cubic structure and its ratio:
The angle between the normal to the surface of the tool base and the normal to a specific crystal plane ({111} plane, {110} plane, {100} plane) of a crystal grain having an NaCl type face-centered cubic structure in the TiAlN layer. The measurement is performed as follows. First, the TiAlN layer is set in the lens barrel of a field emission scanning electron microscope, with a cross section of the TiAlN layer normal to the direction of the cutting edge as a polishing surface. Next, a predetermined observation range (for example, a width of 10 μm in a direction parallel to the surface of the tool base, with the midpoint of this width separated by 25 μm) is set on the polished surface.

続いて、工具基体の表面の法線方向(断面研磨面における工具基体の表面と垂直な方向)に対して、前記観察範囲内の測定点ごとの結晶粒の{111}面、{110}面、{100}面の法線がなす傾斜角を測定すべく、前記研磨面の法線に対して、70度の入射角度、10kVの加速電圧、1nAの照射電流で、0.1μm/stepの間隔により、電子線を観察範囲に照射し、電子線後方散乱解析像を得て、傾斜角を測定する。そして、得られた電子線後方散乱解析像をPole Plotsで表示して、前記法線がなす傾斜角が10°以内にある結晶粒の頻度割合を求める。 Next, with respect to the normal direction of the surface of the tool base (direction perpendicular to the surface of the tool base on the cross-sectional polished surface), the {111} plane and {110} plane of the crystal grains at each measurement point within the observation range are measured. In order to measure the inclination angle formed by the normal to the {100} plane, the angle of incidence was 70 degrees, the acceleration voltage was 10 kV, the irradiation current was 1 nA, and the angle was 0.1 μm/step with respect to the normal to the polished surface. Depending on the interval, the observation range is irradiated with an electron beam, an electron beam backscattering analysis image is obtained, and the tilt angle is measured. Then, the obtained electron beam backscattering analysis image is displayed in Pole Plots, and the frequency ratio of crystal grains whose inclination angle formed by the normal line is within 10° is determined.

なお、前記Pole Plotsは、例えば面心立方構造を有するCuに対する文献「J.A.Nucci, et al., Appl. Phys. Lett. 69 (1996) 4017.」などに記載されているように、測定対象の物質がどの方位に偏っているかを、完全にランダムな多結晶構造を有している状態と比較して示す指標である。前記文献では頻度を表すために「times random」の単位で表記されている。本発明の測定結果の処理においては、基準となる面方位の法線方向を0°として90°までの傾斜角に対する結晶粒の頻度の合計に対する前記0°から10°までの傾斜角を有する結晶粒の頻度の合計の割合(頻度割合)を、着目する面の法線方向に配向した割合とし「%」で算出し、この割合が特定値({111}面および{100}面の法線方向であれば30%、{110}面の法線方向であれば20%)以上のものを配向した硬質被覆層として扱う。 The Pole Plots are, for example, as described in the document "J.A. Nucci, et al., Appl. Phys. Lett. 69 (1996) 4017." for Cu having a face-centered cubic structure. This is an index that indicates in which direction the substance to be measured is biased, compared to a state in which it has a completely random polycrystalline structure. In the above literature, frequency is expressed in units of "times random". In the processing of the measurement results of the present invention, a crystal having an inclination angle of 0° to 10° with respect to the total frequency of crystal grains for an inclination angle of up to 90°, with the normal direction of the plane orientation as a reference being 0°. The total frequency of grains (frequency ratio) is calculated in % as the ratio of grains oriented in the normal direction of the plane of interest, and this ratio is calculated as a specific value (normal to {111} and {100} 30% in the direction, 20% in the normal direction to the {110} plane) is treated as an oriented hard coating layer.

配向層の頻度割合は、急激に変化することはなく、上記の方法を用いて測定することによって、測定に於ける誤差の影響(主には、結晶粒毎のバラツキ、測定サンプルの位置や角度)を抑制でき、観察領域が配向層であるかどうかの判定が可能となる。また、隣接する観察領域において、前記観察範囲の頻度割合からみて共に配向層であると判定されるときは、これらの隣接する観察範囲の間に存在する領域も配向層といえることを、本発明の導出過程で確認している。 The frequency ratio of the oriented layer does not change rapidly, and by measuring using the above method, it is possible to avoid the influence of errors in measurement (mainly variations in each grain, position and angle of the measurement sample). ), and it becomes possible to determine whether the observed region is an alignment layer. In addition, the present invention provides that when adjacent observation areas are both determined to be alignment layers based on the frequency ratio of the observation areas, the area existing between these adjacent observation areas can also be said to be an alignment layer. This was confirmed during the derivation process.

さらに、配向層の端部は、隣接する観察範囲の片方の頻度割合からみて配向層といえないときは、配向層の頻度割合からみて配向層と判定される観察範囲の中点とする。 Further, if the end of the alignment layer cannot be considered to be an alignment layer based on the frequency ratio of one of the adjacent observation ranges, the end portion of the alignment layer is set at the midpoint of the observation range that is determined to be an alignment layer based on the frequency ratio of the alignment layer.

また、NaCl型の面心立方構造を有する結晶粒の占める割合は、前記観察範囲のTiAlN層部分の全測定点数を分母とし、NaCl型の面心立方構造を示すKikuchiパターンが測定されたTiAlN層部分の測定点数を分子として、それらの割合から「面積%」を算出したものである。 In addition, the ratio of crystal grains having a NaCl-type face-centered cubic structure is calculated using the total number of measurement points in the TiAlN layer portion in the observation range as the denominator, and the ratio of crystal grains having a NaCl-type face-centered cubic structure is calculated using the total number of measurement points in the TiAlN layer portion in the observation range as the denominator. The "area %" is calculated from the ratio of the number of measurement points of the part as the numerator.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかである。
Tool base:
As the tool base, any base material conventionally known as this type of tool base can be used as long as it does not impede achieving the object of the present invention. To give an example, cemented carbide (WC-based cemented carbide, containing WC and Co, and also containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, (TiN, TiCN, etc. as main components), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body.

下部層および上部層:
本発明では、硬質被覆層として前記TiAlN層を有する層を設けることによって十分な耐摩耗性、耐欠損性、耐チッピング性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層が1.0~25.0μmの合計平均層厚で設けられた場合には、これらの層が奏する効果と相俟って、一層優れた特性を発揮することができる。
Bottom layer and top layer:
In the present invention, by providing a layer having the TiAlN layer as a hard coating layer, sufficient wear resistance, chipping resistance, and chipping resistance are obtained. When a lower layer including a Ti compound layer is formed of one or more of a compound layer and a carbonitride layer and has a total average layer thickness of 0.1 to 20.0 μm, and/or When the upper layer including at least the aluminum oxide layer is provided with a total average layer thickness of 1.0 to 25.0 μm, even more excellent properties can be exhibited in conjunction with the effects of these layers. can.

なお、前記Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物ならびに酸化アルミニウム層の組成は、化学量論的割合のものに限定されるものではない。 Note that the compositions of the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, carbonitride oxide, and aluminum oxide layer are not limited to stoichiometric proportions.

Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。 Ti consisting of one or more layers of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer of Ti, and having a total average layer thickness of 0.1 to 20.0 μm When providing a lower layer including a compound layer, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer will not be sufficiently exhibited, whereas if it exceeds 20.0 μm, crystal grains tend to become coarse. , chipping is more likely to occur. In addition, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer will not be sufficiently exhibited, while if it exceeds 25.0 μm, crystal grains tend to become coarse and chipping may occur. It is more likely to occur.

製造方法:
本発明のTiAlN層は、例えば、次のような条件でCVDにより作製することができる。
反応ガス組成(%は容量%を表し、ガス群Aとガス群Bの和を100容量%とする)
ガス群A:NH:0.3~0.6%、Ar:25.0~35.0%、
:20.0~30.0%、
ガス群B:AlCl:0.04~0.06%、
TiCl:0.01~0.03%、
:25.0~30.0%、H:残
反応雰囲気圧力:4.5~5.5kPa
反応雰囲気温度:700~850℃
供給周期:8.0~15.0秒
1周期当たりのガス供給時間0.2~0.6秒
ガス群Aとガス群Bの供給の位相差0.10~0.15秒
Production method:
The TiAlN layer of the present invention can be produced, for example, by CVD under the following conditions.
Reaction gas composition (% represents volume %, the sum of gas group A and gas group B is 100 volume %)
Gas group A: NH3 : 0.3 to 0.6%, Ar: 25.0 to 35.0%,
H2 : 20.0-30.0%,
Gas group B: AlCl 3 : 0.04-0.06%,
TiCl4 : 0.01-0.03%,
N 2 : 25.0-30.0%, H 2 : Residual reaction atmosphere pressure: 4.5-5.5 kPa
Reaction atmosphere temperature: 700-850℃
Supply cycle: 8.0 to 15.0 seconds Gas supply time per cycle 0.2 to 0.6 seconds Phase difference between supply of gas group A and gas group B 0.10 to 0.15 seconds

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、NbC粉末、Cr粉末およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体Aを作製した。 As raw material powders, WC powder, TiC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all of which have an average particle size of 1 to 3 μm, were prepared. These raw material powders were blended into the composition shown in Table 1, further added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. This green compact was vacuum sintered in a vacuum of 5 Pa under conditions of holding at a predetermined temperature within the range of 1370 to 1470° C. for 1 hour. After sintering, a tool base A made of WC-based cemented carbide and having an insert shape of ISO standard SEEN1203AFSN was produced.

次に、これら工具基体Aの表面にCVD装置を用いて、TiAlN層を形成した。CVDによる成膜条件は次のとおりである。
表3、表4に示される成膜条件A~I、すなわち、NH、Ar、Hからなるガス群Aと、AlCl、TiCl、N、Hからなるガス群B、および各ガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bをあわせた全体に対する容量%)を、ガス群AとしてNH:0.3~0.6%、Ar:25.0~35.0%、H:20.0~30.0%、ガス群BとしてAlCl:0.04~0.06%、TiCl:0.01~0.03%、N:25.0~30.0%、H:残、反応雰囲気圧力:4.5~5.5kPa、反応雰囲気温度:700~850℃、供給周期8.0~15.0秒、1周期当たりのガス供給時間0.2~0.6秒、ガス群Aとガス群Bの供給の位相差0.10~0.15秒とし、所定時間、成膜を行った。
Next, a TiAlN layer was formed on the surface of these tool bases A using a CVD device. The conditions for film formation by CVD are as follows.
The film forming conditions A to I shown in Tables 3 and 4 are gas group A consisting of NH 3 , Ar, and H 2 , gas group B consisting of AlCl 3 , TiCl 4 , N 2 , and H 2 , and each As for the gas supply method, the reaction gas composition (volume % of the total of gas group A and gas group B) is set as gas group A: NH 3 : 0.3 to 0.6%, Ar: 25.0 to 35%. .0%, H 2 : 20.0 to 30.0%, AlCl 3 as gas group B: 0.04 to 0.06%, TiCl 4 : 0.01 to 0.03%, N 2 : 25.0 ~30.0%, H 2 :Remaining, Reaction atmosphere pressure: 4.5~5.5kPa, Reaction atmosphere temperature: 700~850°C, Supply cycle 8.0~15.0 seconds, Gas supply time per cycle Film formation was performed for a predetermined time with a phase difference of 0.2 to 0.6 seconds and a phase difference between the supply of gas group A and gas group B of 0.10 to 0.15 seconds.

この条件で、TiAlN層を形成することにより、表6に示す平均層厚、Alの平均含有割合xを有する本発明被覆工具1~9を製造した。
なお、本発明被覆工具1~3および9については、表2に示される形成条件で、表5に示される下部層を形成した。
By forming a TiAlN layer under these conditions, coated tools 1 to 9 of the present invention having an average layer thickness and an average Al content x shown in Table 6 were manufactured.
For coated tools 1 to 3 and 9 of the present invention, the lower layer shown in Table 5 was formed under the forming conditions shown in Table 2.

また、比較の目的で、工具基体Aの表面に表3、表4に示される形成条件でCVDにより成膜を行うことにより、表7に示される平均層厚を有し、少なくともTiAlN層を含む硬質被覆層を蒸着形成して比較被覆工具1~8を製造した。
なお、比較被覆工具1~3については、表2に示される形成条件で、表5に示される下部層を形成した。
For comparison purposes, a film was formed on the surface of tool base A by CVD under the formation conditions shown in Tables 3 and 4, and had an average layer thickness shown in Table 7, and included at least a TiAlN layer. Comparative coated tools 1 to 8 were manufactured by depositing a hard coating layer.
For comparison coated tools 1 to 3, the lower layer shown in Table 5 was formed under the formation conditions shown in Table 2.

平均層厚は、本発明被覆工具1~9、比較被覆工具1~8の逃げ面およびすくい面において、各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡を用いて倍率5000倍で観察し、観察視野内に於いて等間隔に基材表面に対して垂線を5本引き、各垂線上に於いて基体表面もしくは下部層とTiAlN層の境界線ならびにTiAlNの表面が垂線と交わる点間の距離を測ったものを、平均して求めた。 The average layer thickness was determined by scanning a cross section (longitudinal cross section) perpendicular to the tool base of each constituent layer on the flank and rake surfaces of the coated tools 1 to 9 of the present invention and the comparative coated tools 1 to 8 using a scanning electron microscope. Observe at a magnification of 5,000 times using a microscope, draw five perpendicular lines to the substrate surface at equal intervals within the observation field, and mark the boundary line between the substrate surface or the lower layer and the TiAlN layer and the TiAlN layer on each perpendicular line. The distances between the points where the surface intersects with the perpendicular line were measured and averaged.

TiAlN層のAlの平均含有割合xについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、工具基体の表面を研磨した試料において、逃げ面およびすくい面に対して試料表面側から倍率2000倍で観察し、観察範囲内に於いて電子線を無作為に10点スポット照射し、それぞれのスポットに於いて得られる特性X線の解析結果を平均して求めた。
表6、表7に、前記で求めたxの値を示す(xは、TiとAlの原子数の合量に対するAlの原子数の比であって、TiとAlの測定結果を用い、Nや不可避的に含まれるCやOなどの他の元素は用いずに算出している)。
The average content ratio x of Al in the TiAlN layer was determined by using an electron-probe-micro-analyser (EPMA) to determine the difference between the sample surface relative to the flank face and rake face in a sample where the surface of the tool base was polished. Observation was made from the side at a magnification of 2000 times, electron beams were irradiated at 10 spots at random within the observation range, and the analysis results of characteristic X-rays obtained at each spot were averaged.
Tables 6 and 7 show the values of x determined above (x is the ratio of the number of Al atoms to the total number of Ti and Al atoms, and using the measurement results of Ti and Al, (It is calculated without using other elements such as C and O that are unavoidably included.)

工具基体の表面の法線とNaCl型の面心立方構造を有する結晶粒の特定の結晶面の法線とのなす角度の測定とその割合、面心立方構造の面積割合(面積%)は、前述した方法で求め表6、表7に示した。なお、これら表において、「-」で示されるものは該当する配向層が存在しないことを示す。また、「下)配向割合」と記載している数値は、その欄の「上)」で示した位置の配向割合を示した。 The measurement and ratio of the angle between the normal to the surface of the tool base and the normal to a specific crystal plane of a crystal grain having a NaCl-type face-centered cubic structure, and the area ratio (area %) of the face-centered cubic structure are as follows: It was determined by the method described above and shown in Tables 6 and 7. In addition, in these tables, those indicated by "-" indicate that the corresponding alignment layer does not exist. Further, the numerical value described as "lower) orientation ratio" indicates the orientation ratio at the position indicated by "upper)" in that column.

Figure 0007453613000001
Figure 0007453613000001

Figure 0007453613000002
Figure 0007453613000002

Figure 0007453613000003
Figure 0007453613000003

Figure 0007453613000004
Figure 0007453613000004

Figure 0007453613000005
Figure 0007453613000005

Figure 0007453613000006
Figure 0007453613000006

Figure 0007453613000007
Figure 0007453613000007

次に、前記各種の被覆工具をいずれもカッタ径125mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~9、比較被覆工具1~8について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。 Next, with each of the above-mentioned coated tools clamped to the tip of an alloy steel cutter with a cutter diameter of 125 mm using a fixing jig, the coated tools 1 to 9 of the present invention and the comparative coated tools 1 to 8 are described below. A center-cut cutting test was conducted using a dry high-speed face milling cutter, which is a type of high-speed interrupted cutting of alloy steel, and the width of flank wear of the cutting edge was measured.

切削試験:湿式高速正面フライス、センターカット切削加工
被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度:892 min-1
切削速度:350 m/min
切り込み:2.0 mm
一刃送り量:0.30 mm/刃
切削時間:5分
(通常切削速度:200 m/min)
Cutting test: Wet high-speed face milling, center cut cutting Workpiece material: JIS/SCM440 block material with a width of 100 mm and a length of 400 mm Rotational speed: 892 min -1
Cutting speed: 350 m/min
Cut depth: 2.0 mm
Single blade feed rate: 0.30 mm/blade Cutting time: 5 minutes (normal cutting speed: 200 m/min)

Figure 0007453613000008
Figure 0007453613000008

表8に示される結果から、本発明の被覆工具は合金鋼等の高速断続切削加工に用いた場合でも、チッピング、欠損の発生もなく、長期の使用にわたって優れた耐摩耗性を発揮する。 From the results shown in Table 8, even when the coated tool of the present invention is used for high-speed interrupted cutting of alloy steel, etc., there is no occurrence of chipping or chipping, and it exhibits excellent wear resistance over a long period of use.

これに対して、TiAlN層において、本発明で規定する事項を一つでも満足していない比較被覆工具は、合金鋼等の高速断続切削加工において、チッピング等の異常損傷の発生、あるいは、摩耗進行により、短時間で寿命に至ることが明らかである。 On the other hand, comparative coated tools whose TiAlN layer does not satisfy at least one of the requirements stipulated by the present invention suffer from abnormal damage such as chipping or accelerated wear during high-speed interrupted cutting of alloy steel, etc. It is clear that the life span is reached in a short period of time.

前述のように、本発明の被覆工具は、合金鋼等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分に満足する対応ができるものである。 As mentioned above, the coated tool of the present invention can be used not only for high-speed interrupted cutting of alloy steel, etc., but also as a coated tool for various work materials, and moreover, exhibits excellent cutting performance over long periods of use. Therefore, it is possible to satisfactorily improve the performance of the cutting device, save labor and energy in the cutting process, and further reduce the cost.

Claims (3)

工具基体と、該工具基体の表面に設けた硬質被覆層を有する表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚が1.0~20.0μmのTiとAlの複合窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物層は、NaCl型の面心立方構造を有する結晶粒を含み、
(c)前記TiとAlの複合窒化物層の組成を組成式:(Ti(1-x)Al)Nで表した場合、AlのTiとAlの合量に占める平均含有割合x(但し、xは原子比)が、0.60≦x≦0.95を満足し、
(d)前記TiとAlの複合窒化物層は、前記工具基体の表面の法線方向に対して{111}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を、刃先稜線から逃げ面方向およびすくい面方向に、前記刃先稜線からの距離が50μmを超えない前記刃先稜線に最も近い点と、前記刃先稜線からの距離が100~500μmの前記刃先稜線に最も遠い点との間に連続的に有し、
(e)前記TiとAlの複合窒化物層は、前記配向した層の前記刃先稜線から最も遠い点を起点に、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が50~500μmの範囲の中の50μm以上の長さの領域において、前記工具基体の表面の法線方向に対して{100}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が30%以上を占める配向した層を有する、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool base and a hard coating layer provided on the surface of the tool base,
(a) The hard coating layer includes at least a composite nitride layer of Ti and Al with an average layer thickness of 1.0 to 20.0 μm,
(b) the composite nitride layer of Ti and Al includes crystal grains having a NaCl-type face-centered cubic structure;
(c) When the composition of the composite nitride layer of Ti and Al is expressed by the composition formula: (Ti (1-x) Al x )N, the average content ratio of Al to the total amount of Ti and Al x (however, , x is the atomic ratio) satisfies 0.60≦x≦0.95,
(d) The composite nitride layer of Ti and Al has a face-centered surface of the NaCl type in which the angle of inclination of the normal direction of the {111} plane to the normal direction of the surface of the tool base is within 10°. An oriented layer in which crystal grains having a cubic structure account for 30% or more is arranged from the cutting edge ridge in the direction of the flank face and the rake face at a point closest to the cutting edge ridge whose distance from the cutting edge ridge does not exceed 50 μm; Continuously between the point farthest from the cutting edge ridge and having a distance of 100 to 500 μm from the cutting edge ridge,
(e) The composite nitride layer of Ti and Al has a distance of 50 in the direction away from the cutting edge ridge in the direction of the flank face and in the direction of the rake face, starting from the point farthest from the cutting edge ridge of the oriented layer. In a region having a length of 50 μm or more in the range of 500 μm or more, the inclination angle of the normal direction of the {100} plane to the normal direction of the surface of the tool base is within 10°. having an oriented layer in which 30% or more of crystal grains have a face-centered cubic structure;
A surface-coated cutting tool characterized by:
前記TiとAlの複合窒化物層は、前記刃先稜線から前記逃げ面方向および前記すくい面方向へ遠ざかる方向の距離が100~600μmの範囲の中の50μm以上の領域において、前記工具基体の表面の法線方向に対して{110}面の法線方向がなす傾斜角が10°以内である前記NaCl型の面心立方構造を有する結晶粒が20%以上を占める配向した層を有する請求項1に記載の表面被覆切削工具。 The composite nitride layer of Ti and Al covers the surface of the tool base in a region of 50 μm or more in the range of 100 to 600 μm in distance in a direction away from the cutting edge ridgeline toward the flank face and the rake face. Claim 1 comprising an oriented layer in which the crystal grains having a face-centered cubic structure of the NaCl type account for 20% or more, in which the inclination angle formed by the normal direction of the {110} plane with respect to the normal direction is within 10 degrees. The surface-coated cutting tool described in . 前記TiとAlの複合窒化物層は、前記NaCl型の面心立方構造を有する結晶粒の占める割合が50面積%以上であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1 or 2, wherein the Ti and Al composite nitride layer has a crystal grain having a face-centered cubic structure of the NaCl type that accounts for 50% by area or more. .
JP2020011402A 2019-02-14 2020-01-28 surface coated cutting tools Active JP7453613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005695 WO2020166683A1 (en) 2019-02-14 2020-02-14 Surface-coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019024537 2019-02-14
JP2019024537 2019-02-14

Publications (2)

Publication Number Publication Date
JP2020131424A JP2020131424A (en) 2020-08-31
JP7453613B2 true JP7453613B2 (en) 2024-03-21

Family

ID=72277344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020011402A Active JP7453613B2 (en) 2019-02-14 2020-01-28 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7453613B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7492678B2 (en) 2020-08-07 2024-05-30 三菱マテリアル株式会社 Surface-coated cutting tools
US20240207945A1 (en) * 2021-04-30 2024-06-27 Walter Ag Coated cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226716A1 (en) 2008-03-07 2009-09-10 Seco Tools Ab Oxide Coated Cutting Insert
JP2015163424A (en) 2014-01-29 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017113835A (en) 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP2018164961A (en) 2017-03-28 2018-10-25 三菱マテリアル株式会社 Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090226716A1 (en) 2008-03-07 2009-09-10 Seco Tools Ab Oxide Coated Cutting Insert
JP2015163424A (en) 2014-01-29 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017113835A (en) 2015-12-24 2017-06-29 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP2018164961A (en) 2017-03-28 2018-10-25 三菱マテリアル株式会社 Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor

Also Published As

Publication number Publication date
JP2020131424A (en) 2020-08-31

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP7453613B2 (en) surface coated cutting tools
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
WO2020166683A1 (en) Surface-coated cutting tool
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP7453616B2 (en) surface coated cutting tools
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7137149B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2022030402A (en) Surface-coated cutting tool
JP7190111B2 (en) surface coated cutting tools
JP7492678B2 (en) Surface-coated cutting tools
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2007196355A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting difficult-to-cut material
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7453613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150