JP4569861B2 - Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer - Google Patents

Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer Download PDF

Info

Publication number
JP4569861B2
JP4569861B2 JP2004109616A JP2004109616A JP4569861B2 JP 4569861 B2 JP4569861 B2 JP 4569861B2 JP 2004109616 A JP2004109616 A JP 2004109616A JP 2004109616 A JP2004109616 A JP 2004109616A JP 4569861 B2 JP4569861 B2 JP 4569861B2
Authority
JP
Japan
Prior art keywords
layer
type
hard coating
crystal structure
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004109616A
Other languages
Japanese (ja)
Other versions
JP2005279908A (en
Inventor
哲彦 本間
文雄 対馬
拓也 早樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004109616A priority Critical patent/JP4569861B2/en
Publication of JP2005279908A publication Critical patent/JP2005279908A/en
Application granted granted Critical
Publication of JP4569861B2 publication Critical patent/JP4569861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

この発明は、特に鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ、
組成式:(Al1−X 2 3
で現した場合(上記組成式における「B」はボロンを示す)、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で、0.001〜0.01を満足すると共に、1〜15μmの平均層厚を有する蒸着α型Al系酸化物[以下、(Al,B)2 3 で示す]層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) the upper layer has an α-type crystal structure in the state of chemical vapor deposition, and
Composition formula: (Al 1-X B X ) 2 O 3,
("B" in the above composition formula represents boron), the X value is measured by an electron beam microanalyzer (EPMA) and the atomic ratio satisfies 0.001 to 0.01, and 1 A vapor-deposited α-type Al-based oxide [hereinafter referred to as (Al, B) 2 O 3 ] layer having an average layer thickness of ˜15 μm;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層や蒸着α型(Al,B)2 3 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開昭58−115081号公報 特開平6−8010号公報
In general, the Ti compound layer and the vapor-deposited α-type (Al, B) 2 O 3 layer constituting the hard coating layer of the above coated cermet tool have a granular crystal structure, and further the TiCN constituting the Ti compound layer For the purpose of improving the strength of the layer itself, the chemical layer is used in a normal chemical vapor deposition apparatus, using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas at a medium temperature range of 700 to 950 ° C. It is also known to have a vertically grown crystal structure formed by vapor deposition.
JP 58-115081 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的熱的衝撃の加わる高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高強度を有し、すぐれた耐チッピング性を示すものの、同上部層を構成する蒸着α型(Al,B)2 3 層は、構成成分であるAl成分によりすぐれた高温硬さと耐熱性を有し、同B成分によりさらに高温硬さの向上したものになるが、十分な高温強度を具備するものでないために、機械的熱的衝撃に対してきわめて脆く、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. The Ti compound layer, which is the lower layer of the hard coating layer, has high strength and excellent chipping resistance when used for high-speed interrupted cutting with repeated mechanical thermal shock at a very short pitch. The vapor-deposited α-type (Al, B) 2 O 3 layer constituting the layer has excellent high temperature hardness and heat resistance due to the constituent Al component, and the B component further improves the high temperature hardness. But Since it does not have sufficient high-temperature strength, it is extremely brittle against mechanical and thermal shocks, which makes it easy for chipping (minute chipping) to occur in the hard coating layer, resulting in a relatively short time. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型(Al,B)2 3 層の耐チッピング性向上をはかるべく研究を行った結果、
工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、
同じく組成式:(Al1−X 2 3
で現した場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で、0.001〜0.01を満足する組成を有するが、結晶構造がκ型またはθ型の結晶構造を有する(Al,B)2 3 層を蒸着形成し、ついで、前記(Al,B)2 3 層の表面に、同じく化学蒸着装置にて、
反応ガス組成:体積%で、TiCl:0.2〜3%、CO:0.2〜10%、Ar:5〜50%、H:残り、
反応雰囲気温度:900〜1020℃、
反応雰囲気圧力:7〜30kPa、
時間:25〜100分、
の条件で処理して、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.1〜2μmの平均層厚で形成し、この状態で、加熱変態処理、望ましくは圧力:7〜50kPaのAr雰囲気中、温度:1000〜1200℃に10〜120分間保持の条件で加熱変態処理を施して、前記κ型またはθ型の結晶構造の(Al,B)2 3 層をα型結晶構造の(Al,B)2 3 層に変態させると、前記変態前の(Al,B)2 3 層の表面に形成したTi酸化物層の作用で、前記κ型またはθ型の結晶構造からα型結晶構造への変態が全面同時的に発生し、変態時に発生する割れ(クラック)が同時発生的に形成されるようになることから、前記変態発生割れは、きわめて微細に、かつ一様に分散分布した状態となると共に、前記加熱変態の進行が著しく促進されることから、結晶粒の成長が著しく抑制され、この結果形成された加熱変態α型(Al,B)2 3 層は、変態発生割れが層全体に亘って微細にして均一化された組織を有し、機械的熱的衝撃に対してきわめて強固なものとなるので、硬質被覆層の上部層が前記加熱変態α型(Al,B)2 3 層、下部層が上記Ti化合物層(このTi化合物層には上記の条件での加熱変態処理では何らの変化も起らない)で構成された被覆サーメット工具は、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも、前記加熱変態α型(Al,B)2 3 層のもつ前記の特性によって、高強度を有する前記Ti化合物層の共存と相俟って、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになること、
In view of the above, the inventors of the present invention intend to improve the chipping resistance of the deposited α-type (Al, B) 2 O 3 layer constituting the upper layer of the hard coating layer of the coated cermet tool. As a result of research,
On the surface of the tool base, after forming the Ti compound layer under normal conditions as a lower layer with a normal chemical vapor deposition apparatus, under the same normal conditions,
Also the composition formula: (Al 1-X B X ) 2 O 3,
In this case, the crystal structure is a κ-type or θ-type crystal structure having an X value measured by an electron microanalyzer (EPMA) and having an atomic ratio of 0.001 to 0.01. (Al, B) 2 O 3 layer having a vapor deposition is formed on the surface of the (Al, B) 2 O 3 layer.
Reaction gas composition: by volume%, TiCl 4: 0.2~3%, CO 2: 0.2~10%, Ar: 5~50%, H 2: remainder,
Reaction atmosphere temperature: 900-1020 ° C.
Reaction atmosphere pressure: 7-30 kPa,
Time: 25-100 minutes
In the condition of
Composition formula: TiO Y ,
The Ti oxide layer satisfying the Y value of 1.2 to 1.9 in terms of atomic ratio to Ti as measured by an Auger spectrometer is formed with an average layer thickness of 0.1 to 2 μm. In this state, the heat transformation treatment, preferably in the Ar atmosphere at a pressure of 7 to 50 kPa, is performed at a temperature of 1000 to 1200 ° C. for 10 to 120 minutes. crystal structure (Al, B) 2 O 3 layer of α-type crystal structure (Al, B) if is transformed to 2 O 3 layer was formed on the transformation before (Al, B) 2 O 3 layer surface By the action of the Ti oxide layer, the transformation from the κ-type or θ-type crystal structure to the α-type crystal structure occurs simultaneously, and cracks generated during the transformation are formed simultaneously. Therefore, the transformation crack is very finely and uniformly distributed. With the state, the since the progress of the heating transformation is accelerated considerably, crystal grain growth is remarkably inhibited, as a result formed heated transformed α-type (Al, B) 2 O 3 layer, transformation occurs Since the crack has a fine and uniform structure throughout the layer and becomes extremely strong against mechanical thermal shock, the upper layer of the hard coating layer is formed by the above-mentioned heat transformation α-type (Al, B) A coated cermet tool in which the 2 O 3 layer and the lower layer are composed of the Ti compound layer (this Ti compound layer does not undergo any change in the heat transformation treatment under the above conditions) Even in high-speed intermittent cutting with mechanical thermal shock, due to the characteristics of the heat-transformed α-type (Al, B) 2 O 3 layer, combined with the coexistence of the Ti compound layer having high strength , Chipping in the hard coating layer is significantly suppressed, To show excellent wear resistance over a long period of time,

(b)上記の従来蒸着α型(Al,B)23層および上記(a)の加熱変態α型(Al,B)23層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線のなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなるポールプロットグラフを作成した場合、前記従来蒸着α型(Al,B)23層は、図3に例示される通り、26〜36度の広い範囲内に傾斜角区分のなだらかな最高ピークが現れるのに対して、前記加熱変態α型(Al,B)23層は、図2に例示される通り、1〜11度の範囲内の狭い範囲に傾斜角区分の最高ピークが現れること。
以上(a)および(b)に示される研究結果を得たのである。
(B) About the above-mentioned conventional vapor deposition α-type (Al, B) 2 O 3 layer and the heat-transformed α-type (Al, B) 2 O 3 layer of (a),
Using a field emission scanning electron microscope, as schematically shown in FIGS. 1A and 1B, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam. Then, using an electron backscatter diffraction image apparatus, an inclination angle formed by a normal line of the (0001) plane that is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface, and the measurement inclination angle is measured. When a pole plot graph is formed by dividing the measured inclination angles within the range of 0 to 45 degrees into pitches of 0.25 degrees and totaling the frequencies existing in each section, the conventional The vapor deposition α-type (Al, B) 2 O 3 layer, as illustrated in FIG. 3, shows a gentle peak in the tilt angle section in a wide range of 26 to 36 degrees, whereas the heating transformation α type (Al, B) are 2 O 3 layer, as illustrated in FIG. 2, 1-11 ° range Narrow appear highest peak of the inclination angle segment within the range of the inner.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有し、かつ、
組成式:(Al1−X23
で表わした場合、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.001〜0.01を満足する(Al,B)23層の表面に、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.1〜2μmの平均層厚で化学蒸着形成した状態で、加熱変態処理を施して、前記κ型またはθ型の結晶構造を有する(Al,B)23層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線のなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなるポールプロットグラフにおいて、1〜11度の範囲内の傾斜角区分に最高ピークが現れ、かつ1〜15μmの平均層厚を有する加熱変態α型(Al,B)23層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) the upper layer has a κ-type or θ-type crystal structure in the state of chemical vapor deposition, and
Composition formula: (Al 1-X B X ) 2 O 3,
In the surface of the (Al, B) 2 O 3 layer, which is measured by an electron beam microanalyzer (EPMA) and the X value satisfies an atomic ratio of 0.001 to 0.01,
Composition formula: TiO Y ,
The Ti oxide layer satisfying the Y value of 1.2 to 1.9 in terms of atomic ratio to Ti as measured by an Auger spectroscopic analyzer is chemical vapor deposited with an average layer thickness of 0.1 to 2 μm. In the formed state, a heat transformation treatment is applied to transform the crystal structure of the (Al, B) 2 O 3 layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface was irradiated with an electron beam, and an electron backscatter diffraction image apparatus was used to irradiate the surface polished surface. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line , and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to 0. In the pole plot graph formed by dividing the pitch every 25 degrees and the frequency existing in each section, the highest peak appears in the tilt angle section within the range of 1 to 11 degrees, and 1 to 15 μm. Heat-transformed α-type (Al, B) 2 O 3 layer having an average layer thickness,
The hard coating layer formed by the hard coating layer configured as described above in (a) and (b) is characterized by a coated cermet tool that exhibits excellent chipping resistance.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層(Ti化合物層)の平均層厚
Ti化合物層は、自体が高強度を有し、これの存在によって硬質被覆層が高強度を具備するようになるほか、工具基体と上部層である加熱変態α型(Al,B)2 3 層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Average layer thickness of lower layer (Ti compound layer) The Ti compound layer itself has high strength, and the presence of the Ti compound layer makes the hard coating layer have high strength, and the tool base and upper layer. The heat-transformed α-type (Al, B) 2 O 3 layer is firmly adhered to each other, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate, but the total average layer thickness is 3 μm. If the total thickness is less than 20 μm, thermoplastic deformation tends to occur particularly during high-speed intermittent cutting with high heat generation. Since it becomes a cause, the total average layer thickness was determined as 3-20 micrometers.

(b)Ti酸化物層の組成(Y値)および平均層厚
Ti酸化物層は、上記の通り蒸着κ型またはθ型(Al,B)2 3 層の加熱変態α型(Al,B)2 3 層への加熱変態を全面同時的に開始して、加熱変態時に発生する割れを微細化および均一化するほか、前記加熱変態を促進し、処理時間の短縮化によって結晶粒の成長を抑制する作用を有し、したがって、上記のポールプロットグラフで、測定傾斜角:1〜11度の範囲内に最高ピークが現れる加熱変態α型(Al,B)2 3 層を形成するのに不可欠であるが、そのY値がTiに対する原子比で1.2未満でも、また同1.9を越えても、さらにその平均層厚が0.1μm未満でも前記の作用を十分に発揮させることができず、この結果ポールプロットグラフで、測定傾斜角:1〜11度の範囲内に最高ピークが現れる加熱変態α型(Al,B)2 3 層の形成は困難となるものであり、一方前記作用は2μmの平均層厚で十分であり、これ以上の厚さは不必要であることから、そのY値をTiに対する原子比で1.2〜1.9、その平均層厚を0.1〜2μmとそれぞれ定めた。
(B) Composition (Y value) and average layer thickness of Ti oxide layer As described above, the Ti oxide layer is a vaporized κ-type or θ-type (Al, B) 2 O 3 layer heat-transformed α-type (Al, B). ) Heat transformation to the 2 O 3 layer is started all over simultaneously, and the cracks generated during the heat transformation are refined and homogenized. In addition, the heat transformation is promoted, and the crystal growth is achieved by shortening the processing time. Therefore, in the above-mentioned pole plot graph, a heating transformation α-type (Al, B) 2 O 3 layer in which the highest peak appears in the range of measured inclination angle: 1 to 11 degrees is formed. However, even if the Y value is less than 1.2 in terms of atomic ratio with respect to Ti, more than 1.9, and even if the average layer thickness is less than 0.1 μm, the above-described effect can be sufficiently exerted. As a result, in the pole plot graph, the measured inclination angle: 1 to 11 Heating transformation α type the highest peak appears in the range of (Al, B) formed of 2 O 3 layer is to be a difficult, whereas the effect is sufficient with an average layer thickness of 2 [mu] m, more in thickness Is unnecessary, the Y value was determined to be 1.2 to 1.9 in terms of atomic ratio to Ti, and the average layer thickness was determined to be 0.1 to 2 μm.

(c)上部層[加熱変態α型(Al,B)2 3 層]のBの含有割合および平均層厚
加熱変態α型(Al,B)2 3 層は、構成成分であるAlの作用ですぐれた高温硬さと耐熱性を有し、同Bの作用で一段と高温硬さの向上したものになるが、Bの割合(X値)が、Alとの合量に占める割合で、原子比で(以下同じ)0.001未満では、所望の高温硬さ向上効果を発揮することができず、一方Bの割合が同0.01を越えると六方晶結晶格子に乱れが生じ、加熱変態処理でのκ型またはθ型結晶構造からα型結晶構造への変態を満足に行うことが困難になることから、Bの含有割合(X値)を0.001〜0.01と定めた。
また、加熱変態α型(Al,B)2 3 層の平均層厚が1μm未満では、硬質被覆層に十分な高温硬さと耐熱性を具備せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) B content ratio and average layer thickness of upper layer [heat-transformed α-type (Al, B) 2 O 3 layer] The heat-transformed α-type (Al, B) 2 O 3 layer is composed of the constituent Al. It has excellent high temperature hardness and heat resistance due to its action, and the effect of B is further improved in high temperature hardness, but the proportion of B (X value) is the proportion of the total amount with Al, If the ratio (hereinafter the same) is less than 0.001, the desired high-temperature hardness improvement effect cannot be exhibited. On the other hand, if the ratio of B exceeds 0.01, the hexagonal crystal lattice is disturbed, and the heat transformation Since it becomes difficult to satisfactorily transform the κ-type or θ-type crystal structure into the α-type crystal structure in the treatment, the B content ratio (X value) was determined to be 0.001 to 0.01.
If the average thickness of the heat-transformed α-type (Al, B) 2 O 3 layer is less than 1 μm, the hard coating layer cannot be provided with sufficient high-temperature hardness and heat resistance, while the average layer thickness is 15 μm. If the thickness is too thick, chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高い鋼や鋳鉄などの高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型(Al,B)2 3 層がすぐれた高温硬さと耐熱性、さらにすぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention has an excellent heat-transformed α-type (Al, B) 2 O 3 layer that constitutes the upper layer of the hard coating layer even in high-speed intermittent cutting such as steel and cast iron with extremely high mechanical and thermal shock. Since it exhibits high temperature hardness and heat resistance, and excellent chipping resistance, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、硬質被覆層の下部層としてTi化合物層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、結晶構造がκ型またはθ型の(Al,B)2 3 層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで前記κ型またはθ型の(Al,B)2 3 層の表面に、Ti酸化物層を同じく表4に示される条件で表5に示される組み合わせで蒸着形成した状態で、これに30kPaのAr雰囲気中、温度:1100℃に20〜100分の範囲内の所定の時間保持の条件で加熱変態処理を施して、前記κ型またはθ型の結晶構造の(Al,B)2 3 層をα型結晶構造の(Al,B)2 3 層に変態させてなる加熱変態α型(Al,B)2 3 層を硬質被覆層の上部層として形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, an ordinary chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). Ti compound as a lower layer of the hard coating layer under the conditions shown in (1) shows the conditions for forming a TiCN layer having a vertically grown crystal structure, and (2) shows conditions for forming a normal granular crystal structure. The layers are formed by vapor deposition in the combinations shown in Table 5 and with the target layer thickness. Then, under the conditions shown in Table 3, a (Al, B) 2 O 3 layer having a crystal structure of κ type or θ type is formed. Similarly, the deposition shown in Table 5 is carried out with the target layer thickness, and the Ti oxide layer is also shown in Table 4 on the surface of the κ-type or θ-type (Al, B) 2 O 3 layer. In a state where the vapor deposition was formed in the combination shown in Table 5 In an Ar atmosphere at 30 kPa, temperature: 1100 ° C. and subjected to heat transformation treatment at a predetermined time holding conditions in the range of 20 to 100 minutes, the κ-type or θ-type crystal structure (Al, B) 2 O The present invention is formed by forming a heat-transformed α-type (Al, B) 2 O 3 layer as an upper layer of the hard coating layer by transforming three layers into an (Al, B) 2 O 3 layer having an α-type crystal structure. Cermet tools 1 to 13 were produced, respectively.

なお、上記本発明被覆サーメット工具1〜13の製造に際しては、それぞれ別途試験片を用意し、この試験片を同じく化学蒸着装置に装入し、前記試験片の表面にTi酸化物層が形成された時点で装置から取りだし、前記κ型またはθ型の(Al,B)2 3 層および前記Ti酸化物層の組成(X値およびY値)および層厚を電子線マイクロアナライザー(EPMA)、オージェ分光分析装置、および走査型電子顕微鏡を用いて測定(縦断面測定)した。この結果、いずれも目標組成および目標層厚と実質的に同じ組成および平均層厚(5点測定の平均値)を示した。 When manufacturing the cermet tools 1 to 13 according to the present invention, a test piece is prepared separately, and the test piece is loaded into the chemical vapor deposition apparatus, and a Ti oxide layer is formed on the surface of the test piece. At this point, the composition (X value and Y value) and layer thickness of the κ-type or θ-type (Al, B) 2 O 3 layer and the Ti oxide layer and the layer thickness were measured by an electron beam microanalyzer (EPMA), Measurement (longitudinal section measurement) was performed using an Auger spectroscopic analyzer and a scanning electron microscope. As a result, all showed the composition and average layer thickness (average value of 5-point measurement) substantially the same as the target composition and target layer thickness.

また、比較の目的で、表6に示される通り、硬質被覆層の上部層として同じく表3に示される条件で、同じく表6に示される目標層厚の蒸着α型(Al,B)2 3 層を形成し、かつ上記のTi酸化物層の形成および上記条件での加熱変態処理を行わない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, the vapor deposition α-type (Al, B) 2 O having the target layer thickness also shown in Table 6 under the conditions shown in Table 3 as the upper layer of the hard coating layer. Conventionally coated cermet tools 1 to 13 were manufactured under the same conditions except that three layers were formed and the above-described Ti oxide layer was not formed and the heat transformation treatment was performed under the above conditions.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型(Al,B)23層と蒸着α型(Al,B)23層について、電界放出型走査電子顕微鏡を用いて、ポールプロットグラフをそれぞれ作成した。
すなわち、上記ポールプロットグラフは、上記の加熱変態α型(Al,B)23層および蒸着α型(Al,B)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線のなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内の測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数集計することにより作成した。
この結果得られた各種の加熱変態α型(Al,B)23層および蒸着α型(Al,B)23層のポールプロットグラフにおいて、(0001)面が最高ピークを示す傾斜角区分をそれぞれ表5,6に示した。
なお、図2は、本発明被覆サーメット工具2の加熱変態α型(Al,B)23層のポールプロットグラフ、図3は、従来被覆サーメット工具2の蒸着α型(Al,B)23層のポールプロットグラフをそれぞれ示すものである。
Next, an electric field is applied to the heat-transformed α-type (Al, B) 2 O 3 layer and vapor-deposited α-type (Al, B) 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool. Pole plot graphs were prepared using an emission scanning electron microscope.
That is, the pole plot graph shows a field emission scan in a state where the surfaces of the above-mentioned heat-transformed α-type (Al, B) 2 O 3 layer and vapor-deposited α-type (Al, B) 2 O 3 layer are polished surfaces. A hexagonal crystal lattice present in the measurement range of the surface polished surface is set in a lens barrel of an electron microscope and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA. Irradiate each of the crystal grains, and use an electron backscatter diffraction image apparatus, and a 30 × 50 μm region at an interval of 0.1 μm / step with respect to the normal of the polished surface The inclination angle formed by the normal line of the (0001) plane is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. Created by counting the frequencies that exist in the.
In the pole plot graphs of the various heat-transformed α-type (Al, B) 2 O 3 layers and vapor-deposited α-type (Al, B) 2 O 3 layers obtained as a result, the inclination angle at which the (0001) plane shows the highest peak The categories are shown in Tables 5 and 6, respectively.
2 is a pole plot graph of the heat-transformed α-type (Al, B) 2 O 3 layer of the coated cermet tool 2 of the present invention, and FIG. 3 is a vapor-deposited α-type (Al, B) 2 of the conventional coated cermet tool 2. Pole plot graphs of the O 3 layer are shown respectively.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と加熱変態α型(Al,B)2 3 層からなり、かつ表面部に加熱変態処理前に蒸着形成されたTi酸化物層の存在も確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物と蒸着α型(Al,B)2 3 層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), the former consisted of a Ti compound layer having substantially the same composition as the target composition and a heat-transformed α-type (Al, B) 2 O 3 layer, and the surface portion was subjected to heat transformation treatment. The presence of a Ti oxide layer formed by evaporation was also confirmed. On the other hand, it was confirmed that both of the latter consisted of a Ti compound having substantially the same composition as the target composition and a deposited α-type (Al, B) 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件Bという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は300m/min)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:2.5mm、
送り:0.25mm/rev、
切削時間:10分、
の条件(切削条件Cという)での鋳鉄の乾式高速断続切削試験(通常の切削速度は300m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 250 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 450 m / min,
Cutting depth: 2mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (referred to as cutting condition B) (normal cutting speed is 300 m / min),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 400 m / min,
Incision: 2.5mm,
Feed: 0.25mm / rev,
Cutting time: 10 minutes,
The dry high speed intermittent cutting test (normal cutting speed is 300 m / min) of cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 0004569861
Figure 0004569861

Figure 0004569861
Figure 0004569861

Figure 0004569861
Figure 0004569861

Figure 0004569861
Figure 0004569861

Figure 0004569861
Figure 0004569861

Figure 0004569861
Figure 0004569861

Figure 0004569861
表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも加熱変態α型(Al,B)2 3 層の(0001)面がポールプロットグラフで1〜11度の範囲内の傾斜角区分で最高ピークを示し、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型(Al,B)2 3 層がすぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、前記ポールプロットグラフでは26〜36度の範囲内の傾斜角区分で最高ピークを示す蒸着α型Al23層からなる従来被覆サーメット工具1〜13においては、高速断続切削では前記蒸着α型(Al,B)2 3 層が高温強度不足のために激しい機械的熱的衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
Figure 0004569861
From the results shown in Tables 5 to 7, all of the coated cermet tools 1 to 13 of the present invention have a (0001) plane of the heat-transformed α-type (Al, B) 2 O 3 layer in a pole plot graph of 1 to 11 degrees. Heat transformation α-type, which forms the top layer of the hard coating layer even in high-speed intermittent cutting of steel and cast iron, which shows the highest peak in the tilt angle section within the range, has extremely high mechanical thermal shock, and generates high heat generation Since the (Al, B) 2 O 3 layer exhibits excellent chipping resistance, the occurrence of chipping at the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited, whereas the upper layer of the hard coating layer However, in the above-described pole plot graph, in the conventional coated cermet tools 1 to 13 composed of the vapor-deposited α-type Al 2 O 3 layer showing the highest peak in the inclination angle range of 26 to 36 degrees, the vapor-deposited α is used in high-speed intermittent cutting. High mold (Al, B) 2 O 3 layer It is apparent that due to insufficient temperature strength, it cannot withstand severe mechanical thermal shock, chipping occurs at the cutting edge, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に厳しい切削条件となる高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool according to the present invention has excellent chipping resistance not only in continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also in high-speed interrupted cutting which is particularly severe cutting conditions. Since it exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

硬質被覆層を構成する各種加熱変態α型(Al,B)2 3 層および蒸着α型(Al,B)2 3 層における結晶粒の(0001)面の傾斜角の測定範囲を示す概略図である。Various heating transformation α type constituting the hard layer (Al, B) 2 O 3 layer and deposition α-type (Al, B) schematically showing the measuring range of inclination angles of crystal grains of the (0001) plane in 2 O 3 layer FIG. 本発明被覆サーメット工具2の硬質被覆層を構成する加熱変態α型(Al,B)2 3 層の(0001)面のポールプロットグラフである。4 is a pole plot graph of the (0001) plane of the heat-transformed α-type (Al, B) 2 O 3 layer constituting the hard coating layer of the coated cermet tool 2 of the present invention. 従来被覆サーメット工具2の硬質被覆層を構成する蒸着α型(Al,B)2 3 層の(0001)面のポールプロットグラフである。It is a pole plot graph of the (0001) plane of the vapor-deposited α-type (Al, B) 2 O 3 layer constituting the hard coating layer of the conventional coated cermet tool 2.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有し、かつ、
組成式:(Al1−X23
で表わした場合(上記組成式における「B」はボロンを示す)、電子線マイクロアナライザー(EPMA)で測定して、X値が原子比で0.001〜0.01を満足するAl系酸化物層の表面に、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、Y値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物層を0.1〜2μmの平均層厚で化学蒸着形成した状態で、加熱変態処理を施して、前記κ型またはθ型の結晶構造を有するAl系酸化物層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線のなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなるポールプロットグラフにおいて、1〜11度の範囲内の傾斜角区分に最高ピークが現れ、かつ1〜15μmの平均層厚を有する加熱変態α型Al系酸化物層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, each consists of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) the upper layer has a κ-type or θ-type crystal structure in the state of chemical vapor deposition, and
Composition formula: (Al 1-X B X ) 2 O 3,
("B" in the above composition formula represents boron) When measured by an electron beam microanalyzer (EPMA), an Al-based oxide satisfying an X value of 0.001 to 0.01 in atomic ratio On the surface of the layer,
Composition formula: TiO Y ,
The Ti oxide layer satisfying the Y value of 1.2 to 1.9 in terms of atomic ratio to Ti as measured by an Auger spectroscopic analyzer is chemical vapor deposited with an average layer thickness of 0.1 to 2 μm. In the formed state, a heat transformation treatment is performed to transform the crystal structure of the Al-based oxide layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface was irradiated with an electron beam, and an electron backscatter diffraction image apparatus was used to irradiate the surface polished surface. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line , and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to 0. In the pole plot graph formed by dividing the pitch every 25 degrees and the frequency existing in each section, the highest peak appears in the tilt angle section within the range of 1 to 11 degrees, and 1 to 15 μm. Heat-transformed α-type Al-based oxide layer having an average layer thickness,
A surface-coated cermet cutting tool having excellent chipping resistance due to the hard coating layer formed by the hard coating layer constituted of (a) and (b) above.
JP2004109616A 2004-03-02 2004-04-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer Expired - Fee Related JP4569861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004109616A JP4569861B2 (en) 2004-03-02 2004-04-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004056970 2004-03-02
JP2004109616A JP4569861B2 (en) 2004-03-02 2004-04-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Publications (2)

Publication Number Publication Date
JP2005279908A JP2005279908A (en) 2005-10-13
JP4569861B2 true JP4569861B2 (en) 2010-10-27

Family

ID=35178829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004109616A Expired - Fee Related JP4569861B2 (en) 2004-03-02 2004-04-02 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer

Country Status (1)

Country Link
JP (1) JP4569861B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106811A1 (en) * 2009-03-18 2010-09-23 三菱マテリアル株式会社 Surface-coated cutting tool
JP5440268B2 (en) * 2010-03-05 2014-03-12 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115081A (en) * 1981-12-24 1983-07-08 メタルウエルク・プランゼ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Anti-abrasive member
JPH03150364A (en) * 1989-06-16 1991-06-26 Sandvik Ab Coated article and coating thereof
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002239807A (en) * 2001-02-13 2002-08-28 Mitsubishi Materials Corp Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance
JP2002301604A (en) * 2001-02-09 2002-10-15 Plansee Tizit Ag Abrasion resistant part composed of hard metal or cermet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115081A (en) * 1981-12-24 1983-07-08 メタルウエルク・プランゼ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Anti-abrasive member
JPH03150364A (en) * 1989-06-16 1991-06-26 Sandvik Ab Coated article and coating thereof
JP2001310203A (en) * 1999-08-12 2001-11-06 Mitsubishi Materials Corp Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2002301604A (en) * 2001-02-09 2002-10-15 Plansee Tizit Ag Abrasion resistant part composed of hard metal or cermet
JP2002239807A (en) * 2001-02-13 2002-08-28 Mitsubishi Materials Corp Surface-covered thermet made cutting tool hard covered layer of which has excellent thermal shock resistance

Also Published As

Publication number Publication date
JP2005279908A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
JP4811781B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2006334750A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS HIGH CHIPPING RESISTANCE
JP4427729B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material with excellent chipping resistance with hard coating layer
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006341320A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4591752B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4569742B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4569745B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2006231423A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP4210932B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100729

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees