JP4518259B2 - A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting - Google Patents

A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Download PDF

Info

Publication number
JP4518259B2
JP4518259B2 JP2005012798A JP2005012798A JP4518259B2 JP 4518259 B2 JP4518259 B2 JP 4518259B2 JP 2005012798 A JP2005012798 A JP 2005012798A JP 2005012798 A JP2005012798 A JP 2005012798A JP 4518259 B2 JP4518259 B2 JP 4518259B2
Authority
JP
Japan
Prior art keywords
layer
constituent
hard coating
cutting
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005012798A
Other languages
Japanese (ja)
Other versions
JP2006159397A (en
Inventor
惠滋 中村
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005012798A priority Critical patent/JP4518259B2/en
Publication of JP2006159397A publication Critical patent/JP2006159397A/en
Application granted granted Critical
Publication of JP4518259B2 publication Critical patent/JP4518259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、特に鋼や鋳鉄などの高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed intermittent cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)第1層として、化学蒸着形成された窒化チタン(以下、TiNで示す)層および炭窒化チタン(以下、TiCNで示す)層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層、
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.15)、
を満足するTiとZrの複合炭窒化物[以下、(Ti,Zr)CNで示す]層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(c)第3層として、化学蒸着形成された炭酸化チタン(以下、TiCOで示す)層および炭窒酸化チタン(以下、TiCNOで示す)層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成された酸化アルミニウム(以下、Al23で示す)層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開2001−11632号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a first layer, a chemical vapor deposition formed titanium nitride (hereinafter referred to as TiN) layer and titanium carbonitride (hereinafter referred to as TiCN) layer, or a laminate of both layers, and A first adhesive bonding layer having an average layer thickness of 0.1 to 1 μm;
(B) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.15 in atomic ratio),
A high-temperature strengthening layer comprising a composite carbonitride of Ti and Zr satisfying the following [hereinafter referred to as (Ti, Zr) CN] layer and having an average layer thickness of 2.5 to 15 μm;
(C) As the third layer, either a titanium carbonate (hereinafter referred to as TiCO) layer formed by chemical vapor deposition or a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer, or a laminate of both layers is formed. And a second adhesive bonding layer having an average layer thickness of 0.1 to 1 μm,
(D) As a fourth layer, a high-temperature hard layer comprising an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
A coated cermet tool formed by forming a hard coating layer composed of (a) to (d) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
JP 2001-11632 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる高速断続切削に用いた場合、これを構成する硬質被覆層は、第4層のAl23層による高温硬さおよび耐熱性を具備するももの、第2層の(Ti,Zr)CNからなる高温強化層による高温強度が不十分であるために、前記の機械的衝撃に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. When used for high-speed intermittent cutting in which mechanical impact is repeatedly applied at an extremely short pitch, the hard coating layer constituting this has high-temperature hardness and heat resistance due to the fourth Al 2 O 3 layer, The high temperature strength of the second layer of (Ti, Zr) CN due to the high temperature strengthening layer is insufficient, so that it cannot respond satisfactorily to the mechanical shock. As a result, the hard coating layer has Chi Since the ring (small chipping) tends to occur, at present, leading to a relatively short time service life.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの第2層の高温強化層である(Ti,Zr)CN層、すなわちZr成分含有によるすぐれた耐熱性と、Ti成分含有による相対的に高い高温強度を有し、かつ図1(a)に模式図で示される通り、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有する(Ti,Zr)CN層に着目し、研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層を構成する第2層の高温強化層(以下、従来高温強化層という)である(Ti,Zr)CN層(以下、従来(Ti,Zr)CN層という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:1〜5%、ZrCl:0.1〜1%、CHCN:0.6〜5%、N2:25〜45%、H2:残り、
反応雰囲気温度:750〜980℃、
反応雰囲気圧力:2.7〜13.5kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:20〜30%、ZrCl:0.5〜4%、CHCN:5〜10%、CH:0.5〜5%、N2:35〜50%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiClおよびCHCNを相対的に高く、かつ新たにCHガスを添加し、さらに雰囲気温度を相対的に高くした条件(反応ガス組成調整高温条件)で蒸着形成すると、この結果の反応ガス組成調整高温条件で形成した(Ti,Zr)CN層(以下、改質(Ti,Zr)CN層という)は、高温強度が一段と向上し、すぐれた耐機械的衝撃性を具備するようになることから、硬質被覆層の第2層を前記改質(Ti,Zr)CN層で構成してなる被覆サーメット工具は、特に激しい機械的衝撃を伴なう高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the inventors of the present invention have (Ti, Zr) CN as a second high-temperature strengthening layer in order to improve the chipping resistance of the hard coating layer of the coated cermet tool. Layer, that is, excellent heat resistance due to the inclusion of the Zr component, relatively high high-temperature strength due to the inclusion of the Ti component, and as schematically shown in FIG. 1A, Ti, Zr, carbon, Focusing on the (Ti, Zr) CN layer having a NaCl-type cubic crystal structure in which constituent atoms composed of nitrogen and nitrogen are present (FIG. 1 (b) shows a state cut along the (011) plane), As a result of research,
(A) A (Ti, Zr) CN layer (hereinafter referred to as a conventional (Ti, Zr) CN layer) which is a second high-temperature strengthened layer (hereinafter referred to as a conventional high-temperature strengthened layer) constituting a hard coating layer of a conventional coated cermet tool For example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 1~5%, ZrCl 4: 0.1~1%, CH 3 CN: 0.6~5%, N 2: 25~45%, H 2: remainder,
Reaction atmosphere temperature: 750-980 ° C.
Reaction atmosphere pressure: 2.7 to 13.5 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 20~30%, ZrCl 4: 0.5~4%, CH 3 CN: 5~10%, CH 4: 0.5~5%, N 2: 35~ 50%, H 2 : remaining,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 6-20 kPa,
In other words, in the reaction gas composition, TiCl 4 and CH 3 CN are relatively high and CH 4 gas is newly added to further increase the ambient temperature. When vapor deposition is performed under (reactive gas composition adjustment high temperature conditions), the (Ti, Zr) CN layer (hereinafter referred to as a modified (Ti, Zr) CN layer) formed under the resultant reaction gas composition adjustment high temperature conditions has a high temperature strength. Is further improved and has excellent mechanical impact resistance, the coated cermet tool in which the second layer of the hard coating layer is composed of the modified (Ti, Zr) CN layer is particularly suitable. The hard coating layer exhibits excellent chipping resistance even in high-speed intermittent cutting with severe mechanical impact, and exhibits excellent wear resistance over a long period of time.

(b)上記の従来被覆サーメット工具の硬質被覆層の第2層を構成する従来(Ti,Zr)CN層と上記(a)の改質(Ti,Zr)CN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2aには前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数:N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN:28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフを作成した場合、いずれの(Ti,Zr)CN層もΣ3に最高ピークが存在するが、前記従来(Ti,Zr)CN層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質(Ti,Zr)CN層は、図3に例示される通り、Σ3の分布割合が60〜80%のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するTiClおよびCHCNと、CHの含有量、さらに雰囲気反応温度によって変化すること。
(B) About the conventional (Ti, Zr) CN layer and the modified (Ti, Zr) CN layer of (a), which constitute the second layer of the hard coating layer of the conventional coated cermet tool,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the electron back Using a scattering diffraction image apparatus, the method of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface-polished surface in a predetermined region at an interval of 0.1 μm / step The tilt angle formed by the line (in FIG. 2a, when the tilt angle of the (001) plane is 0 degree and the tilt angle of the (011) plane is 45 degrees, the (001) plane of FIG. The inclination angle is 45 degrees, and the inclination angle of the (011) plane is 0 degree. All inclination angles of the crystal grains including these angles are measured. In this case, the crystal grains are , NaC as lattice points of the Ti, Zr, carbon, and the constituent atoms consisting of nitrogen present, respectively It has a crystal structure of the type cubic sharing based on the measurement inclination angle result obtained, at the interface of the crystal grains adjacent to each other, one of constituent atoms respectively between the crystal grains mutually the constituent atoms The distribution of lattice points (constituent atom shared lattice points) to be calculated is calculated , and the number of lattice points that do not share constituent atoms existing between the constituent atom shared lattice points: N (in this case, N is a NaCl-type cubic crystal) The distribution ratio of each constituent atom shared lattice point form (unit form) represented by ΣN + 1 determined for each structure is an even number of 2 or more, but N: 28 is the upper limit from the point of distribution frequency) , Σ3 to Σ29, the distribution ratio of each unit form as a percentage of the total distribution ratio of the whole unit form of Σ3 to Σ29, when creating a constituent atom shared lattice point distribution graph , any (Ti, Zr) CN layer is also the best for Σ3 In the conventional (Ti, Zr) CN layer, as shown in FIG. 4, the distribution ratio of Σ3 is 30% or less. On the other hand, the modified (Ti, Zr) CN layer, as illustrated in FIG. 3, shows a very high constituent atom sharing lattice distribution graph in which the distribution ratio of Σ3 is 60 to 80%. The ratio varies depending on the content of TiCl 4 and CH 3 CN constituting the reaction gas, CH 4 , and the atmospheric reaction temperature.

(c)上記の改質(Ti,Zr)CN層は、(Ti,Zr)CN自体が具備する高温強度と耐熱性に加えて、上記従来(Ti,Zr)CN層に比して一段と高い高温強度を有するので、これを硬質被覆層の第2層を構成する高温強化層(以下、改質高温強化層ともいう)として蒸着形成してなる被覆サーメット工具は、第4層の高温硬質層を構成するAl23層が具備するすぐれた高温硬さおよび耐熱性と相俟って、特に切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる、例えば切削速度が420m/minおよび440m/min(実施例記載)の高速断続切削加工に用いた場合や、さらに断続切削加工を高切り込みや高送りなどの重切削条件で行うのに用いた場合にも、同じく前記従来(Ti,Zr)CN層を蒸着形成してなる従来被覆サーメット工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The modified (Ti, Zr) CN layer is higher than the conventional (Ti, Zr) CN layer in addition to the high temperature strength and heat resistance of the (Ti, Zr) CN itself. Since it has high-temperature strength, the coated cermet tool formed by vapor deposition as a high-temperature reinforcing layer (hereinafter also referred to as a modified high-temperature reinforcing layer) constituting the second layer of the hard coating layer is the fourth high-temperature hard layer. Combined with the excellent high-temperature hardness and heat resistance of the Al 2 O 3 layer that constitutes, particularly, the cutting edge is subjected to repeated mechanical impacts at a very short pitch, for example, cutting speeds of 420 m / min and 440 m The conventional (Ti, Zr) is also used for high- speed intermittent cutting of / min (described in the examples) and when the intermittent cutting is performed under heavy cutting conditions such as high cutting and high feed. ) Evaporate CN layer That in comparison with the conventional coated cermet tool, it becomes to exhibit chipping resistance of the hard coating layer is more excellent.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)第1層として、いずれも化学蒸着形成された、TiN層およびTiCN層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.15)、
を満足する(Ti,Zr)CN層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(c)第3層として、化学蒸着形成されたTiCO層およびTiCNO層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成されたAl23層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる被覆サーメット工具において、
上記硬質被覆層のうちの第2層である高温強化層を、同じく化学蒸着形成され、組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.15)、を満足し、さらに、2.5〜15μmの平均層厚を有するが、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数:N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN:28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3の分布割合が前記単位形態全体の合計分布割合の60〜80%を占める構成原子共有格子点分布グラフを示す改質(Ti,Zr)CN層、
で構成してなる、高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) First adhesion formed by chemical vapor deposition, either TiN layer or TiCN layer, or a laminate of both layers, and having an average layer thickness of 0.1 to 1 μm. The bonding layer (b) is formed by chemical vapor deposition as the second layer,
Composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.15 in atomic ratio),
A high-temperature strengthening layer comprising a (Ti, Zr) CN layer satisfying the following conditions and having an average layer thickness of 2.5 to 15 μm:
(C) as a third layer, a second adhesion bonding layer comprising either a TiCO layer and a TiCNO layer formed by chemical vapor deposition, or a laminate of both layers, and having an average layer thickness of 0.1 to 1 μm;
(D) As the fourth layer, a high-temperature hard layer comprising an Al 2 O 3 layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
In the coated cermet tool formed with the hard coating layer composed of (a) to (d) above,
The high-temperature strengthening layer, which is the second layer of the hard coating layers, is also formed by chemical vapor deposition, and has the composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.00 in terms of atomic ratio). 15), and further having an average layer thickness of 2.5 to 15 μm,
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined region at an interval of 0.1 μm / step. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the surface-polished surface. It has a NaCl-type cubic crystal structure in which constituent atoms composed of Ti, Zr, carbon, and nitrogen exist, respectively, and based on the measured tilt angle obtained as a result, at the interface between crystal grains adjacent to each other, A lattice in which each constituent atom calculates a distribution of lattice points (constituent atom shared lattice points) that share one constituent atom among the crystal grains and does not share constituent atoms that exist between the constituent atom shared lattice points Number of points: N (in this case N is an even number of 2 or more due to the crystal structure of the NaCl type cubic crystal, but the constituent atomic shared lattice point form (unit form) represented by ΣN + 1 defined for each distribution frequency (N: 28 is the upper limit) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each unit form of Σ3 to Σ29 as a ratio of the total distribution ratio of the whole unit form of Σ3 to Σ29, Σ3 is calculated. A modified (Ti, Zr) CN layer showing a constituent atom shared lattice point distribution graph in which the highest peak exists and the distribution ratio of Σ3 accounts for 60 to 80% of the total distribution ratio of the whole unit form ;
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)第1密着接合層
第1密着接合層を構成するTiN層およびTiCN層は、工具基体および第2層である改質(Ti,Zr)CN層のいずれにも強固に密着接合し、よって硬質被覆層の工具基体に対する密着接合性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方密着接合性は1μmの平均層厚で十分に確保することができることから、その平均層厚を0.1〜1μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) First adhesion bonding layer The TiN layer and the TiCN layer constituting the first adhesion bonding layer are firmly bonded to both the tool base and the modified (Ti, Zr) CN layer as the second layer, Therefore, although it has the effect | action which contributes to the tight bondability improvement with respect to the tool base | substrate of a hard coating layer, if the average layer thickness is less than 0.1 micrometer, desired outstanding close bondability cannot be ensured, but close contact bondability Can be sufficiently secured with an average layer thickness of 1 μm, the average layer thickness was determined to be 0.1 to 1 μm.

(b)改質高温強化層
硬質被覆層の第2層である改質高温強化層を構成する改質(Ti,Zr)CN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するTiClおよびCHCNと、CHの含有量、さらに雰囲気反応温度を調整することによって60〜80%とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を80%を越えて高くすることは層形成上困難であることから、Σ3の分布割合を60〜80%と定めた。このように前記改質(Ti,Zr)CN層は、上記の通り(Ti,Zr)CN自体のもつ高高温強度と耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
また、上記改質(Ti,Zr)CN層におけるZr成分には、上記の通り、耐熱性を向上させ、切削時の高温雰囲気での軟化を抑制する作用があるが、その含有割合を示すX値が、Tiとの合量に占める原子比で、0.02未満では所望の耐熱性向上効果が得られず、一方そのX値が、同じく0.15を越えると高温強度に低下傾向が現れるようになることから、Zrの含有割合を示すX値を、0.02〜0.15と定めた。
(B) Modified high-temperature strengthened layer The distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph of the modified (Ti, Zr) CN layer constituting the modified high-temperature strengthened layer that is the second layer of the hard coating layer is as described above. As shown in FIG. 4, the TiCl 4 and CH 3 CN constituting the reaction gas, the content of CH 4 and the atmospheric reaction temperature can be adjusted to 60 to 80%. In this case, the distribution ratio of Σ3 is 60%. If the ratio is less than 1, it is not possible to ensure the excellent high-temperature strength improvement effect that does not cause chipping in the hard coating layer in the high-speed intermittent cutting process. Therefore, the higher the distribution ratio of Σ3, the better, but the distribution ratio of Σ3 Since it is difficult to form a layer exceeding 80%, the distribution ratio of Σ3 is set to 60 to 80%. As described above, the modified (Ti, Zr) CN layer has a further superior high-temperature strength in addition to the high-temperature strength and heat resistance of (Ti, Zr) CN itself as described above. If the average layer thickness is less than 2.5 μm, the desired excellent high-temperature strength improvement effect cannot be sufficiently provided to the hard coating layer. On the other hand, if the average layer thickness exceeds 15 μm, the thermoplasticity causes uneven wear. Since deformation tends to occur and wear accelerates, the average layer thickness is set to 2.5 to 15 μm.
Further, as described above, the Zr component in the modified (Ti, Zr) CN layer has an effect of improving heat resistance and suppressing softening in a high-temperature atmosphere during cutting. If the value is an atomic ratio occupying the total amount of Ti and less than 0.02, the desired heat resistance improvement effect cannot be obtained. On the other hand, if the X value exceeds 0.15, the high temperature strength tends to decrease. Therefore, the X value indicating the content ratio of Zr was determined to be 0.02 to 0.15.

(c)第2密着接合層
第2密着接合層を構成するTiCO層およびTiCNO層は、第2層である改質(Ti,Zr)CN層および高温硬質層であるAl23層のいずれにも強固に密着接合し、よって硬質被覆層の工具基体に対する密着接合性向上に寄与する作用をもつが、その平均層厚が0.1μm未満では、所望のすぐれた密着接合性を確保することができず、一方密着接合性は1μmの平均層厚で十分に確保することができることから、その平均層厚を0.1〜1μmと定めた。
(C) Second adhesion bonding layer The TiCO layer and the TiCNO layer constituting the second adhesion bonding layer are either a modified (Ti, Zr) CN layer that is a second layer or an Al 2 O 3 layer that is a high-temperature hard layer. In addition, it has an effect of improving the tight bondability of the hard coating layer to the tool substrate, and if the average layer thickness is less than 0.1 μm, the desired excellent close bondability is ensured. On the other hand, since the tight adhesion can be sufficiently secured with an average layer thickness of 1 μm, the average layer thickness was determined to be 0.1 to 1 μm.

(d)高温硬質層
高温硬質層を構成するAl23層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(D) High-temperature hard layer The Al 2 O 3 layer constituting the high-temperature hard layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer, but the average layer thickness is less than 1 μm. In this case, the hard coating layer cannot exhibit sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. It was determined to be 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高い鋼や鋳鉄などの高速断続切削でも、硬質被覆層の第2層である改質(Ti,Zr)CN層(改質高温強化層)が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って示すものである。   The coated cermet tool of the present invention is a modified (Ti, Zr) CN layer (modified high-temperature strengthened layer) that is the second layer of the hard coating layer even in high-speed intermittent cutting such as steel and cast iron with extremely high mechanical and thermal shock. However, it has excellent high-temperature strength and exhibits excellent chipping resistance, and thus exhibits excellent wear resistance over a long period of time without occurrence of chipping in the hard coating layer.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、まず、TiN層およびTiCN層のいずれか、または両方の積層からなる第1密着接合層を表3に示される条件で、表5に示される目標層厚で蒸着形成した後、改質(Ti,Zr)CN層(改質高温強化層)を表4に示される条件で、表5に示される目標層厚で蒸着形成し、ついで、TiCO層およびTiCNO層のいずれか、または両方の積層からなる第2密着接合層を表3に示される条件で、表5に示される目標層厚で蒸着形成し、引き続いてAl23層(高温硬質層)を同じく表3に示される条件で、表5に示される目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and first, a first adhesive bonding layer made of either a TiN layer or a TiCN layer, or a laminate of both. Are formed under the conditions shown in Table 3 with the target layer thickness shown in Table 5, and then the modified (Ti, Zr) CN layer (modified high-temperature strengthened layer) is formed under the conditions shown in Table 4. Then, a second adhesion bonding layer composed of one or both of a TiCO layer and a TiCNO layer is formed under the conditions shown in Table 3, and the target layer thickness shown in Table 5 is formed. Then, the coated cermet tools 1 to 13 of the present invention are formed by vapor-depositing the Al 2 O 3 layer (high-temperature hard layer) with the target layer thickness shown in Table 5 under the same conditions as shown in Table 3. Each was manufactured.

また、比較の目的で、表6に示される通り、硬質被覆層の第2層を、表4に示される条件で、かつ表6に示される目標層厚で蒸着形成した従来(Ti,Zr)CN層とする以外は同一の条件で、第1密着接合層および第2密着接合層、さらにAl23層(高温硬質層)を蒸着形成することにより従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, a conventional hard coating layer (Ti, Zr) in which the second layer of the hard coating layer is formed by vapor deposition under the conditions shown in Table 4 and with the target layer thicknesses shown in Table 6. Conventionally coated cermet tools 1 to 13 are manufactured by vapor-depositing a first adhesive bonding layer, a second adhesive bonding layer, and an Al 2 O 3 layer (high-temperature hard layer) under the same conditions except for the CN layer. did.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質(Ti,Zr)CN層および従来(Ti,Zr)CN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数:N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN:28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合を求めることにより作成した。
Subsequently, the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool are examined using a field emission scanning electron microscope. Each component atom shared lattice distribution graph was created.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the modified (Ti, Zr) CN layer and the conventional (Ti, Zr) CN layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the surface polished surface. Using a backscatter diffraction image apparatus, a (001) plane and a (011) plane that are crystal planes of the crystal grains with respect to the normal line of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step. The inclination angle formed by the normal of the surface is measured, and based on the measurement inclination angle obtained as a result, each of the constituent atoms is one constituent atom between the crystal grains at the interface between adjacent crystal grains. Shared lattice points (constituent atom shared lattice points Calculates the distribution, the number of lattice points not sharing the constituent atom exist between the constituent atom covalent lattice point: N (in this case, N represents but an even number on more than one crystal structure of NaCl type cubic, Each distribution ratio of the constituent atom shared lattice point form (unit form) represented by ΣN + 1 determined for each distribution frequency (with N: 28 as the upper limit) is calculated, and each unit form of Σ3 to Σ29 is calculated. The distribution ratio was created by calculating the ratio of the total unit ratio of the above Σ3 to Σ29 .

この結果得られた各種の改質(Ti,Zr)CN層および従来(Ti,Zr)CN層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合を表7に示した。   In the constituent atomic shared lattice distribution graphs of the various modified (Ti, Zr) CN layers and conventional (Ti, Zr) CN layers obtained as a result, the entire ΣN + 1 (N is all even numbers in the range of 2 to 28). Table 7 shows the distribution ratio of Σ3.

上記の各種の構成原子共有格子点分布グラフにおいて、表7に示される通り、本発明被覆サーメット工具の改質(Ti,Zr)CN層は、いずれもΣ3の占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来(Ti,Zr)CN層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図3は、本発明被覆サーメット工具1の改質(Ti,Zr)CN層の構成原子共有格子点分布グラフ、図4は、従来被覆サーメット工具1の従来(Ti,Zr)CN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Table 7, all of the modified (Ti, Zr) CN layers of the coated cermet tool of the present invention have a distribution ratio of 60 to 80% of Σ3. In contrast to a certain constituent atomic shared lattice distribution graph, the conventional (Ti, Zr) CN layer of the conventional coated cermet tool shows a constituent atomic shared lattice distribution graph in which the distribution ratio of Σ3 is 30% or less. It was a thing.
FIG. 3 is a graph showing the distribution of constituent atomic lattice points of the modified (Ti, Zr) CN layer of the coated cermet tool 1 of the present invention, and FIG. 4 is a graph of the conventional (Ti, Zr) CN layer of the conventional coated cermet tool 1. The constituent atom shared lattice point distribution graphs are respectively shown.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有することが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that both the former and the latter had substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) The average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SS330の長さ方向等間隔4本縦溝入り丸棒、
切削速度:440m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:10分、
の条件(切削条件A)での軟鋼の乾式高速断続切削試験(通常の切削速度は220m/min)、
被削材:JIS・SUS303の長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1.3mm、
送り:0.20mm/rev、
切削時間:10分、
の条件(切削条件B)でのステンレス鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S10Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:2.0mm、
送り:0.28mm/rev、
切削時間:10分、
の条件(切削条件C)での炭素鋼の乾式高速断続切削試験(通常の切削速度は220m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS / SS330 lengthwise equidistant 4 round bars with flutes,
Cutting speed: 440 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 220 m / min) of mild steel under the above conditions (cutting condition A),
Work material: JIS / SUS303 lengthwise equidistant four round grooved round bars,
Cutting speed: 420 m / min,
Cutting depth: 1.3 mm,
Feed: 0.20mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of stainless steel under the above conditions (cutting condition B) (normal cutting speed is 200 m / min),
Work material: JIS / S10C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 420 m / min,
Cutting depth: 2.0 mm
Feed: 0.28mm / rev,
Cutting time: 10 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 220 m / min) of carbon steel under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

Figure 0004518259
Figure 0004518259

表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の第2層構成が、Σ3の分布割合が60〜80%の構成原子共有格子点分布グラフを示す改質(Ti,Zr)CN層で構成され、機械的衝撃がきわめて高い各種鋼の高速断続切削でも、前記改質(Ti,Zr)CN層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の第2層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来(Ti,Zr)CN層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 to 7, all of the coated cermet tools 1 to 13 of the present invention are constituent atomic shared lattice point distribution graphs in which the second layer configuration of the hard coating layer is 60 to 80% of Σ3 distribution ratio. The modified (Ti, Zr) CN layer has excellent high-temperature strength even in high-speed intermittent cutting of various steels, which are composed of the modified (Ti, Zr) CN layer shown and have extremely high mechanical impact. Since it exhibits chipping resistance, the occurrence of chipping in the hard coating layer is remarkably suppressed and excellent wear resistance is exhibited, whereas the second layer of the hard coating layer has a Σ3 distribution ratio of 30% or less. In the conventional coated cermet tools 1 to 13 composed of the conventional (Ti, Zr) CN layer showing the constituent atomic shared lattice point distribution graph, the mechanical impact resistance of the hard coating layer is insufficient with high-speed intermittent cutting. To be hard It is clear that chipping occurs in the covering layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速断続切削でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has a hard coating layer not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed interrupted cutting that particularly requires high high-temperature strength. Because it shows excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. Is.

硬質被覆層の第2層を構成する(Ti,Zr)CN層が有するNaCl型立 方晶の結晶構造を示す模式図である。It is a schematic view showing the crystal structure of NaCl type elevational cubic crystal constituting the second layer of the hard coating layer (Ti, Zr) CN layer has. 硬質被覆層の第2層を構成する(Ti,Zr)CN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the (Ti, Zr) CN layer which comprises the 2nd layer of a hard coating layer. 本発明被覆サーメット工具1の硬質被覆層の第2層を構成する改質(Ti,Zr)CN層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified (Ti, Zr) CN layer constituting the second layer of the hard coating layer of the coated cermet tool 1 of the present invention. 従来被覆サーメット工具1の硬質被覆層の第2層を構成する従来(Ti,Zr)CN層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional (Ti, Zr) CN layer constituting the second layer of the hard coating layer of the conventional coated cermet tool 1.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)第1層として、化学蒸着形成された窒化チタン層および炭窒化チタン層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第1密着接合層、
(b)第2層として、化学蒸着形成され、
組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.15)、
を満足するTiとZrの複合炭窒化物層からなり、かつ2.5〜15μmの平均層厚を有する高温強化層、
(c)第3層として、化学蒸着形成された炭酸化チタン層および炭窒酸化チタン層のうちのいずれか、または両層の積層からなり、かつ0.1〜1μmの平均層厚を有する第2密着接合層、
(d)第4層として、化学蒸着形成された酸化アルミニウム層からなり、かつ1〜15μmの平均層厚を有する高温硬質層、
以上(a)〜(d)で構成された硬質被覆層を形成してなる表面被覆サーメット製切削工具において、
上記硬質被覆層のうちの第2層である高温強化層を、同じく化学蒸着形成され、組成式:(Ti1−XZr)CN(ただし、原子比で、Xは0.02〜0.15)、を満足し、さらに、2.5〜15μmの平均層厚を有するが、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Zr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数:N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN:28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3の分布割合が前記単位形態全体の合計分布割合の60〜80%を占める構成原子共有格子点分布グラフを示す炭窒化チタン層、
で構成したことを特徴とする高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As the first layer, a first adhesion having an average layer thickness of 0.1 to 1 μm, which is composed of any one of a titanium nitride layer and a titanium carbonitride layer formed by chemical vapor deposition, or a laminate of both layers. Bonding layer,
(B) The second layer is formed by chemical vapor deposition,
Composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.15 in atomic ratio),
A high-temperature strengthened layer comprising a composite carbonitride layer of Ti and Zr that satisfies the following conditions and having an average layer thickness of 2.5 to 15 μm;
(C) As the third layer, the first layer is composed of either a titanium carbonate layer formed by chemical vapor deposition or a titanium carbonitride oxide layer, or a laminate of both layers, and has an average layer thickness of 0.1 to 1 μm. 2 adhesive bonding layers,
(D) As the fourth layer, a high-temperature hard layer comprising an aluminum oxide layer formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm,
In the surface-coated cermet cutting tool formed by forming the hard coating layer composed of (a) to (d) above,
The high-temperature strengthening layer, which is the second layer of the hard coating layers, is also formed by chemical vapor deposition, and has the composition formula: (Ti 1-X Zr X ) CN (wherein X is 0.02 to 0.00 in terms of atomic ratio). 15), and further having an average layer thickness of 2.5 to 15 μm,
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined region at an interval of 0.1 μm / step. , The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface-polished surface is measured. It has a NaCl-type cubic crystal structure in which constituent atoms composed of Zr, carbon, and nitrogen are present, and the constituent atoms are formed at the interface between adjacent crystal grains based on the measured tilt angle. Calculate the distribution of lattice points that share one constituent atom between the crystal grains (constituent atom shared lattice points), and lattice points that do not share constituent atoms that exist between the constituent atom shared lattice points. Number: N (in this case N is an even number of 2 or more due to the crystal structure of the NaCl type cubic crystal, but the constituent atomic shared lattice point form (unit form) represented by ΣN + 1 defined for each distribution frequency (N: 28 is the upper limit) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each unit form of Σ3 to Σ29 as a ratio of the total distribution ratio of the whole unit form of Σ3 to Σ29, Σ3 is calculated. A titanium carbonitride layer showing a constituent atomic shared lattice distribution graph in which the highest peak exists and the distribution ratio of Σ3 accounts for 60 to 80% of the total distribution ratio of the whole unit form ;
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a high hard coating layer in high-speed intermittent cutting.
JP2005012798A 2004-11-09 2005-01-20 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting Active JP4518259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012798A JP4518259B2 (en) 2004-11-09 2005-01-20 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004324506 2004-11-09
JP2005012798A JP4518259B2 (en) 2004-11-09 2005-01-20 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2006159397A JP2006159397A (en) 2006-06-22
JP4518259B2 true JP4518259B2 (en) 2010-08-04

Family

ID=36661942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012798A Active JP4518259B2 (en) 2004-11-09 2005-01-20 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Country Status (1)

Country Link
JP (1) JP4518259B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023839B2 (en) * 2007-06-27 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP5023895B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023898B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023897B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5023896B2 (en) * 2007-08-31 2012-09-12 三菱マテリアル株式会社 Surface coated cutting tool
JP5309697B2 (en) * 2008-05-30 2013-10-09 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5309698B2 (en) * 2008-05-30 2013-10-09 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5402533B2 (en) * 2009-03-18 2014-01-29 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
KR101471257B1 (en) * 2012-12-27 2014-12-09 한국야금 주식회사 Multilayered thin layer for cutting tools and cutting tools comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009604A (en) * 1999-06-28 2001-01-16 Mitsubishi Materials Corp Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009604A (en) * 1999-06-28 2001-01-16 Mitsubishi Materials Corp Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting

Also Published As

Publication number Publication date
JP2006159397A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP5023839B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5023896B2 (en) Surface coated cutting tool
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP5023895B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP5088477B2 (en) Surface coated cutting tool
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP4474647B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4518259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3