JP5286930B2 - Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting - Google Patents

Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Download PDF

Info

Publication number
JP5286930B2
JP5286930B2 JP2008133009A JP2008133009A JP5286930B2 JP 5286930 B2 JP5286930 B2 JP 5286930B2 JP 2008133009 A JP2008133009 A JP 2008133009A JP 2008133009 A JP2008133009 A JP 2008133009A JP 5286930 B2 JP5286930 B2 JP 5286930B2
Authority
JP
Japan
Prior art keywords
layer
crystal
plane
constituent
lattice points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008133009A
Other languages
Japanese (ja)
Other versions
JP2009279693A (en
Inventor
満康 西山
惠滋 中村
尚志 本間
興平 冨田
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008133009A priority Critical patent/JP5286930B2/en
Publication of JP2009279693A publication Critical patent/JP2009279693A/en
Application granted granted Critical
Publication of JP5286930B2 publication Critical patent/JP5286930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた高温強度と層間付着強度を有し、高熱発生を伴うとともに、切刃部に対して高負荷が作用する各種鋼や鋳鉄などの高速重切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has a hard coating layer with high temperature strength and interlaminar adhesion strength, accompanied by high heat generation, and high-speed heavy cutting such as various steels and cast irons that are subject to high loads on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、Tiの炭化物層(以下、TiC層という)、窒化物層(以下、TiN層という)、炭酸化物層(以下、TiCO層という)、および炭窒酸化物層(以下、TiCNO層という)のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質炭窒化チタン層(以下、改質TiCN層という)からなる下部層、
(b)1〜15μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有するα型酸化アルミニウム層(以下、従来α型Al23層という)からなる上部層、
以上(a)および(b)で構成し、かつ、
上記(a)の下部層における改質TiCN層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める比率が60%以上である構成原子共有格子点分布グラフ、を示し、さらに、
上記(b)の従来α型Al23層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める比率が60%以上である構成原子共有格子点分布グラフ、
を示す被覆工具が知られており、この被覆工具を、高硬度鋼の高速断続切削に用いた場合、硬質被覆層がすぐれた耐チッピング性を示すことが知られている。
特開2006−297579号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. The hard coating layer formed by vapor deposition
(A) Ti carbide layer (hereinafter referred to as TiC layer), nitride layer (hereinafter referred to as TiN layer), carbonate layer (hereinafter referred to as TiCO layer), and carbonitride oxide, all formed by chemical vapor deposition Adhesive Ti compound layer comprising one or more of the layers (hereinafter referred to as TiCNO layer) and having a total average layer thickness of 0.1 to 5 μm, and a modification having an average layer thickness of 2.5 to 15 μm A lower layer composed of a titanium carbonitride layer (hereinafter referred to as a modified TiCN layer),
(B) An upper portion made of an α-type aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer hereinafter) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition. layer,
(A) and (b), and
The modified TiCN layer in the lower layer of (a) is
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (where the upper limit value of N is 28 due to the frequency), the highest peak exists in Σ3, and A constituent atom shared lattice point distribution graph in which the ratio of Σ3 to the entire ΣN + 1 is 60% or more,
The conventional α-type Al 2 O 3 layer of (b) above is
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains are corundum type in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the measured tilt angle obtained as a result of the hexagonal close-packed crystal structure, each of the constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even number of 2 or more, but distribution frequency When the upper limit of N from the point is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is included in the entire ΣN + 1 In the constituent atom shared lattice point distribution graph showing the proportion of distribution, the constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the ratio of Σ3 to the entire ΣN + 1 is 60% or more,
It is known that when this coated tool is used for high-speed intermittent cutting of high-hardness steel, the hard coating layer exhibits excellent chipping resistance.
JP 2006-297579 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、下部層は相対的に高温強度の高い改質TiCN層で、また、上部層は高温硬さ、耐熱性とともにすぐれた高温強度を有する従来α型Al23層で形成されているものの、特にこれを、各種鋼や鋳鉄などの、高熱発生を伴い切刃部に高負荷が作用する高速重切削に用いた場合には、上部層と下部層との層間付着強度が十分ではないために、層間剥離、チッピングを発生し易くなり、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. In the coated tool, the lower layer is a modified TiCN layer having a relatively high high-temperature strength, and the upper layer is a conventional α-type Al 2 O 3 layer having a high-temperature strength that is excellent in high-temperature hardness and heat resistance. However, especially when this is used for high-speed heavy cutting such as various steels and cast iron that generate high heat and a high load acts on the cutting edge, the interlayer adhesion strength between the upper and lower layers is sufficient. Therefore, delamination and chipping are likely to occur, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の層間付着強度の向上による耐チッピング性の改善をはかるべく、特にこれの上部層である従来α型Al23層、すなわち、図3にα型Al23の単位格子の原子配列が模式図(斜視図および横断面1〜9の平面図)で示される通り、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有するα型Al23層、の結晶粒界構造に着目し、鋭意研究を行った結果、次のような知見を得た。 In view of the above, the inventors of the present invention, in order to improve the chipping resistance by improving the interlaminar adhesion strength of the hard coating layer of the above-mentioned coated tool, in particular, the conventional α-type Al which is the upper layer thereof. 2 O 3 layer, that is, the atomic arrangement of the unit cell of α-type Al 2 O 3 in FIG. 3 is schematically shown (perspective view and plan view of cross sections 1 to 9). Focusing on the grain boundary structure of the α-type Al 2 O 3 layer having a corundum type hexagonal close-packed crystal structure in which each of the constituent atoms is present, as a result of earnest research, the following knowledge was obtained. .

上記の従来被覆工具の硬質被覆層の上部層を構成する従来α型Al23層は、例えば、前記改質炭窒化チタン層(改質TiCN層)の上に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件(従来条件という)で蒸着形成するが、
例えば、前記改質TiCN層を下部層とし、この上に、
反応ガス組成:容量%で、AlCl:0.5〜2%、CO:0.1〜2%、HCl:0.1〜1%、H2S:0.15〜0.4%、H2:残り、
反応雰囲気温度:930〜980℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち、上記の従来条件に比して反応ガス組成では、AlCl、COおよびHClの含有割合を相対的に低く、H2Sの含有割合を相対的に高く、かつ、雰囲気温度を相対的に低くした条件(以下、初期形成条件という)で10〜60分間蒸着形成し、
次いで、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の従来条件と同条件で上部層を蒸着形成すると、この結果形成したα型Al23層(以下、「改質α型Al23層」という)からなる上部層は、α型Al23層本来の具備するすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに、下部層との層間付着強度が一段と向上するため上部層と下部層間での層間剥離の発生を防止し得るようになり、その結果、すぐれた耐チッピング性を具備するようになること。
The conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coating tool is, for example, applied to a normal chemical vapor deposition apparatus on the modified titanium carbonitride layer (modified TiCN layer). And
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
Vapor deposition is performed under the conditions (referred to as conventional conditions)
For example, the modified TiCN layer is a lower layer, and on this,
Reaction gas composition: by volume%, AlCl 3: 0.5~2%, CO 2: 0.1~2%, HCl: 0.1~1%, H 2 S: 0.15~0.4%, H 2 : Remaining
Reaction atmosphere temperature: 930-980 ° C.,
Reaction atmosphere pressure: 3 to 5 kPa,
In the reaction gas composition, the content ratio of AlCl 3 , CO 2 and HCl is relatively low, the content ratio of H 2 S is relatively high, and the ambient temperature The film is formed by vapor deposition for 10 to 60 minutes under the condition of relatively low (hereinafter referred to as initial formation conditions)
Then
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
When the upper layer is formed by vapor deposition under the same conditions as the above-described conventional conditions, the upper layer is formed from the resulting α-type Al 2 O 3 layer (hereinafter referred to as “modified α-type Al 2 O 3 layer”). In addition to the excellent high-temperature hardness and heat resistance inherent to the α-type Al 2 O 3 layer, it has excellent high-temperature strength, and the interlayer adhesion strength with the lower layer is further improved, Generation of delamination between the lower layers can be prevented, and as a result, excellent chipping resistance can be provided.

なお、前記改質TiCN層は、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成することができるが、この改質TiCN層について、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、皮膜断面研磨面の測定範囲内に存在する面心立方晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、図1(a),(b)に示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、Σ3の分布割合(比率)は60%以上のきわめて高い構成原子共有格子点分布グラフを示すこと。
The modified TiCN layer is
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The modified TiCN layer can be formed under the following conditions using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 2 (a) and 2 (b). Each crystal grain having a face-centered cubic lattice existing within the measurement range is irradiated with an electron beam, and the (001) plane and (011) which are crystal planes of the crystal grain with respect to the normal line of the cross-section polished surface ) Plane normal angle (FIG. 2 (a) shows the case where the (001) plane tilt angle is 0 degree and the (011) plane tilt angle is 45 degrees out of the crystal plane (b) Shows the case where the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degrees. All tilt angles of the crystal grains including these angles are measured. In this case, as shown in FIGS. 1A and 1B, the crystal grains are composed of Ti, carbon, and nitrogen at lattice points. Each of the constituent atoms has the crystal structure at the interface between crystal grains adjacent to each other based on the measurement tilt angle obtained as a result. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between grains is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl-type surface) The constituent atomic shared lattice point form that exists is an even number of 2 or more on the crystal structure of the center cubic crystal is represented by ΣN + 1, and each ΣN + 1 is an entire ΣN + 1 (however, the upper limit value of N is 28 due to frequency) When a constituent atom shared lattice point distribution graph showing the distribution ratio occupied is created, the distribution ratio (ratio) of Σ3 should be an extremely high constituent atom shared lattice point distribution graph of 60% or more.

また、上記改質α型Al23層からなる上部層を、例えば、上記改質TiCN層上に直接蒸着形成した場合、上記改質TiCN層について測定した上記(001)面および(011)面の法線の測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間で前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であると定義し、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態を有する結晶粒界であって、かつ、上部層との界面に臨んで存在する下部層の結晶粒界(以下、下部層Σ3対応粒界という)の数と位置を測定し、
さらに、改質α型Al23層からなる上部層についても、上記と同様、電界放出型走査電子顕微鏡を用い、図4(a),(b)に概略説明図で例示される通り、皮膜断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角(図4(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間で前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であると定義し、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態を有する結晶粒界であって、かつ、下部層との界面に臨んで存在する結晶粒界(以下、上部層Σ3対応粒界という)の数と位置を測定した時、
下部層と上部層との界面で、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成されている結晶粒界構造を有し(図5(a)参照)、上部層と下部層の層間付着強度が著しく向上すること。
In addition, when the upper layer composed of the modified α-type Al 2 O 3 layer is directly deposited on, for example, the modified TiCN layer, the (001) plane and (011) measured for the modified TiCN layer. In the case where the angle between the normal lines of the (001) plane and the normal lines of the (011) plane intersects each other between two adjacent crystal grains based on the measured inclination angle of the plane normal line It is defined as a boundary, and is formed between lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains. A crystal grain boundary having a configuration of shared atomic lattice points in which two lattice points that do not share atoms exist, and a lower grain boundary (hereinafter referred to as a lower layer Σ3) that faces the interface with the upper layer The number and position of the corresponding grain boundaries)
Further, for the upper layer composed of the modified α-type Al 2 O 3 layer, similarly to the above, using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 4 (a) and 4 (b), An electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the film cross-section polished surface, and is a crystal plane of the crystal grain with respect to the normal of the cross-section polished surface (0001) The tilt angle formed by the normal of the plane and the (10-10) plane (FIG. 4A shows the case where the tilt angle of the crystal plane is 0 degree, and FIG. 4B shows the case where the tilt angle is 45 degrees. However, in this case, the crystal grains are corundum type hexagonal close-packed in which constituent atoms composed of Al and oxygen are present at lattice points, respectively. Based on the measured tilt angle obtained as a result. A case where the angle between the normal lines of the (0001) planes and the normal lines of the (10-10) planes intersects each other is defined as a crystal grain boundary, and is adjacent to each other. Constituent atoms in which there are two lattice points that do not share constituent atoms between lattice points where each of the constituent atoms shares one constituent atom between the crystal grains (constituent atomic shared lattice points) at the crystal grain interface When the number and position of crystal grain boundaries having a shared lattice point form and existing at the interface with the lower layer (hereinafter referred to as upper layer Σ3 grain boundaries) are measured,
At the interface between the lower layer and the upper layer, 30% to 70% of the grain boundary corresponding to the lower layer Σ3 existing at the interface with the upper layer corresponds to the upper layer Σ3. It has a grain boundary structure in which the grain boundaries are formed as continuous grain boundaries (see FIG. 5A), and the interlayer adhesion strength between the upper layer and the lower layer is remarkably improved.

また、上記改質α型Al23層からなる上部層を、上記改質TiCN層上に直接蒸着形成するのではなく、改質TiCN層上に、Tiの炭窒化物層(TiCN層)、炭酸化物層(TiCO層)および炭窒酸化物層(TiCNO層)のうちの少なくとも1層からなるTi化合物層の薄層(好ましくは、0.05〜0.3μmの合計層厚)を通常の蒸着条件で蒸着形成した後、この薄層を介してこの上にさらに、改質α型Al23層からなる上部層を蒸着形成した場合でも、上記改質TiCN層上に形成されるTiCN層、TiCO層、TiCNO層からなるTi化合物層の薄層のいずれもが、いわゆるエピタキシャル成長し、上記改質TiCN層の結晶粒界構造を引き継ぎ、TiCN層、TiCO層、TiCNO層には、上記改質TiCN層のそれと同様な結晶粒界構造が形成される。
したがって、上記改質TiCN層上に直接上部層を蒸着形成するのではなく、改質TiCN層表面に上記TiCN層、TiCO層、TiCNO層のいずれか一層以上からなるTi化合物層の薄層を蒸着形成し、この薄層を介して上部層を蒸着形成した場合であっても、下部層と上部層との界面で、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成される場合には、下部層と上部層の層間付着強度が向上するため下部層と上部層間での層間剥離の発生を防止し得るようになり、その結果、すぐれた耐チッピング性を発揮するようになること。
Further, the upper layer composed of the modified α-type Al 2 O 3 layer is not directly deposited on the modified TiCN layer, but a Ti carbonitride layer (TiCN layer) on the modified TiCN layer. A thin layer (preferably, a total layer thickness of 0.05 to 0.3 μm) of a Ti compound layer composed of at least one of a carbon oxide layer (TiCO layer) and a carbonitride oxide layer (TiCNO layer) is usually used. Even when an upper layer composed of a modified α-type Al 2 O 3 layer is further formed on the thin layer via vapor deposition under the following vapor deposition conditions, it is formed on the modified TiCN layer. All of the thin layers of the Ti compound layer composed of the TiCN layer, the TiCO layer, and the TiCNO layer are so-called epitaxially grown and take over the grain boundary structure of the modified TiCN layer, and the TiCN layer, the TiCO layer, and the TiCNO layer have the above-mentioned Of modified TiCN layer A similar grain boundary structure is formed.
Therefore, instead of directly depositing the upper layer on the modified TiCN layer, a thin Ti compound layer composed of one or more of the TiCN layer, TiCO layer, and TiCNO layer is deposited on the surface of the modified TiCN layer. Even when the upper layer is formed by vapor deposition through this thin layer, the grain boundary of the lower layer Σ3 corresponding to the interface between the lower layer and the upper layer and facing the interface with the upper layer When the upper layer Σ3 corresponding grain boundary is formed as a continuous grain boundary with respect to the lower layer Σ3 corresponding grain boundary of 30 to 70%, the interlayer adhesion strength between the lower layer and the upper layer is improved. Generation of delamination between the lower layer and the upper layer can be prevented, and as a result, excellent chipping resistance can be exhibited.

また、下部層と上部層との界面から、少なくとも基体表面側に1μmまでの深さ領域にわたる下部層について、個々のΣN+1(ただし、頻度の関係でNの上限値を28とする)がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、上記領域におけるΣ3のΣN+1全体に占める比率が60%以上である場合(請求項2に対応)には、下部層のΣ3比率が高い結果として、上部層Σ3対応粒界に連続する下部層Σ3対応粒界の絶対数が増加し、これによって、下部層自体の高温強度が向上することに加えて、層間付着強度もさらに向上し、より一段とすぐれた耐チッピング性を発揮するようになること。   In addition, for each lower layer extending from the interface between the lower layer and the upper layer to a depth region of at least 1 μm on the substrate surface side, each ΣN + 1 (however, the upper limit value of N is set to 28 due to the frequency) is the entire ΣN + 1 When the constituent atomic shared lattice point distribution graph showing the distribution ratio in the region is created, when the ratio of Σ3 in the above region to the entire ΣN + 1 is 60% or more (corresponding to claim 2), the Σ3 ratio in the lower layer As a result, the absolute number of grain boundaries corresponding to the lower layer Σ3, which is continuous with the upper layer Σ3 corresponding grain boundary, increases, thereby improving the high temperature strength of the lower layer itself and further improving the interlayer adhesion strength. In addition, the chipping resistance is even better.

さらにまた、改質α型酸化アルミニウム層からなる上部層について、個々のΣN+1(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、上部層におけるΣ3のΣN+1全体に占める比率が60%以上である場合(請求項3に対応)には、上部層と下部層の層間付着強度が向上することに加え、上部層自体の高温強度が向上するため、より一段とすぐれた耐チッピング性を発揮するようになること。   Furthermore, with respect to the upper layer made of the modified α-type aluminum oxide layer, each ΣN + 1 (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N in terms of distribution frequency) Is 28, the even number of 4, 8, 14, 24 and 26 does not exist), and when the constituent atomic shared lattice point distribution graph showing the distribution ratio of the entire ΣN + 1 is created, the entire ΣN + 1 of Σ3 in the upper layer When the ratio of the upper layer and the lower layer is 60% or more (corresponding to claim 3), in addition to improving the adhesion strength between the upper layer and the lower layer, the high temperature strength of the upper layer itself is improved. It will show the chipping resistance.

上記のとおり、硬質被覆層が、少なくとも改質TiCN層を含むTi化合物層からなる下部層、改質α型Al23層からなる上部層で構成され、改質α型Al23層のΣ3対応粒界が、上部層との界面に臨んで存在する前記下部層の下部層Σ3対応粒界の30〜70%の割合の下部層Σ3対応粒界に対して、連続する結晶粒界として構成されている被覆工具は、層間付着強度が向上し、また、すぐれた高温強度を具備することから、高温下で特に大きな機械的負荷が切刃部にかかる各種鋼や鋳鉄などの高速重切削加工でも、層間剥離を生じることもなく前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。 As described above, the hard coating layer, the lower layer comprising a Ti compound layer containing at least reformed TiCN layer is composed of an upper layer made of modified α type the Al 2 O 3 layer, reforming α type the Al 2 O 3 layer The grain boundaries corresponding to the lower layer Σ3 corresponding to the lower layer Σ3 corresponding to the lower layer Σ3 corresponding to the lower layer Σ3 existing at the interface with the upper layer are continuous grain boundaries. The coated tool is designed to improve the interlaminar adhesion strength and has excellent high-temperature strength. Therefore, high-speed heavy loads such as various steels and cast iron, which have a particularly large mechanical load on the cutting edge at high temperatures. Even in cutting, the hard coating layer exhibits excellent chipping resistance without causing delamination, and exhibits excellent wear resistance over a long period of time.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)少なくとも2〜15μmの平均層厚を有する改質炭窒化チタン層を含む、化学蒸着形成されたTi化合物層からなる下部層、
(b)1〜15μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する改質α型酸化アルミニウム層からなる上部層、
上記(a)、(b)からなる硬質被覆層を形成した表面被覆切削工具において、
上記(a)の下部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する面心立方晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、NaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士および(011)面の法線同士の交わる角度を求め、前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態をΣ3で表し、上部層との界面に臨んで存在する下部層Σ3対応粒界の数と位置を測定し、
さらに、上記(b)の上部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士および(10−10)面の法線同士の交わる角度を求め、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態をΣ3で表し、下部層との界面に臨んで存在する上部層Σ3対応結晶粒界の数と位置を測定した場合に、
下部層と上部層との界面で、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成されていることを特徴とする表面被覆切削工具。
(2) 下部層と上部層との界面から、少なくとも基体表面側に1μmまでの深さ領域にわたる下部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する面心立方晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、NaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士および(011)面の法線同士の交わる角度を求め、前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、頻度の点からNの上限を28とする)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める比率を求めた場合、上記領域におけるΣ3のΣN+1全体に占める比率は60%以上である前記(1)に記載の表面被覆切削工具。
(3) 上部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士および(10−10)面の法線同士の交わる角度を求め、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める比率を求めた場合、上部層におけるΣ3のΣN+1全体に占める比率は60%以上である前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) a lower layer composed of a chemical vapor deposited Ti compound layer comprising a modified titanium carbonitride layer having an average layer thickness of at least 2 to 15 μm;
(B) an upper layer composed of a modified α-type aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed,
For the lower layer of (a) above, the cross-sectional polishing is performed by irradiating an electron beam to each crystal grain having a face-centered cubic lattice existing within the measurement range of the coated cross-sectional polished surface using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the plane normal line. In this case, the crystal grains are NaCl type face centered cubic crystals. Based on the measured tilt angle obtained as a result of the crystal structure, the angles at which the (001) plane normal lines and the (011) plane normal lines cross each other at the interface between adjacent crystal grains are obtained. When the angle between the normal lines of the (001) planes and the normal lines of the (011) planes is 2 degrees or more, the crystal grain boundary is used, and at the interface between the crystal grains adjacent to each other, Each atom is one constituent element between the grains. The distribution of lattice points (constituent atomic shared lattice points) that share the same is calculated, and the constituent atomic shared lattice point form in which there are two lattice points that do not share constituent atoms between the constituent atomic shared lattice points is represented by Σ3. Measure the number and position of grain boundaries corresponding to the lower layer Σ3 existing at the interface with the layer,
Further, with respect to the upper layer of the above (b), by using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the coated cross-section polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (0001) plane and (10-10) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the polished surface. And a corundum-type hexagonal close-packed crystal structure in which constituent atoms composed of oxygen and oxygen exist, respectively, and based on the measured tilt angle obtained as a result of this, the (0001) plane at the interface between adjacent crystal grains The angle at which the normal lines intersect with each other and the (10-10) plane normal lines intersect, and the angle between the (0001) plane normal lines and the (10-10) plane normal lines intersect is 2 degrees or more. Be a grain boundary, and A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains; When constitutive atomic shared lattice point form with two lattice points that do not share constituent atoms in between is represented by Σ3, and the number and position of the upper layer Σ3-corresponding grain boundaries existing facing the interface with the lower layer are measured In addition,
At the interface between the lower layer and the upper layer, 30% to 70% of the grain boundary corresponding to the lower layer Σ3 existing at the interface with the upper layer corresponds to the upper layer Σ3. A surface-coated cutting tool, wherein the grain boundaries are formed as continuous crystal grain boundaries.
(2) A surface existing within the measurement range of the coated cross-section polished surface, using a field emission scanning electron microscope, for the lower layer extending from the interface between the lower layer and the upper layer to a depth region of at least 1 μm on the substrate surface side Each crystal grain having a centered cubic lattice is irradiated with an electron beam, and the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, form the normal line of the cross-section polished surface. The tilt angle is measured. In this case, the crystal grains have a crystal structure of NaCl-type face-centered cubic crystal, and based on the measured tilt angle obtained as a result, (001) at the interface between adjacent crystal grains. ) Surface normals and (011) surface normals intersect each other, and the (001) surface normals and (011) surface normals intersect each other at an angle of 2 degrees or more. Are grain boundaries and are adjacent to each other The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface of the crystal grains is calculated, and the constituent atoms between the constituent atom shared lattice points are calculated. When the number of lattice points that do not share N (provided that the upper limit of N is 28 from the point of frequency) is represented by ΣN + 1, and the ratio of each ΣN + 1 to the entire ΣN + 1 is obtained, The surface-coated cutting tool according to (1), wherein the ratio of Σ3 to the entire ΣN + 1 in the region is 60% or more.
(3) For the upper layer, use a field emission scanning electron microscope to irradiate each crystal grain having a hexagonal crystal lattice existing within the measurement range of the film cross-section polished surface with The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured with respect to the lines. In this case, the crystal grains are composed of Al and oxygen at lattice points. Corundum type hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, the normals of (0001) planes at the interfaces between adjacent crystal grains and The angle at which the normals of the (10-10) plane intersect is determined, and the angle at which the normals of the (0001) plane and the (10-10) plane intersect each other is 2 degrees or more at the grain boundary. And then adjacent to each other The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface of the crystal grains is calculated, and the constituent atoms between the constituent atom shared lattice points are calculated. There are N lattice points that do not share (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8, 14 , 24 and 26 are not present.) When the existing configuration of the shared atomic lattice point is represented by ΣN + 1 and the ratio of each ΣN + 1 to the entire ΣN + 1 is determined, the ratio of Σ3 in the upper layer to the entire ΣN + 1 is 60. The surface-coated cutting tool according to (1) or (2), which is at least%. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、以下に詳細に説明する。   Next, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail below.

《下部層》
下部層を構成するTi化合物層として改質TiCN層は必須であるが、これ以外のTi化合物層としては、既によく知られているTiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層以上からなるTi化合物層を蒸着形成することができる。そして、上記TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層以上からなるTi化合物層は、改質TiCN層ばかりか、工具基体、上部層(改質α型Al23層)のいずれにも強固に密着し、もって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有する。
<Lower layer>
The modified TiCN layer is essential as the Ti compound layer constituting the lower layer, but other Ti compound layers include Ti carbide (TiC) layers, nitride (TiN) layers, carbon A Ti compound layer composed of one or more of a nitride (TiCN) layer, a carbon oxide (TiCO) layer, and a carbonitride oxide (TiCNO) layer can be formed by vapor deposition. The Ti compound layer composed of one or more of the TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer is not only a modified TiCN layer but also a tool substrate, an upper layer (modified α-type Al 2 O 3 layers) has a function of contributing to improvement in adhesion of the hard coating layer to the tool substrate.

下部層を構成する層として必須の層である改質TiCN層は、通常の化学蒸着装置で、例えば、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件で化学蒸着することにより形成することができ、この条件で形成された改質TiCN層には、特定の構成原子共有格子点形態を示すΣ3が高い比率で形成される。
The modified TiCN layer, which is an indispensable layer constituting the lower layer, is a normal chemical vapor deposition apparatus, for example,
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The modified TiCN layer formed under these conditions is formed with a high ratio of Σ3 indicating a specific constituent atom shared lattice point form.

下部層におけるΣ3の比率については、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、例えば、前記条件で蒸着形成された改質TiCN層の皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成することによって求めることができるが、この構成原子共有格子点分布グラフにおいて、上記改質TiCN層ではΣ3に最高ピークが存在し、しかも、Σ3の分布割合は60%以上のきわめて高い比率となっている。
なお、Σ3の比率は、化学蒸着時の反応ガス中のTiCl、CHCN、Ar含有量、さらに雰囲気反応温度を上記の通り調整することによって60%以上とすることができるが、鋼や鋳鉄などの高速重切削加工で、下部層自体にすぐれた高温強度を付与するためには、Σ3の比率は60%以上であることが望ましい。
Regarding the ratio of Σ3 in the lower layer, for example, a modified TiCN layer formed by vapor deposition under the above-mentioned conditions as illustrated in FIGS. 2 (a) and 2 (b) using a field emission scanning electron microscope. The crystal grains existing within the measurement range of the cross-section polished surface of the film are irradiated with an electron beam, and the (001) plane and (011) which are crystal planes of the crystal grains with respect to the normal line of the cross-sectional polished plane The tilt angle formed by the normal of the surface (FIG. 2 (a) shows that the (001) plane tilt angle is 0 degree and the (011) plane tilt angle is 45 degrees among the crystal planes shown in FIG. Shows the case where the inclination angle of the (001) plane is 45 degrees and the inclination angle of the (011) plane is 0 degree, and all inclination angles of the individual crystal grains including these angles are measured, In this case, the crystal grains each have a constituent atom composed of Ti, carbon, and nitrogen at the lattice points as described above. Based on the measured tilt angle obtained as a result of this, the structure of each of the constituent atoms is 1 between the crystal grains at the interface between adjacent crystal grains. The distribution of lattice points that share two constituent atoms (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl-type face-centered cubic crystal) An existing constituent atom shared lattice point form is represented by ΣN + 1, and the distribution ratio of each ΣN + 1 to the whole ΣN + 1 (however, the upper limit value of N is 28 in terms of frequency) is shown. It can be obtained by creating a constituent atom shared lattice point distribution graph. In this constituent atom shared lattice point distribution graph, in the modified TiCN layer, the highest peak exists in Σ3, and the distribution ratio of Σ3 is 6 It is a very high ratio of 0% or more.
The ratio of Σ3 can be set to 60% or more by adjusting the TiCl 4 , CH 3 CN, Ar content in the reaction gas during chemical vapor deposition, and the atmospheric reaction temperature as described above. In order to impart excellent high temperature strength to the lower layer itself by high speed heavy cutting such as cast iron, the ratio of Σ3 is desirably 60% or more.

また、上部層の改質α型Al23層との界面に臨んで上記改質TiCN層が存在する場合、上部層との界面に臨んで存在する下部層Σ3対応粒界については、上部層との界面近傍、例えば、下部層と上部層との界面から、少なくとも基体表面側に1μmまでの深さ領域にわたる改質TiCN層、を皮膜断面研磨面とし、その領域内に存在する結晶粒個々に電子線を照射し、構成原子共有格子点形態を求めることにより、上部層との界面に臨んで存在する下部層Σ3対応粒界の数および位置を測定することができ、この上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成されている場合に、上部層と下部層間ですぐれた層間付着強度が得られる。 Further, when the modified TiCN layer exists facing the interface with the modified α-type Al 2 O 3 layer of the upper layer, the grain boundary corresponding to the lower layer Σ3 existing facing the interface with the upper layer is A modified TiCN layer extending over a depth region of up to 1 μm from the interface between the lower layer and the upper layer to at least the substrate surface side from the interface between the lower layer and the upper layer is used as the film cross-section polished surface, and the crystal grains existing in that region By individually irradiating an electron beam and determining the configuration of the constituent atomic shared lattice points, the number and positions of grain boundaries corresponding to the lower layer Σ3 existing at the interface with the upper layer can be measured. The grain boundary corresponding to the upper layer Σ3 is formed as a continuous grain boundary with respect to the grain boundary corresponding to the lower layer Σ3 of the proportion corresponding to the lower layer Σ3 existing at the interface of the lower layer Σ3. In some cases, good interlayer adhesion strength between upper and lower layers Is obtained.

また、Σ3対応粒界の比率が60%以上である上記改質TiCN層の上に、層厚の薄い(好ましくは、0.05〜0.3μmの合計層厚)Ti化合物層としてTiCN層、TiCO層、TiCNO層のうちの少なくとも一層が通常条件で蒸着形成され、上部層に隣接して該TiCN層、TiCO層、TiCNO層のいずれかが存在する下部層構造においても、上記TiCN層、TiCO層、TiCNO層は上記改質TiCN層のΣ3対応粒界構造を引き継いでいるため、上記TiCN層、TiCO層、TiCNO層のΣ3対応粒界の比率も60%以上となり、また、上部層との界面に臨んで存在する上記TiCN層、TiCO層、TiCNO層の下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界が、上部層Σ3対応粒界と連続する結晶粒界を形成する場合には、下部層と上部層間ですぐれた層間付着強度が確保される。   Further, a TiCN layer as a Ti compound layer having a thin layer thickness (preferably, a total layer thickness of 0.05 to 0.3 μm) is formed on the modified TiCN layer having a ratio of Σ3 corresponding grain boundaries of 60% or more, Even in the lower layer structure in which at least one of the TiCO layer and the TiCNO layer is formed by vapor deposition under normal conditions and any one of the TiCN layer, the TiCO layer, and the TiCNO layer exists adjacent to the upper layer, the TiCN layer, the TiCO layer, Since the layer and the TiCNO layer inherit the Σ3-compatible grain boundary structure of the modified TiCN layer, the ratio of the Σ3-compatible grain boundary of the TiCN layer, TiCO layer, and TiCNO layer is 60% or more, and Grain boundaries corresponding to the lower layer Σ3 corresponding to the lower layer Σ3 corresponding to the lower layer Σ3 of the TiCN layer, TiCO layer, and TiCNO layer existing facing the interface are connected to the upper layer Σ3 corresponding grain boundary. When forming the grain boundaries, an inter-layer adhesion strength was excellent in the lower layer and the upper layers is ensured.

改質TiCN層は、従来のTiCN層のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するが、その平均層厚が2μm未満ではΣ3対応粒界を充分形成することができないため、所望のすぐれた高温強度向上効果を期待することはできず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜15μmと定めた。
また、改質TiCN層とその他のTi化合物層から構成される下部層の合計平均層厚は、その層厚が3μm未満では、所定の耐摩耗性を確保することができず、一方、合計平均層が20μmを超えると、急激に耐チッピング性が低下するようになることから、下部層の合計平均層厚は3μm以上20μm以下とすることが望ましい。
The modified TiCN layer has an even higher temperature strength in addition to the high temperature hardness and high temperature strength of the conventional TiCN layer. However, if the average layer thickness is less than 2 μm, a Σ3-compatible grain boundary cannot be sufficiently formed. Therefore, it is not possible to expect the desired excellent high-temperature strength improvement effect. On the other hand, when the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear is accelerated. Therefore, the average layer thickness was set to 2 to 15 μm.
Further, the total average layer thickness of the lower layer composed of the modified TiCN layer and the other Ti compound layer is not able to ensure the predetermined wear resistance when the layer thickness is less than 3 μm, while the total average When the layer exceeds 20 μm, the chipping resistance suddenly deteriorates. Therefore, the total average layer thickness of the lower layer is preferably 3 μm or more and 20 μm or less.

《上部層》
上部層の改質α型Al23層は、少なくとも改質TiCN層を含むTi化合物層からなる下部層の上に、
(a)まず、
反応ガス組成:容量%で、AlCl:0.5〜2%、CO:0.1〜2%、HCl:0.1〜1%、H2S:0.15〜0.4%、H2:残り、
反応雰囲気温度:930〜980℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち、従来条件に比して反応ガス組成では、AlCl、CO、およびHClの含有割合を相対的に低く、H2Sの含有割合を相対的に高く、かつ、雰囲気温度を相対的に低くした条件(初期形成条件)で10〜60分間蒸着形成し、
(b)次いで、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件で蒸着することにより形成することができ、この改質α型Al23層は、α型Al23層本来の具備するすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに、層間付着強度が一段と向上し、その結果、すぐれた耐チッピング性を具備するようになる。
そして、電界放出型走査電子顕微鏡を用いた測定によれば、上部層と下部層間での層間付着強度の向上は、上部層(改質α型Al23層)と下部層との界面で形成されるΣ3対応粒界の結晶粒界構造の連続性によってもたらされ、上部層Σ3対応粒界が、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界と連続する結晶粒界を形成していない場合には、層間付着強度の向上を確保することができず(30%未満の場合)、あるいは、下部層と上部層のそれぞれの層における残留応力のギャップが大きくなりすぎて、層間付着強度が低下傾向を示す(70%を超える場合)ようになる
《Upper layer》
The modified α-type Al 2 O 3 layer of the upper layer is formed on the lower layer composed of a Ti compound layer including at least the modified TiCN layer.
(A) First,
Reaction gas composition: by volume%, AlCl 3: 0.5~2%, CO 2: 0.1~2%, HCl: 0.1~1%, H 2 S: 0.15~0.4%, H 2 : Remaining
Reaction atmosphere temperature: 930-980 ° C.,
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, the reaction gas composition has a relatively low content of AlCl 3 , CO 2 , and HCl, a relatively high content of H 2 S, and an ambient temperature of Vapor deposition for 10-60 minutes under relatively low conditions (initial formation conditions)
(B) Then
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
The modified α-type Al 2 O 3 layer is excellent in addition to the excellent high-temperature hardness and heat resistance inherent in the α-type Al 2 O 3 layer. It has high-temperature strength and further improved interlayer adhesion strength. As a result, it has excellent chipping resistance.
According to the measurement using a field emission scanning electron microscope, the improvement in the interlayer adhesion strength between the upper layer and the lower layer was observed at the interface between the upper layer (modified α-type Al 2 O 3 layer) and the lower layer. It is brought about by the continuity of the grain boundary structure of the formed Σ3 corresponding grain boundary, and the upper layer Σ3 corresponding grain boundary is 30 to 70 of the lower layer Σ3 corresponding grain boundary existing facing the interface with the upper layer. %, If the grain boundary continuous with the lower layer Σ3 corresponding grain boundary is not formed, the improvement of the interlaminar adhesion strength cannot be ensured (if less than 30%), or the lower layer The residual stress gap in each of the upper layers becomes too large, and the interlayer adhesion strength tends to decrease (when it exceeds 70%).

例えば、改質α型Al23層(上部層)に隣接して存在する下部層(改質TiCN層、これ以外のTi化合物層)について、既に述べたように、電界放出型走査電子顕微鏡を用いた測定により、上部層との界面に臨んで存在する下部層Σ3対応粒界の数と位置を特定する。
次に、改質α型Al23層について、電界放出型走査電子顕微鏡を用い、図4(a),(b)に概略説明図で例示される通り、皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角(図4(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であると定義し、相互に隣接する結晶粒界で、構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を求め、構成原子共有格子点間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態をΣ3で表した場合、改質α型Al23層に形成されているΣ3の構成原子共有格子点形態を有する結晶粒界であって、かつ、下部層との界面に臨んで存在する結晶粒界(上部層Σ3対応粒界)の数と位置を求める。
そして、前記下部層について特定した前記下部層Σ3対応粒界の位置と、上記改質α型Al23層について求めた上部層Σ3対応粒界の位置とをつき合わせ、上部層と下部層の界面で、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成している結晶粒界構造を備える場合(図5(a)参照)には、上部層はすぐれた高温硬さと耐熱性を有するばかりか、上部層(改質α型Al23層)と下部層との層間付着強度が著しく向上する。
しかし、上部層Σ3対応粒界と連続して形成されている下部層Σ3対応粒界が、全下部層Σ3対応粒界のうちの30%未満にすぎないような場合(図5(b)参照)、あるいは、70%を超えるような場合には、下部層と上部層での結晶粒界の連続性が少ないため、層間付着強度の向上を確保することができず、あるいは、下部層と上部層での結晶粒界の連続性が多すぎるために下部層と上部層のそれぞれの層における残留応力のギャップが大きくなりすぎて、層間付着強度が低下傾向を示すようになるため、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成していることが必要である。
For example, as described above, the field emission scanning electron microscope for the lower layer (modified TiCN layer, other Ti compound layer) existing adjacent to the modified α-type Al 2 O 3 layer (upper layer). The number and positions of the grain boundaries corresponding to the lower layer Σ3 existing at the interface with the upper layer are specified by measurement using.
Next, with respect to the modified α-type Al 2 O 3 layer, using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. Inclination made by irradiating an electron beam to each of the crystal grains present in the surface and normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, with respect to the normal line of the cross-section polished surface FIG. 4 (a) shows the case where the tilt angle of the crystal plane is 0 degree, and FIG. 4 (b) shows the case where the tilt angle is 45 degree. In this case, the crystal grains have a crystal structure of a corundum hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points as described above. Based on the measured tilt angles, the normals of the (0001) planes and the normal of the (10-10) planes A case where the angle at which the crossing angle is 2 degrees or more is defined as a crystal grain boundary, and at each crystal grain boundary adjacent to each other, each of the constituent atoms shares one constituent atom between the crystal grains ( The distribution of constituent atomic shared lattice points) is obtained, and when the constituent atomic shared lattice point form in which there are two lattice points that do not share constituent atoms between constituent atomic shared lattice points is represented by Σ3, the modified α-type Al 2 O The number of crystal grain boundaries (grain boundaries corresponding to the upper layer Σ3) existing in the boundary with the lower layer, which are crystal grain boundaries having a Σ3 constituting atomic shared lattice point form formed in three layers; Find the position.
Then, the position of the grain boundary corresponding to the lower layer Σ3 specified for the lower layer and the position of the grain boundary corresponding to the upper layer Σ3 obtained for the modified α-type Al 2 O 3 layer are put together, and the upper layer and the lower layer The grain boundary structure in which 30 to 70% of the grain boundaries corresponding to the lower layer Σ3 existing at the interface with the upper layer form a grain boundary continuous with the grain boundary corresponding to the upper layer Σ3. (See FIG. 5 (a)), the upper layer has not only excellent high-temperature hardness and heat resistance, but also the interlayer adhesion strength between the upper layer (modified α-type Al 2 O 3 layer) and the lower layer. Is significantly improved.
However, when the grain boundary corresponding to the lower layer Σ3 formed continuously with the grain boundary corresponding to the upper layer Σ3 is only less than 30% of the grain boundaries corresponding to the lower layer Σ3 (see FIG. 5B). ), Or in the case where it exceeds 70%, the continuity of the crystal grain boundary between the lower layer and the upper layer is small, so that the improvement of the interlayer adhesion strength cannot be ensured, or the lower layer and the upper layer Since there is too much continuity of grain boundaries in the layers, the gap between the residual stresses in the lower layer and the upper layer becomes too large, and the interlayer adhesion strength tends to decrease. It is necessary that 30 to 70% of the grain boundaries corresponding to the lower layer Σ3 existing facing the interface of the upper layer Σ3 form a crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3.

また、上記改質α型Al23層の耐チッピング性を更に高めるためには、上記改質α型Al23層のΣ3の比率(ΣN+1全体に占めるΣ3の割合)を60%以上とし、改質α型Al23層自体の高温強度の向上を図ることがさらに望ましい。 Further, in order to further improve the chipping resistance of the modified α-type Al 2 O 3 layer (the ratio of Σ3 to total .SIGMA.N + 1) ratio of Σ3 of the modified α type the Al 2 O 3 layer a 60% It is more desirable to improve the high temperature strength of the modified α-type Al 2 O 3 layer itself.

さらに、上記改質α型Al23層からなる上部層の平均層厚が1μm未満では、すぐれた高温硬さ、耐熱性とすぐれた層間付着強度を発揮することができず、一方、その平均層厚が15μmを越えると、高速重切削という厳しい切削条件下では、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。 Furthermore, when the average layer thickness of the upper layer composed of the modified α-type Al 2 O 3 layer is less than 1 μm, it cannot exhibit excellent high-temperature hardness, heat resistance and excellent interlayer adhesion strength, When the average layer thickness exceeds 15 μm, chipping tends to occur at the cutting edge portion under severe cutting conditions such as high-speed heavy cutting. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、硬質被覆層の最表面層として黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary as the outermost surface layer of the hard coating layer, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、高熱発生を伴うとともに、切刃部に高負荷がかかる各種鋼や鋳鉄などの高速重切削加工でも、硬質被覆層の下部層および上部層が、一段とすぐれた高温強度、層間付着強度を有することから、硬質被覆層に剥離、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   The coated tool of this invention is accompanied by high heat generation, and even in high-speed heavy cutting processes such as various steels and cast irons in which a high load is applied to the cutting edge, the lower layer and the upper layer of the hard coating layer are more excellent in high-temperature strength, Since it has an interlaminar adhesion strength, it exhibits excellent wear resistance over a long period of time without causing peeling or chipping to the hard coating layer.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で36時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.08mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the blending composition shown in Table 1, added with wax, ball milled in acetone for 36 hours, dried under reduced pressure, and pressed into a compact of a predetermined shape at a pressure of 98 MPa. Then, this green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.08 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで36時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.08mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 36 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.08 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層(a)〜(f)を、表6に示される組み合わせおよび目標層厚で蒸着形成し、ついで、上部層の改質α型Al23層(a)〜(f)を、表4に示される条件で、表6に示される組み合わせおよび目標層厚で蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, the lower layers (a) to (f) of the hard coating layer are formed on the surfaces of the tool bases A to F and the tool bases a to f using normal chemical vapor deposition equipment under the conditions shown in Table 3. Are formed by vapor deposition with the combinations and target layer thicknesses shown in Table 6, and then the modified α-type Al 2 O 3 layers (a) to (f) of the upper layer are formed under the conditions shown in Table 4. The coated tools 1 to 13 of the present invention were manufactured by vapor deposition with the combinations shown in FIG.

また、比較の目的で、上記の工具基体A〜Fおよび工具基体a〜fの表面に、同じく通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層(a)〜(f)を、表7に示される組み合わせかつ目標層厚で蒸着形成し、ついで、上部層の従来α型Al23層(a)〜(f)を、表5に示される条件で、同じく表7に示される組み合わせおよび目標層厚で蒸着形成することにより従来被覆工具1〜13をそれぞれ製造した。 For the purpose of comparison, the lower layer of the hard coating layer (a) is used on the surfaces of the tool bases A to F and the tool bases a to f using the same ordinary chemical vapor deposition apparatus under the conditions shown in Table 3. ) To (f) are formed by vapor deposition at the combinations and target layer thicknesses shown in Table 7, and then the conventional α-type Al 2 O 3 layers (a) to (f) as upper layers are subjected to the conditions shown in Table 5. Thus, the conventional coated tools 1 to 13 were manufactured by vapor deposition with the combinations and target layer thicknesses shown in Table 7, respectively.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層について、上部層に隣接して存在する改質TiCN層、その他のTi化合物層からなる下部層と、上部層を構成する改質α型Al23層および従来α型Al23層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフを作成し、各層におけるΣ3の比率を求めるとともに、下部層Σ3対応粒界および上部層Σ3対応粒界の数および位置を測定した。
すなわち、上記構成原子共有格子点分布グラフは、上部層に隣接して存在する改質TiCN層、その他のTi化合物層と、改質α型Al23層および従来α型Al23層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記断面研磨面の法線に対して、前記改質TiCN層、その他のTi化合物層については結晶粒の結晶面である(001)面および(011)面、前記改質α型Al23層および従来α型Al23層については、結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角をそれぞれ測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(この場合、前記改質TiCN層、その他のTi化合物層に関しては、NはNaCl型面心立方晶の結晶構造上2以上の偶数となり、一方前記改質α型Al23層および従来α型Al23層については、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在しないことになる)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める比率を求めることにより作成した。これらの値を、表6、7に示す。
次に、上部層との界面に臨んで存在する下部層Σ3対応粒界の数と位置については、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士および(011)面の法線同士の交わる角度を求め、この測定傾斜角に基づいて、前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとして、上部層との界面に臨んで存在する全ての下部層Σ3対応粒界の数と位置を求めた。
また、上部層Σ3対応粒界の数および位置については、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士および(10−10)面の法線同士の交わる角度を求め、この測定傾斜角に基づいて、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとして、下部層との界面に臨んで存在する全ての上部層Σ3対応粒界の数と位置を求めた。
そして、上記の通り求めた上部層との界面に臨んで存在する下部層Σ3対応粒界について、下部層との界面に臨んで存在する上部層Σ3対応粒界の位置と対応させ、上部層と下部層との界面において、上部層Σ3対応粒界と連続した結晶粒界を形成している下部層Σ3対応粒界の、全ての下部層Σ3対応粒界に占める割合を求めた。この値を表6、7に、Σ3対応粒界連続割合(%)として示す。
なお、下部層のΣ3比率は、下部層と上部層との界面から、基体表面側に1μmまでの深さ領域にわたって求めたΣ3の比率の平均値であり、上部層のΣ3比率は、上部層全体にわたって求めたΣ3の比率の平均値である。
Next, with respect to the hard coating layer of the above-described coated tool of the present invention and the conventional coated tool, a modified TiCN layer existing adjacent to the upper layer, a lower layer composed of other Ti compound layers, and a modified α constituting the upper layer For the Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer, using a field emission scanning electron microscope, a constituent atom sharing lattice distribution graph is created to obtain the ratio of Σ3 in each layer, and the lower layer Σ3 The number and position of corresponding grain boundaries and upper layer Σ3 corresponding grain boundaries were measured.
That is, the above-mentioned constituent atomic shared lattice point distribution graph shows that the modified TiCN layer, the other Ti compound layer, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer existing adjacent to the upper layer. In a state where the cross section of the electrode is a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA. Irradiate each individual crystal grain within the measurement range of the polished surface, and use an electron backscatter diffraction image apparatus to divide the 30 × 50 μm region at a spacing of 0.1 μm / step relative to the normal of the cross-section polished surface. For the modified TiCN layer and other Ti compound layers, the (001) plane and (011) plane, which are crystal planes of crystal grains, the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer. For the layer, the (0001) plane which is the crystal plane of the crystal grain And the inclination angle formed by the normal of the (10-10) plane, respectively, and based on the measurement inclination angle obtained as a result, each of the constituent atoms is the crystal grain at the interface between adjacent crystal grains. The distribution of lattice points that share one constituent atom among them (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (in this case, the modification Regarding the TiCN layer and other Ti compound layers, N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal, while the modified α type Al 2 O 3 layer and the conventional α type Al 2 O 3 layer are used. N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24, and 26 exist. Existing constituent atomic shared lattice points When representing the state in .SIGMA.N + 1, each .SIGMA.N + 1 is created by determining the ratio of total .SIGMA.N + 1. These values are shown in Tables 6 and 7.
Next, regarding the number and position of the grain boundaries corresponding to the lower layer Σ3 existing facing the interface with the upper layer, the normal lines of the (001) plane and the (011) plane at the interface between the adjacent crystal grains respectively. The angle at which the normals cross each other is obtained, and the case where the angle between the normals of the (001) plane and the normals of the (011) plane is 2 degrees or more is a grain boundary based on the measured inclination angle. As a result, the number and position of all grain boundaries corresponding to the lower layer Σ3 existing at the interface with the upper layer were obtained.
Further, for the number and position of the grain boundaries corresponding to the upper layer Σ3, the angles at which the normal lines of the (0001) plane and the normal lines of the (10-10) plane intersect each other at the interface between adjacent crystal grains are obtained, Based on this measured inclination angle, the interface with the lower layer is defined as a grain boundary when the angle between the normals of the (0001) planes and the normals of the (10-10) planes is 2 degrees or more. The number and position of all the upper layer Σ3-corresponding grain boundaries existing at
Then, the grain boundary corresponding to the lower layer Σ3 existing facing the interface with the upper layer determined as described above is made to correspond to the position of the grain boundary corresponding to the upper layer Σ3 existing facing the interface with the lower layer, At the interface with the lower layer, the ratio of the grain boundary corresponding to the lower layer Σ3 forming the crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3 to the total grain boundary corresponding to the lower layer Σ3 was determined. This value is shown in Tables 6 and 7 as Σ3 corresponding grain boundary continuous ratio (%).
Note that the Σ3 ratio of the lower layer is an average value of the ratio of Σ3 obtained over the depth region from the interface between the lower layer and the upper layer up to 1 μm on the substrate surface side, and the Σ3 ratio of the upper layer is the upper layer It is the average value of the ratio of Σ3 obtained throughout.

表6、7にそれぞれ示される通り、本発明被覆工具および従来被覆工具のいずれにおいても、下部層のΣ3比率は60%以上となっており、下部層はすぐれた高温強度を備える。
一方、同じく表6、7に示されるように、上部層Σ3対応粒界と連続した結晶粒界を形成している下部層Σ3対応粒界の、全ての下部層Σ3対応粒界に占める割合をあらわすΣ3対応粒界連続割合については、本発明被覆工具においては、30〜70%の範囲を示しており、その結果、すぐれた層間付着強度を有するのに対して、従来被覆工具においては、その値が30%未満の値となっているため層間付着強度は不満足なものとなっている。
As shown in Tables 6 and 7, respectively, in both the present coated tool and the conventional coated tool, the Σ3 ratio of the lower layer is 60% or more, and the lower layer has excellent high-temperature strength.
On the other hand, as also shown in Tables 6 and 7, the ratio of the grain boundary corresponding to the lower layer Σ3 forming the crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3 to the grain boundary corresponding to all the lower layers Σ3 The Σ3-corresponding grain boundary continuity expressed represents a range of 30 to 70% in the coated tool of the present invention. As a result, the conventional coated tool has an excellent interlayer adhesion strength. Since the value is less than 30%, the interlayer adhesion strength is unsatisfactory.

さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する層からなることが確認された。また、これらの被覆工具の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, regarding the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, the hard coating layer was observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer). As a result, it was confirmed that both the former and the latter consisted of layers having substantially the same composition as the target composition. Moreover, when the thickness of each constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness substantially the same as the target layer thickness ( Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および従来被覆工具1〜13について、
被削材:JIS・SS400の丸棒、
切削速度: 480 m/min、
切り込み: 4 mm、
送り: 0.8 mm/rev、
切削時間: 10 分、
の条件(切削条件A)での軟鋼の乾式高速連続高切込み・高送り切削試験(通常の切削速度、切り込みおよび送りは、それぞれ、300m/min、1.5mm、0.3mm/rev)、
被削材:JIS・SCr420Hの丸棒、
切削速度: 450 m/min、
切り込み: 1.5 mm、
送り: 0.6 mm/rev、
切削時間: 10 分、
の条件(切削条件B)での合金鋼の乾式高速高送り切削試験(通常の切削速度および送りは、それぞれ、280m/min、0.25mm/rev)、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 400 m/min、
切り込み: 1.5 mm、
送り: 0.6 mm/rev、
切削時間: 10 分、
の条件(切削条件C)での鋳鉄の湿式高速断続高送り切削試験(通常の切削速度および送りは、それぞれ、230m/min、0.3mm/rev)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, in the state where all of the above various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 13 and the conventional coated tools 1 to 13,
Work material: JIS / SS400 round bar,
Cutting speed: 480 m / min,
Cutting depth: 4 mm,
Feed: 0.8 mm / rev,
Cutting time: 10 minutes,
Dry high-speed continuous high cutting / high feed cutting test under normal conditions (cutting condition A) (normal cutting speed, cutting and feed are 300 m / min, 1.5 mm, 0.3 mm / rev, respectively)
Work material: JIS / SCr420H round bar,
Cutting speed: 450 m / min,
Cutting depth: 1.5 mm,
Feed: 0.6 mm / rev,
Cutting time: 10 minutes,
Dry high-speed high-feed cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed and feed are 280 m / min and 0.25 mm / rev, respectively)
Work material: JIS / FC250 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 400 m / min,
Cutting depth: 1.5 mm,
Feed: 0.6 mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent high-feed cutting test of cast iron under the above conditions (cutting condition C) (normal cutting speed and feed are 230 m / min and 0.3 mm / rev, respectively)
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

Figure 0005286930
Figure 0005286930

表6〜8に示される結果から、本発明被覆工具1〜13は、硬質被覆層の下部層と上部層との界面で、全ての下部層Σ3対応粒界のうちの30〜70%の下部層Σ3対応粒界が、上部層Σ3対応粒界と連続する結晶粒界を形成しているため、あるいは更に、下部層と上部層との界面から、少なくとも基体表面側に1μmまでの深さ領域にわたる下部層のΣ3比率が60%以上であって、下部層がすぐれた高温強度を有しかつ下部層−上部層間ですぐれた層間付着強度を有するため、また更に、上部層のΣ3比率が60%以上であって上部層がすぐれた高温強度を有するため、高熱発生を伴い、かつ、切刃部に対して高負荷が作用する各種鋼や鋳鉄などの高速重切削加工でも、前記下部層と上部層の高温強度が一段と向上し、加えて、両者の層間付着強度も著しく向上したものとなっているので、層間剥離の発生もなくすぐれた耐チッピング性を発揮するとともに、すぐれた耐摩耗性を示す。
しかるに、硬質被覆層の上部層が従来α型Al23層で構成された従来被覆工具1〜13においては、上部層と下部層の層間付着強度が不十分なため、高温下の高速重切削加工で作用する高負荷により、硬質被覆層に剥離、チッピング等が発生し、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 8, the coated tools 1 to 13 of the present invention are at the interface between the lower layer and the upper layer of the hard coating layer, and the lower part of 30 to 70% of all the lower layer Σ3 corresponding grain boundaries. The grain boundary corresponding to the layer Σ3 forms a crystal grain boundary that is continuous with the grain boundary corresponding to the upper layer Σ3, or further, a depth region from the interface between the lower layer and the upper layer to at least 1 μm on the substrate surface side The lower layer has a Σ3 ratio of 60% or more, and the lower layer has an excellent high-temperature strength and an excellent interlayer adhesion strength between the lower layer and the upper layer. %, And the upper layer has excellent high-temperature strength. Therefore, even in high-speed heavy cutting such as various steels and cast irons that cause high heat generation and a high load acts on the cutting edge portion, The high-temperature strength of the upper layer is further improved, and in addition, the interlayer between the two layers Because strength and is obtained by markedly improved, with exhibits chipping resistance was good without occurrence of delamination, indicating excellent wear resistance.
However, in the conventional coated tools 1 to 13 in which the upper layer of the hard coating layer is a conventional α-type Al 2 O 3 layer, the interlayer adhesion strength between the upper layer and the lower layer is insufficient, so It is apparent that due to the high load acting in the cutting process, peeling, chipping, etc. occur in the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高温下で切刃部に対して高負荷が作用する高速重切削加工でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has a high-speed heavy load that acts on the cutting edge portion at a high temperature as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Excellent chipping resistance even in the cutting process, and excellent cutting performance over a long period of time, fully satisfying the high performance of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction It can cope with.

硬質被覆層の下部層を構成する改質TiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the modified TiCN layer which comprises the lower layer of a hard coating layer has. 硬質被覆層の下部層を構成する改質TiCN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the modified TiCN layer which comprises the lower layer of a hard coating layer. α型Al23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図である。It is a schematic diagram showing an atomic arrangement of a unit cell of a corundum type hexagonal close-packed crystal constituting an α-type Al 2 O 3 layer. α型Al23層における結晶粒の(0001)面および(10−10)面の傾斜角の測定態様を示す概略説明図である。It is a schematic diagram showing the measurement mode of the inclination angle of the crystal grains (0001) plane and (10-10) plane in the α-type the Al 2 O 3 layer. (a)は、上部層と下部層の界面で、全ての下部層Σ3対応粒界のうちの30〜70%の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界を形成している本発明被覆工具3の結晶粒界構造の模式図、(b)は、上部層と下部層の界面で、全ての下部層Σ3対応粒界のうちの30%未満の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界を形成している従来被覆工具3の結晶粒界構造の模式図である。(A) is a crystal in which the upper layer Σ3 corresponding grain boundary is continuous with the lower layer Σ3 corresponding grain boundary of 30 to 70% of all the lower layer Σ3 corresponding grain boundaries at the interface between the upper layer and the lower layer. Schematic diagram of the grain boundary structure of the present coated tool 3 forming the grain boundary, (b) is the interface between the upper layer and the lower layer, less than 30% of all the grain boundaries corresponding to the lower layer Σ3 It is a schematic diagram of the crystal grain boundary structure of the conventional coated tool 3 in which the grain boundary corresponding to the upper layer Σ3 is continuous with the grain boundary corresponding to the lower layer Σ3.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)少なくとも2〜15μmの平均層厚を有する改質炭窒化チタン層を含む、化学蒸着形成されたTi化合物層からなる下部層、
(b)1〜15μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する改質α型酸化アルミニウム層からなる上部層、
上記(a)、(b)からなる硬質被覆層を形成した表面被覆切削工具において、
上記(a)の下部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する面心立方晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、NaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士および(011)面の法線同士の交わる角度を求め、前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態をΣ3で表し、上部層との界面に臨んで存在する下部層Σ3対応粒界の数と位置を測定し、
さらに、上記(b)の上部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士および(10−10)面の法線同士の交わる角度を求め、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点が2個存在する構成原子共有格子点形態をΣ3で表し、下部層との界面に臨んで存在する上部層Σ3対応結晶粒界の数と位置を測定した場合に、
下部層と上部層との界面で、上部層との界面に臨んで存在する下部層Σ3対応粒界のうちの30〜70%の割合の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成されていることを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) a lower layer composed of a chemical vapor deposited Ti compound layer comprising a modified titanium carbonitride layer having an average layer thickness of at least 2 to 15 μm;
(B) an upper layer composed of a modified α-type aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed,
For the lower layer of (a) above, the cross-sectional polishing is performed by irradiating an electron beam to each crystal grain having a face-centered cubic lattice existing within the measurement range of the coated cross-sectional polished surface using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the plane normal line. In this case, the crystal grains are NaCl type face centered cubic crystals. Based on the measured tilt angle obtained as a result of the crystal structure, the angles at which the (001) plane normal lines and the (011) plane normal lines cross each other at the interface between adjacent crystal grains are obtained. When the angle between the normal lines of the (001) planes and the normal lines of the (011) planes is 2 degrees or more, the crystal grain boundary is used, and at the interface between the crystal grains adjacent to each other, Each atom is one constituent element between the grains. The distribution of lattice points (constituent atomic shared lattice points) that share the same is calculated, and the constituent atomic shared lattice point form in which there are two lattice points that do not share constituent atoms between the constituent atomic shared lattice points is represented by Σ3. Measure the number and position of grain boundaries corresponding to the lower layer Σ3 existing at the interface with the layer,
Further, with respect to the upper layer of the above (b), by using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the coated cross-section polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (0001) plane and (10-10) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the polished surface. And a corundum-type hexagonal close-packed crystal structure in which constituent atoms composed of oxygen and oxygen exist, respectively, and based on the measured tilt angle obtained as a result of this, the (0001) plane at the interface between adjacent crystal grains The angle at which the normal lines intersect with each other and the (10-10) plane normal lines intersect, and the angle between the (0001) plane normal lines and the (10-10) plane normal lines intersect is 2 degrees or more. Be a grain boundary, and A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains; When constitutive atomic shared lattice point form with two lattice points that do not share constituent atoms in between is represented by Σ3, and the number and position of the upper layer Σ3-corresponding grain boundaries existing facing the interface with the lower layer are measured In addition,
At the interface between the lower layer and the upper layer, 30% to 70% of the grain boundary corresponding to the lower layer Σ3 existing at the interface with the upper layer corresponds to the upper layer Σ3. A surface-coated cutting tool, wherein the grain boundaries are formed as continuous crystal grain boundaries.
下部層と上部層との界面から、少なくとも基体表面側に1μmまでの深さ領域にわたる下部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する面心立方晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、NaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士および(011)面の法線同士の交わる角度を求め、前記(001)面の法線同士および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、頻度の点からNの上限を28とする)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める比率を求めた場合、上記領域におけるΣ3のΣN+1全体に占める比率は60%以上である請求項1に記載の表面被覆切削工具。   Face-centered cubic crystals that exist within the measurement range of the polished surface of the film cross-section using a field emission scanning electron microscope for the lower layer extending from the interface between the lower layer and the upper layer to a depth region of at least 1 μm on the substrate surface side. Each crystal grain having a lattice is irradiated with an electron beam, and the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the cross-section polished surface In this case, the crystal grains have a crystal structure of NaCl-type face-centered cubic crystals, and based on the measured tilt angle obtained as a result, the (001) planes at the interfaces between adjacent crystal grains are measured. The angle at which the normal lines intersect with each other and the (011) plane normal lines intersect with each other and the angle between the (001) plane normal lines and the (011) plane normal lines is 2 degrees or more. Suppose there is a crystal adjacent to each other The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface, and the constituent atoms are shared between the constituent atom shared lattice points. In the case where the number of lattice points to be removed is N (provided that the upper limit of N is 28 from the point of frequency), the constituent atom shared lattice point form is represented by ΣN + 1, and the ratio of each ΣN + 1 to the entire ΣN + 1 is obtained as described above. The surface-coated cutting tool according to claim 1, wherein a ratio of Σ3 to ΣN + 1 is 60% or more. 上部層について、電界放出型走査電子顕微鏡を用い、皮膜断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士および(10−10)面の法線同士の交わる角度を求め、前記(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であるとし、そして、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める比率を求めた場合、上部層におけるΣ3のΣN+1全体に占める比率は60%以上である請求項1または2に記載の表面被覆切削工具。   For the upper layer, a field emission scanning electron microscope was used to irradiate each crystal grain having a hexagonal crystal lattice existing within the measurement range of the coated cross-section polished surface with respect to the normal of the cross-sectional polished surface. Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, is measured. Each of the corundum-type hexagonal close-packed crystals has a crystal structure, and based on the measured tilt angle obtained as a result, the normals of the (0001) planes at the interfaces between adjacent crystal grains and (10− 10) The angle at which the normals of the planes intersect is determined, and the case where the angle between the normals of the (0001) planes and the normals of the (10-10) planes is 2 degrees or more is a grain boundary, And crystal grains adjacent to each other At the interface, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom among the crystal grains is calculated, and the constituent atoms are not shared between the constituent atom shared lattice points. There are N lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8, 14, 24 and (The even number of 26 does not exist) When the constituent atomic lattice point form existing is represented by ΣN + 1 and the ratio of each ΣN + 1 to the entire ΣN + 1 is obtained, the ratio of the Σ3 in the upper layer to the entire ΣN + 1 is 60% or more The surface-coated cutting tool according to claim 1 or 2.
JP2008133009A 2008-05-21 2008-05-21 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Active JP5286930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008133009A JP5286930B2 (en) 2008-05-21 2008-05-21 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008133009A JP5286930B2 (en) 2008-05-21 2008-05-21 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2009279693A JP2009279693A (en) 2009-12-03
JP5286930B2 true JP5286930B2 (en) 2013-09-11

Family

ID=41450701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008133009A Active JP5286930B2 (en) 2008-05-21 2008-05-21 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP5286930B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5783061B2 (en) * 2012-01-23 2015-09-24 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP6548072B2 (en) * 2014-05-30 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool
JP7167965B2 (en) * 2020-07-08 2022-11-09 株式会社タンガロイ coated cutting tools
JP7167966B2 (en) * 2020-07-08 2022-11-09 株式会社タンガロイ coated cutting tools

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114704A (en) * 1997-10-07 1999-04-27 Hitachi Metals Ltd Titanium-carbide-covered tool
JP3678945B2 (en) * 1999-07-15 2005-08-03 日立ツール株式会社 Titanium carbonitride coated tool
JP4716251B2 (en) * 2005-03-24 2011-07-06 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel

Also Published As

Publication number Publication date
JP2009279693A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4716251B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5263572B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5257184B2 (en) Surface coated cutting tool
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5088477B2 (en) Surface coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5309698B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150