JP5257184B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP5257184B2
JP5257184B2 JP2009073032A JP2009073032A JP5257184B2 JP 5257184 B2 JP5257184 B2 JP 5257184B2 JP 2009073032 A JP2009073032 A JP 2009073032A JP 2009073032 A JP2009073032 A JP 2009073032A JP 5257184 B2 JP5257184 B2 JP 5257184B2
Authority
JP
Japan
Prior art keywords
layer
grain boundary
upper layer
crystal
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009073032A
Other languages
Japanese (ja)
Other versions
JP2010221368A (en
Inventor
惠滋 中村
興平 冨田
誠 五十嵐
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009073032A priority Critical patent/JP5257184B2/en
Publication of JP2010221368A publication Critical patent/JP2010221368A/en
Application granted granted Critical
Publication of JP5257184B2 publication Critical patent/JP5257184B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、例えば、軟鋼、ステンレス鋼などの難削材の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた高温強度と層間付着強度を有し、長期の使用に亘って、すぐれた耐チッピング性、耐欠損性、耐剥離性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has, for example, high temperature strength and interlayer adhesion strength with excellent hard coating layer even when cutting difficult-to-cut materials such as mild steel and stainless steel under high-speed cutting conditions with high heat generation, The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance, chipping resistance, and peeling resistance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、Tiの炭化物層(以下、TiC層という)、窒化物層(以下、TiN層という)、炭酸化物層(以下、TiCO層という)、および炭窒酸化物層(以下、TiCNO層という)のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する炭窒化チタン層(以下、改質TiCN層という)からなる下部層、
(b)1〜15μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有するα型酸化アルミニウム層(以下、従来Al23層という)からなる上部層、
以上(a)および(b)で構成し、かつ、
上記(a)の下部層における改質TiCN層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める比率が60%以上である構成原子共有格子点分布グラフ、を示し、さらに、
上記(b)の従来Al23層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める比率が60%以上である構成原子共有格子点分布グラフを示し、
この被覆工具を、高硬度鋼の高速断続切削に用いた場合、硬質被覆層がすぐれた耐チッピング性を示すことが知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. The hard coating layer formed by vapor deposition
(A) Ti carbide layer (hereinafter referred to as TiC layer), nitride layer (hereinafter referred to as TiN layer), carbonate layer (hereinafter referred to as TiCO layer), and carbonitride oxide, all formed by chemical vapor deposition Adhesive Ti compound layer comprising one or more layers (hereinafter referred to as TiCNO layer) and having a total average layer thickness of 0.1 to 5 μm, and carbonitriding having an average layer thickness of 2.5 to 15 μm A lower layer composed of a titanium layer (hereinafter referred to as a modified TiCN layer),
(B) an upper layer composed of an α-type aluminum oxide layer (hereinafter referred to as a conventional Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition;
(A) and (b), and
The modified TiCN layer in the lower layer of (a) is
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (where the upper limit value of N is 28 due to the frequency), the highest peak exists in Σ3, and A constituent atom shared lattice point distribution graph in which the ratio of Σ3 to the entire ΣN + 1 is 60% or more,
The conventional Al 2 O 3 layer of (b) above is
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains are corundum type in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the measured tilt angle obtained as a result of the hexagonal close-packed crystal structure, each of the constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even number of 2 or more, but distribution frequency When the upper limit of N from the point is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is included in the entire ΣN + 1 In the constituent atom shared lattice point distribution graph showing the occupying distribution ratio, a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the ratio of the Σ3 to the entire ΣN + 1 is 60% or more,
It is known that when this coated tool is used for high-speed intermittent cutting of high hardness steel, the hard coating layer exhibits excellent chipping resistance.

特開2006−297579号公報JP 2006-297579 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削条件は益々厳しいものになってきているが、上記の従来被覆工具においては、下部層は相対的に高温強度の高い改質TiCN層で、また、上部層は高温硬さ、耐熱性とともにすぐれた高温強度を有するAl23層で形成されているものの、特にこれを、溶着が発生しやすい軟鋼、ステンレス鋼などの難削材の、高い発熱を伴う高速切削条件に用いた場合には、上部層と下部層との層間付着強度が十分ではないために、層間剥離、チッピング等を発生し易くなり、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and as a result, cutting conditions have become increasingly severe. In the conventional coated tool, the lower layer is a modified TiCN layer having a relatively high high-temperature strength, and the upper layer is formed of an Al 2 O 3 layer having a high-temperature strength that is excellent in high-temperature hardness and heat resistance. However, when this is used for high-speed cutting conditions with high heat generation, especially for difficult-to-cut materials such as mild steel and stainless steel, where the welding tends to occur, the interlayer adhesion strength between the upper and lower layers is not sufficient. Therefore, delamination, chipping, etc. are likely to occur, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の層間付着強度の向上による耐チッピング性、耐欠損性、耐剥離性の改善を図るべく、硬質被覆層の層構造に着目し、鋭意研究を行った結果、次のような知見を得た。   In view of the above, the present inventors have proposed a hard coating layer in order to improve chipping resistance, fracture resistance, and peeling resistance by improving the interlayer adhesion strength of the hard coating layer of the above-mentioned coated tool. As a result of diligent research focusing on the layer structure, the following findings were obtained.

上記の従来被覆工具の硬質被覆層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件で改質TiCN層を下部層として蒸着形成し、
この上に、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件で従来Al23層を上部層として蒸着することにより形成されている。
そして、この結果形成した従来Al23層からなる上部層は、Al23層本来の具備するすぐれた高温硬さおよび耐熱性に加えて、すぐれた高温強度を有し、さらに、所定の下部層−上部層間付着強度を有するため、高速断続切削加工において所定の耐チッピング性を発揮していたが、難削材の高速切削加工においては、その層間付着強度が十分に満足できるものではなく、チッピング、欠損、層間剥離等の発生がみられた。
The hard coating layer of the above conventional coated tool is, for example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The modified TiCN layer is deposited as a lower layer under the conditions of
On top of this,
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
Conventionally, an Al 2 O 3 layer is deposited as an upper layer under the conditions described above.
The resulting upper layer composed of the conventional Al 2 O 3 layer has excellent high temperature strength and heat resistance in addition to the excellent high temperature hardness and heat resistance inherent in the Al 2 O 3 layer. Because of its lower layer-upper interlayer adhesion strength, it exhibited the specified chipping resistance in high-speed intermittent cutting, but in high-speed cutting of difficult-to-cut materials, the interlayer adhesion strength is not satisfactory. No chipping, chipping, delamination, etc. were observed.

そこで、硬質被覆層を形成するにあたり、本発明者等は、まず、Ti化合物層(通常のTiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの少なくとも1層以上。なお、上記従来被覆工具における改質TiCN層であっても、何ら差し支えはない。)を下部層として蒸着形成した後、この上に、中間層として、改質窒化クロム層(以下、改質CrN層という)を蒸着形成し、さらに、この上に、上部層としてのAl23層(以下、改質Al23層という)を蒸着形成し、硬質被覆層を、Ti化合物層(改質TiCN層を含む)からなる下部層、改質CrN層からなる中間層及び改質Al23層からなる上部層の三層構造として形成したところ、下部層−中間層間の密着強度が向上するばかりか、中間層−上部層間の層間付着強度が一段と向上し、その結果、硬質被覆層全体としての高温強度が大幅に改善されるとともに、層間密着強度も向上し、難削材の高速切削加工においても、チッピング性、欠損、剥離等が生じることがなく長期の使用に亘って、優れた切削性能を発揮することを見出した。 Therefore, when forming the hard coating layer, the present inventors first made a Ti compound layer (at least one of a normal TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer. After the deposition of the modified TiCN layer in the coated tool as a lower layer, a modified chromium nitride layer (hereinafter referred to as a modified Cr 2 N layer) is formed thereon as an intermediate layer. Further, an Al 2 O 3 layer (hereinafter referred to as a modified Al 2 O 3 layer) as an upper layer is vapor-deposited thereon, and a hard coating layer is formed as a Ti compound layer (modified TiCN). The adhesion strength between the lower layer and the intermediate layer is improved by forming a three-layer structure comprising a lower layer comprising a layer), an intermediate layer comprising a modified Cr 2 N layer, and an upper layer comprising a modified Al 2 O 3 layer. Not only the middle layer-the top Interlayer adhesion strength between layers has been further improved. As a result, the high-temperature strength of the hard coating layer as a whole has been greatly improved, and the interlayer adhesion strength has also been improved. Even in high-speed cutting of difficult-to-cut materials, chipping properties and defects The present inventors have found that excellent cutting performance is exhibited over a long period of use without peeling or the like.

ここで、中間層である上記改質CrN層は、Ti化合物層からなる下部層の上に、通常の化学蒸着装置で、
反応ガス組成:容量%で、CrCl:2〜5%、N:20〜40%、HCl:2〜5%、H:残り、
反応雰囲気温度:980〜1040℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着することによって形成され、形成された改質CrN層は、下部層及び上部層の双方に対し、すぐれた層間付着強度を有する。
Here, the modified Cr 2 N layer, which is an intermediate layer, is formed on a lower layer made of a Ti compound layer by a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, CrCl 3 : 2 to 5%, N 2 : 20 to 40%, HCl: 2 to 5%, H 2 : remaining,
Reaction atmosphere temperature: 980-1040 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The modified Cr 2 N layer formed by vapor deposition under the following conditions has excellent interlayer adhesion strength to both the lower layer and the upper layer.

そして、上記改質Al23層(上部層)と上記改質Cr2N層(中間層)のそれぞれについて、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合、
上記中間層及び上記上部層のいずれも、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が、60%以上である構成原子共有格子点分布グラフを示し、
さらに、上部層との界面に臨んで存在する中間層のΣ3対応粒界(以下、中間層Σ3対応粒界という)の数と位置を測定し、また、中間層との界面に臨んで存在する上部層のΣ3対応粒界(以下、上部層Σ3対応粒界という)の数と位置を測定した場合に、中間層と上部層との界面で、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%の割合の中間層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として形成されており、そして、中間層−上部層間にこのような連続する結晶粒界構造が存在することによって、中間層と上部層の層間付着強度が著しく向上することが判明した。
Then, for each of the modified Al 2 O 3 layer (upper layer) and the modified Cr 2 N layer (intermediate layer), a hexagon existing within the measurement range of the surface polished surface using a field emission scanning electron microscope. Each crystal grain having a crystal lattice is irradiated with an electron beam, and the normal lines of the (0001) plane and the (10-10) plane are the crystal planes of the crystal grains with respect to the normal line of the polished surface. In this case, the crystal grains have a crystal structure of a corundum hexagonal close-packed crystal. Based on the measurement tilt angles obtained as a result, the crystal grains are arranged at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom among the crystal grains is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is 2 on the crystal structure of the corundum hexagonal close-packed crystal. Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). if you did this,
In each of the intermediate layer and the upper layer, in the constituent atom shared lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 Shows a constituent atom shared lattice point distribution graph of 60% or more,
Further, the number and position of the Σ3-corresponding grain boundary (hereinafter referred to as “intermediate Σ3-corresponding grain boundary”) of the intermediate layer existing at the interface with the upper layer is measured, and the intermediate layer is present at the interface with the intermediate layer. An intermediate layer existing at the interface between the upper layer and the upper layer when the number and positions of the upper layer Σ3 corresponding grain boundaries (hereinafter referred to as upper layer Σ3 corresponding grain boundaries) are measured. The upper layer Σ3 corresponding grain boundary is formed as a continuous grain boundary with respect to the intermediate layer Σ3 corresponding grain boundary of 30 to 70% of the Σ3 corresponding grain boundary, and between the intermediate layer and the upper layer It has been found that the presence of such a continuous grain boundary structure significantly improves the interlayer adhesion strength between the intermediate layer and the upper layer.

上記のとおり、硬質被覆層の中間層と上部層が、それぞれ、改質Cr2N層と改質Al23層で構成され、中間層と上部層との界面で、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%の割合の中間層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界として構成されている被覆工具は、中間層と上部層間の層間付着強度が格段に向上し、溶着が発生しやすい軟鋼、ステンレス鋼などの難削材の、高い発熱を伴う高速切削に用いた場合でも、硬質被覆層がすぐれた高温強度と層間付着強度を有し、長期の使用に亘って、すぐれた耐チッピング性、耐欠損性、耐剥離性を発揮するようになる。 As described above, the intermediate layer and the upper layer of the hard coating layer are each composed of the modified Cr 2 N layer and the modified Al 2 O 3 layer, and the interface between the intermediate layer and the upper layer is the interface with the upper layer. The coated tool is formed as a crystal grain boundary in which the upper layer Σ3 corresponding grain boundary is continuous with respect to the intermediate layer Σ3 corresponding grain boundary of 30 to 70% of the intermediate layer Σ3 corresponding grain boundary existing facing The interlaminar bond strength between the intermediate layer and the upper layer is remarkably improved, and the hard coating layer is excellent even when used for high-speed cutting with high heat generation of difficult-to-cut materials such as mild steel and stainless steel, which are likely to be welded. It has high temperature strength and interlaminar adhesion strength, and exhibits excellent chipping resistance, chipping resistance, and peeling resistance over a long period of use.

この発明は、上記知見に基づいてなされたものであって、
「 工具基体の表面に、下部層、中間層及び上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの少なくとも1層以上からなり、2〜15μmの合計層厚を有するチタン化合物層、
(b)中間層は、0.5〜3μmの層厚を有する窒化クロム層、
(c)上部層は、1〜15μmの層厚を有する酸化アルミニウム層からなり、
(d)上記(b)の中間層及び上記(c)の上部層のそれぞれについて、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合、上記(b)の中間層及び上記(c)の上部層のいずれも、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が、60%以上である構成原子共有格子点分布グラフを示し、
(e)さらに、上部層との界面に臨んで存在する中間層のΣ3対応粒界の数と位置を測定し、また、中間層との界面に臨んで存在する上部層のΣ3対応粒界の数と位置を測定した場合に、中間層と上部層との界面で、上部層との界面に臨んで存在する中間層のΣ3対応粒界のうちの30〜70%の割合の中間層のΣ3対応粒界に対して、上部層のΣ3対応粒界が連続する結晶粒界として形成されていることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool substrate,
(A) The lower layer is composed of at least one of a titanium carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer, and has a total layer thickness of 2 to 15 μm. Compound layer,
(B) the intermediate layer is a chromium nitride layer having a layer thickness of 0.5 to 3 μm;
(C) The upper layer consists of an aluminum oxide layer having a layer thickness of 1 to 15 μm,
(D) For each of the intermediate layer of (b) and the upper layer of (c), each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface using a field emission scanning electron microscope Is irradiated with an electron beam to measure an inclination angle formed by normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface. In this case, the crystal grains have a corundum type hexagonal close-packed crystal structure, and based on the measurement tilt angle obtained as a result, at the interface between adjacent crystal grains, each of the constituent atoms is interlinked with the crystal grains. The distribution of lattice points that share one constituent atom (constituent atom shared lattice point) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum hexagon) Due to the close-packed crystal structure, it is an even number of 2 or more. (If the upper limit of N is 28 from the point of the cloth frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atomic shared lattice point form is represented by ΣN + 1, the above (b) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1, both the intermediate layer of (c) and the upper layer of (c) have the highest peak at Σ3, and the entire ΣN + 1 of the Σ3 Shows a constituent atom shared lattice point distribution graph in which the distribution ratio is 60% or more,
(E) Further, the number and positions of the Σ3-compatible grain boundaries of the intermediate layer existing at the interface with the upper layer are measured, and the Σ3-compatible grain boundaries of the upper layer existing at the interface with the intermediate layer are measured. When the number and position are measured, at the interface between the intermediate layer and the upper layer, Σ3 of the intermediate layer in a proportion of 30 to 70% of the grain boundary corresponding to Σ3 of the intermediate layer existing facing the interface with the upper layer A surface-coated cutting tool, wherein an upper layer Σ3 corresponding grain boundary is formed as a continuous grain boundary with respect to the corresponding grain boundary. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、以下に詳細に説明する。   Next, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail below.

下部層:
下部層を構成するTi化合物層としては、既によく知られている通常のTiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層以上からなるTi化合物層を蒸着形成することができる。そして、上記TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層以上からなるTi化合物層は、工具基体及び中間層(改質Cr2N層)のいずれにも強固に密着し、もって硬質被覆層の工具基体に対する密着性向上に寄与する。
下部層の合計平均層厚が2μm未満では、所定の耐摩耗性を確保することができず、一方、合計平均層が15μmを超えると、急激に耐チッピング性が低下することから、下部層の合計平均層厚は2〜15μmと定めた。
Lower layer:
As the Ti compound layer constituting the lower layer, the well-known ordinary Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbon A Ti compound layer composed of one or more of the nitrided oxide (TiCNO) layers can be formed by vapor deposition. The Ti compound layer composed of one or more of the TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer adheres firmly to both the tool base and the intermediate layer (modified Cr 2 N layer). Thus, it contributes to improving the adhesion of the hard coating layer to the tool substrate.
If the total average layer thickness of the lower layer is less than 2 μm, the predetermined wear resistance cannot be ensured. On the other hand, if the total average layer exceeds 15 μm, the chipping resistance decreases rapidly. The total average layer thickness was determined to be 2-15 μm.

また、下部層を、上記従来被覆工具の改質TiCN層で構成することもできるが、この場合には、下部層の高温強度がより一段と向上するとともに、工具基体及び中間層の双方に対する密着強度もより一段と向上する。
改質TiCN層は、通常の化学蒸着装置で、例えば、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件で化学蒸着することにより形成することができ、この条件で形成された改質TiCN層は、Σ3比率が60%以上の高い値を示す。
In addition, the lower layer can be composed of the modified TiCN layer of the conventional coated tool, but in this case, the high temperature strength of the lower layer is further improved and the adhesion strength to both the tool base and the intermediate layer is improved. Will further improve.
The modified TiCN layer is a normal chemical vapor deposition apparatus, for example,
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The modified TiCN layer formed under these conditions exhibits a high value with a Σ3 ratio of 60% or more.

改質TiCN層のΣ3比率は、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、例えば、前記条件で蒸着形成された改質TiCN層の皮膜断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2aには前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体(ただし、頻度の関係でNの上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成することによって求めることができる。
そして、この構成原子共有格子点分布グラフにおいて、上記改質TiCN層ではΣ3に最高ピークが存在し、しかも、Σ3の分布割合は60%以上のきわめて高い比率となっている。
なお、改質TiCN層のΣ3比率は、化学蒸着時の反応ガス中のTiCl、CHCN、Ar含有量、さらに雰囲気反応温度を上記の通り調整することによって60%以上とすることができる。
The Σ3 ratio of the modified TiCN layer is, for example, a modified TiCN layer formed by vapor deposition under the above conditions as illustrated in the schematic explanatory diagrams of FIGS. 2A and 2B using a field emission scanning electron microscope. The crystal grains existing within the measurement range of the cross-section polished surface of the film are irradiated with an electron beam, and the (001) plane and (011) which are crystal planes of the crystal grains with respect to the normal line of the cross-sectional polished plane The tilt angle formed by the normal of the plane (in FIG. 2a, when the tilt angle of the (001) plane of the crystal plane is 0 degree and the tilt angle of the (011) plane is 45 degrees, (001) ) The tilt angle of the plane is 45 degrees, and the tilt angle of the (011) plane is 0 degree, and all tilt angles of the crystal grains including these angles are measured. As described above, the crystal grains are N in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points. A crystal structure of a Cl-type face-centered cubic crystal, and each of the constituent atoms forms one structure between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result. The distribution of lattice points that share atoms (constituent atomic shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is the crystal structure of the NaCl-type face-centered cubic crystal) The constituent atom shared lattice point form which is an even number of 2 or more is represented by ΣN + 1, and each ΣN + 1 represents a distribution ratio of the entire ΣN + 1 (provided that the upper limit value of N is 28 due to frequency) This can be obtained by creating a shared grid point distribution graph.
In the constituent atom sharing lattice distribution graph, the modified TiCN layer has the highest peak in Σ3, and the distribution ratio of Σ3 is an extremely high ratio of 60% or more.
The Σ3 ratio of the modified TiCN layer can be set to 60% or more by adjusting the TiCl 4 , CH 3 CN, Ar content in the reaction gas during chemical vapor deposition, and the atmospheric reaction temperature as described above. .

中間層:
中間層の改質Cr2N層は、Ti化合物層からなる下部層の上に、例えば、
通常の化学蒸着装置で、
反応ガス組成:容量%で、CrCl:2〜5%、N:20〜40%、HCl:2〜5%、H:残り、
反応雰囲気温度:980〜1040℃、
反応雰囲気圧力:6〜20kPa、
の条件で蒸着することによって形成される。
この改質Cr2N層は、上部層の改質Al23層と同じ六方晶結晶構造であって、すぐれた高温強度を有し、下部層に対して強固な密着強度を有するが、特に、その特異な結晶粒界構造により、上部層に対して一段と強固な密着強度を有し、その結果、溶着性の高い軟鋼やステンレス鋼等の難削材の高速切削において、すぐれた耐チッピング性、耐欠損性、耐層間剥離性を発揮するようになる。
Middle layer:
The modified Cr 2 N layer of the intermediate layer is formed on the lower layer made of the Ti compound layer, for example,
With normal chemical vapor deposition equipment,
Reaction gas composition: volume%, CrCl 3 : 2 to 5%, N 2 : 20 to 40%, HCl: 2 to 5%, H 2 : remaining,
Reaction atmosphere temperature: 980-1040 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor-depositing on condition of this.
This modified Cr 2 N layer has the same hexagonal crystal structure as the modified Al 2 O 3 layer of the upper layer, has an excellent high temperature strength, and has a strong adhesion strength to the lower layer, In particular, its unique grain boundary structure provides stronger adhesion strength to the upper layer, and as a result, excellent chipping resistance in high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel with high weldability. , Defect resistance, and delamination resistance.

上記の改質Cr2N層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角(図1aには前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、この構成原子共有格子点分布グラフにおいて、上記改質Cr2N層はΣ3に最高ピークが存在し、しかも、Σ3のΣN+1全体に占める分布割合は60%以上のきわめて高い比率となっており、このような改質Cr2N層は、すぐれた高温強度を示す。 About the modified Cr 2 N layer, using a field emission scanning electron microscope, hexagonal crystals existing in the measurement range of the surface polished surface as illustrated in the schematic explanatory diagrams of FIGS. 1 (a) and 1 (b) Each crystal grain having a crystal lattice is irradiated with an electron beam, and the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, are formed with respect to the normal line of the surface polished surface. Tilt angles (FIG. 1a shows the case where the tilt angle of the crystal plane is 0 degree, and FIG. 1 (b) shows the case where the tilt angle is 45 degrees. In this case, the crystal grains have a crystal structure of a corundum hexagonal close-packed crystal, and based on the measured tilt angles obtained as a result, at the interface between adjacent crystal grains, Lattice points where each of the constituent atoms shares one constituent atom between the crystal grains (the constituent atom The number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points is calculated (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal). (If the upper limit of N is 28 from the point of distribution frequency, there is no even number of 4, 8, 14, 24, and 26), the existing configuration of the shared atomic lattice point is represented by ΣN + 1, and each ΣN + 1 is represented by ΣN + 1 When a constituent atom shared lattice point distribution graph showing the distribution ratio in the whole is created, in the constituent atom shared lattice point distribution graph, the modified Cr 2 N layer has the highest peak in Σ3, and ΣN + 1 of Σ3 The distribution ratio occupying the whole is an extremely high ratio of 60% or more, and such a modified Cr 2 N layer exhibits excellent high-temperature strength.

また、前記電界放出型走査電子顕微鏡を用いた測定により得られた、結晶粒の結晶面である(0001)面および(10−10)面の法線がなす測定傾斜角に基づいて、(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であると定義し、相互に隣接する結晶粒界で、その構成原子共有格子点形態が、構成原子共有格子点間に構成原子を共有しない格子点が2個存在するΣ3であって、かつ、上部層との界面に臨んで存在する結晶粒界(中間層Σ3対応粒界)の数と位置を求める。
そして、後記する上部層について特定した上部層Σ3対応粒界の位置と、上記改質Cr2N層について求めた中間層Σ3対応粒界の位置とをつき合わせ、中間層と上部層の界面で、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成している結晶粒界構造を備える場合(図6(a)参照)には、中間層(改質Cr2N層)と上部層(改質Al23層)との層間付着強度は著しく向上する。
しかし、上部層Σ3対応粒界と連続して形成されている中間層Σ3対応粒界が、全中間層Σ3対応粒界のうちの30%未満にすぎないような場合(図6(b)参照)、あるいは、70%を超えるような場合には、中間層と上部層での結晶粒界の連続性が少ないため、層間付着強度の向上を確保することができず、あるいは、中間層と上部層での結晶粒界の連続性が多すぎるために中間層と上部層のそれぞれの層における残留応力のギャップが大きくなりすぎて、層間付着強度が低下傾向を示すようになるため、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成していることが必要である。
Further, based on the measured inclination angle formed by the normal of the (0001) plane and the (10-10) plane, which are crystal planes of crystal grains, obtained by measurement using the field emission scanning electron microscope, (0001 ) When the angle between the normals of the planes and the normals of the (10-10) planes is 2 degrees or more, it is defined as a crystal grain boundary. The point form is Σ3 in which there are two lattice points that do not share constituent atoms between constituent atomic shared lattice points, and the crystal grain boundary that exists facing the interface with the upper layer (intermediate layer Σ3-corresponding grain boundary ) Number and position.
Then, the position of the grain boundary corresponding to the upper layer Σ3 specified for the upper layer, which will be described later, and the position of the grain boundary corresponding to the intermediate layer Σ3 obtained for the modified Cr 2 N layer are put together, and at the interface between the intermediate layer and the upper layer. When 30 to 70% of the grain boundary corresponding to the intermediate layer Σ3 existing facing the interface with the upper layer has a grain boundary structure forming a grain boundary continuous with the grain boundary corresponding to the upper layer Σ3 In (see FIG. 6A), the interlayer adhesion strength between the intermediate layer (modified Cr 2 N layer) and the upper layer (modified Al 2 O 3 layer) is remarkably improved.
However, in the case where the intermediate layer Σ3 corresponding grain boundary formed continuously with the upper layer Σ3 corresponding grain boundary is only less than 30% of the total intermediate layer Σ3 corresponding grain boundary (see FIG. 6B). ), Or in the case where it exceeds 70%, the continuity of the crystal grain boundary between the intermediate layer and the upper layer is small, so that the improvement of the interlayer adhesion strength cannot be ensured, or the intermediate layer and the upper layer Since there is too much continuity of grain boundaries in the layers, the gap between the residual stresses in each of the intermediate layer and the upper layer becomes too large, and the interlaminar adhesion strength tends to decrease. It is necessary that 30 to 70% of the grain boundaries corresponding to the intermediate layer Σ3 existing facing the interface form a crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3.

また、上記改質Cr2N層からなる中間層の平均層厚が0.5μm未満では、すぐれた高温硬さ、耐熱性とすぐれた層間付着強度を発揮することができず、一方、その平均層厚が3μmを越えると、難削材の高速切削条件下では、切刃部にチッピング、欠損等が発生し易くなることから、その平均層厚を0.5〜3μmと定めた。 In addition, when the average layer thickness of the intermediate layer composed of the modified Cr 2 N layer is less than 0.5 μm, it is not possible to exhibit excellent high temperature hardness, heat resistance and excellent interlayer adhesion strength. When the layer thickness exceeds 3 μm, chipping, chipping and the like are likely to occur in the cutting edge part under high-speed cutting conditions for difficult-to-cut materials. Therefore, the average layer thickness is set to 0.5 to 3 μm.

上部層:
上部層の改質Al23層は、上記改質Cr2N層からなる中間層の上に、例えば、
(a)まず、
反応ガス組成:容量%で、AlCl:0.5〜2%、CO:0.1〜2%、HCl:0.1〜1%、H2S:0.15〜0.4%、H2:残り、
反応雰囲気温度:930〜980℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち、従来条件に比して反応ガス組成では、AlCl、CO、およびHClの含有割合を相対的に低く、H2Sの含有割合を相対的に高く、かつ、雰囲気温度を相対的に低くした条件(初期形成条件)で10〜60分間蒸着形成し、
(b)次いで、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件で蒸着することにより形成することができ、この改質Al23層は、Al23層本来の具備するすぐれた高温硬さ、耐熱性およびすぐれた高温強度に加え、さらに、層間付着強度が一段と向上し、その結果、中間層−上部層間での層間剥離の発生を防止し得るとともに、すぐれた耐チッピング性を具備するようになる。
そして、電界放出型走査電子顕微鏡を用いた調査によれば、上部層と中間層間での層間付着強度の向上は、上部層(改質Al23層)と中間層(上部層に隣接して存在する改質Cr2N層)との界面で形成されるΣ3対応粒界の結晶粒界構造の連続性によってもたらされるものであることは明らかである。
Upper layer:
The modified Al 2 O 3 layer of the upper layer is formed on the intermediate layer composed of the modified Cr 2 N layer, for example,
(A) First,
Reaction gas composition: by volume%, AlCl 3: 0.5~2%, CO 2: 0.1~2%, HCl: 0.1~1%, H 2 S: 0.15~0.4%, H 2 : Remaining
Reaction atmosphere temperature: 930-980 ° C.,
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, the reaction gas composition has a relatively low content of AlCl 3 , CO 2 , and HCl, a relatively high content of H 2 S, and an ambient temperature of Vapor deposition for 10-60 minutes under relatively low conditions (initial formation conditions)
(B) Then
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In addition to the excellent high temperature hardness, heat resistance and excellent high temperature strength inherent to the Al 2 O 3 layer, this modified Al 2 O 3 layer can be formed by vapor deposition under the following conditions: Interlayer adhesion strength is further improved. As a result, generation of delamination between the intermediate layer and the upper layer can be prevented, and excellent chipping resistance can be achieved.
According to the investigation using the field emission scanning electron microscope, the improvement in the interlayer adhesion strength between the upper layer and the intermediate layer is shown in the upper layer (modified Al 2 O 3 layer) and the intermediate layer (adjacent to the upper layer). It is clear that this is caused by the continuity of the grain boundary structure of the grain boundary corresponding to Σ3 formed at the interface with the modified Cr 2 N layer existing in the middle.

上記の改質Al23層について、前記改質Cr2N層の場合と同様に、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、この構成原子共有格子点分布グラフにおいて、上記改質Al23層はΣ3に最高ピークが存在し、しかも、Σ3のΣN+1全体に占める分布割合は60%以上のきわめて高い比率となっており、このような改質Al23層は、すぐれた高温強度を示す。 As in the case of the modified Cr 2 N layer, the modified Al 2 O 3 layer is exemplified by schematic explanatory views in FIGS. 1A and 1B using a field emission scanning electron microscope. As described above, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal line of the surface polished surface (0001 ) Plane and (10-10) plane normal angle is measured. In this case, the crystal grains have a crystal structure of a corundum hexagonal close-packed crystal, and based on the measured tilt angle obtained as a result. Calculating a distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains; N lattice points that do not share constituent atoms between points (where N is a corundum In the hexagonal close-packed crystal structure, the number is an even number of 2 or more. However, when the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist) In the case where a constituent atomic shared lattice point distribution graph is created in which the atomic shared lattice point form is represented by ΣN + 1 and each ΣN + 1 indicates the distribution ratio of the entire ΣN + 1, the modified Al 2 O The three layers have the highest peak in Σ3, and the distribution ratio of Σ3 to the entire ΣN + 1 is extremely high, more than 60%. Such a modified Al 2 O 3 layer has excellent high-temperature strength. Indicates.

また、前記電界放出型走査電子顕微鏡を用いた測定により得られた、結晶粒の結晶面である(0001)面および(10−10)面の法線がなす測定傾斜角に基づいて、(0001)面の法線同士および(10−10)面の法線同士の交わる角度が2度以上の場合を結晶粒界であると定義し、相互に隣接する結晶粒界で、その構成原子共有格子点形態が、構成原子共有格子点間に構成原子を共有しない格子点が2個存在するΣ3であって、かつ、上部層との界面に臨んで存在する結晶粒界(中間層Σ3対応粒界)の数と位置を求める。
そして、改質Al23層について求めた上部層Σ3対応粒界の位置と、前記改質Cr2N層について求めた中間層Σ3対応粒界の位置とをつき合わせ、中間層と上部層の界面で、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成している結晶粒界構造を備える場合(図6(a)参照)には、中間層(改質Cr2N層)と上部層(改質Al23層)との層間付着強度は著しく向上する。
しかし、中間層について既に述べたように、上部層Σ3対応粒界と連続して形成されている中間層Σ3対応粒界が、全中間層Σ3対応粒界のうちの30%未満にすぎないような場合(図6(b)参照)、あるいは、70%を超えるような場合には、中間層と上部層での結晶粒界の連続性が少ないため、層間付着強度の向上を確保することができず、あるいは、中間層と上部層での結晶粒界の連続性が多すぎるために中間層と上部層のそれぞれの層における残留応力のギャップが大きくなりすぎて、層間付着強度が低下傾向を示すようになるため、上部層との界面に臨んで存在する中間層Σ3対応粒界のうちの30〜70%が、上部層Σ3対応粒界と連続する結晶粒界を形成していることが必要である。
Further, based on the measured inclination angle formed by the normal of the (0001) plane and the (10-10) plane, which are crystal planes of crystal grains, obtained by measurement using the field emission scanning electron microscope, (0001 ) When the angle between the normals of the planes and the normals of the (10-10) planes is 2 degrees or more, it is defined as a crystal grain boundary. The point form is Σ3 in which there are two lattice points that do not share constituent atoms between constituent atomic shared lattice points, and the crystal grain boundary that exists facing the interface with the upper layer (intermediate layer Σ3-corresponding grain boundary ) Number and position.
Then, the position of the grain boundary corresponding to the upper layer Σ3 determined for the modified Al 2 O 3 layer is matched with the position of the grain boundary corresponding to the intermediate layer Σ3 determined for the modified Cr 2 N layer. Grain boundary structure in which 30 to 70% of the grain boundary corresponding to the intermediate layer Σ3 existing at the interface with the upper layer forms a continuous grain boundary with the grain boundary corresponding to the upper layer Σ3. (See FIG. 6A), the interlayer adhesion strength between the intermediate layer (modified Cr 2 N layer) and the upper layer (modified Al 2 O 3 layer) is remarkably improved.
However, as already described for the intermediate layer, the intermediate layer Σ3 corresponding grain boundary formed continuously with the upper layer Σ3 corresponding grain boundary seems to be less than 30% of the total intermediate layer Σ3 corresponding grain boundary. In such a case (see FIG. 6B), or in the case where it exceeds 70%, the continuity of the crystal grain boundary between the intermediate layer and the upper layer is small, so that it is possible to ensure the improvement of the interlayer adhesion strength. Or because the continuity of the grain boundaries in the intermediate layer and the upper layer is too large, the gap between the residual stresses in the intermediate layer and the upper layer becomes too large, and the interlayer adhesion strength tends to decrease. Therefore, 30 to 70% of the grain boundaries corresponding to the intermediate layer Σ3 existing facing the interface with the upper layer form a crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3. is necessary.

さらに、上記改質Al23層からなる上部層の平均層厚が1μm未満では、すぐれた潤滑性、高温強度とすぐれた層間付着強度を発揮することができず、一方、その平均層厚が15μmを越えると、難削材の高速切削では、切刃部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。 Furthermore, if the average layer thickness of the upper layer composed of the modified Al 2 O 3 layer is less than 1 μm, it is not possible to exhibit excellent lubricity, high temperature strength and excellent interlayer adhesion strength, while the average layer thickness is If the thickness exceeds 15 μm, chipping is likely to occur at the cutting edge portion in high-speed cutting of difficult-to-cut materials, so the average layer thickness was set to 1 to 15 μm.

この発明の被覆工具は、軟鋼、ステンレス鋼及などの溶着性の高い難削材の高速切削加工に用いた場合にも、特に、硬質被覆層の中間層および上部層が、一段とすぐれた層間付着強度を有することから、硬質被覆層に剥離、チッピング、欠損の発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   The coated tool of the present invention is particularly suitable for use in high-speed cutting of difficult-to-cut materials with high weldability such as mild steel, stainless steel and the like. Since it has strength, it exhibits excellent wear resistance over a long period of time without causing peeling, chipping or chipping in the hard coating layer.

Al23層、Cr2N層における結晶粒の(0001)面および(10−10)面の傾斜角の測定態様を示す概略説明図である。The Al 2 O 3 layer, which is a schematic diagram showing the measurement mode of the inclination angle of the crystal grains (0001) plane and (10-10) plane in Cr 2 N layer. 本発明被覆工具2の硬質被覆層の中間層である改質Cr2N層の構成原子共有格子点分布グラフである。3 is a constituent atomic shared lattice point distribution graph of a modified Cr 2 N layer that is an intermediate layer of a hard coating layer of the present coated tool 2. 本発明被覆工具2の硬質被覆層の上部層である改質Al23層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a modified Al 2 O 3 layer that is an upper layer of a hard coating layer of the coated tool 2 of the present invention. (a)は、上部層と中間層の界面で、全ての中間層Σ3対応粒界のうちの30〜70%の中間層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界を形成している本発明被覆工具2の結晶粒界構造の模式図、(b)は、上部層と下部層の界面で、全ての下部層Σ3対応粒界のうちの30%未満の下部層Σ3対応粒界に対して、上部層Σ3対応粒界が連続する結晶粒界を形成している従来被覆工具3の結晶粒界構造の模式図である。(A) is a crystal in which the upper layer Σ3 corresponding grain boundary is continuous with the intermediate layer Σ3 corresponding grain boundary of 30 to 70% of all the intermediate layer Σ3 corresponding grain boundaries at the interface between the upper layer and the intermediate layer. Schematic diagram of the grain boundary structure of the coated tool 2 of the present invention forming a grain boundary, (b) is the interface between the upper layer and the lower layer, less than 30% of all the grain boundaries corresponding to the lower layer Σ3 It is a schematic diagram of the crystal grain boundary structure of the conventional coated tool 3 in which the grain boundary corresponding to the upper layer Σ3 is continuous with the grain boundary corresponding to the lower layer Σ3.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で36時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Then, blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 36 hours, dried under reduced pressure, and press-molded into a compact of a predetermined shape at a pressure of 98 MPa. Is vacuum-sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge is subjected to honing of R: 0.07 mm. -WC based cemented carbide tool bases A to C each having a throwaway tip shape defined in CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで36時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜cを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, NbC powder, TaC powder, WC powder, Co powder, all having an average particle diameter of 0.5 to 2 μm. , And Ni powder, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 36 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The powder is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm to achieve ISO standard / CNMG120408. TiCN-based cermet tool bases a to c having the following chip shape were formed.

つぎに、これらの工具基体A〜Cおよび工具基体a〜cの表面に、通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層であるTi化合物層(Ti化合物層のうちの改質TiCN層については、(a)〜(f)で示す)を、表7に示される組み合わせおよび目標層厚で蒸着形成し、ついで、中間層の改質Cr2N層(A)〜(C)を表4に示される条件で、表7に示される組み合わせおよび目標層厚で蒸着形成し、ついで、上部層の改質Al23層(a)〜(f)を、表5に示される条件で、表7に示される組み合わせおよび目標層厚で蒸着形成することにより本発明被覆工具1〜8をそれぞれ製造した。 Next, on the surfaces of these tool bases A to C and tool bases a to c, a Ti compound layer (Ti) that is a lower layer of the hard coating layer is formed under the conditions shown in Table 3 using a normal chemical vapor deposition apparatus. The modified TiCN layer of the compound layer is formed by vapor deposition with the combinations and target layer thicknesses shown in Table 7 and then the modified Cr 2 N layer of the intermediate layer. (A) to (C) are formed by vapor deposition under the conditions shown in Table 4 with the combinations and target layer thicknesses shown in Table 7, and then the upper modified Al 2 O 3 layers (a) to (f) Were formed by vapor deposition under the conditions shown in Table 5 and with the combinations and target layer thicknesses shown in Table 7, to thereby produce the inventive coated tools 1 to 8, respectively.

また、比較の目的で、上記の工具基体A〜Cおよび工具基体a〜cの表面に、同じく通常の化学蒸着装置を用い、表3に示される条件にて、硬質被覆層の下部層であるTi化合物層(Ti化合物層のうちの改質TiCN層については、(a)〜(f)で示す)を、表8に示される組み合わせかつ目標層厚で蒸着形成し、ついで、上部層の従来Al23層(a)〜(f)を、表6に示される条件で、同じく表8に示される組み合わせおよび目標層厚で蒸着形成することにより従来被覆工具1〜8をそれぞれ製造した。 For comparison purposes, the surface of the above-mentioned tool bases A to C and tool bases a to c is the lower layer of the hard coating layer under the conditions shown in Table 3 using the same ordinary chemical vapor deposition apparatus. Ti compound layers (represented by (a) to (f) for the modified TiCN layer among the Ti compound layers) are formed by vapor deposition with the combinations and target layer thicknesses shown in Table 8, and then the conventional upper layer layer. Conventionally coated tools 1 to 8 were produced by vapor-depositing Al 2 O 3 layers (a) to (f) under the conditions shown in Table 6 with the combinations and target layer thicknesses shown in Table 8, respectively.

ついで、上記の本発明被覆工具の硬質被覆層の中間層を構成する改質Cr2N層、本発明被覆工具と従来被覆工具の硬質被覆層の上部層を構成する改質Al23層および従来Al23層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフを作成し、各層におけるΣ3の分布割合を求めた。
また、本発明被覆工具については、中間層Σ3対応粒界および上部層Σ3対応粒界の数および位置を測定し、また、従来被覆工具については、参考のため、下部層Σ3対応粒界および上部層Σ3対応粒界の数および位置を測定した。
すなわち、本発明被覆工具の場合、上記構成原子共有格子点分布グラフは、上記中間層(改質Cr2N層)と上部層(改質Al23層)の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記改質Cr2N層および改質Al23層の結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合、上記改質Cr2N層及び上記改質Al23層の双方について、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。これらの値を、表7に示す。
さらに、上記の通り求めた上部層との界面に臨んで存在する中間層Σ3対応粒界について、中間層との界面に臨んで存在する上部層Σ3対応粒界の位置と対応させ、上部層と中間層との界面において、上部層Σ3対応粒界と連続した結晶粒界を形成している中間層Σ3対応粒界の、全ての中間層Σ3対応粒界に占める割合(数)を求めた。この値を表7に、Σ3対応粒界連続割合(%)として示す。
表7から、中間層と上部層との界面で、上部層との界面に臨んで存在する中間層のΣ3対応粒界のうちの30〜70%の割合の中間層のΣ3対応粒界に対して、上部層のΣ3対応粒界が連続する結晶粒界として形成されている
Subsequently, the modified Cr 2 N layer constituting the intermediate layer of the hard coating layer of the above-mentioned coated tool of the present invention, and the modified Al 2 O 3 layer constituting the upper layer of the hard coated layer of the coated tool of the present invention and the conventional coated tool. For the conventional Al 2 O 3 layer, a constituent atom shared lattice point distribution graph was created using a field emission scanning electron microscope, and the distribution ratio of Σ3 in each layer was obtained.
Further, for the coated tool of the present invention, the number and position of the grain boundary corresponding to the intermediate layer Σ3 and the upper layer Σ3 are measured, and for the conventional coated tool, for reference, the grain boundary corresponding to the lower layer Σ3 and the upper boundary The number and position of grain boundaries corresponding to layer Σ3 were measured.
That is, in the case of the coated tool of the present invention, the constituent atomic shared lattice point distribution graph is a state where the surfaces of the intermediate layer (modified Cr 2 N layer) and the upper layer (modified Al 2 O 3 layer) are polished surfaces. And set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface is present in the measurement range of the surface polished surface with an irradiation current of 1 nA. Each of the crystal grains having a hexagonal crystal lattice is irradiated, and using an electron backscatter diffraction image apparatus, a 30 × 50 μm region is spaced at a spacing of 0.1 μm / step with respect to the normal line of the surface polished surface. The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains of the modified Cr 2 N layer and the modified Al 2 O 3 layer, is measured. Has a crystal structure of a corundum hexagonal close-packed crystal. Based on the tilt angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, There are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is limited in terms of distribution frequency. In the case of 28, there is no even number of 4, 8, 14, 24, and 26). When the constituent atomic lattice point form existing is represented by ΣN + 1, the modified Cr 2 N layer and the modified Al 2 For both O 3 layers, each ΣN + 1 was created by determining the distribution ratio of the entire ΣN + 1. These values are shown in Table 7.
Further, the grain boundary corresponding to the intermediate layer Σ3 existing facing the interface with the upper layer determined as described above is made to correspond to the position of the grain boundary corresponding to the upper layer Σ3 existing facing the interface with the intermediate layer, The ratio (number) of the grain boundary corresponding to the intermediate layer Σ3 forming the crystal grain boundary continuous with the grain boundary corresponding to the upper layer Σ3 at the interface with the intermediate layer to all the boundary layers corresponding to the intermediate layer Σ3 was determined. This value is shown in Table 7 as Σ3 corresponding grain boundary continuous ratio (%).
From Table 7, with respect to the Σ3-corresponding grain boundary of the intermediate layer at a ratio of 30 to 70% of the Σ3-corresponding grain boundary of the intermediate layer existing at the interface between the intermediate layer and the upper layer, facing the interface with the upper layer. The upper layer Σ3-compatible grain boundary is formed as a continuous crystal grain boundary.

また、参考のため、従来被覆工具の下部層と上部層についても、上記と同様にして、構成原子共有格子点分布グラフを求め、さらに、上部層との界面に臨んで存在する下部層Σ3対応粒界について、下部層との界面に臨んで存在する上部層Σ3対応粒界の位置と対応させ、上部層と下部層との界面において、上部層Σ3対応粒界と連続した結晶粒界を形成している下部層Σ3対応粒界の、全ての下部層Σ3対応粒界に占める割合(数)を求めた。この値を表8に、Σ3対応粒界連続割合(%)として示す。   In addition, for reference, for the lower layer and the upper layer of the conventional coated tool, the constituent atom shared lattice point distribution graph is obtained in the same manner as described above, and further, the lower layer Σ3 existing facing the interface with the upper layer is supported. The grain boundary is made to correspond to the position of the grain boundary corresponding to the upper layer Σ3 existing at the interface with the lower layer, and a grain boundary continuous with the grain boundary corresponding to the upper layer Σ3 is formed at the interface between the upper layer and the lower layer. The ratio (number) of the grain boundaries corresponding to the lower layer Σ3 in the total grain boundaries corresponding to the lower layer Σ3 was determined. This value is shown in Table 8 as a continuous boundary ratio (%) corresponding to Σ3.

表7、8にそれぞれ示される通り、上部層の界面に臨んで存在する本発明被覆工具の中間層のΣ3の分布割合、および上部層の界面に臨んで存在する従来被覆工具の下部層のΣ3の分布割合は、いずれも60%以上となっている。
一方、同じく表7に示されるように、本発明被覆工具において、上部層Σ3対応粒界と連続した結晶粒界を形成している中間層Σ3対応粒界の、全ての中間層Σ3対応粒界に占める割合をあらわすΣ3対応粒界連続割合については、本発明被覆工具においては、30〜70%の範囲を示しており、その結果、すぐれた層間付着強度を有する。
これに対して、表8に示されるように、従来被覆工具においては、上部層Σ3対応粒界と連続した結晶粒界を形成している下部層Σ3対応粒界の、全ての下部層Σ3対応粒界に占める割合をあらわすΣ3対応粒界連続割合は、その値が30%未満あるいは70%を超える値となっているため層間付着強度が不満足なものとなっている。
As shown in Tables 7 and 8, respectively, the distribution ratio of Σ3 of the intermediate layer of the coated tool of the present invention existing at the interface of the upper layer, and Σ3 of the lower layer of the conventional coated tool existing at the interface of the upper layer The distribution ratio of each is 60% or more.
On the other hand, as also shown in Table 7, in the coated tool of the present invention, all the intermediate layer Σ3-corresponding grain boundaries of the intermediate layer Σ3-corresponding grain boundary forming a grain boundary continuous with the upper layer Σ3-corresponding grain boundary. The Σ3-corresponding grain boundary continuous ratio, which represents the ratio in the above, is in the range of 30 to 70% in the coated tool of the present invention, and as a result, has excellent interlayer adhesion strength.
On the other hand, as shown in Table 8, in the conventional coated tool, all the lower layer Σ3 corresponding to the lower layer Σ3 corresponding grain boundary forming a grain boundary continuous with the upper layer Σ3 corresponding grain boundary is supported. The continuous ratio of grain boundaries corresponding to Σ3, which represents the ratio of the grain boundary, is less than 30% or more than 70%, so that the interlayer adhesion strength is unsatisfactory.

さらに、上記の本発明被覆工具1〜13および従来被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層(含、改質TiCN層)、中間層(改質Cr2N層)、上部層(改質Al23層)および従来上部層(従来Al23層)からなることが確認された。
また、これらの被覆工具の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Further, regarding the above-described coated tools 1 to 13 of the present invention and the conventional coated tools 1 to 13, the hard coating layer was observed using an electron beam microanalyzer (EPMA) and an Auger spectrometer (longitudinal section of the layer). The former and the latter both have a Ti compound layer (including a modified TiCN layer), an intermediate layer (modified Cr 2 N layer), and an upper layer (modified Al 2 ) having substantially the same composition as the target composition. O 3 layer) and a conventional upper layer (conventional Al 2 O 3 layer) were confirmed.
Moreover, when the thickness of each constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness substantially the same as the target layer thickness ( Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜8および従来被覆工具1〜8について、
被削材:JIS・SS400の丸棒、
切削速度: 485 m/min、
切り込み: 5 mm、
送り: 0.9 mm/rev、
切削時間: 10 分、
の条件(切削条件A)での軟鋼の乾式高速連続切削試験(通常の切削速度は、300m/min)、
被削材:JIS・SUS316の丸棒、
切削速度: 330 m/min、
切り込み: 1.5 mm、
送り: 0.3 mm/rev、
切削時間: 10 分、
の条件(切削条件B)でのステンレス鋼の湿式高速連続切削試験(通常の切削速度は、220m/min)、
被削材:JIS・SUS304の丸棒、
切削速度: 315 m/min、
切り込み: 1.5 mm、
送り: 0.3 mm/rev、
切削時間: 10 分、
の条件(切削条件C)でのステンレス鋼の湿式高速連続切削試験(通常の切削速度は、220m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表9に示した。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1-8 and the conventional coated tools 1-8,
Work material: JIS / SS400 round bar,
Cutting speed: 485 m / min,
Cutting depth: 5 mm,
Feed: 0.9 mm / rev,
Cutting time: 10 minutes,
Dry high-speed continuous cutting test of mild steel under the conditions (cutting condition A) (normal cutting speed is 300 m / min),
Work material: JIS / SUS316 round bar,
Cutting speed: 330 m / min,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev,
Cutting time: 10 minutes,
Wet high-speed continuous cutting test of stainless steel under the above conditions (cutting condition B) (normal cutting speed is 220 m / min),
Work material: JIS / SUS304 round bar,
Cutting speed: 315 m / min,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev,
Cutting time: 10 minutes,
Wet high-speed continuous cutting test of stainless steel under the above conditions (cutting condition C) (normal cutting speed is 220 m / min),
In each cutting test, the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 9.

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

Figure 0005257184
Figure 0005257184

表7〜9に示される結果から、本発明被覆工具1〜8は、硬質被覆層の中間層と上部層との界面で、全ての中間層Σ3対応粒界のうちの30〜70%の中間層Σ3対応粒界が、上部層Σ3対応粒界と連続する結晶粒界を形成しているため、溶着性が高くかつ高熱発生を伴う軟鋼、ステンレス鋼等の難削材の高速切削でも、前記中間層と上部層の層間付着強度が著しく向上したものとなっているので、層間剥離の発生もなくすぐれた耐チッピング性を発揮するとともに、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が従来Al23層で構成された従来被覆工具1〜8においては、上部層と下部層の層間付着強度が不十分なため、軟鋼、ステンレス鋼等の難削材の高速切削加工で、硬質被覆層に剥離、チッピング等が発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 9, the coated tools 1 to 8 of the present invention are 30 to 70% intermediate of all the intermediate layer Σ3 corresponding grain boundaries at the interface between the intermediate layer and the upper layer of the hard coating layer. The grain boundary corresponding to the layer Σ3 forms a crystal grain boundary that is continuous with the grain boundary corresponding to the upper layer Σ3. Therefore, even in high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel with high weldability and high heat generation, The interlayer adhesion strength between the intermediate layer and the upper layer is remarkably improved, so that it exhibits excellent chipping resistance without occurrence of delamination and excellent wear resistance, but hard coating In the conventional coated tools 1 to 8 in which the upper layer of the conventional layer is composed of the conventional Al 2 O 3 layer, the interlayer adhesion strength between the upper layer and the lower layer is insufficient, so that high-speed cutting of difficult-to-cut materials such as mild steel and stainless steel In the cutting process, peeling, chipping, etc. occurred in the hard coating layer. Time it is clear that through use life.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に耐溶着性、耐チッピング性が要求される軟鋼、ステンレス鋼等の高速切削加工でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also mild steel, stainless steel, etc. that particularly require welding resistance and chipping resistance. It shows excellent chipping resistance even at high-speed cutting, and exhibits excellent cutting performance over a long period of time. It can respond satisfactorily.

Claims (1)

工具基体の表面に、下部層、中間層及び上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの少なくとも1層以上からなり、2〜15μmの合計層厚を有するチタン化合物層、
(b)中間層は、0.5〜3μmの層厚を有する窒化クロム層、
(c)上部層は、1〜15μmの層厚を有する酸化アルミニウム層からなり、
(d)上記(b)の中間層及び上記(c)の上部層のそれぞれについて、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒はコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合、上記(b)の中間層及び上記(c)の上部層のいずれも、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が、60%以上である構成原子共有格子点分布グラフを示し、
(e)さらに、上部層との界面に臨んで存在する中間層のΣ3対応粒界の数と位置を測定し、また、中間層との界面に臨んで存在する上部層のΣ3対応粒界の数と位置を測定した場合に、中間層と上部層との界面で、上部層との界面に臨んで存在する中間層のΣ3対応粒界のうちの30〜70%の割合の中間層のΣ3対応粒界に対して、上部層のΣ3対応粒界が連続する結晶粒界として形成されていることを特徴とする表面被覆切削工具。
In the surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer and an upper layer is formed on the surface of the tool substrate by vapor deposition,
(A) The lower layer is composed of at least one of a titanium carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer, and has a total layer thickness of 2 to 15 μm. Compound layer,
(B) the intermediate layer is a chromium nitride layer having a layer thickness of 0.5 to 3 μm;
(C) The upper layer consists of an aluminum oxide layer having a layer thickness of 1 to 15 μm,
(D) For each of the intermediate layer of (b) and the upper layer of (c), each crystal grain having a hexagonal crystal lattice existing in the measurement range of the surface polished surface using a field emission scanning electron microscope Is irradiated with an electron beam to measure an inclination angle formed by normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface. In this case, the crystal grains have a corundum type hexagonal close-packed crystal structure, and based on the measurement tilt angle obtained as a result, at the interface between adjacent crystal grains, each of the constituent atoms is interlinked with the crystal grains. The distribution of lattice points that share one constituent atom (constituent atom shared lattice point) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum hexagon) Due to the close-packed crystal structure, it is an even number of 2 or more. (If the upper limit of N is 28 from the point of the cloth frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atomic shared lattice point form is represented by ΣN + 1, the above (b) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1, both the intermediate layer of (c) and the upper layer of (c) have the highest peak at Σ3, and the entire ΣN + 1 of the Σ3 Shows a constituent atom shared lattice point distribution graph in which the distribution ratio is 60% or more,
(E) Further, the number and positions of the Σ3-compatible grain boundaries of the intermediate layer existing at the interface with the upper layer are measured, and the Σ3-compatible grain boundaries of the upper layer existing at the interface with the intermediate layer are measured. When the number and position are measured, at the interface between the intermediate layer and the upper layer, Σ3 of the intermediate layer in a proportion of 30 to 70% of the grain boundary corresponding to Σ3 of the intermediate layer existing facing the interface with the upper layer A surface-coated cutting tool, wherein an upper layer Σ3 corresponding grain boundary is formed as a continuous grain boundary with respect to the corresponding grain boundary.
JP2009073032A 2009-03-25 2009-03-25 Surface coated cutting tool Expired - Fee Related JP5257184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009073032A JP5257184B2 (en) 2009-03-25 2009-03-25 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009073032A JP5257184B2 (en) 2009-03-25 2009-03-25 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2010221368A JP2010221368A (en) 2010-10-07
JP5257184B2 true JP5257184B2 (en) 2013-08-07

Family

ID=43039102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009073032A Expired - Fee Related JP5257184B2 (en) 2009-03-25 2009-03-25 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5257184B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908657B2 (en) 2010-09-30 2014-12-09 Panasonic Intellectual Property Corporation Of America Transmission device and transmission method
JP6548072B2 (en) 2014-05-30 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3678945B2 (en) * 1999-07-15 2005-08-03 日立ツール株式会社 Titanium carbonitride coated tool
JP3971339B2 (en) * 2003-04-30 2007-09-05 株式会社神戸製鋼所 Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP4863070B2 (en) * 2006-10-19 2012-01-25 三菱マテリアル株式会社 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel

Also Published As

Publication number Publication date
JP2010221368A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2014034730A1 (en) Surface-coated cutting tool
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5263572B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5257184B2 (en) Surface coated cutting tool
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5267767B2 (en) Surface coated cutting tool
JP4761138B2 (en) Surface-coated cermet cutting throwaway tip that exhibits excellent chipping resistance due to high-speed cutting of hardened steel
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5088477B2 (en) Surface coated cutting tool
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5267766B2 (en) Surface coated cutting tool
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP5088475B2 (en) Surface coated cutting tool
JP4756471B2 (en) Surface-coated cermet cutting throwaway tip that provides excellent chipping resistance in high-speed heavy cutting of hardened steel
JP5309698B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4853829B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5257178B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4752536B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness materials.
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees