JP4822119B2 - Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting - Google Patents

Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting Download PDF

Info

Publication number
JP4822119B2
JP4822119B2 JP2006193493A JP2006193493A JP4822119B2 JP 4822119 B2 JP4822119 B2 JP 4822119B2 JP 2006193493 A JP2006193493 A JP 2006193493A JP 2006193493 A JP2006193493 A JP 2006193493A JP 4822119 B2 JP4822119 B2 JP 4822119B2
Authority
JP
Japan
Prior art keywords
layer
type
hard coating
cutting
constituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006193493A
Other languages
Japanese (ja)
Other versions
JP2008018503A (en
Inventor
興平 冨田
晃 長田
惠滋 中村
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006193493A priority Critical patent/JP4822119B2/en
Publication of JP2008018503A publication Critical patent/JP2008018503A/en
Application granted granted Critical
Publication of JP4822119B2 publication Critical patent/JP4822119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高い発熱を伴うとともに切刃に高負荷がかかる高送り、高切り込みの高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating even when various materials such as steel and cast iron are machined under high feed, high cutting and high cutting speed conditions with high heat generation and high load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−QCr、(ただし、原子比で、Q:0.01〜0.1)、
を満足するAlとCrの複合酸化物[以下、α型(Al,Cr)23で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) the upper layer has an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1 -Q Cr Q ) 2 O 3 (however, in terms of atomic ratio, Q: 0.01 to 0.1),
A composite oxide of Al and Cr (hereinafter referred to as α-type (Al, Cr) 2 O 3 ) layer satisfying the following conditions:
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. This is also well known.

また、上記の被覆工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。   Further, in the above-mentioned coated tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is used for the purpose of improving the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitride is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so as to have a vertically grown crystal structure. It is also known.

さらに、上記の被覆工具の硬質被覆層を構成するα型(Al,Cr)23層が、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にα型(Al,Cr)23の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
特開昭52−66508号公報 特開平6−8010号公報
Further, the α type (Al, Cr) 2 O 3 layer constituting the hard coating layer of the above coated tool is a corundum type hexagonal close-packed crystal in which constituent atoms consisting of Al, Cr, and oxygen are present at lattice points. The crystal structure, that is, the atomic arrangement of the unit cell of α-type (Al, Cr) 2 O 3 is schematically shown in FIG. 1 ((a) is a perspective view and (b) is a plan view of cross sections 1 to 9). It is also known that it is composed of crystal grains having a crystal structure.
JP 52-66508 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを高い発熱を伴うと共に、切刃に高負荷がかかる高送り、高切り込みの高速重切削加工条件で行うのに用いた場合には、硬質被覆層を構成するα型(Al,Cr)23層が高温強度が十分でないために、前記硬質被覆層がチッピングを起こし易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. For tools, there is no problem when this is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but this is accompanied by high heat generation and high load on the cutting edge. When used in high feed, high cutting, high speed heavy cutting conditions, the hard coating layer is not sufficient because the α-type (Al, Cr) 2 O 3 layer constituting the hard coating layer does not have sufficient high-temperature strength. The layer is prone to chipping, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のα型(Al,Cr)23層が硬質被覆層の上部層を構成する被覆工具に着目し、特に前記α型(Al,Cr)23層の高温強度の向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としてのα型(Al,Cr)23層は、すぐれた高温硬さ、高温強度、耐熱性を備えているが、この層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で、Ti化合物層(従来被覆工具の下部層)上に蒸着形成される。
しかし、これを、
反応ガス組成:容量%で、AlCl:6〜10%、CrCl:0.1〜0.65%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl、CrCl、CO、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)でTi化合物層(従来被覆工具の下部層)上に蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成したα型(Al,Cr)23層(以下、「改質α型(Al,Cr)23層」という)は、従来被覆工具の硬質被覆層の上部層を構成するα型(Al,Cr)23層(以下、「従来α型(Al,Cr)23層」という)に比べて、高温強度は一段とすぐれたものになること。
In view of the above, the present inventors pay attention to the coated tool in which the α-type (Al, Cr) 2 O 3 layer constitutes the upper layer of the hard coating layer, and particularly the α-type (Al , Cr) As a result of research to improve the high-temperature strength of the 2 O 3 layer,
(A) The α-type (Al, Cr) 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated tool has excellent high-temperature hardness, high-temperature strength, and heat resistance. For example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05-0.2%, H2: remaining,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
Under the above conditions (referred to as normal conditions), vapor deposition is formed on the Ti compound layer (the lower layer of the conventional coated tool).
But this
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CrCl 3 : 0.1 to 0.65%, CO 2 : 10 to 15%, HCl: 3 to 5%, H 2 S: 0.05 ~ 0.2%, H2: remaining,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CrCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (reaction) When vapor deposition is performed on the Ti compound layer (the lower layer of the conventional coated tool) under the high gas component content adjustment low pressure condition), α-type (Al, Cr) 2 O 3 formed under the reaction gas component high content adjustment low pressure condition as a result. Layer (hereinafter referred to as “modified α-type (Al, Cr) 2 O 3 layer”) is an α-type (Al, Cr) 2 O 3 layer (hereinafter referred to as “upper layer”) of the hard coating layer of the conventional coated tool. Compared to “conventional α-type (Al, Cr) 2 O 3 layer”), the high-temperature strength is much better.

(b)上記の従来α型(Al,Cr)23層と、上記(a)の改質α型(Al,Cr)23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型(Al,Cr)23層は、図5に例示される通り、Σ3の分布割合が30%以下である構成原子共有格子点分布グラフを示すのに対して、前記改質α型(Al,Cr)23層は、図4に例示される通り、Σ3の分布割合が60〜80%という高い分布割合の構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl、CrCl、COおよびHClの含有割合、また、雰囲気反応圧力によって変化するばかりでなく、さらに、Ti化合物層(下部層)と改質α型(Al,Cr)23層との間に中間層(後記)を介在させることによっても変化すること。
なお、上記の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(B) About the conventional α-type (Al, Cr) 2 O 3 layer and the modified α-type (Al, Cr) 2 O 3 layer of (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface [the tilt angle of the crystal plane is shown in FIG. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points as described above, and are adjacent to each other based on the measured tilt angle. Each of the constituent atoms is one constituent atom between the crystal grains The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). When the constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 is created (in this case, from the above result, the constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27) The conventional α-type (Al, Cr) 2 O 3 layer shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less as illustrated in FIG. In contrast, the modified α As shown in FIG. 4, the type (Al, Cr) 2 O 3 layer shows a constituent atom shared lattice point distribution graph having a high distribution ratio of Σ3 of 60 to 80%, and this high distribution ratio of Σ3. Not only changes depending on the content ratio of AlCl 3 , CrCl 3 , CO 2 and HCl constituting the reaction gas, and the atmospheric reaction pressure, but also includes a Ti compound layer (lower layer) and a modified α-type (Al, It also changes by interposing an intermediate layer (described later) between the Cr) 2 O 3 layer.
In the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer, among the constituent atomic shared lattice point forms at the interface between adjacent crystal grains The unit forms of Σ3, Σ7, and Σ11 are illustrated in schematic diagrams as shown in FIGS.

(c)上記のとおり、改質α型(Al,Cr)23層は、従来α型(Al,Cr)23層の備えるすぐれた高温硬さと耐熱性に加えて、さらに、一段とすぐれた高温強度を具備しているため、改質α型(Al,Cr)23層をTi化合物層上に直接蒸着形成した被覆工具であっても、鋼や鋳鉄などの通常の条件での切削加工に用いた場合には特別の問題は生じない。しかし、このような被覆工具を、高い発熱を伴いまた高負荷がかかる高速重切削という厳しい条件の切削加工に用いた場合には、下部層(Ti化合物層)に対する上部層(改質α型(Al,Cr)23層)の密着性が十分とはいえないため、特に、硬質被覆層の下部層と上部層の層間での剥離を生じやすい。
しかし、下部層と上部層の間に、例えば、通常の化学蒸着装置にて
反応ガス組成(容量%);TiCl:2〜4%、AlCl:0.1〜0.5%、CrCl:0.1〜0.5%、CH:2.5〜4%、CO:0.02〜0.05%、N2:15〜20%、H2:残り、
反応雰囲気温度;980〜1020℃、
反応雰囲気圧力;5〜8kPa、
の条件で、組成式:(Ti1−X−YAlCr)Cαβγ、(但し、X:0.003〜0.1、Y:0.01〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)を満足するTiとAlとCrの複合炭窒酸化物層(以下、(Ti,Al,Cr)CNO中間層と記す)を中間層として化学蒸着で形成すると、
(Ti,Al,Cr)CNO中間層が介在することにより、下部層(Ti化合物層)と上部層(改質α型(Al,Cr)23層)との密着強度、接合強度が大幅に改善され、下部層と上部層との層間での剥離発生が防止されること。
(C) As described above, the modified α-type (Al, Cr) 2 O 3 layer is further improved in addition to the excellent high temperature hardness and heat resistance of the conventional α-type (Al, Cr) 2 O 3 layer. Because it has excellent high-temperature strength, even a coated tool in which a modified α-type (Al, Cr) 2 O 3 layer is directly deposited on a Ti compound layer can be used under normal conditions such as steel and cast iron. There is no special problem when it is used for cutting. However, when such a coated tool is used for cutting under severe conditions such as high-speed heavy cutting with high heat generation and high load, the upper layer (modified α type ( Since the adhesion of the Al, Cr) 2 O 3 layer) is not sufficient, peeling between the lower layer and the upper layer of the hard coating layer is particularly likely to occur.
However, between the lower layer and the upper layer, for example, in a normal chemical vapor deposition apparatus, the reaction gas composition (volume%); TiCl 4 : 2 to 4%, AlCl 3 : 0.1 to 0.5%, CrCl 3 : 0.1~0.5%, CH 4: 2.5~4 %, CO 2: 0.02~0.05%, N 2: 15~20%, H 2: remainder,
Reaction atmosphere temperature: 980-1020 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
The composition formula: (Ti 1-XY Al X Cr Y ) C α N β O γ , (X: 0.003 to 0.1, Y: 0.01 to 0.1 In addition, Ti and Al satisfying α: 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and α + β + γ = 1) And Cr composite oxynitride layer (hereinafter referred to as (Ti, Al, Cr) CNO intermediate layer) as an intermediate layer by chemical vapor deposition,
(Ti, Al, Cr) CNO intermediate layer intervenes to greatly increase the adhesion strength and bonding strength between the lower layer (Ti compound layer) and the upper layer (modified α-type (Al, Cr) 2 O 3 layer) And the occurrence of delamination between the lower layer and the upper layer is prevented.

(d)上記(Ti,Al,Cr)CNO中間層は、上部層と下部層の層間の密着強度、接合強度を高め、その結果として、下部層と上部層層間での剥離発生が防止され、層構造からなる硬質被覆層の接合強度を向上させるが、これに加え、上記(Ti,Al,Cr)CNO中間層は、この上に蒸着形成される上部層(改質α型(Al,Cr)23層)のΣ3の分布割合を高めることにも寄与するため、(Ti,Al,Cr)CNO中間層を介在させた上部層(改質α型(Al,Cr)23層)では、Σ3の分布割合の上限値は90%にまで高められる(上記中間層がない場合には、Σ3の分布割合上限値は80%)。したがって、Ti化合物層(下部層)、(Ti,Al,Cr)CNO中間層(中間層)および改質α型(Al,Cr)23層(上部層)の積層構造で硬質被覆層を構成した被覆工具は、Ti化合物層(下部層)が具備するすぐれた高温強度、(Ti,Al,Cr)CNO中間層(中間層)が具備するすぐれた密着強度、接合強度と相俟って、高い発熱を伴い高負荷のかかる高速重切削という厳しい条件下での切削加工に用いた場合にも、中間層を有さず従来α型(Al,Cr)23層を上部層として形成した従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、また、長期にわたってすぐれた耐摩耗性を発揮すること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The (Ti, Al, Cr) CNO intermediate layer increases the adhesion strength and bonding strength between the upper layer and the lower layer, and as a result, the occurrence of delamination between the lower layer and the upper layer is prevented, In addition to this, the (Ti, Al, Cr) CNO intermediate layer has an upper layer (modified α-type (Al, Cr) formed by vapor deposition thereon. ) 2 O 3 layer) to increase the distribution ratio of Σ3, so that the upper layer (modified α-type (Al, Cr) 2 O 3 layer) with a (Ti, Al, Cr) CNO intermediate layer interposed ), The upper limit value of the distribution ratio of Σ3 is increased to 90% (when there is no intermediate layer, the upper limit value of the distribution ratio of Σ3 is 80%). Therefore, a hard coating layer is formed by a laminated structure of a Ti compound layer (lower layer), a (Ti, Al, Cr) CNO intermediate layer (intermediate layer) and a modified α-type (Al, Cr) 2 O 3 layer (upper layer). The constructed coated tool is combined with excellent high-temperature strength provided by the Ti compound layer (lower layer), excellent adhesion strength provided by the (Ti, Al, Cr) CNO intermediate layer (intermediate layer), and joint strength. Even when used for cutting under severe conditions such as high-speed heavy cutting with high heat generation and high load, the conventional α-type (Al, Cr) 2 O 3 layer is formed as the upper layer without an intermediate layer. Compared to the conventional coated tools, the hard coating layer exhibits excellent chipping resistance and also exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)中間層が、0.2〜2μmの平均層厚を有し、さらに、
組成式:(Ti1−X−YAlCr)Cαβγ、(但し、X:0.003〜0.1、Y:0.01〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)
を満足するTiとAlとCrの複合炭窒酸化物層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−QCr、(ただし、原子比で、Q:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜90%である構成原子共有格子点分布グラフを示すAlとCrの複合酸化物層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) the intermediate layer has an average layer thickness of 0.2-2 μm,
Formula: (Ti 1-X-Y Al X Cr Y) C α N β O γ, ( where, X: 0.003 to 0.1, Y: is 0.01 to 0.1, also, alpha : 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and α + β + γ = 1)
A composite oxycarbonitride layer of Ti, Al, and Cr that satisfies
(C) the upper layer has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1 -Q Cr Q ) 2 O 3 (however, in terms of atomic ratio, Q: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Cr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom having the highest peak in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 60 to 90% A composite oxide layer of Al and Cr showing a shared lattice point distribution graph,
The hard coating layer formed by vapor deposition of the hard coating layer composed of the above (a) to (c) is characterized by a surface-coated cutting tool that exhibits excellent chipping resistance in high-speed heavy cutting. .

以下に、この発明の被覆工具の硬質被覆層の構成層において、上記の通りに限定した理由を説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と(Ti,Al,Cr)CNO中間層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速重切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.
(A) Lower layer (Ti compound layer)
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer exists as a lower layer of the hard coating layer, In addition to contributing to improving the high-temperature strength of the hard coating layer due to its excellent high-temperature strength, it firmly adheres to both the tool substrate and the (Ti, Al, Cr) CNO intermediate layer, and thus the tool substrate of the hard coating layer However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the average layer thickness exceeds 20 μm, particularly high heat generation occurs. In high speed heavy cutting, it becomes easy to cause thermoplastic deformation, which causes uneven wear. Therefore, the average layer thickness is set to 3 to 20 μm.

(b)中間層((Ti,Al,Cr)CNO層)
(Ti,Al,Cr)CNO中間層は、下部層(Ti化合物層)および上部層(改質α型(Al,Cr)23層)のいずれとも強い密着性を有し、また、その接合強度も高いため、この(Ti,Al,Cr)CNO中間層を介在することによって、硬質被覆層全体としてすぐれた高温強度を備えた層が形成されるが、(Ti,Al,Cr)CNO中間層の上部に、改質α型(Al,Cr)23層を蒸着形成したことによって、中間層を設けず直接下部層上に改質α型(Al,Cr)23層を蒸着形成した場合に比べて、改質α型(Al,Cr)23層におけるΣ3の分布割合はさらに高められ、改質α型(Al,Cr)23層は、より一段とすぐれた高温強度を備えたものとなる。
(Ti,Al,Cr)CNO中間層における構成成分であるAl成分の含有割合(原子比)を示すX値が0.003未満の場合、あるいは、Cr成分の含有割合(原子比)を示すY値が0.01未満の場合には、上部層である改質α型(Al,Cr)23層との密着性、接合強度が低下し、一方、X値が0.1を超えた場合、Y値が0.1を超えた場合には、下部層であるTi化合物層との密着性、接合強度が低下するため、上部層及び下部層のいずれともすぐれた密着性および接合強度を確保するという観点から、(Ti,Al,Cr)CNO中間層におけるAl成分の含有割合を示すX値を0.003〜0.1、また、Crの含有割合を示すY値を0.01〜0.1の範囲に定めた。
また、同じく(Ti,Al,Cr)CNO中間層における構成成分であるCの含有割合(原子比)を示すα値、Nの含有割合(原子比)を示すβ値、Oの含有割合(原子比)を示すγ値についても、下部層であるTi化合物層、あるいは、上部層である改質α型(Al,Cr)23層との密着性、接合強度の観点から、それぞれを所定の数値範囲に定めた。すなわち、α値、β値が0.3未満の場合には、下部層であるTi化合物層との密着性、接合強度が低下し、一方、α値、β値が0.6を超えると、相対的にOの含有割合が減少するため、上部層である改質α型(Al,Cr)23層との密着性、接合強度が低下すること、さらに、γ値が0.05未満の場合には、上部層との密着性、接合強度が低下し、一方、γ値が0.3を超える場合には、下部層との密着性、接合強度が低下することから、α値、β値およびγ値を、それぞれ、0.3〜0.6、0.3〜0.6、0.05〜0.3という数値範囲に定めた。
また、(Ti,Al,Cr)CNO中間層の層厚については、その層厚が0.2μm未満では、層厚が薄すぎて密着性、接合強度の確保を期待することはできず、一方、2μmを超えると、硬質被覆層全体としての耐摩耗性が低下傾向を示すようになることから、(Ti,Al,Cr)CNO中間層の層厚を、0.2〜2μmの範囲に定めた。
(B) Intermediate layer ((Ti, Al, Cr) CNO layer)
The (Ti, Al, Cr) CNO intermediate layer has strong adhesion to both the lower layer (Ti compound layer) and the upper layer (modified α-type (Al, Cr) 2 O 3 layer). Since the bonding strength is also high, by interposing this (Ti, Al, Cr) CNO intermediate layer, a layer having excellent high-temperature strength as the whole hard coating layer is formed, but (Ti, Al, Cr) CNO By forming the modified α-type (Al, Cr) 2 O 3 layer on top of the intermediate layer, the modified α-type (Al, Cr) 2 O 3 layer is formed directly on the lower layer without providing the intermediate layer. compared with the case where the vapor deposited, modified α-type (Al, Cr) distribution ratio of Σ3 in 2 O 3 layer is further enhanced, the reforming α-type (Al, Cr) 2 O 3 layer, a more further excellent It has high temperature strength.
(Ti, Al, Cr) When the X value indicating the content ratio (atomic ratio) of the Al component as a constituent component in the CNO intermediate layer is less than 0.003, or Y indicating the content ratio (atomic ratio) of the Cr component When the value is less than 0.01, the adhesion and bonding strength with the modified α-type (Al, Cr) 2 O 3 layer, which is the upper layer, are reduced, while the X value exceeds 0.1. In this case, when the Y value exceeds 0.1, the adhesion and bonding strength with the Ti compound layer, which is the lower layer, are lowered. Therefore, excellent adhesion and bonding strength with both the upper layer and the lower layer are obtained. From the viewpoint of ensuring, the X value indicating the content ratio of the Al component in the (Ti, Al, Cr) CNO intermediate layer is 0.003 to 0.1, and the Y value indicating the Cr content ratio is 0.01 to The range was set to 0.1.
Similarly, an α value indicating the content ratio (atomic ratio) of C, which is a constituent component in the (Ti, Al, Cr) CNO intermediate layer, a β value indicating the content ratio (atomic ratio) of N, and an O content ratio (atom Γ value indicating the ratio) is also determined from the viewpoint of adhesion and bonding strength with the Ti compound layer as the lower layer or the modified α-type (Al, Cr) 2 O 3 layer as the upper layer. The numerical range was determined. That is, when the α value and β value are less than 0.3, the adhesion and bonding strength with the Ti compound layer as the lower layer are lowered, while when the α value and β value exceed 0.6, Since the content ratio of O is relatively reduced, the adhesion and bonding strength with the modified α-type (Al, Cr) 2 O 3 layer, which is the upper layer, are reduced, and the γ value is less than 0.05. In this case, the adhesion with the upper layer and the bonding strength are reduced. On the other hand, when the γ value exceeds 0.3, the adhesion with the lower layer and the bonding strength are reduced. The β value and γ value were set to numerical ranges of 0.3 to 0.6, 0.3 to 0.6, and 0.05 to 0.3, respectively.
In addition, regarding the thickness of the (Ti, Al, Cr) CNO intermediate layer, if the layer thickness is less than 0.2 μm, the layer thickness is too thin and it cannot be expected to ensure adhesion and bonding strength. If the thickness exceeds 2 μm, the wear resistance of the hard coating layer as a whole tends to decrease. Therefore, the thickness of the (Ti, Al, Cr) CNO intermediate layer is set in the range of 0.2 to 2 μm. It was.

(c)上部層(改質α型(Al,Cr)23層)
上記の改質α型(Al,Cr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分にはAl成分との共存において、さらに一段と耐熱性を向上させる作用を有するが、Crの含有割合を示すQ値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同Q値が0.1を越えると高温強度に低下傾向が現れるようになることから、前記Q値を0.01〜0.1と定めた。
また、上記の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、(Ti,Al,Cr)CNO中間層上に改質α型(Al,Cr)23層を化学蒸着で形成すること、反応ガスを構成するAlCl、CrCl、COおよびHClの含有割合、さらに雰囲気反応圧力を調整することによって60〜90%とすることができるが、この場合Σ3の分布割合が60%未満では、高速重切削加工で、硬質被覆層にチッピングが発生しないようなすぐれた高温強度向上効果を期待することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を90%を越えて高くすることは層形成上困難であることから、Σ3の分布割合を60〜90%と定めた。
さらに、上記改質α型(Al,Cr)23層は、従来α型(Al,Cr)23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質α型(Al,Cr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(C) Upper layer (modified α-type (Al, Cr) 2 O 3 layer)
In the above modified α-type (Al, Cr) 2 O 3 layer, Al which is a constituent component thereof improves the high-temperature hardness and heat resistance of the layer, and the Cr component further coexists with the Al component. Although it has the effect | action which improves heat resistance further, if the Q value which shows the content rate of Cr is less than 0.01 by atomic ratio, the desired improvement effect cannot be ensured for the said effect | action, On the other hand, the Q value is 0. When the ratio exceeds 1, the high temperature strength tends to decrease, so the Q value is set to 0.01 to 0.1.
In addition, the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified α-type (Al, Cr) 2 O 3 layer is the modified α-type (Al) on the (Ti, Al, Cr) CNO intermediate layer. , Cr) 2 O 3 layer is formed by chemical vapor deposition, the content ratio of AlCl 3 , CrCl 3 , CO 2 and HCl constituting the reaction gas, and the atmospheric reaction pressure are adjusted to 60 to 90%. However, in this case, if the distribution ratio of Σ3 is less than 60%, it is not possible to expect an excellent effect of improving high-temperature strength so that chipping does not occur in the hard coating layer in high-speed heavy cutting processing. The higher the ratio, the better. However, since it is difficult to increase the distribution ratio of Σ3 beyond 90% in terms of layer formation, the distribution ratio of Σ3 was determined to be 60 to 90%.
Furthermore, the modified α-type (Al, Cr) 2 O 3 layer has a further excellent high-temperature strength in addition to the excellent high-temperature hardness and heat resistance of the conventional α-type (Al, Cr) 2 O 3 layer itself. However, if the average layer thickness is less than 1 μm, the above-mentioned properties of the modified α-type (Al, Cr) 2 O 3 layer cannot be sufficiently provided in the hard coating layer, When the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、硬質被覆層が、下部層と上部層(改質α型(Al,Cr)23層)間に(Ti,Al,Cr)CNO中間層を介在させた構造のものとして構成されているため、各種の鋼や鋳鉄などの切削加工を、高い発熱を伴いかつ高負荷がかかる高速重切削条件で行うのに用いた場合にも、(Ti,Al,Cr)CNO中間層の存在により硬質被覆層の層間密着性、接合強度が確保されるばかりか、改質α型(Al,Cr)23層が、従来(Al,Cr)23自身のもつすぐれた高温硬さと耐熱性に加えて、より一段とすぐれた高温強度を具備することにより、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated tool of the present invention has a structure in which a hard coating layer has a (Ti, Al, Cr) CNO intermediate layer interposed between a lower layer and an upper layer (modified α-type (Al, Cr) 2 O 3 layer). (Ti, Al, Cr) CNO even when it is used to cut various types of steel and cast iron under high-speed heavy cutting conditions with high heat generation and high load. The presence of the intermediate layer not only ensures the interlayer adhesion and bonding strength of the hard coating layer, but the modified α-type (Al, Cr) 2 O 3 layer is tangled by the conventional (Al, Cr) 2 O 3 itself. In addition to the high-temperature hardness and heat resistance, it has excellent high-temperature strength, thereby exhibiting excellent chipping resistance and further extending the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表3に示される条件で(Ti,Al,Cr)CNO中間層(a)〜(e)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の中間層として蒸着形成し、さらに、同じく表3に示される条件で改質α型(Al,Cr)23層(a)〜(e)のうちのいずれかを同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 4 under the conditions shown in Table 4 below are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. And a Ti compound layer with a target layer thickness as a lower layer of the hard coating layer, and then, (Ti, Al, Cr) CNO intermediate layers (a) to (e) under the conditions shown in Table 3 Any one of these is deposited and formed as an intermediate layer of the hard coating layer with the combination and target layer thickness shown in Table 4, and the modified α-type (Al, Cr) 2 O 3 layer (under the conditions shown in Table 3) Same as any one of a) to (e) The coated tools 1 to 13 of the present invention were produced by vapor deposition as the upper layer of the hard coating layer with the combinations shown in Table 4 and the target layer thickness.

また、比較の目的で、表5に示される通り、硬質被覆層の上部層として、表3に示される条件で従来α型(Al,Cr)23層(a)〜(e)のうちのいずれかを、直接下部層(Ti化合物層)上に形成した従来被覆工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 5, as the upper layer of the hard coating layer, among the conventional α-type (Al, Cr) 2 O 3 layers (a) to (e) under the conditions shown in Table 3 Conventionally coated tools 1 to 13 each of which was directly formed on the lower layer (Ti compound layer) were produced.

ついで、上記の本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の上部層を構成する改質α型(Al,Cr)23層および従来α型(Al,Cr)23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Subsequently, the modified α type (Al, Cr) 2 O 3 layer and the conventional α type (Al, Cr) constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 described above. Constituent atom shared lattice point distribution graphs were prepared for each of the 2 O 3 layers using a field emission scanning electron microscope.
That is, the constituent atom sharing lattice point distribution graph is a state where the surface of the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer is a polished surface. A crystal which is set in a lens barrel of a field emission scanning electron microscope and exists in the measurement range of the surface polished surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface. Irradiate each grain, and use an electron backscatter diffraction imaging apparatus, and a region of 30 × 50 μm at a spacing of 0.1 μm / step is the crystal plane of the crystal grain with respect to the normal of the surface polished surface The inclination angles formed by the normals of the (0001) plane and the (10-10) plane are measured, and based on the measurement inclination angles obtained as a result, each of the constituent atoms is formed at the interface between adjacent crystal grains. Lattice points (structures that share one constituent atom between the crystal grains) The distribution of atomic shared lattice points is calculated, and N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal close-packed crystal) However, when the upper limit of N is 28 from the point of distribution frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atomic shared lattice point form is expressed by ΣN + 1, It was created by determining the distribution ratio of ΣN + 1 in the entire ΣN + 1.

この結果得られた各種の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。 In the graph of constituent atomic shared lattice points of the various modified α-type (Al, Cr) 2 O 3 layers and conventional α-type (Al, Cr) 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results) The distribution ratios of Σ3 in the total distribution ratios of Σ3, Σ7, Σ11, Σ13, Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 4 and 5, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆工具の改質α型(Al,Cr)23層は、いずれもΣ3の占める分布割合が60〜90%である構成原子共有格子点分布グラフを示すのに対して、従来被覆工具の従来α型(Al,Cr)23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆工具7の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフ、図5は、従来被覆工具7の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 4 and 5, each of the modified α-type (Al, Cr) 2 O 3 layer of the coated tool of the present invention has a distribution ratio occupied by Σ3. Shows a distribution graph of constituent atomic shared lattice points with 60 to 90%, whereas the conventional α-type (Al, Cr) 2 O 3 layer of the conventional coated tool has a Σ3 distribution ratio of 30% or less. The constituent atomic shared lattice point distribution graph was shown.
4 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type (Al, Cr) 2 O 3 layer of the coated tool 7 of the present invention, and FIG. 5 is a graph showing the conventional α-type (Al, Cr) of the conventional coated tool 7. ) Each of the constituent atomic shared lattice point distribution graphs of the 2 O 3 layer is shown.

また、この結果得られた本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement), Also showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・S25Cの丸棒、
切削速度: 440 m/min、
切り込み: 2.5 mm、
送り: 0.7 mm/rev、
切削時間: 8 分、
の条件での炭素鋼の乾式連続高速高送り切削試験(通常の切削速度および送りは、それぞれ250m/min、0.3mm/rev)、
[切削条件B]
被削材:JIS・SCr420Hの丸棒、
切削速度: 420 m/min、
切り込み: 5.0 mm、
送り: 0.35 mm/rev、
切削時間: 5 分、
の条件での合金鋼の乾式連続高速高切り込み切削試験(通常の切削速度および切り込みは、それぞれ250m/min、2mm)、
[切削条件C]
被削材:JIS・FC250の丸棒、
切削速度: 550 m/min、
切り込み: 6.0 mm、
送り: 0.4 mm/rev、
切削時間: 5 分、
の条件での鋳鉄の湿式連続高速高切り込み切削試験(通常の切削速度および切り込みは、それぞれ250m/min、2.5mm)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated tools of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13, all of them are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS / S25C round bar,
Cutting speed: 440 m / min,
Cutting depth: 2.5 mm,
Feed: 0.7 mm / rev,
Cutting time: 8 minutes,
Dry continuous high-speed high-feed cutting test of carbon steel under the conditions (normal cutting speed and feed are 250 m / min and 0.3 mm / rev, respectively)
[Cutting conditions B]
Work material: JIS / SCr420H round bar,
Cutting speed: 420 m / min,
Cutting depth: 5.0 mm,
Feed: 0.35 mm / rev,
Cutting time: 5 minutes,
Dry continuous high-speed high-cut cutting test of alloy steel under the conditions (normal cutting speed and cutting are 250 m / min and 2 mm, respectively)
[Cutting conditions C]
Work material: JIS / FC250 round bar,
Cutting speed: 550 m / min,
Cutting depth: 6.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 5 minutes,
Wet continuous high-speed high-cut cutting test of cast iron under the conditions of (normal cutting speed and cutting are 250 m / min and 2.5 mm, respectively)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 0004822119
Figure 0004822119

Figure 0004822119
Figure 0004822119

Figure 0004822119
Figure 0004822119

Figure 0004822119
Figure 0004822119

Figure 0004822119
Figure 0004822119

Figure 0004822119
Figure 0004822119

表4〜6に示される結果から、本発明被覆工具1〜13は、硬質被覆層の中間層として(Ti,Al,Cr)CNO中間層が蒸着形成され、これを介して、Σ3の分布割合が60〜90%の構成原子共有格子点分布グラフを示す改質α型(Al,Cr)23層が上部層として蒸着形成されているため、高い発熱を伴い、かつ、切刃に対する負荷のきわめて大きい鋼や鋳鉄の高速重切削でも、前記(Ti,Al,Cr)CNO中間層の有する高い密着性、接合強度とともに、前記改質α型(Al,Cr)23層が自身の具備するすぐれた高温硬さおよび耐熱性に加えて、より一段とすぐれた高温強度を有することにより、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、長期にわたってすぐれた耐摩耗性を示すのに対して、下部層(Ti化合物層)上に直接Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型(Al,Cr)23層が蒸着形成された硬質被覆層を備えた従来被覆工具1〜13においては、いずれも高速重切削では硬質被覆層の層間接合強度、高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, in the present coated tools 1 to 13, (Ti, Al, Cr) CNO intermediate layer is formed by vapor deposition as the intermediate layer of the hard coating layer, and through this, the distribution ratio of Σ3 Since the modified α-type (Al, Cr) 2 O 3 layer showing a constituent atomic shared lattice distribution graph of 60 to 90% is formed as an upper layer by vapor deposition, high heat generation occurs and the load on the cutting blade Even in high-speed heavy cutting of steel and cast iron with a very large thickness, the modified α-type (Al, Cr) 2 O 3 layer has its own properties along with the high adhesion and bonding strength of the (Ti, Al, Cr) CNO intermediate layer. In addition to the excellent high-temperature hardness and heat resistance that it has, it has excellent high-temperature strength and exhibits excellent chipping resistance. Resistance The conventional α-type (Al, Cr) 2 O 3 layer showing a constituent atomic shared lattice distribution graph in which the distribution ratio of Σ3 is 30% or less directly on the lower layer (Ti compound layer), while exhibiting wear. In the conventional coated tools 1 to 13 each having a hard coating layer formed by vapor deposition, chipping occurs in the hard coating layer because the interlaminar bonding strength and high temperature strength of the hard coating layer are insufficient in high-speed heavy cutting. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い高温強度が要求される高速重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has an excellent hard coating layer not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed heavy cutting that requires particularly high high-temperature strength. Because it shows chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. is there.

α型(Al,Cr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。It is a schematic diagram showing the atomic arrangement of the unit cell of the corundum type hexagonal close-packed crystal constituting the α-type (Al, Cr) 2 O 3 layer, (a) is a perspective view, (b) is a cross section of 1-9 It is a top view. α型(Al,Cr)23層における結晶粒の(0001)面および(10−10)面の傾斜角の測定態様を示す概略説明図である。α-type (Al, Cr) is a schematic explanatory view showing the measurement mode of the crystal grains (0001) plane and (10-10) plane inclination angle of the 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆工具7の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフである。It is a constituent atomic shared lattice point distribution graph of the modified α-type (Al, Cr) 2 O 3 layer of the coated tool 7 of the present invention. 従来被覆工具7の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional α-type (Al, Cr) 2 O 3 layer of a conventional coated tool 7.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)中間層が、0.2〜2μmの平均層厚を有し、さらに、
組成式:(Ti1−X−YAlCr)Cαβγ、(但し、X:0.003〜0.1、Y:0.01〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)
を満足するTiとAlとCrの複合炭窒酸化物層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−QCr、(ただし、原子比で、Q:0.01〜0.1)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜90%である構成原子共有格子点分布グラフを示すAlとCrの複合酸化物層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) the intermediate layer has an average layer thickness of 0.2-2 μm,
Formula: (Ti 1-X-Y Al X Cr Y) C α N β O γ, ( where, X: 0.003 to 0.1, Y: is 0.01 to 0.1, also, alpha : 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and α + β + γ = 1)
A composite oxycarbonitride layer of Ti, Al, and Cr that satisfies
(C) the upper layer has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1 -Q Cr Q ) 2 O 3 (however, in terms of atomic ratio, Q: 0.01 to 0.1),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Cr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom having the highest peak in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 60 to 90% A composite oxide layer of Al and Cr showing a shared lattice point distribution graph,
A surface-coated cutting tool in which a hard coating layer composed of the above (a) to (c) is formed by vapor deposition, and the hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting.
JP2006193493A 2006-07-14 2006-07-14 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting Expired - Fee Related JP4822119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193493A JP4822119B2 (en) 2006-07-14 2006-07-14 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193493A JP4822119B2 (en) 2006-07-14 2006-07-14 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2008018503A JP2008018503A (en) 2008-01-31
JP4822119B2 true JP4822119B2 (en) 2011-11-24

Family

ID=39074861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193493A Expired - Fee Related JP4822119B2 (en) 2006-07-14 2006-07-14 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4822119B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5234512B2 (en) * 2008-12-25 2013-07-10 三菱マテリアル株式会社 Surface coated cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155641B2 (en) * 1998-10-27 2008-09-24 住友電工ハードメタル株式会社 Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4474643B2 (en) * 2005-01-21 2010-06-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2008018503A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP5099490B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4853120B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006341320A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5088477B2 (en) Surface coated cutting tool
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4822119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees