JP4155641B2 - Abrasion resistant coating, method for producing the same, and abrasion resistant member - Google Patents

Abrasion resistant coating, method for producing the same, and abrasion resistant member Download PDF

Info

Publication number
JP4155641B2
JP4155641B2 JP30496098A JP30496098A JP4155641B2 JP 4155641 B2 JP4155641 B2 JP 4155641B2 JP 30496098 A JP30496098 A JP 30496098A JP 30496098 A JP30496098 A JP 30496098A JP 4155641 B2 JP4155641 B2 JP 4155641B2
Authority
JP
Japan
Prior art keywords
wear
oxide
resistant coating
base material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30496098A
Other languages
Japanese (ja)
Other versions
JP2000129445A (en
Inventor
誠 瀬戸山
正憲 辻岡
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP30496098A priority Critical patent/JP4155641B2/en
Publication of JP2000129445A publication Critical patent/JP2000129445A/en
Application granted granted Critical
Publication of JP4155641B2 publication Critical patent/JP4155641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具、耐摩工具、電気・電子部品、摺動部品、機械部品の耐摩耗性、耐熱性、耐食性を向上させる被膜およびその製造方法ならびに基材上に被膜を形成した耐摩耗部材に関するものである。
【0002】
【従来の技術】
切削工具においては、その耐摩耗性を向上させるために、母材表面にPVD法やCVD法でTiの炭化物、窒化物、炭窒化物やアルミナからなる化合物層を1層もしくは複合して多層にした耐摩耗性被膜を設けることが一般化している。
【0003】
PVD法による被覆では、母材強度の劣化を招かずに耐摩耗性を高め得るという利点があることから、ドリル、エンドミル、フライス用スローアウェイチップ等、強度の要求される切削工具に、かかる表面被覆が多用されている。
【0004】
一方、CVD法による被膜はTiN,TiCN,Al23が一般的である。特に、Al23は耐熱性、化学的な安定性が高く、広範な切削用途に適用されている。
【0005】
また、PVD法、CVD法により形成されたAlの酸化物による被膜の従来技術として、AlとSiとTiの非晶質酸化物層が、特開平9−248702号に開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、PVD法により被覆される被膜は、耐摩耗性、耐熱性が十分とはいえず、特に高速切削用途では工具寿命が短いという問題が有る。また、CVD法による被膜は、一般的に膜に引っ張り応力が入っており、衝撃に弱い上、硬度が充分に高いとはいえず、耐摩耗性が不十分である。
【0007】
さらに、PVD法、CVD法の工具寿命が短いという欠点を補うため、特開平9−248702号には、AlとSiとTiの非晶質酸化物層を被覆層に含んだ表面被覆切削工具が開示されている。しかし、非晶質の酸化物被膜は使用中に一部が結晶化し、体積変化が起こることにより被膜中にクラックが入り、もろくなるという重大な欠陥があった。
【0008】
本発明は、かかる現状に対し、切削工具、耐摩工具、電気、電子部品、摺動、機械部品の耐摩耗性、耐熱性、耐食性を向上させる超薄膜積層部材を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明に従うと、AlとAl以外の酸化物構成元素の酸化物からなる酸化物層を少なくとも1層含む耐摩耗性被膜であり、Al以外の酸化物構成元素は、Zr、Ti、W、Mo、B、Siから選ばれる1種類以上の元素からなり、この酸化物層は結晶質であること、を特徴とする耐摩耗性被覆が提供される。
【0010】
この耐摩耗性被膜を、膜厚0.5μm以上20μm以下で、WC基超硬合金、サーメット、高速度鋼等、あるいはこれらの表面硬化基材、もしくは、TiC−Al23焼結体、窒化珪素焼結体、立方晶窒化硼素焼結体、ダイヤモンド焼結体等の焼結体基材、あるいはこれらの焼結体を接合した基材の表面に被覆することにより、耐摩耗部材が提供される。
【0011】
耐摩耗性被膜に含む酸化物層において、Alの原子数と、AlおよびAl以外の酸化物構成元素の原子数の比は、0.4以上0.99以下であることが、耐摩耗性、耐熱性、靭性、化学的安定性の点から望ましい。ここで、Alの原子数と、AlおよびAl以外の酸化物構成元素の原子数の比とは、次式で示される値である。
(Alの原子数)/{(Alの原子数)+(Al以外の酸化物構成元素の原子数)}
【0012】
また、このAl以外の酸化物構成元素が、Ti、Zrから選ばれる1種類以上の元素であることが、性能的にも、また、生産的にも望ましい。
【0013】
酸化物層は、耐熱性、耐摩耗性の観点から、結晶質のものが良く、その結晶構造は、Al23として最も熱的に安定であるコランダム構造あるいは、κ-アルミナ構造をとる。コランダム構造のAlの原子位置には、AlあるいはAl以外の酸化物構成元素があり、κ-アルミナ構造のAlの原子位置には、AlあるいはAl以外の酸化物構成元素がある。
【0014】
上記のような組成の酸化物層を得る方法としては、スパッタリング法やイオンプレーティング法等のPVD法があり、この方法は、基材の強度を容易に維持することができ、例えば、工具においては、耐摩耗性、耐欠損性を高いレベルで維持できる。
【0015】
本発明の組成の酸化物を形成するためには、上記のPVD法のなかでもイオン化率が高い、冷陰極アーク蒸着法、イオンプレーティング法や非平衡型マグネトロンスパッタリング法が適している。さらに、より高いイオン化率を得るためには、AlとAl以外の酸化物構成元素からなる合金材料を蒸発源材料に用いて、酸素を含む減圧下でPVD法により本発明の酸化物を形成する反応性のPVDを用いると良い。図1は、本発明による耐摩耗性部材の1例を示す断面図である。
【0016】
【作用】
本発明で用いる耐摩耗性被膜は、Zr、Ti、W、Mo、B、Siから選ばれる1種類以上の元素をAl以外の酸化物構成元素として、AlとAl以外の酸化物構成元素の酸化物からなる酸化物層を少なくとも1層以上含む耐摩耗性被膜にすることで、従来にない高硬度、耐熱性、化学的安定性を実現するもので、この耐摩耗性被膜を、膜厚0.5μm以上20μm以下で、WC基超硬合金、サーメット、高速度鋼等の硬質基材あるいは表面硬化基材、もしくは、TiC−Al焼結体、窒化珪素焼結体、立方晶窒化硼素焼結体、ダイヤモンド焼結体等の硬質焼結体基材あるいはこれらの焼結体を接合した基材の表面に被覆した耐摩耗部材とすることで、切削工具であれば耐摩耗性、耐熱性、耐凝着性を向上させ、高信頼性、長寿命を実現するものであり、また、従来以上の高能率、高速切削加工を可能とするものである。
【0017】
現在、耐摩耗性被膜としては窒化チタン(TiN)、炭窒化チタン(TiCN)、酸化アルミニウム(Al23)が広く用いられている。TiN,TiCNはビッカース硬度が2300〜3000と非常に硬度が高く耐摩耗性に優れている。また、これらは物理的蒸着(PVD)法で合成されるため衝撃に強い被膜となり得る。しかし、通常使用される大気中においては高温下で酸化が進み、酸化にともなって耐摩耗性が低下する。一方、Al23は酸化物であるため耐熱性、化学的安定性に優れるが、硬度はビッカース硬度で約2000とやや低く、耐摩耗性において十分とは言えない。
【0018】
本発明は、Zr、Ti、W、Mo、B、Siから選ばれる1種類以上の元素をAl以外の酸化物構成元素とした、AlとAl以外の酸化物構成元素の結晶質の酸化物を用いることにより、Al23の耐熱性、化学的安定性を保ちつつ、硬度を十分に高くすることにより、耐摩耗性、耐熱性、耐衝撃性のすべてに優れた耐摩耗性被膜を実現した。
【0019】
酸化物構成元素の一つとしてAlを選択することにより優れた耐熱性と化学的安定性を得ることができる。Alは酸素ともっとも強く結合する元素であり、この強い結合が熱的、化学的安定性を生む。さらに、IVa,Va,VIa族元素、B、Siから選ばれる元素と組み合わせることにより、酸化物層はより高い硬度が得られる。
【0020】
IVa,Va,VIa族元素は3価のイオンになりやすいことから、3価イオンとして酸素と結合しているAlと似た熱的、化学的性質を期待できるうえ、イオン半径が大きいため、Alと酸素の結合に歪みを生じさせる。Alと酸素の結合に生じた歪みは歪みエネルギーとして、結合に貯えられるため、硬度を増加させる。また、IVa,Va,VIa族元素はまた2価やその他イオンともなり得るため、物質中で電荷のアンバランスを生じさせるため物質内に電子的な歪みをも生じさせ硬度を上昇させることができる。
【0021】
Bは、逆にAlより小さな原子半径を持つ。適量なBは、やはり結晶格子中に歪みを生じさせ膜硬度を増加させる。また、Bの酸化物であるB23は比較的低い温度で液体化するため、この液体化したB23が潤滑性を向上させ、結果として摩耗量を抑制する効果も期待される。
【0022】
SiはAlとならんで酸素と強く結合するが、Alとは価電子数が異なるため、SiO2のようなAlとは異なった組成比で酸化物を形成する。したがってAl酸化物中にSiが入ることにより、結合に変化が生じて膜硬度を上昇させる。また、Siが入ることにより、温度が上昇した時の膜中のAlやOの拡散が抑制され、熱安定性が増すことが期待される。
【0023】
IVa,Va,VIa族元素の中でも、Ti,Cr,ZrがAl酸化物中にはいると、硬度が上昇し、高温における安定性が向上する。
【0024】
このとき、AlとAl以外の酸化物構成元素におけるAlの組成比は、原子数の比で0.4以上0.99以下であることが望ましい。Alの組成比が低すぎるとAl酸化物の高い熱的安定性や化学的安定性が損なわれ、Alの組成比が高すぎると、Al以外の酸化物構成元素を添加した効果が得られない。我々は、このAl酸化物の特性を生かしつつ、Al以外の酸化物構成元素を加えることによる特性向上が可能なAlとAl以外の酸化物構成元素におけるAlの組成比の範囲が原子数の比で0.4以上0.99以下であることを見いだした。上記の範囲内であれば、一定の効果が得られるが、さらに大きな特性向上を得るためには、AlとAl以外の酸化物構成元素におけるAlの組成比は、0.5以上0.98以下であることが望ましく、さらに望ましくは0.7以上0.95以下である。
【0025】
非晶質の酸化物膜は十分な熱的安定性、化学的安定性、耐摩耗性は得られないので、酸化物層の結晶構造は結晶質でなければならない。結晶質であれば、強固な結合が化合物全体にわたって形成されるため、より優れた特性が得られる。特に、結晶構造はAl酸化物で一般的なコランダム構造(α-Al23構造)あるいは、κ-アルミナ構造(κ-Al23構造)であって、これらの結晶構造のAl原子位置をAl以外の酸化物構成元素で置き換えた結晶構造を形成していることが望ましい。これらの結晶構造を維持することによって、Al酸化物の優れた特性に、他の酸化物構成元素を添加することによる特性向上の効果を顕著にすることが可能になる。
【0026】
これらの酸化物膜を得る手段としては、さまざまな方法が考えられるが、AlとAl以外の酸化物構成元素からなる合金材料を蒸発源材料とし、酸素を含む減圧下雰囲気で酸素と反応させる手段が、優れた特性の酸化物を得るためにも、またコストの点でも望ましい。酸化物を得るためには熱処理による自然酸化、CVD法、PVD法その他の方法があるが、PVD法は、低い基板温度で酸化物が合成できるという特徴があるため、さまざまなものに対して酸化物薄膜を被覆することができる。また、化合させる過程で元素をイオン化したり励起状態にある励起種にすることで、より緻密で強固な酸化物を得ることもまた可能となる。PVD法で酸化物を得る方法としては、真空蒸着、イオンプレーティング法、スパッタリング法と大別され、いずれの方法によって得ることができるが、特に、イオンや励起種が合成に関与するイオンプレーティング法やスパッタリング法が望ましい。
【0027】
特に、イオン化率の高い冷陰極アークイオンプレーティング法や、Unbalancedマグネトロンスパッタ法を用いると熱的安定性、化学的安定性、耐摩耗性にすぐれた酸化物膜を容易に得ることができるので望ましい。この時、形成する化合物の結晶性向上等のために、原料となる気体以外に、Ar、He等の不活性ガス、H2等のエッチング効果を持つ気体を成膜炉内に同時に導入しても構わない。酸素を含む気体としては、酸素、オゾン、酸化窒素、亜酸化窒素、一酸化炭素、二酸化炭素、水蒸気から選択されるのが望ましい。
【0028】
上記の酸化物を含む耐摩耗性被膜を膜厚0.5μm以上20μm以下で、WC基超硬合金、サーメット、高速度鋼等の硬質基材あるいはこれらの表面硬化基材の表面に被覆すると、これらの基材の表面が大幅に強化され、摺動等による摩耗を大幅に減少させ、長期の使用を可能にすることが確認された。
【0029】
さらに、TiC−Al23焼結体、窒化珪素焼結体、立方晶窒化硼素焼結体、ダイヤモンド焼結体等の基材は、前述の基材よりも、さらに高い高度を有することが知られているが、これらの基材に対しても、上記の酸化物を含む耐摩耗性被膜を膜厚0.5μm以上20μm以下で被覆することにより大きな特性向上が可能となることが確認された。例えば、TiC−Al23焼結体に被覆したものは、耐熱性をさらに向上させる。ダイヤモンド焼結体に被覆したものは、大気中での耐熱性の向上と鉄に対する反応の抑制が確認された。これらはいずれも、大気中の酸素ないしは鉄と各々の基材が直接接触することにより進行する反応によって引き起こされる基材の劣化を、耐摩耗性被覆が抑制したことによると考えられる。
【0030】
硬質基材に被覆した耐摩耗部材の場合、全膜厚が0.5μm未満では耐摩耗性の向上は、ほとんど見られない。また、20μmを越えると膜中の残留応力等の影響で基材との密着強度が低下する。したがって、耐摩耗部材の場合、被覆する耐摩耗性被膜の全体の膜厚は0.5μm以上20μm以下の範囲である。
【0031】
【発明の実施の形態】
以下、切削工具の耐摩耗性改善を行った実施例について説明する。
【0032】
(実施例1) 基材として、組成がJIS規格P30、形状がJIS SNG432の超硬合金製切削チップを用意し、その表面に下記のように真空アーク放電によるイオンプレーティング法を用いて耐摩耗性被膜を形成した。
【0033】
真空アーク放電によるイオンプレーティング法は、図2の概略構成図に示すような成膜装置内に、複数個の蒸発源(8,9)を配置し、蒸発源間の中心点を中心としてこれらの蒸発源間で回転する基材保持具(10)に基材(11)である上記切削チップを装着した。
【0034】
まず、成膜装置内の真空度を1×10-5Torrの雰囲気とし、ついでAr(アルゴン)ガスを導入して1×10-2Torrの雰囲気に保持しながら、500℃まで加熱し、切削チップに−1000Vの電圧をかけて洗浄処理を行った後、Arガスを排気した。次に、成膜装置内にO2ガス、あるいはO2ガスとArガスの両方のガスを、200cc/minの割合で導入しながら、真空アーク放電により所定の金属材料の蒸発源を蒸発、イオン化させることにより、切削チップ上に酸化物層が形成される。酸化物以外の化合物を形成する時は、N2あるいはCH4のいずれかないしは両方をチャンバー内に導入した。
【0035】
このようにして形成した本発明例(試料1〜9、および試料19)を表1に示す。また、参考例(試料11〜18)、比較例(試料10、試料20〜23)も表1に示す。試料10は、比較例の試料であり、酸化物層は、Al以外の酸化物構成元素を含まないAl酸化物である。試料20は、酸化物層が非晶質の比較例である。
【0036】
酸化物層は、成膜時に切削チップに加えるバイアス電圧や基板温度を調節することにより、非晶質か結晶質になるように制御できる。結晶質になるようにした場合、コランダム構造をとるかκ-アルミナ構造をとるかの構造制御も、成膜時に切削チップに加えるバイアス電圧や基板温度を調節することにより行った。
表1の酸化物層のAl組成比とは、Alの原子数と、AlおよびAl以外の酸化物構成元素の原子数の比を示す。すなわち、Al組成比とは、Al以外の酸化物構成元素をM1、M2・・・とすると、(AlX(M1・M2・・・)1-XYZで示される式のXに相当する。
【0037】
表1の酸化物層の結晶構造において、コランダム、κ-アルミナとは、それらの構造において、Alの原子位置の一部Al以外の酸化物構成元素で置き換えたものも、コランダム、κ-アルミナとした。
【0038】
表1の試料21〜23を比較例とするコーティング切削チップ試料も用意した。すなわち、試料21、22は通常の成膜装置を使用して真空アーク放電を用いたイオンプレーティング法により、上記と同じ組成と形状の切削チップの表面にTiNおよびTiCNあるいはTiAlNを組み合わせた耐摩耗性被膜を被覆して製造した。試料23は通常のCVD法により同じ組成と形状の切削チップの表面にTiN、Al23、およびTiCNを組み合わせた耐摩耗性被膜を形成することにより製造した。
【0039】
各被覆層の膜厚および総膜厚は走査型電子顕微鏡写真より測定した。組成は、電子顕微鏡に併設のEDXによって行った。組成はEPMAあるいはSIMSによっても確認できる。
【0040】
結晶構造は、X線回折パターンより決定した。X線回折ピークの観測は、銅ターゲット、ニッケルフィルタを用いたディフラクトメータによりCu−Kα線の回折線をθ-2θ法で観測した。コランダム構造のAlの原子位置をAl以外の酸化物構成元素で置き換えた酸化物のX線回折パターンは、コランダム構造とほぼ似た回折パターンとなる。また、同様にκ-アルミナ構造のAlの原子位置をAl以外の酸化物構成元素で置き換えた酸化物のX線回折パターンは、κ-Al23構造とほぼ似た回折パターンが得られるので、それぞれ、そのような回折パターンが得られた時は、表1における各試料の結晶構造の項目には、コランダムあるいはκ-アルミナと表記した。透過型電子顕微鏡を用いた電子線回折からも、各層のあるいは複層の結晶構造をX線回折と同様に確認できる。膜硬度は、ビッカース硬度測定法により荷重25gfで測定した。
【0041】
上記の各表面被覆切削チップ試料について、被削材としてSCM435を用いて、表2の条件により連続切削試験と断続切削試験を行い、切刃の逃げ面摩耗幅を測定した。
【0042】
表3の結果から、表面被覆切削チップ試料のうち、酸化物層が非晶質である比較例の試料20、および本発明によらない耐摩耗性被膜をPVD法で形成した比較例の試料21、22は耐摩耗性に劣り、また、CVD法で形成した比較例の試料23は母材の靭性劣化により刃先の耐欠損性が低下したのに対し、表面被覆切削チップのうち実施例の試料1〜9、試料11〜17、および試料19は連続切削および断続切削の両方において優れた耐摩耗性を有すると同時に、耐摩耗性被膜をPVD法で形成したので母材の靭性が維持され優れた耐欠損性を備えることが分かる。
【0043】
試料1〜10の結果から、AlとAl以外の酸化物構成元素におけるAlの組成比は0.4〜0.99、特に0.5〜0.98、さらに望ましくは0.7〜0.95が適当である事がわかる。また試料11〜18の結果より、耐摩耗性被膜全体の膜厚としては、0.5μm〜20μmが適している事が分かる。
【0044】
【表1】

Figure 0004155641
【0045】
【表2】
Figure 0004155641
【0046】
【表3】
Figure 0004155641
【0047】
(実施例2) 実施例1における基材を超硬合金、サーメット、窒化硅素焼結体、TiC−Al23焼結体、立方晶窒化硼素焼結体、ダイヤモンド焼結体の切削チップに替えて、同様な方法で耐摩耗性被膜(被膜2−1〜2−4)を被覆した。表4に耐摩耗性被膜の内容をまとめて示している。比較例として、同じチップに公知の方法でコーティング膜を付けたものを作製した(被膜2−5〜2−7)。
【0048】
上記の材料からなる基材は、例えば立方晶窒化ホウ素焼結体の場合、次のようにして得られた。まず、超硬合金製ポットとボールとを用いてTiN粉末とアルミニウム粉末とを80:20の重量比で混合して、結合材粉末を得た。この結合材粉末とcBN粉末とを体積比で30:70となるように配合した後、Mo製容器に充填し、48kbの圧力で1400℃で20分間焼結した。得られた焼結体を切削工具用のチップに加工した。
【0049】
上記の各表面被覆切削チップ試料について、表5に示す切削条件による連続切削試験と断続切削試験および溝を有する丸棒切削試験を行い、切刃の逃げ面摩耗幅を測定した。結果を表6、表7にまとめる。
【0050】
表6および表7の結果から、従来の表面被覆切削チップ試料のうち耐摩耗性被覆をPVD法で形成した被膜2−5、被膜2−6の場合、いずれの基材においても耐摩耗性に劣り、また、CVD法で形成した試料2−7は母材の靭性劣化により刃先の耐欠損性が低下したのに対し、本発明例の被膜2−1〜2−4による表面被覆切削チップは、優れた耐摩耗性を有すると同時に、母材の靭性が維持され優れた耐欠損性を備えることが分かる。
【0051】
【表4】
Figure 0004155641
【0052】
【表5】
Figure 0004155641
【0053】
【表6】
Figure 0004155641
【0054】
【表7】
Figure 0004155641
【0055】
【発明の効果】
以上述べたように、本発明の耐摩耗性被膜および耐摩耗部材は、Alと、Zr、Ti、W、Mo、BおよびSiから選ばれる1種類以上のAl以外の酸化物構成元素との酸化物からなる結晶質の酸化物層を少なくとも1層含む耐摩耗性被膜と、これをWC基超硬合金、サーメット、高速度鋼等の硬質基材あるいは表面硬化基材、または、TiC−Al23焼結体、窒化珪素焼結体、立方晶窒化硼素焼結体、ダイヤモンド焼結体等の硬質基材あるいはこれらの焼結体を接合した基材の表面に膜厚0.5μm以上20μm以下を被覆した構成により優れた耐熱性、耐溶着性、耐酸化性、耐摩耗性、摺動特性、耐欠損性、耐マイクロチッピング性を有し、さらに従来の被膜と同等以上の硬さを持ちながら靭性も兼ね備えている上、その被膜をPVD法で形成できるため、切削工具や耐摩工具として用いると、長期にわたって良好な工具特性を維持し続けるという効果が得られる。
【0056】
なお、本発明の部材は、切削工具、耐摩工具はもとより、表面の摩滅防止が要求される摺動部品等に利用しても寿命延長の効果がある。
【図面の簡単な説明】
【図1】本発明による耐摩耗性部材の1例を示す断面図である。
【図2】真空アーク放電によるイオンプレーティング法の装置を示す概略構成図である。
【符号の説明】
1:基材
2:耐摩耗性被膜
3:第1層
4:第2層(酸化物層)
5:第3層
6:第4層
7:真空チャンバー
8:蒸発源a
9:蒸発源b
10:基材保持具
11:基材
12:ガス導入口
13:ガス排出口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coating that improves the wear resistance, heat resistance, and corrosion resistance of cutting tools, wear-resistant tools, electrical / electronic parts, sliding parts, and machine parts, a method for producing the same, and a wear-resistant member having a film formed on a substrate. It is about.
[0002]
[Prior art]
In the cutting tool, in order to improve its wear resistance, a compound layer made of Ti carbide, nitride, carbonitride or alumina is formed on the base material surface by PVD method or CVD method to form a multilayer. It is common to provide a wear-resistant coating.
[0003]
PVD coating has the advantage that it can improve wear resistance without causing deterioration of the base material strength. Therefore, it can be applied to cutting tools that require strength, such as drills, end mills, and milling throw away inserts. A lot of coating is used.
[0004]
On the other hand, TiN, TiCN, and Al 2 O 3 are generally used for the film formed by the CVD method. In particular, Al 2 O 3 has high heat resistance and chemical stability, and is applied to a wide range of cutting applications.
[0005]
Further, as a prior art of a film made of an Al oxide formed by a PVD method or a CVD method, an amorphous oxide layer of Al, Si, and Ti is disclosed in JP-A-9-248702.
[0006]
[Problems to be solved by the invention]
However, the coating film coated by the PVD method cannot be said to have sufficient wear resistance and heat resistance, and has a problem that the tool life is short particularly in high-speed cutting applications. In addition, a film formed by the CVD method generally has tensile stress in the film, is weak against impact, and cannot be said to have a sufficiently high hardness, so that the wear resistance is insufficient.
[0007]
Furthermore, in order to compensate for the shortage of the tool life of the PVD method and the CVD method, JP-A-9-248702 discloses a surface-coated cutting tool including an amorphous oxide layer of Al, Si, and Ti as a coating layer. It is disclosed. However, the amorphous oxide film has a serious defect that a part thereof is crystallized during use, and the volume change causes cracks in the film and becomes brittle.
[0008]
The present invention is intended to provide an ultra-thin film laminated member that improves the wear resistance, heat resistance, and corrosion resistance of cutting tools, wear-resistant tools, electricity, electronic parts, sliding, and machine parts.
[0009]
[Means for Solving the Problems]
According to the present invention, the wear-resistant film includes at least one oxide layer composed of an oxide of an oxide constituent element other than Al and Al, and the oxide constituent elements other than Al include Zr, Ti, W, Mo A wear-resistant coating comprising one or more elements selected from B, Si, and the oxide layer being crystalline is provided.
[0010]
This wear-resistant film is a WC-based cemented carbide, cermet, high-speed steel or the like, a surface-hardened base material thereof, or a TiC-Al 2 O 3 sintered body with a film thickness of 0.5 μm to 20 μm. A wear-resistant member is provided by coating the surface of a sintered base such as a silicon nitride sintered body, a cubic boron nitride sintered body, a diamond sintered body, or a base material to which these sintered bodies are joined. Is done.
[0011]
In the oxide layer included in the wear-resistant coating, the ratio of the number of Al atoms and the number of atoms of Al and oxide constituent elements other than Al is 0.4 or more and 0.99 or less. Desirable in terms of heat resistance, toughness, and chemical stability. Here, the number of atoms of Al and the ratio of the number of atoms of the oxide constituent elements other than Al and Al are values represented by the following equations.
(Number of Al atoms) / {(number of Al atoms) + (number of oxide constituent elements other than Al)}
[0012]
In addition, it is desirable in terms of performance and productivity that the oxide constituent element other than Al is one or more elements selected from Ti and Zr .
[0013]
The oxide layer is preferably crystalline from the viewpoint of heat resistance and wear resistance, and its crystal structure has a corundum structure or κ-alumina structure that is the most thermally stable as Al 2 O 3 . Al or an oxide constituent element other than Al is present at the atomic position of Al in the corundum structure, and an oxide constituent element other than Al or Al is present at the atomic position of Al in the κ-alumina structure.
[0014]
As a method for obtaining the oxide layer having the above composition, there is a PVD method such as a sputtering method or an ion plating method, and this method can easily maintain the strength of the substrate. Can maintain wear resistance and fracture resistance at a high level.
[0015]
In order to form an oxide having the composition of the present invention, among the above PVD methods, a cold cathode arc deposition method, an ion plating method and a nonequilibrium magnetron sputtering method, which have a high ionization rate, are suitable. Further, in order to obtain a higher ionization rate, the oxide of the present invention is formed by PVD under reduced pressure containing oxygen using an alloy material composed of Al and an oxide constituent element other than Al as the evaporation source material. Reactive PVD may be used. FIG. 1 is a cross-sectional view showing an example of an abrasion-resistant member according to the present invention.
[0016]
[Action]
The wear-resistant coating used in the present invention comprises one or more elements selected from Zr, Ti, W, Mo 2 , B, and Si as oxide constituent elements other than Al, and oxidation of oxide constituent elements other than Al and Al. A wear-resistant film comprising at least one oxide layer made of a material realizes unprecedented high hardness, heat resistance, and chemical stability. .5 μm or more and 20 μm or less, hard base material such as WC base cemented carbide, cermet, high speed steel or surface hardened base material, TiC—Al 2 O 3 sintered body, silicon nitride sintered body, cubic nitriding By using a hard sintered base material such as boron sintered body or diamond sintered body or a wear resistant member coated on the surface of the base material to which these sintered bodies are joined, if it is a cutting tool, wear resistance, Improved heat resistance and adhesion resistance, high reliability and long life Is intended to present, also, higher than conventional high efficiency, it is to enable high-speed cutting.
[0017]
Currently, titanium nitride (TiN), titanium carbonitride (TiCN), and aluminum oxide (Al 2 O 3 ) are widely used as wear-resistant coatings. TiN and TiCN have very high Vickers hardness of 2300 to 3000 and excellent wear resistance. Moreover, since these are synthesized by a physical vapor deposition (PVD) method, they can be a film resistant to impact. However, in the normally used atmosphere, oxidation proceeds at a high temperature, and wear resistance decreases with oxidation. On the other hand, since Al 2 O 3 is an oxide, it is excellent in heat resistance and chemical stability, but its hardness is a little as low as about 2000 in terms of Vickers hardness, and it cannot be said that the wear resistance is sufficient.
[0018]
The present invention provides a crystalline oxide of Al and an oxide constituent element other than Al, wherein one or more elements selected from Zr, Ti, W, Mo 2 , B, and Si are used as oxide constituent elements other than Al. By using it, while maintaining the heat resistance and chemical stability of Al 2 O 3 , the wear resistance film with excellent wear resistance, heat resistance and impact resistance is realized by sufficiently increasing the hardness. did.
[0019]
By selecting Al as one of oxide constituent elements, excellent heat resistance and chemical stability can be obtained. Al is an element that bonds most strongly with oxygen, and this strong bond generates thermal and chemical stability. Furthermore, when combined with an element selected from IVa, Va, VIa group elements, B, and Si, the oxide layer can have higher hardness.
[0020]
Since IVa, Va, and VIa group elements are likely to be trivalent ions, they can be expected to have thermal and chemical properties similar to Al bonded to oxygen as trivalent ions, and have a large ionic radius. And distortion of oxygen bonds. Since the strain generated in the bond between Al and oxygen is stored in the bond as strain energy, the hardness is increased. In addition, since the IVa, Va, and VIa group elements can also be divalent and other ions, an electric charge imbalance can be generated in the material, so that electronic strain can be generated in the material and the hardness can be increased. .
[0021]
On the contrary, B has a smaller atomic radius than Al. An appropriate amount of B also causes distortion in the crystal lattice and increases the film hardness. Further, since B 2 O 3, which is an oxide of B, is liquefied at a relatively low temperature, the liquefied B 2 O 3 improves lubricity and, as a result, an effect of suppressing the wear amount is also expected. .
[0022]
Si forms a strong bond with oxygen along with Al. However, since Al has a different valence electron number, an oxide is formed with a composition ratio different from that of Al such as SiO 2 . Therefore, when Si enters Al oxide, the bond is changed and the film hardness is increased. In addition, Si can be expected to suppress the diffusion of Al and O in the film when the temperature rises, thereby increasing the thermal stability.
[0023]
Among the IVa, Va, and VIa group elements, when Ti, Cr, and Zr are contained in the Al oxide, the hardness is increased and the stability at high temperature is improved.
[0024]
At this time, the composition ratio of Al in the oxide constituent elements other than Al and Al is desirably 0.4 or more and 0.99 or less in terms of the number of atoms. If the Al composition ratio is too low, the high thermal stability and chemical stability of the Al oxide are impaired, and if the Al composition ratio is too high, the effect of adding an oxide constituent element other than Al cannot be obtained. . We can improve the characteristics by adding oxide constituent elements other than Al while taking advantage of the characteristics of this Al oxide, and the range of the composition ratio of Al in the oxide constituent elements other than Al and Al is the ratio of the number of atoms. And found to be 0.4 or more and 0.99 or less. Within the above range, a certain effect can be obtained. However, in order to obtain a greater improvement in characteristics, the Al composition ratio in the oxide constituent elements other than Al and Al is 0.5 to 0.98. Preferably, it is 0.7 or more and 0.95 or less.
[0025]
Since an amorphous oxide film cannot provide sufficient thermal stability, chemical stability, and wear resistance, the crystal structure of the oxide layer must be crystalline. If it is crystalline, a stronger bond is formed over the entire compound, so that superior characteristics can be obtained. In particular, the crystal structure is an Al oxide, which is a common corundum structure (α-Al 2 O 3 structure) or κ-alumina structure (κ-Al 2 O 3 structure), and the position of Al atoms in these crystal structures It is desirable to form a crystal structure in which is replaced with an oxide constituent element other than Al. By maintaining these crystal structures, it is possible to make the effect of improving the characteristics by adding other oxide constituent elements remarkable to the excellent characteristics of the Al oxide.
[0026]
Various methods can be considered as means for obtaining these oxide films, and means for reacting with oxygen in a reduced pressure atmosphere containing oxygen using an alloy material composed of Al and an oxide constituent element other than Al as an evaporation source material. However, it is desirable to obtain an oxide having excellent characteristics and from the viewpoint of cost. To obtain oxides, there are natural oxidation by heat treatment, CVD method, PVD method and other methods, but PVD method is characterized by the ability to synthesize oxide at low substrate temperature, so it can oxidize various things A physical thin film can be coated. It is also possible to obtain a denser and stronger oxide by ionizing an element in the process of combining or making it an excited species in an excited state. The method of obtaining an oxide by the PVD method is roughly classified into vacuum deposition, ion plating method, and sputtering method, and can be obtained by any method. In particular, ion plating in which ions and excited species are involved in the synthesis. The sputtering method is preferable.
[0027]
In particular, using a cold cathode arc ion plating method with a high ionization rate or an unbalanced magnetron sputtering method is desirable because an oxide film with excellent thermal stability, chemical stability, and wear resistance can be easily obtained. . At this time, in order to improve the crystallinity of the compound to be formed, an inert gas such as Ar and He and a gas having an etching effect such as H 2 are simultaneously introduced into the film forming furnace in addition to the raw material gas. It doesn't matter. The gas containing oxygen is preferably selected from oxygen, ozone, nitric oxide, nitrous oxide, carbon monoxide, carbon dioxide, and water vapor.
[0028]
When the wear-resistant coating containing the above oxide is coated on the surface of a hard substrate such as a WC-based cemented carbide, cermet, high-speed steel, or these surface-hardened substrates with a film thickness of 0.5 μm to 20 μm, It was confirmed that the surface of these base materials is greatly strengthened, wear due to sliding and the like is greatly reduced, and long-term use is possible.
[0029]
Furthermore, base materials such as a TiC-Al 2 O 3 sintered body, a silicon nitride sintered body, a cubic boron nitride sintered body, and a diamond sintered body may have a higher altitude than the above-mentioned base materials. Although it is known, it has been confirmed that a great improvement in properties can be achieved for these substrates by coating the wear-resistant coating containing the above oxide with a film thickness of 0.5 μm to 20 μm. It was. For example, those coated TiC-Al 2 O 3 sintered body, further improving the heat resistance. It was confirmed that the sintered diamond body was improved in heat resistance in the atmosphere and suppressed in reaction to iron. All of these are considered to be due to the fact that the wear-resistant coating suppresses the deterioration of the base material caused by the reaction that proceeds by the direct contact of each base material with oxygen or iron in the atmosphere.
[0030]
In the case of the wear resistant member coated on the hard base material, the wear resistance is hardly improved if the total film thickness is less than 0.5 μm. On the other hand, if it exceeds 20 μm, the adhesion strength with the base material is lowered due to the residual stress in the film. Therefore, in the case of the wear-resistant member, the entire thickness of the wear-resistant coating to be coated is in the range of 0.5 μm or more and 20 μm or less.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples in which the wear resistance of the cutting tool has been improved will be described.
[0032]
(Example 1) As a base material, a cemented carbide cutting tip having a composition of JIS standard P30 and a shape of JIS SNG432 was prepared, and the surface thereof was subjected to wear resistance using an ion plating method by vacuum arc discharge as described below. A functional coating was formed.
[0033]
In the ion plating method using vacuum arc discharge, a plurality of evaporation sources (8, 9) are arranged in a film forming apparatus as shown in the schematic configuration diagram of FIG. The cutting tip as the base material (11) was attached to the base material holder (10) rotating between the evaporation sources.
[0034]
First, the degree of vacuum in the film forming apparatus is set to an atmosphere of 1 × 10 −5 Torr, then Ar (argon) gas is introduced and heated to 500 ° C. while maintaining the atmosphere of 1 × 10 −2 Torr, and cutting is performed. After cleaning the chip by applying a voltage of -1000 V, Ar gas was exhausted. Then, O 2 gas into the deposition apparatus, or both of the gas of the O 2 gas and Ar gas, while introducing at a rate of 200 cc / min, evaporated evaporation source of a predetermined metallic material by vacuum arc discharge, ionization By doing so, an oxide layer is formed on the cutting tip. When forming compounds other than oxides, either N 2 or CH 4 or both were introduced into the chamber.
[0035]
The examples of the present invention thus formed (Samples 1 to 9 and Sample 19 ) are shown in Table 1. Table 1 also shows reference examples (samples 11 to 18) and comparative examples (sample 10 and samples 20 to 23). Sample 10 is a sample of a comparative example, and the oxide layer is an Al oxide that does not contain oxide constituent elements other than Al. Sample 20 is a comparative example in which the oxide layer is amorphous.
[0036]
The oxide layer can be controlled to be amorphous or crystalline by adjusting the bias voltage applied to the cutting tip and the substrate temperature during film formation. When it was made crystalline, the structural control of the corundum structure or the κ-alumina structure was also performed by adjusting the bias voltage and substrate temperature applied to the cutting tip during film formation.
The Al composition ratio of the oxide layer in Table 1 indicates the ratio between the number of Al atoms and the number of atoms of Al and oxide constituent elements other than Al. That is, the Al composition ratio is defined as (Al X (M1 · M2...) 1−X ) Y O Z, where X is an oxide constituent element other than Al. Equivalent to.
[0037]
In the crystal structure of the oxide layer in Table 1, corundum and κ-alumina are those obtained by replacing a part of the atomic position of Al with an oxide constituent element other than Al in those structures. It was.
[0038]
Coated cutting tip samples using the samples 21 to 23 in Table 1 as comparative examples were also prepared. That is, samples 21 and 22 are wear resistant in which TiN and TiCN or TiAlN are combined on the surface of a cutting tip having the same composition and shape as described above by an ion plating method using vacuum arc discharge using a normal film forming apparatus. It was manufactured by coating a functional coating. Sample 23 was manufactured by forming a wear-resistant film combining TiN, Al 2 O 3 , and TiCN on the surface of a cutting tip having the same composition and shape by an ordinary CVD method.
[0039]
The film thickness and total film thickness of each coating layer were measured from scanning electron micrographs. The composition was performed by EDX attached to an electron microscope. The composition can also be confirmed by EPMA or SIMS.
[0040]
The crystal structure was determined from the X-ray diffraction pattern. The X-ray diffraction peak was observed by a θ-2θ method using a diffractometer using a copper target and a nickel filter. An X-ray diffraction pattern of an oxide in which the atomic position of Al in the corundum structure is replaced with an oxide constituent element other than Al is a diffraction pattern substantially similar to the corundum structure. Similarly, the X-ray diffraction pattern of an oxide in which the atomic position of Al in the κ-alumina structure is replaced with an oxide constituent element other than Al is almost similar to the κ-Al 2 O 3 structure. When such a diffraction pattern was obtained, the crystal structure of each sample in Table 1 was indicated as corundum or κ-alumina. Also from electron beam diffraction using a transmission electron microscope, the crystal structure of each layer or multiple layers can be confirmed in the same manner as in X-ray diffraction. The film hardness was measured with a load of 25 gf by the Vickers hardness measurement method.
[0041]
With respect to each of the above surface-coated cutting tip samples, a continuous cutting test and an intermittent cutting test were performed using SCM435 as a work material under the conditions shown in Table 2, and the flank wear width of the cutting edge was measured.
[0042]
From the results in Table 3, among the surface-coated cutting tip samples, a comparative sample 20 in which the oxide layer is amorphous, and a comparative sample 21 in which a wear-resistant coating not according to the present invention is formed by the PVD method. , 22 is inferior in wear resistance, and the sample 23 of the comparative example formed by the CVD method has reduced the chip resistance of the cutting edge due to the deterioration of the toughness of the base material. Samples 1 to 9, Samples 11 to 17, and Sample 19 have excellent wear resistance in both continuous cutting and intermittent cutting, and at the same time, the wear resistant coating is formed by the PVD method, so that the toughness of the base material is maintained and excellent It can be seen that it has high fracture resistance.
[0043]
From the results of Samples 1 to 10, the composition ratio of Al in the oxide constituent elements other than Al and Al is 0.4 to 0.99, particularly 0.5 to 0.98, more preferably 0.7 to 0.95. It is understood that is appropriate. Moreover, it turns out that 0.5 micrometer-20 micrometers are suitable as a film thickness of the whole abrasion-resistant film from the result of samples 11-18.
[0044]
[Table 1]
Figure 0004155641
[0045]
[Table 2]
Figure 0004155641
[0046]
[Table 3]
Figure 0004155641
[0047]
(Example 2) The base material in Example 1 was used as a cutting tip for cemented carbide, cermet, silicon nitride sintered body, TiC-Al 2 O 3 sintered body, cubic boron nitride sintered body, diamond sintered body. Instead, the wear-resistant coating (coating 2-1 to 2-4) was coated in the same manner. Table 4 summarizes the contents of the wear-resistant coating. As a comparative example, the same chip was prepared by applying a coating film by a known method (coating 2-5 to 2-7).
[0048]
In the case of a cubic boron nitride sintered body, for example, the base material made of the above material was obtained as follows. First, TiN powder and aluminum powder were mixed at a weight ratio of 80:20 using a cemented carbide pot and balls to obtain a binder powder. This binder powder and cBN powder were blended so as to have a volume ratio of 30:70, then filled in a Mo container, and sintered at 1400 ° C. for 20 minutes at a pressure of 48 kb. The obtained sintered body was processed into a chip for a cutting tool.
[0049]
With respect to each of the above surface-coated cutting tip samples, a continuous cutting test and an intermittent cutting test under the cutting conditions shown in Table 5 and a round bar cutting test having a groove were performed, and the flank wear width of the cutting edge was measured. The results are summarized in Tables 6 and 7.
[0050]
From the results of Table 6 and Table 7, in the case of the coating 2-5 and the coating 2-6 in which the wear-resistant coating is formed by the PVD method among the conventional surface-coated cutting tip samples, the wear resistance is improved in any base material. The sample 2-7 formed by the CVD method was inferior, and the chipping resistance of the cutting edge was lowered due to the deterioration of the toughness of the base material, whereas the surface-coated cutting tips by the coatings 2-1 to 2-4 of the present invention example were It can be seen that, while having excellent wear resistance, the toughness of the base material is maintained and excellent fracture resistance is provided.
[0051]
[Table 4]
Figure 0004155641
[0052]
[Table 5]
Figure 0004155641
[0053]
[Table 6]
Figure 0004155641
[0054]
[Table 7]
Figure 0004155641
[0055]
【The invention's effect】
As described above, the wear-resistant coating and wear-resistant member of the present invention are oxidized with Al and one or more kinds of oxide constituent elements other than Al selected from Zr, Ti, W, Mo 2 , B, and Si. A wear-resistant coating comprising at least one crystalline oxide layer made of a material, and a hard- or surface-hardened substrate such as WC-based cemented carbide, cermet, high-speed steel, or TiC-Al 2 A film thickness of 0.5 μm or more to 20 μm on the surface of a hard base material such as an O 3 sintered body, a silicon nitride sintered body, a cubic boron nitride sintered body, a diamond sintered body, or a base material to which these sintered bodies are joined. It has excellent heat resistance, welding resistance, oxidation resistance, wear resistance, sliding properties, chipping resistance, microchipping resistance, and a hardness equal to or higher than that of conventional coatings. In addition to having toughness, it has a coating of PV Because it is formed by law, when used as cutting tools and wear resistant tools, effect that continues to maintain good tool properties over time.
[0056]
The member of the present invention has an effect of extending the life even when it is used for a cutting tool, an anti-abrasion tool, and a sliding part that requires prevention of surface abrasion.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an abrasion-resistant member according to the present invention.
FIG. 2 is a schematic configuration diagram showing an apparatus for an ion plating method using vacuum arc discharge.
[Explanation of symbols]
1: Base material 2: Abrasion-resistant coating 3: First layer 4: Second layer (oxide layer)
5: Third layer 6: Fourth layer 7: Vacuum chamber 8: Evaporation source a
9: Evaporation source b
10: Base material holder 11: Base material 12: Gas inlet 13: Gas outlet

Claims (7)

少なくとも一つの酸化物層を含む耐摩耗性被膜であって、当該酸化物層は、少なくともAlとAl以外の酸化物構成元素の酸化物からなるコランダム構造で、当該コランダム構造におけるAlの原子位置には、Alあるいは前記Al以外の酸化物構成元素があり、
前記Al以外の酸化物構成元素はZr、Ti、W、Mo、BおよびSiから選ばれる1種類以上の元素からなることを特徴とする耐摩耗性被膜。
A wear-resistant coating comprising at least one oxide layer, wherein the oxide layer is a corundum structure comprising at least an oxide of an oxide constituent element other than Al and Al, and at the atomic position of Al in the corundum structure. Has an oxide constituent element other than Al or Al,
The wear-resistant coating film characterized in that the oxide constituent element other than Al is composed of one or more elements selected from Zr, Ti, W, Mo, B and Si.
前記酸化物層において、Alの原子数と、前記Al以外の酸化物構成元素の原子数とが以下の式に従うことを特徴とする請求項1記載の耐摩耗性被膜。
0.4≦(Alの原子数)/{(Alの原子数)+(Al以外の酸化物構成元素の原子数)}≦0.99
2. The wear-resistant coating according to claim 1, wherein in the oxide layer, the number of atoms of Al and the number of atoms of oxide constituent elements other than Al follow the following formula.
0.4 ≦ (number of Al atoms) / {(number of Al atoms) + (number of atoms of oxide constituent elements other than Al)} ≦ 0.99
前記Al以外の酸化物構成元素が、Ti、Zrから選ばれる1種類以上の元素からなることを特徴とする、請求項1または請求項2に記載の耐摩耗性被膜。  The wear-resistant coating film according to claim 1 or 2, wherein the oxide constituent element other than Al is composed of one or more elements selected from Ti and Zr. Alと前記Al以外の酸化物構成元素からなる合金材料を蒸発源材料に用いて、酸素を含む減圧下でPVD法により前記酸化物層を合成することを特徴とする、請求項1〜請求項3のいずれかに記載の耐摩耗性被膜の製造方法。An alloy material comprising an oxide constituent elements other than the the Al Al evaporation source material, and wherein the synthesis of the oxide layer by a PVD method under vacuum containing oxygen, according to claim 1 to claim 4. A method for producing a wear-resistant coating film according to any one of 3 above. 硬質基材の表面に、請求項1〜請求項3のいずれかに記載の耐摩耗性被膜が被覆された部材であって、耐摩耗性被膜が0.5μm以上20μm以下の膜厚で被覆されていることを特徴とする、耐摩耗部材。A member having the surface of a hard substrate coated with the wear-resistant coating according to any one of claims 1 to 3 , wherein the wear-resistant coating is coated with a film thickness of 0.5 to 20 µm. A wear-resistant member, characterized in that 前記硬質基材がWC基超硬合金、サーメット、あるいは高速度鋼、あるいはこれらの表面硬化基材であることを特徴とする、請求項5記載の耐摩耗部材。The wear-resistant member according to claim 5 , wherein the hard base material is a WC-based cemented carbide, cermet, high-speed steel, or a surface-hardened base material thereof. 前記硬質基材が、TiC−Al焼結体、窒化珪素焼結体、立方晶窒化硼素焼結体、あるいはダイヤモンド焼結体、あるいはこれらの焼結体を接合した基材であることを特徴とする請求項5記載の耐摩耗部材。The hard base material is a TiC—Al 2 O 3 sintered body, a silicon nitride sintered body, a cubic boron nitride sintered body, a diamond sintered body, or a base material obtained by bonding these sintered bodies. The wear-resistant member according to claim 5 .
JP30496098A 1998-10-27 1998-10-27 Abrasion resistant coating, method for producing the same, and abrasion resistant member Expired - Lifetime JP4155641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30496098A JP4155641B2 (en) 1998-10-27 1998-10-27 Abrasion resistant coating, method for producing the same, and abrasion resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30496098A JP4155641B2 (en) 1998-10-27 1998-10-27 Abrasion resistant coating, method for producing the same, and abrasion resistant member

Publications (2)

Publication Number Publication Date
JP2000129445A JP2000129445A (en) 2000-05-09
JP4155641B2 true JP4155641B2 (en) 2008-09-24

Family

ID=17939393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30496098A Expired - Lifetime JP4155641B2 (en) 1998-10-27 1998-10-27 Abrasion resistant coating, method for producing the same, and abrasion resistant member

Country Status (1)

Country Link
JP (1) JP4155641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323320B2 (en) 2008-04-24 2019-06-18 Oerlikon Surface Solutions Ag, Pfäffikon Method for producing metal oxide layers of predetermined structure through arc vaporization

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005138211A (en) * 2003-11-05 2005-06-02 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
AT7663U1 (en) * 2004-04-16 2005-07-25 Ceratizit Austria Gmbh TOOL WITH WEAR-RESISTANT COATING
DE102004044240A1 (en) 2004-09-14 2006-03-30 Walter Ag Cutting tool with oxidic coating
US9997338B2 (en) * 2005-03-24 2018-06-12 Oerlikon Surface Solutions Ag, Pfäffikon Method for operating a pulsed arc source
ES2374832T3 (en) * 2005-03-24 2012-02-22 Oerlikon Trading Ag, Trübbach LAYER OF HARD MATERIAL.
JP4770387B2 (en) * 2005-10-21 2011-09-14 三菱マテリアル株式会社 Surface coated carbide cutting tool with excellent wear resistance due to hard coating layer in high speed heavy cutting
JP4857949B2 (en) * 2006-06-27 2012-01-18 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4822119B2 (en) * 2006-07-14 2011-11-24 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4822120B2 (en) * 2006-07-21 2011-11-24 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4894406B2 (en) * 2006-08-11 2012-03-14 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5067963B2 (en) * 2006-08-11 2012-11-07 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
BRPI0719774A2 (en) * 2006-10-10 2014-04-22 Oerlikon Trading Ag LAYER SYSTEM WITH AT LEAST ONE MIXED CRYSTAL LAYER OF A POLYOXIDE
JP5240604B2 (en) * 2008-04-18 2013-07-17 住友電工ハードメタル株式会社 Surface coated cutting tool
JP5240605B2 (en) * 2008-05-30 2013-07-17 住友電工ハードメタル株式会社 Surface coated cutting tool
JP2011151366A (en) 2009-12-26 2011-08-04 Canon Anelva Corp Method for manufacturing dielectric film
JP6774649B2 (en) * 2016-09-28 2020-10-28 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323320B2 (en) 2008-04-24 2019-06-18 Oerlikon Surface Solutions Ag, Pfäffikon Method for producing metal oxide layers of predetermined structure through arc vaporization

Also Published As

Publication number Publication date
JP2000129445A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP1382709B1 (en) Coated tool
EP0592986B1 (en) Ultra-thin film laminate
JP4155641B2 (en) Abrasion resistant coating, method for producing the same, and abrasion resistant member
WO2017169498A1 (en) Surface-coated cutting tool and manufacturing method therefor
JP5662680B2 (en) Surface coated cutting tool
JPH08134629A (en) Hyperfine particle laminated film and laminated high hardness material for tool with same
JP5395454B2 (en) Surface coated cutting tool
JP3743984B2 (en) Composite high hardness material for tools
JP4748450B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3914686B2 (en) Cutting tool and manufacturing method thereof
JP2979922B2 (en) Ultra thin film laminate
JP5416429B2 (en) Surface coated cutting tool
CN114945708B (en) PVD coated cemented carbide cutting tool with improved coating adhesion
JP5027491B2 (en) Surface coated cutting tool
JP4921984B2 (en) Surface coated cutting tool
JP2008279563A (en) Surface-coated cutting tool
JP4968674B2 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance with excellent hard coating layer in high-speed cutting and method for manufacturing the same
JP5267365B2 (en) Surface coated cutting tool
JP2009148856A (en) Surface-coated cutting tool
JP2009166193A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5035979B2 (en) Surface-coated cutting tool that exhibits high wear resistance with a hard coating layer in high-speed milling and a method for producing the same
KR100305885B1 (en) Coating alloy for a cutting tool/an abrasion resistance tool
JP2008132564A (en) Surface-coated cutting tool
CN112805109A (en) Cutting tool and method for manufacturing same
JPH0873289A (en) Composite high hardness material for tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040720

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060310

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term