JP4822120B2 - Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting - Google Patents

Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting Download PDF

Info

Publication number
JP4822120B2
JP4822120B2 JP2006200096A JP2006200096A JP4822120B2 JP 4822120 B2 JP4822120 B2 JP 4822120B2 JP 2006200096 A JP2006200096 A JP 2006200096A JP 2006200096 A JP2006200096 A JP 2006200096A JP 4822120 B2 JP4822120 B2 JP 4822120B2
Authority
JP
Japan
Prior art keywords
layer
hard coating
constituent
type
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006200096A
Other languages
Japanese (ja)
Other versions
JP2008023670A (en
Inventor
興平 冨田
晃 長田
惠滋 中村
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006200096A priority Critical patent/JP4822120B2/en
Publication of JP2008023670A publication Critical patent/JP2008023670A/en
Application granted granted Critical
Publication of JP4822120B2 publication Critical patent/JP4822120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高い発熱を伴うとともに切刃に高負荷がかかる高送り、高切り込みの高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating even when various materials such as steel and cast iron are machined under high feed, high cutting and high cutting speed conditions with high heat generation and high load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム[以下、α型Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られるところである。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) an upper layer having an average layer thickness of 1 to 15 μm, and an aluminum oxide (hereinafter referred to as α-type Al 2 O 3 ) layer having an α-type crystal structure in a state of chemical vapor deposition;
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. This is also well known.

また、上記の被覆工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。   Further, in the above-mentioned coated tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is used for the purpose of improving the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitride is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so as to have a vertically grown crystal structure. It is also known.

さらに、上記の被覆工具の硬質被覆層を構成するα型Al23層が、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Furthermore, the α-type Al 2 O 3 layer constituting the hard coating layer of the above coated tool is a crystal grain having a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points. It is also known to be composed.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いた場合には問題はないが、特にこれを高い発熱を伴うと共に、切刃に高負荷がかかる高送り、高切り込みの高速重切削加工条件で行うのに用いた場合には、硬質被覆層を構成するα型Al23層の高温強度が十分でないために、前記硬質被覆層がチッピングを起こし易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. For tools, there is no problem when this is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron, but this is accompanied by high heat generation and high load on the cutting edge. high feed, when used to perform fast heavy cutting conditions of a high cut, because the high temperature strength of the α type the Al 2 O 3 layer constituting the hard coating layer is not sufficient, the hard coating layer chipping As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆工具に着目し、特に硬質被覆層の高温強度の向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としてのα型Al23層は、すぐれた高温硬さと耐熱性を備えており、この層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2〜4%、CO:3〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で、Ti化合物層(従来被覆工具の下部層)上に蒸着形成されるが、このようなTi化合物層(下部層)とα型Al23層(上部層)からなる硬質被覆層では、既に述べたように、高速重切削加工において十分に満足できる高温強度と耐チッピング性を備えていないこと。
In view of the above, the present inventors have focused on the coated tool in which the α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, has improved the high-temperature strength of the hard coating layer. As a result of research conducted,
(A) The α-type Al 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated tool has excellent high-temperature hardness and heat resistance, and this layer can be used, for example, in an ordinary chemical vapor deposition apparatus. And
Reaction gas composition: volume%, AlCl 3 : 2 to 4%, CO 2 : 3 to 8%, HCl: 1.5 to 3%, H 2 S: 0.05 to 0.2%, H 2 : remaining ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
Are deposited on a Ti compound layer (the lower layer of a conventional coated tool) under the above conditions (referred to as normal conditions). Such a Ti compound layer (lower layer) and an α-type Al 2 O 3 layer (upper layer) As described above, the hard coating layer made of is not provided with high-temperature strength and chipping resistance that can be sufficiently satisfied in high-speed heavy cutting.

(b)そこで、蒸着条件を変更し、まず、Ti化合物層(下部層)上に、通常の化学蒸着装置にて、
反応ガス組成(容量%);TiCl:2〜4%、AlCl:0.1〜0.5%、ZrCl:0.1〜0.5%、CH:2.5〜4%、CO:0.02〜0.05%、N2:15〜20%、H2:残り、
反応雰囲気温度;980〜1020℃、
反応雰囲気圧力;5〜8kPa、
の条件で、
組成式:(Ti1−X−YAlZr)Cαβγ、(但し、X:0.003〜0.1、Y:0.003〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)を満足するTiとAlとZrの複合炭窒酸化物層を、0.2〜2μmの平均層厚で中間層として形成すると、
上記TiとAlとZrの複合炭窒酸化物層(以下、「(Ti,Al,Zr)CNO中間層」という)は、所定の高温強度を備えるとともに、下部層(Ti化合物層)との密着性、接合強度が非常にすぐれた層であること。
(B) Therefore, the vapor deposition conditions are changed. First, on a Ti compound layer (lower layer), with a normal chemical vapor deposition apparatus,
Reaction gas composition (volume%); TiCl 4 : 2 to 4%, AlCl 3 : 0.1 to 0.5%, ZrCl 4 : 0.1 to 0.5%, CH 4 : 2.5 to 4 %, CO 2 : 0.02 to 0.05%, N 2 : 15 to 20%, H 2 : remaining,
Reaction atmosphere temperature: 980-1020 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
In the condition of
Composition formula: (Ti 1-XY Al X Zr Y ) C α N β O γ (where X: 0.003 to 0.1, Y: 0.003 to 0.1, and α : 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and a composite of Ti, Al, and Zr satisfying α + β + γ = 1) When the carbonitride oxide layer is formed as an intermediate layer with an average layer thickness of 0.2 to 2 μm,
The Ti, Al, and Zr composite carbonitride oxide layer (hereinafter referred to as “(Ti, Al, Zr) CNO intermediate layer”) has a predetermined high-temperature strength and is in close contact with the lower layer (Ti compound layer). The layer should have excellent properties and bonding strength.

(c)次に、上記(Ti,Al,Zr)CNO中間層上に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、ZrCl:0.02〜0.13%、CO:3〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件で、
組成式:(Al1−QZr、(ただし、原子比で、Q:0.003〜0.05)を満足し、かつ、平均層厚1〜15μmのAlとZrの複合酸化物(以下、(Al,Zr)23で示す)層を上部層として形成すると、(Ti,Al,Zr)CNO中間層上に蒸着形成されたこの(Al,Zr)23層は、化学蒸着した状態でα型の結晶構造を有し、かつα型Al23層に比して、高温強度が一段と向上した層であり、加えて、(Ti,Al,Zr)CNO中間層との密着性、接合強度も非常に優れた層であること。
(C) Next, on the (Ti, Al, Zr) CNO intermediate layer, with a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, ZrCl 4: 0.02~0.13%, CO 2: 3~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
In the condition of
Composition formula: (Al 1-Q Zr Q ) 2 O 3, ( provided that an atomic ratio, Q: 0.003 to 0.05) and satisfying, and the composite of Al and Zr in an average layer thickness 1~15μm When an oxide (hereinafter referred to as (Al, Zr) 2 O 3 ) layer is formed as an upper layer, this (Al, Zr) 2 O 3 layer deposited on the (Ti, Al, Zr) CNO intermediate layer is formed. Is a layer having an α-type crystal structure in the state of chemical vapor deposition and having a further improved high-temperature strength as compared with the α-type Al 2 O 3 layer. In addition, (Ti, Al, Zr) CNO It must be a layer with excellent adhesion and bonding strength with the intermediate layer.

(d)上記(Ti,Al,Zr)CNO中間層上に蒸着形成された(Al,Zr)層は、上記のα型Al層と同じコランダム型六方最密晶の結晶構造、すなわち図1に単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される通り、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有する結晶粒で構成されること。 (D) The (Al, Zr) 2 O 3 layer deposited on the (Ti, Al, Zr) CNO intermediate layer is the same corundum hexagonal close-packed crystal as the α-type Al 2 O 3 layer. The structure, that is, the atomic arrangement of the unit cell is schematically shown in FIG. 1 ((a) is a perspective view, (b) is a plan view of cross sections 1 to 9), and lattice points are formed from Al, Zr, and oxygen. And composed of crystal grains having a corundum hexagonal close-packed crystal structure in which each of the constituent atoms is present.

(e)従来被覆工具の硬質被覆層の上部層を構成するα型Al層(以下、「従来α型Al層」という)と、上記(Ti,Al,Zr)CNO中間層上に蒸着形成した(Al,Zr)層(以下、「改質α型(Al,Zr)層」という)について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り上記従来α型Al層では格子点にAlおよび酸素、また上記改質α型(Al,Zr)層ではAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型Al層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型(Al,Zr)層は、図4に例示される通り、Σ3の分布割合が50〜80%のきわめて高い構成原子共有格子点分布グラフを示すこと。
(E) α-type Al 2 O 3 layer (hereinafter referred to as “conventional α-type Al 2 O 3 layer”) constituting the upper layer of the hard coating layer of the conventional coated tool, and the (Ti, Al, Zr) CNO intermediate (Al, Zr) 2 O 3 layer (hereinafter referred to as “modified α-type (Al, Zr) 2 O 3 layer”) formed by vapor deposition on the layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface [the tilt angle of the crystal plane is shown in FIG. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains As described above, the conventional α-type Al 2 O 3 layer has Al and oxygen at lattice points, and the modified α-type (Al, Zr) 2 O 3 layer has constituent atoms composed of Al, Zr, and oxygen. The corundum type hexagonal close-packed crystal structure that exists, based on the measured tilt angle A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains is calculated, and the constituent atomic shared lattice points are calculated. There are N lattice points that do not share constituent atoms in between (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4 , 8, 14, 24, and 26 (there is no even number)) Create a constituent atomic shared lattice distribution graph that shows the distribution of existing constituent atomic shared lattice points as ΣN + 1 and shows the distribution ratio of each ΣN + 1 to the entire ΣN + 1 In this case (in this case, from the above results, there are no constituent atom shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27), the conventional α-type Al 2 O 3 layer is illustrated in FIG. As you can see, Σ3 In contrast to a relatively low constituent atom shared lattice point distribution graph with a distribution ratio of 30% or less, the modified α-type (Al, Zr) 2 O 3 layer has Σ3 as illustrated in FIG. An extremely high constituent atomic shared lattice point distribution graph with a distribution ratio of 50 to 80% is shown.

(f)上記改質α型(Al,Zr)層の形成に際して、層中のZr含有割合を0.3〜5原子%とし、また、平均層厚を1〜15μmとすることによって、構成原子共有格子点分布グラフでのΣ3の分布割合が50〜80%のきわめて高いものとなり、この結果、層は所望のすぐれた高温強度を具備するようになり、したがって、層中のZr含有割合および平均層厚のいずれかでも前記の範囲から外れると、構成原子共有格子点分布グラフでのΣ3の分布割合が50%未満になってしまい、所望の高温強度向上効果が得られなくなること。
なお、上記の改質α型(Al,Zr)層および従来α型Al層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなること。
(F) When forming the modified α-type (Al, Zr) 2 O 3 layer, the Zr content in the layer is set to 0.3 to 5 atomic%, and the average layer thickness is set to 1 to 15 μm. , The distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph is as high as 50 to 80%, and as a result, the layer has the desired excellent high-temperature strength, and therefore the Zr content in the layer If either the ratio or the average layer thickness is out of the above range, the distribution ratio of Σ3 in the constituent atom shared lattice point distribution graph becomes less than 50%, and the desired high-temperature strength improvement effect cannot be obtained.
In the modified α-type (Al, Zr) 2 O 3 layer and the conventional α-type Al 2 O 3 layer, Σ3, Σ7 of the constituent atomic shared lattice point forms at the interface between adjacent crystal grains, When the unit form of Σ11 and Σ11 are illustrated by schematic diagrams, it is as shown in FIGS.

(g)上記のとおり、改質α型(Al,Zr)23層は、従来α型Al23層の備えるすぐれた高温硬さと耐熱性に加えて、さらに、一段とすぐれた高温強度を具備し、さらに、上記(Ti,Al,Zr)CNO中間層は、Ti化合物層からなる下部層および改質α型(Al,Zr)23層からなる上部層のいずれともすぐれた密着性、接合強度を有しているため、Ti化合物層(下部層)と(Ti,Al,Zr)CNO中間層と改質α型(Al,Zr)23層(上部層)という層構造からなる硬質被覆層は、全体として一段とその高温強度の向上が図られ、その結果、高い発熱を伴い高負荷のかかる高速重切削という厳しい条件下での切削加工に用いた場合にも、中間層を有さずかつ従来α型Al23層を上部層として形成した従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、また、長期にわたってすぐれた耐摩耗性を発揮すること。
以上(a)〜(g)に示される研究結果を得たのである。
(G) As described above, the modified α-type (Al, Zr) 2 O 3 layer is superior in high-temperature hardness and heat resistance provided by the conventional α-type Al 2 O 3 layer, and further improved in high-temperature strength. Furthermore, the (Ti, Al, Zr) CNO intermediate layer has excellent adhesion with both the lower layer made of a Ti compound layer and the upper layer made of a modified α-type (Al, Zr) 2 O 3 layer. Layer structure of Ti compound layer (lower layer), (Ti, Al, Zr) CNO intermediate layer and modified α-type (Al, Zr) 2 O 3 layer (upper layer) As a result, the high-temperature strength of the hard coating layer can be further improved, and as a result, even when it is used for cutting under severe conditions such as high-speed heavy cutting with high heat generation and high load, the intermediate layer the not and conventional target to form a conventional α type the Al 2 O 3 layer as an upper layer have Compared to the tool, and exhibits chipping resistance of the hard coating layer is more excellent, also to exhibit wear resistance with excellent long-term.
The research results shown in (a) to (g) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)中間層が、0.2〜2μmの平均層厚を有し、さらに、
組成式:(Ti1−X−YAlZr)Cαβγ、(但し、X:0.003〜0.1、Y:0.003〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)
を満足するTiとAlとZrの複合炭窒酸化物層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−QZr、(ただし、原子比で、Q:0.003〜0.05)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が50〜80%である構成原子共有格子点分布グラフを示すAlとZrの複合酸化物層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する被覆工具(表面被覆切削工具)に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) the intermediate layer has an average layer thickness of 0.2-2 μm,
Composition formula: (Ti 1-XY Al X Zr Y ) C α N β O γ (where X: 0.003 to 0.1, Y: 0.003 to 0.1, and α : 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and α + β + γ = 1)
A composite oxynitride layer of Ti, Al, and Zr that satisfies the following conditions:
(C) the upper layer has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-Q Zr Q ) 2 O 3, ( provided that an atomic ratio, Q: 0.003 to 0.05),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Zr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 50 to 80% A composite oxide layer of Al and Zr showing a shared lattice distribution graph;
Characterized by a coated tool (surface coated cutting tool) in which the hard coated layer composed of the above (a) to (c) is formed by vapor deposition and the hard coated layer exhibits excellent chipping resistance in high-speed heavy cutting. It is what you have.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)下部層(Ti化合物層)
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層は、硬質被覆層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と(Ti,Al,Zr)CNO中間層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する接合強度を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴う高速重切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Lower layer (Ti compound layer)
Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer exists as a lower layer of the hard coating layer, In addition to contributing to improving the high temperature strength of the hard coating layer due to its excellent high temperature strength, the tool base and the (Ti, Al, Zr) CNO intermediate layer are firmly adhered to each other, so that the tool substrate of the hard coating layer However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the average layer thickness exceeds 20 μm, the high-speed weight accompanied by the generation of high heat is particularly high. The cutting easily causes thermoplastic deformation, which causes uneven wear, so the average layer thickness was determined to be 3 to 20 μm.

(b)中間層((Ti,Al,Zr)CNO層)
(Ti,Al,Zr)CNO中間層は、下部層(Ti化合物層)および上部層(改質α型(Al,Zr)23層)のいずれとも強い密着性を有し、また、その接合強度も高いため、この(Ti,Al,Zr)CNO中間層を介在することによって、硬質被覆層全体としてすぐれた高温強度を備えた層を形成するが、(Ti,Al,Zr)CNO中間層における構成成分であるAl成分の含有割合(原子比)を示すX値が0.003未満の場合、あるいは、Zr成分の含有割合(原子比)を示すY値が0.003未満の場合には、上部層である改質α型(Al,Zr)23層との密着性、接合強度が低下し、一方、X値が0.1を超えた場合、あるいは、Y値が0.1を超えた場合には、下部層であるTi化合物層とのとの密着性、接合強度が低下するため、上部層及び下部層のいずれともすぐれた密着性および接合強度を確保するという観点から、(Ti,Al,Zr)CNO中間層におけるAl成分の含有割合を示すX値を0.003〜0.1、また、Zrの含有割合を示すY値を0.003〜0.1の範囲に定めた。
また、同じく(Ti,Al,Zr)CNO中間層における構成成分であるCの含有割合(原子比)を示すα値、Nの含有割合(原子比)を示すβ値、Oの含有割合(原子比)を示すγ値についても、下部層であるTi化合物層、あるいは、上部層である改質α型(Al,Zr)23層との密着性、接合強度の観点から、それぞれを所定の数値範囲に定めた。すなわち、α値、β値が0.3未満の場合には、下部層であるTi化合物層との密着性、接合強度が低下し、一方、α値、β値が0.6を超えると、相対的にOの含有割合が減少するため、上部層である改質α型(Al,Cr)23層との密着性、接合強度が低下すること、さらに、γ値が0.05未満の場合には、上部層との密着性、接合強度が低下し、一方、γ値が0.3を超える場合には、下部層との密着性、接合強度が低下することから、α値、β値およびγ値を、それぞれ、0.3〜0.6、0.3〜0.6、0.05〜0.3という数値範囲に定めた。
さらに、(Ti,Al,Zr)CNO中間層は、その層厚が0.2μm未満では、層厚が薄すぎるため密着性、接合強度の確保を期待することはできず、一方、2μmを超えると、硬質被覆層全体としての耐摩耗性が低下傾向を示すようになることから、(Ti,Al,Zr)CNO中間層の層厚を、0.2〜2μmの範囲に定めた。
(B) Intermediate layer ((Ti, Al, Zr) CNO layer)
The (Ti, Al, Zr) CNO intermediate layer has strong adhesion to both the lower layer (Ti compound layer) and the upper layer (modified α-type (Al, Zr) 2 O 3 layer), and the Since the bonding strength is also high, by interposing this (Ti, Al, Zr) CNO intermediate layer, a layer having excellent high-temperature strength as the whole hard coating layer is formed, but the (Ti, Al, Zr) CNO intermediate layer is formed. When the X value indicating the content ratio (atomic ratio) of the Al component as a constituent component in the layer is less than 0.003, or when the Y value indicating the content ratio (atomic ratio) of the Zr component is less than 0.003 Decreases the adhesion and bonding strength with the modified α-type (Al, Zr) 2 O 3 layer, which is the upper layer, while the X value exceeds 0.1 or the Y value is 0.1. If it exceeds 1, adhesion with the Ti compound layer as the lower layer, bonding strength Therefore, the X value indicating the content ratio of the Al component in the (Ti, Al, Zr) CNO intermediate layer is set to 0.003 from the viewpoint of ensuring excellent adhesion and bonding strength with both the upper layer and the lower layer. Further, the Y value indicating the content ratio of Zr was set in the range of 0.003 to 0.1.
Similarly, the α value indicating the content ratio (atomic ratio) of C, which is a constituent component in the (Ti, Al, Zr) CNO intermediate layer, the β value indicating the content ratio (atomic ratio) of N, and the O content ratio (atom The γ value indicating the ratio) is predetermined from the viewpoint of adhesion and bonding strength with the Ti compound layer as the lower layer or the modified α-type (Al, Zr) 2 O 3 layer as the upper layer. The numerical range was determined. That is, when the α value and β value are less than 0.3, the adhesion and bonding strength with the Ti compound layer as the lower layer are lowered, while when the α value and β value exceed 0.6, Since the content ratio of O is relatively reduced, the adhesion and bonding strength with the modified α-type (Al, Cr) 2 O 3 layer, which is the upper layer, are reduced, and the γ value is less than 0.05. In this case, the adhesion with the upper layer and the bonding strength are reduced. On the other hand, when the γ value exceeds 0.3, the adhesion with the lower layer and the bonding strength are reduced. The β value and γ value were set to numerical ranges of 0.3 to 0.6, 0.3 to 0.6, and 0.05 to 0.3, respectively.
Furthermore, if the (Ti, Al, Zr) CNO intermediate layer has a layer thickness of less than 0.2 μm, it cannot be expected to ensure adhesion and bonding strength because the layer thickness is too thin, whereas it exceeds 2 μm. Since the wear resistance of the entire hard coating layer tends to decrease, the layer thickness of the (Ti, Al, Zr) CNO intermediate layer is set in the range of 0.2 to 2 μm.

(c)上部層(改質α型(Al,Zr)23層)
改質α型(Al,Zr)23層の構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Zr成分には、構成原子共有格子点分布グラフでのΣ3の分布割合を50%以上に高め、層の高温強度を向上させる作用を有するが、この場合Zrの含有割合を示すQ値が原子比で0.003未満では前記作用に所望の向上効果を確保することができず、一方同Q値が0.05を越えると構成原子共有格子点分布グラフでのΣ3の分布割合が50%未満となってしまい、所望の高温強度の確保が困難になることから、前記Q値を0.003〜0.05と定めた。
また、上記の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、反応ガスを構成するAlCl、ZrCl、COおよびHClの含有割合、さらに雰囲気反応圧力によっても調整することができ、そして、Σ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を80%を越えて高くすることは層形成上困難であることから、Σ3の分布割合を50〜80%の範囲に定めた。
いずれにしても、構成原子共有格子点分布グラフにおけるΣ3の分布割合が50〜80%である改質α型(Al,Zr)23層は、従来α型Al23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するため、高速重切削という厳しい切削条件であっても、硬質被覆層へのチッピング発生を十分に防止し得るが、上記改質α型(Al,Zr)23層の平均層厚が1μm未満ではこの層が有する前記特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(C) Upper layer (modified α-type (Al, Zr) 2 O 3 layer)
Al, which is a constituent component of the modified α-type (Al, Zr) 2 O 3 layer, improves the high-temperature hardness and heat resistance of the layer, and the Zr component has a distribution of Σ3 in the constituent atom sharing lattice distribution graph. The ratio is increased to 50% or more and has an effect of improving the high-temperature strength of the layer. In this case, when the Q value indicating the content ratio of Zr is less than 0.003 in atomic ratio, a desired improvement effect is ensured for the above-described action. On the other hand, if the Q value exceeds 0.05, the distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph becomes less than 50%, and it becomes difficult to ensure the desired high-temperature strength. The Q value was determined to be 0.003 to 0.05.
Further, the distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified α-type (Al, Zr) 2 O 3 layer is the content ratio of AlCl 3 , ZrCl 4 , CO 2 and HCl constituting the reaction gas. Further, it can be adjusted by the atmospheric reaction pressure, and the higher the distribution ratio of Σ3, the more desirable, but it is difficult to increase the distribution ratio of Σ3 beyond 80% in terms of layer formation. The distribution ratio of Σ3 was set in the range of 50 to 80%.
In any case, the modified α-type (Al, Zr) 2 O 3 layer having a Σ3 distribution ratio of 50 to 80% in the constituent atom sharing lattice distribution graph has the conventional α-type Al 2 O 3 layer itself. In addition to excellent high-temperature hardness and heat resistance, it has even higher high-temperature strength, so that even under severe cutting conditions such as high-speed heavy cutting, it is possible to sufficiently prevent chipping on the hard coating layer. If the average thickness of the α-type (Al, Zr) 2 O 3 layer is less than 1 μm, the hard coating layer cannot be provided with the above-mentioned properties sufficiently, while the average layer thickness exceeds 15 μm. Then, since thermoplastic deformation that causes uneven wear is likely to occur and wear is accelerated, the average layer thickness is determined to be 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、硬質被覆層が、下部層と上部層(改質α型(Al,Zr)23層)間に(Ti,Al,Zr)CNO中間層を介在させた構造のものとして構成されているため、各種の鋼や鋳鉄などの切削加工を、高い発熱を伴いかつ高負荷がかかる高速重切削条件で行うのに用いた場合にも、(Ti,Al,Zr)CNO中間層の存在により硬質被覆層の層間密着性、接合強度が確保されるばかりか、改質α型(Al,Zr)23層が、従来Al23自身のもつすぐれた高温硬さと耐熱性に加えて、より一段とすぐれた高温強度を具備することにより、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated tool of this invention has a structure in which the hard coating layer has a (Ti, Al, Zr) CNO intermediate layer interposed between the lower layer and the upper layer (modified α-type (Al, Zr) 2 O 3 layer). (Ti, Al, Zr) CNO even when used for cutting various steels and cast irons under high-speed heavy cutting conditions with high heat generation and high load. The presence of the intermediate layer not only ensures the interlayer adhesion and bonding strength of the hard coating layer, but also the modified α-type (Al, Zr) 2 O 3 layer has the excellent high-temperature hardness of the conventional Al 2 O 3 itself. In addition to heat resistance, it has excellent high-temperature strength, thereby exhibiting excellent chipping resistance and further extending the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、表4に示される条件で(Ti,Al,Zr)CNO中間層[表4では中間層で示す](a)〜(e)のうちのいずれかを同じく表5に示される組み合わせおよび目標層厚で硬質被覆層の中間層として蒸着形成し、さらに、同じく表4に示される条件で、表5に示される組み合わせおよび目標層厚で改質α型(Al,Zr)層[表4では改質層で示す](A)〜(E)を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 5 under the conditions shown in Table 5 are the conditions for forming the TiCN layer having the vertically grown crystal structure described, and the other conditions for forming the normal granular crystal structure. And a Ti compound layer with a target layer thickness deposited as a lower layer of the hard coating layer, and then a (Ti, Al, Zr) CNO intermediate layer [shown as an intermediate layer in Table 4] under the conditions shown in Table 4 (a ) To (e) are vapor-deposited as intermediate layers of the hard coating layer with the combinations and target layer thicknesses also shown in Table 5, and further shown in Table 5 under the conditions shown in Table 4 Modified α type with combination and target layer thickness The coated tools 1 to 13 of the present invention were produced by vapor-depositing (Al), (Zr) 2 O 3 layers [shown as modified layers in Table 4] (A) to (E) as upper layers of the hard coating layer, respectively. .

また、比較の目的で、表6に示される通り、硬質被覆層の上部層として、表3に示される条件で、表6に示される目標層厚で従来α型Al層を形成することにより従来被覆工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, the conventional α-type Al 2 O 3 layer is formed as the upper layer of the hard coating layer with the target layer thickness shown in Table 6 under the conditions shown in Table 3. Thus, the conventional coated tools 1 to 13 were produced respectively.

ついで、上記の本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の上部層を構成する改質α型(Al,Zr)23層および従来α型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型(Al,Zr)23層および従来α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Subsequently, the modified α-type (Al, Zr) 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the present invention-coated tools 1 to 13 and the conventional coated tools 1 to 13 described above. Constituent atom shared lattice point distribution graphs were prepared for each of the above using a field emission scanning electron microscope.
That is, the constituent atomic shared lattice point distribution graph shows the field emission scanning in a state where the surface of the modified α-type (Al, Zr) 2 O 3 layer and the conventional α-type Al 2 O 3 layer is the polished surface. Set in a lens barrel of an electron microscope, and irradiate an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface with an irradiation current of 1 nA to each crystal grain existing in the measurement range of the surface polished surface. Then, using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm at a spacing of 0.1 μm / step is a (0001) plane which is the crystal plane of the crystal grain with respect to the normal line of the polished surface And the tilt angle formed by the normal of the (10-10) plane, and based on the measured tilt angle obtained as a result, each of the constituent atoms is interlinked with the crystal grain at the interface between adjacent crystal grains. Lattice points that share one constituent atom between them (constituent atom sharing The number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal) (If the upper limit of N is 28 from the point of distribution frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is It was created by calculating the distribution ratio in the entire ΣN + 1.

この結果得られた各種の改質α型(Al,Zr)23層および従来α型Al23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表5,6にそれぞれ示した。 In the graph of constituent atomic shared lattice distributions of various modified α-type (Al, Zr) 2 O 3 layers and conventional α-type Al 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, Σ7, The distribution ratios of Σ3 in the total distribution ratios of Σ11, Σ13, Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 5 and 6, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆工具の改質α型(Al,Zr)23層は、いずれもΣ3の占める分布割合が50〜80%である構成原子共有格子点分布グラフを示すのに対して、従来被覆工具の従来α型Al23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆工具10の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフ、図5は、従来被覆工具4の従来α型Al23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 5 and 6, respectively, the modified α-type (Al, Zr) 2 O 3 layer of the coated tool of the present invention has a distribution ratio occupied by Σ3. Shows a constituent atomic shared lattice distribution graph in which the ratio is 50 to 80%, whereas the conventional α-type Al 2 O 3 layer of the conventional coated tool has a constituent atomic shared lattice with a Σ3 distribution ratio of 30% or less. A point distribution graph was shown.
FIG. 4 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type (Al, Zr) 2 O 3 layer of the coated tool 10 of the present invention, and FIG. 5 shows the conventional α-type Al 2 O 3 of the conventional coated tool 4. The constituent atom shared lattice point distribution graphs of the layers are respectively shown.

また、この結果得られた本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement), Also showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
[切削条件A]
被削材:JIS・S20Cの丸棒、
切削速度: 450 m/min、
切り込み: 2.7 mm、
送り: 0.8 mm/rev、
切削時間: 10 分、
の条件での炭素鋼の乾式高速高送り切削試験(通常の切削速度および送りは、それぞれ250m/min、0.3mm/rev)、
[切削条件B]
被削材:JIS・SCM420の丸棒、
切削速度: 400 m/min、
切り込み: 4.8 mm、
送り: 0.3 mm/rev、
切削時間: 5 分、
の条件での合金鋼の乾式高速高切込み切削試験(通常の切削速度および切り込みは、それぞれ250m/min、2mm)、
[切削条件C]
被削材:JIS・FC300の丸棒、
切削速度: 530 m/min、
切り込み: 5.5 mm、
送り: 0.40 mm/rev、
切削時間: 5 分、
の条件での鋳鉄の湿式高速高切込み切削試験(通常の切削速度および切り込み は、それぞれ250m/min、2.5mm)
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, for the various coated tools of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13, all of them are screwed to the tip of the tool steel tool with a fixing jig,
[Cutting conditions A]
Work material: JIS / S20C round bar,
Cutting speed: 450 m / min,
Incision: 2.7 mm,
Feed: 0.8 mm / rev,
Cutting time: 10 minutes,
Carbon steel dry high-speed high-feed cutting test under normal conditions (normal cutting speed and feed are 250 m / min and 0.3 mm / rev, respectively)
[Cutting conditions B]
Work material: JIS / SCM420 round bar,
Cutting speed: 400 m / min,
Cutting depth: 4.8 mm,
Feed: 0.3 mm / rev,
Cutting time: 5 minutes,
Dry high-speed high-cut cutting test of alloy steel under the following conditions (normal cutting speed and cutting are 250 m / min and 2 mm, respectively)
[Cutting conditions C]
Work material: JIS / FC300 round bar,
Cutting speed: 530 m / min,
Cutting depth: 5.5 mm,
Feed: 0.40 mm / rev,
Cutting time: 5 minutes,
Wet high-speed high-cut cutting test of cast iron under normal conditions (normal cutting speed and cutting are 250 m / min and 2.5 mm, respectively)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

Figure 0004822120
Figure 0004822120

表5〜7に示される結果から、本発明被覆工具1〜13は、硬質被覆層の中間層として(Ti,Al,Zr)CNO中間層が蒸着形成され、これを介して、Σ3の分布割合が50〜80%の構成原子共有格子点分布グラフを示す改質α型(Al,Zr)23層が上部層として蒸着形成されているため、高い発熱を伴い、かつ、切刃に対する負荷のきわめて大きい鋼や鋳鉄の高速重切削でも、前記(Ti,Al,Zr)CNO中間層の有する高い密着性、接合強度とともに、前記改質α型(Al,Zr)23層が自身の具備するすぐれた高温硬さおよび耐熱性に加えて、より一段とすぐれた高温強度を有することにより、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、長期にわたってすぐれた耐摩耗性を示すのに対して、下部層(Ti化合物層)上に直接Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型Al23層が蒸着形成された硬質被覆層を備えた従来被覆工具1〜13においては、いずれも高速重切削では硬質被覆層の層間接合強度、高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, in the present coated tools 1 to 13, (Ti, Al, Zr) CNO intermediate layer is formed by vapor deposition as the intermediate layer of the hard coating layer, and through this, the distribution ratio of Σ3 Since the modified α-type (Al, Zr) 2 O 3 layer showing the constituent atomic shared lattice distribution graph of 50 to 80% is formed by vapor deposition as an upper layer, high heat generation occurs and the load on the cutting edge Even in high-speed heavy cutting of steel and cast iron with extremely large thickness, the modified α-type (Al, Zr) 2 O 3 layer has its own properties along with the high adhesion and bonding strength of the (Ti, Al, Zr) CNO intermediate layer. In addition to the excellent high-temperature hardness and heat resistance that it has, it has excellent high-temperature strength and exhibits excellent chipping resistance. Resistance A conventional α-type Al 2 O 3 layer showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less is directly deposited on the lower layer (Ti compound layer) while exhibiting wear properties. In the conventional coated tools 1 to 13 provided with the hard coating layer, since the interlaminar bonding strength and the high temperature strength of the hard coating layer are insufficient in high-speed heavy cutting, chipping occurs in the hard coating layer. It is clear that the service life is reached in a short time.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特に高い高温強度が要求される高速重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention has an excellent hard coating layer not only for cutting under normal conditions such as various types of steel and cast iron, but also for high-speed heavy cutting that requires particularly high high-temperature strength. Because it shows chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting processing, and further cost reduction. is there.

α型(Al,Zr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。FIG. 2 is a schematic diagram showing an atomic arrangement of a unit cell of a corundum type hexagonal close-packed crystal constituting an α-type (Al, Zr) 2 O 3 layer, where (a) is a perspective view and (b) is a cross section of 1-9. It is a top view. α型(Al,Zr)23層およびα型Al23層における結晶粒の(0001)面および(10−10)面の傾斜角の測定態様を示す概略説明図である。α-type (Al, Zr) is a schematic explanatory view showing the measurement mode of the inclination angle of the crystal grains (0001) plane and (10-10) plane in 2 O 3 layer and α-type the Al 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆工具10の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフである。It is a constituent atom shared lattice point distribution graph of the modified α-type (Al, Zr) 2 O 3 layer of the coated tool 10 of the present invention. 従来被覆工具4の従来α型Al23層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a conventional α-type Al 2 O 3 layer of a conventional coated tool 4.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層、
(b)中間層が、0.2〜2μmの平均層厚を有し、さらに、
組成式:(Ti1−X−YAlZr)Cαβγ、(但し、X:0.003〜0.1、Y:0.003〜0.1であり、また、α:0.3〜0.6、β:0.3〜0.6、γ:0.05〜0.3で、かつ、α+β+γ=1)
を満足するTiとAlとZrの複合炭窒酸化物層、
(c)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−QZr、(ただし、原子比で、Q:0.003〜0.05)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が50〜80%である構成原子共有格子点分布グラフを示すAlとZrの複合酸化物層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having an overall average layer thickness of 3 to 20 μm. A Ti compound layer comprising:
(B) the intermediate layer has an average layer thickness of 0.2-2 μm,
Composition formula: (Ti 1-XY Al X Zr Y ) C α N β O γ (where X: 0.003 to 0.1, Y: 0.003 to 0.1, and α : 0.3 to 0.6, β: 0.3 to 0.6, γ: 0.05 to 0.3, and α + β + γ = 1)
A composite oxynitride layer of Ti, Al, and Zr that satisfies the following conditions:
(C) the upper layer has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-Q Zr Q ) 2 O 3, ( provided that an atomic ratio, Q: 0.003 to 0.05),
And using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the normal to the surface polished surface is Then, the inclination angle formed by the normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, is measured. In this case, the crystal grains are composed of Al, Zr, and oxygen at lattice points. Each of the constituent atoms has a crystal structure of a corundum hexagonal close-packed crystal structure in which each constituent atom exists, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between them is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum type) 2 or more due to the hexagonal close-packed crystal structure Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In the constituent atom sharing lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the constituent atom in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 50 to 80% A composite oxide layer of Al and Zr showing a shared lattice distribution graph;
A surface-coated cutting tool in which a hard coating layer composed of the above (a) to (c) is formed by vapor deposition, and the hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting.
JP2006200096A 2006-07-21 2006-07-21 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting Active JP4822120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200096A JP4822120B2 (en) 2006-07-21 2006-07-21 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200096A JP4822120B2 (en) 2006-07-21 2006-07-21 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2008023670A JP2008023670A (en) 2008-02-07
JP4822120B2 true JP4822120B2 (en) 2011-11-24

Family

ID=39114828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200096A Active JP4822120B2 (en) 2006-07-21 2006-07-21 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4822120B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181621B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9181620B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176659B2 (en) * 2008-04-03 2013-04-03 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5286891B2 (en) * 2008-04-03 2013-09-11 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5187571B2 (en) * 2008-06-20 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5176797B2 (en) * 2008-09-08 2013-04-03 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5739086B2 (en) * 2008-11-04 2015-06-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4155641B2 (en) * 1998-10-27 2008-09-24 住友電工ハードメタル株式会社 Abrasion resistant coating, method for producing the same, and abrasion resistant member
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4645983B2 (en) * 2005-04-12 2011-03-09 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181621B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9181620B2 (en) 2013-03-21 2015-11-10 Kennametal Inc. Coatings for cutting tools
US9371580B2 (en) 2013-03-21 2016-06-21 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9903018B2 (en) 2013-03-21 2018-02-27 Kennametal Inc. Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same
US9719175B2 (en) 2014-09-30 2017-08-01 Kennametal Inc. Multilayer structured coatings for cutting tools
US9650714B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Nanocomposite refractory coatings and applications thereof
US9650712B2 (en) 2014-12-08 2017-05-16 Kennametal Inc. Inter-anchored multilayer refractory coatings

Also Published As

Publication number Publication date
JP2008023670A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4748444B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720995B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4857949B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Ref document number: 4822120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3