JP5286891B2 - Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting - Google Patents

Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting Download PDF

Info

Publication number
JP5286891B2
JP5286891B2 JP2008096930A JP2008096930A JP5286891B2 JP 5286891 B2 JP5286891 B2 JP 5286891B2 JP 2008096930 A JP2008096930 A JP 2008096930A JP 2008096930 A JP2008096930 A JP 2008096930A JP 5286891 B2 JP5286891 B2 JP 5286891B2
Authority
JP
Japan
Prior art keywords
layer
crystal
type
hard coating
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008096930A
Other languages
Japanese (ja)
Other versions
JP2009248217A (en
Inventor
興平 冨田
満康 西山
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008096930A priority Critical patent/JP5286891B2/en
Publication of JP2009248217A publication Critical patent/JP2009248217A/en
Application granted granted Critical
Publication of JP5286891B2 publication Critical patent/JP5286891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、高熱発生を伴うと共に、切刃部に高負荷が作用する高送り、高切り込み等の高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is used when cutting various work materials such as steel and cast iron under high-speed heavy cutting conditions such as high feed and high cutting with high heat generation and high load on the cutting edge. The present invention also relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance with a hard coating layer.

特許文献1に示されるように、従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層は、炭化チタン層、窒化チタン層、炭窒化チタン層、酸化チタン層、炭酸化チタン層、窒酸化チタン層、炭窒酸化チタン層等のTi化合物層、
(b)上部層は、その下部層側をα型酸化アルミニウムで構成し、一方、その表面側は、α型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布した混合組織層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具(以下、これを従来被覆工具という)が知られており、この従来被覆工具が、断続重切削加工においてすぐれた耐チッピング性を示すことが知られている。
As shown in Patent Document 1, conventionally, a substrate (hereinafter collectively referred to as tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. On the surface of the tool base)
(A) The lower layer is a titanium compound layer such as a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium oxide layer, a titanium carbonate layer, a titanium nitride oxide layer, a titanium carbonitride oxide layer,
(B) The upper layer is composed of α-type aluminum oxide on the lower layer side, while the surface side is a mixed structure layer in which the zirconium oxide phase is dispersed and distributed on the base of the α-type aluminum oxide phase,
A surface-coated cutting tool (hereinafter referred to as a conventional coated tool) in which a hard coating layer comprising the above (a) and (b) is formed by vapor deposition is known, and this conventional coated tool is excellent in intermittent heavy cutting. It is known to exhibit chipping resistance.

また、特許文献2に示されるように、工具基体の表面に、
(a)下部層は、炭化チタン層、窒化チタン層、炭窒化チタン層、酸化チタン層、炭酸化チタン層、窒酸化チタン層、炭窒酸化チタン層等のTi化合物層、
(b)上部層は、α型の結晶構造を有するAl−Zr複合酸化物層であって、しかも、該Al−Zr複合酸化物層について、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Zr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すΣ3対応粒界の分布割合が高いAl−Zr複合酸化物層、
上記(a)、(b)からなる下部層、上部層を蒸着形成することにより、高速断続切削加工における表面被覆切削工具の耐チッピング性の向上を図ることも知られている。
特開2000−246509号公報 特開2006−289557号公報 特開2005−205586号公報
Further, as shown in Patent Document 2, on the surface of the tool base,
(A) The lower layer is a titanium compound layer such as a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium oxide layer, a titanium carbonate layer, a titanium nitride oxide layer, a titanium carbonitride oxide layer,
(B) The upper layer is an Al—Zr composite oxide layer having an α-type crystal structure, and the Al—Zr composite oxide layer is subjected to surface polishing using a field emission scanning electron microscope. Each crystal grain having a hexagonal crystal lattice existing in the measurement range is irradiated with an electron beam, and the (0001) plane and (10 − 10) The inclination angle formed by the normal of the plane is measured. In this case, the crystal grains have a crystal structure of a corundum hexagonal close-packed crystal in which constituent atoms composed of Al, Zr, and oxygen are present at lattice points. Based on the measurement inclination angle obtained as a result, lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains. ) Distribution and the constituent atom sharing case There are N lattice points that do not share constituent atoms between points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, (Even numbers of 4, 8, 14, 24, and 26 do not exist) When a constituent atomic shared lattice point form that is present is represented by ΣN + 1, a constituent atomic shared lattice point distribution indicating a distribution ratio of each ΣN + 1 in the entire ΣN + 1 In the graph, an Al-Zr composite having a high distribution ratio of grain boundaries corresponding to Σ3, which shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 has a maximum peak in Σ3 and the distribution ratio of Σ3 to the entire ΣN + 1 is 60 to 80% Oxide layer,
It is also known to improve the chipping resistance of a surface-coated cutting tool in high-speed intermittent cutting by depositing and forming the lower layer and the upper layer composed of (a) and (b).
JP 2000-246509 A JP 2006-289557 A JP-A-2005-205586

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での断続切削加工に用いた場合には問題はないが、特にこれを高熱発生を伴い、かつ、切刃に対して高負荷が作用する高送り、高切り込み等の高速重加工条件で行うのに用いた場合には、硬質被覆層を構成する上記従来のα型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布した混合組織層あるいは同じく従来のα型の結晶構造を有するAl−Zr複合酸化物層では、高温強度が十分とはいえないためチッピング(微少欠け)を発生し易く、あるいは、耐熱塑性変形性が十分ではないために偏摩耗等が発生しやすく、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. In tools, there is no problem when this is used for intermittent cutting under normal conditions such as steel and cast iron, but this is accompanied by high heat generation and a high load acts on the cutting edge. When used in high-speed heavy cutting conditions such as high feed and high cutting, a mixed structure layer in which the zirconium oxide phase is dispersed and distributed on the base of the conventional α-type aluminum oxide phase constituting the hard coating layer or the same In the conventional Al-Zr composite oxide layer having an α-type crystal structure, the high temperature strength is not sufficient, so that chipping (slight chipping) is likely to occur, or the heat-resistant plastic deformation property is not sufficient. Wear is likely to occur, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆工具のα型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布した混合組織層(以下、これを従来α型(Al,Zr)O層という)に着目し、耐チッピング性と耐摩耗性の両者の改善を図るべく鋭意研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have a mixed structure layer in which the zirconium oxide phase is dispersed and distributed on the base of the α-type aluminum oxide phase of the conventional coated tool (hereinafter referred to as the conventional α-type (Al, As a result of intensive research aimed at improving both chipping resistance and wear resistance, the following knowledge was obtained.

上記従来被覆工具(特許文献1)においては、α型酸化アルミニウム層(以下、これを従来α型Al層という)の表面側に、前記従来α型(Al,Zr)O層を蒸着形成するにあたり、通常の化学蒸着装置を用いて、Ti化合物層からなる下部層の表面に、例えば、
反応ガス組成:容量%で、AlCl3 :1〜10%、CO2 :3〜10%、H2 S:0.02〜2%、HCl:0.5〜5%、H2 :残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5.3〜53kPa、
の条件(以下、通常条件という)でまず従来α型Al層を形成した後、
引き続き、上記の反応ガスにZrCl4 を加えて、反応ガス組成を、例えば、
反応ガス組成:容量%で、AlCl3 :1〜10%、CO2 :3〜10%、H2 S:0.02〜2%、HCl:0.5〜5%、ZrCl4 :0.05〜3%、H2 :残り、
として、反応雰囲気温度および反応雰囲気圧力については同条件で化学蒸着を行うことにより、下部層側は従来α型Al層からなり、一方、表面側は、従来α型(Al,Zr)O層からなる硬質被覆層が形成されていた。
In the conventional coated tool (Patent Document 1), the conventional α-type (Al, Zr) O layer is deposited on the surface side of the α-type aluminum oxide layer (hereinafter referred to as the conventional α-type Al 2 O 3 layer). In forming, using a normal chemical vapor deposition apparatus, on the surface of the lower layer made of a Ti compound layer, for example,
Reaction gas composition: by volume%, AlCl 3: 1~10%, CO 2: 3~10%, H 2 S: 0.02~2%, HCl: 0.5~5%, H 2: remainder,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5.3 to 53 kPa,
After first forming a conventional α-type Al 2 O 3 layer under the conditions (hereinafter referred to as normal conditions),
Subsequently, ZrCl 4 is added to the above reaction gas, and the reaction gas composition is, for example,
Reaction gas composition: by volume%, AlCl 3: 1~10%, CO 2: 3~10%, H 2 S: 0.02~2%, HCl: 0.5~5%, ZrCl 4: 0.05 ~3%, H 2: remainder,
As for the reaction atmosphere temperature and the reaction atmosphere pressure, by performing chemical vapor deposition under the same conditions, the lower layer side is made of a conventional α-type Al 2 O 3 layer, while the surface side is made of a conventional α-type (Al, Zr) A hard coating layer composed of an O layer was formed.

そこで、上記従来α型Al層の蒸着条件を変更し、通常の化学蒸着装置にて、Ti化合物層からなる下部層の表面に、例えば、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を形成し、この場合、前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、α型Al23層を通常の条件で形成すると、この結果の前記加熱処理Al23核薄膜上に蒸着形成されたα型Al23層は、電界放出型走査電子顕微鏡を用い、図1(a)、(b)に概略説明図で示されるとおり、断面研磨面の測定範囲内に存在する六方晶結晶格子を有するα型Al23結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記加熱処理Al23核薄膜上に蒸着形成されたα型Al23層は、図3に例示されるとおり、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークの位置は、前記Al23核薄膜の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わる。
つまり、前記加熱処理Al23核薄膜上に蒸着形成されたα型Al23層は、(0001)面配向率が高いα型Al23層(以下、改質α型Al23層という)であることがわかる。
Therefore, the vapor deposition conditions of the conventional α-type Al 2 O 3 layer are changed, and the surface of the lower layer made of the Ti compound layer is changed, for example, by a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
At low temperature conditions, to form a Al 2 O 3 nuclei. In this case, the Al 2 O 3 nuclei is desirably in the range of Al 2 O 3 nuclei thin film with an average layer thickness of 20 to 200 nm, and subsequently, reaction atmosphere pressure: changed to a hydrogen atmosphere of 3~13KPa, the reaction atmosphere temperature in a state subjected to heat treatment to the Al 2 O 3 nuclei film under conditions the temperature was raised to 1100 to 1200 ° C., the α type the Al 2 O 3 layer When formed under normal conditions, the α-type Al 2 O 3 layer deposited on the heat-treated Al 2 O 3 nuclear thin film as a result of this was formed using a field emission scanning electron microscope, as shown in FIGS. As shown in the schematic explanatory diagram in b), each α-type Al 2 O 3 crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam to obtain a normal to the substrate surface. On the other hand, the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section When a distribution graph is prepared, the α-type Al 2 O 3 layer deposited on the heat-treated Al 2 O 3 nuclear thin film has a sharp peak at a specific position in the tilt angle segment as illustrated in FIG. The position of this sharp peak is changed by changing the average layer thickness of the Al 2 O 3 nuclear thin film, and the position appearing in the tilt angle section of the horizontal axis of the graph is changed.
That is, the α-type Al 2 O 3 layer deposited on the heat-treated Al 2 O 3 nuclear thin film is an α-type Al 2 O 3 layer (hereinafter referred to as a modified α-type Al 2 layer) having a high (0001) plane orientation ratio. O 3 layer that) is that it can be seen.

なお、前記従来α型Al23層について、上記と同様にして、基体表面の法線に対して、結晶粒の結晶面である(0001)面の法線がなす傾斜角の傾斜角度数分布グラフを作成したところ、図4に示す通り、(0001)面の測定傾斜角の分布は0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示したことから、基体表面の法線方向に対する(0001)面配向は特にないことがわかる。 For the conventional α-type Al 2 O 3 layer, in the same manner as described above, the number of inclination angles of the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, with respect to the normal line of the substrate surface When a distribution graph was created, as shown in FIG. 4, the distribution of measured inclination angles on the (0001) plane showed an unbiased inclination angle number distribution graph within the range of 0 to 45 degrees. It can be seen that there is no (0001) plane orientation with respect to the linear direction.

次に、上記の如く蒸着形成した(0001)面配向率が高い改質α型Al23層を中間層として、その表面に、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:6〜10%、ZrCl:0.6〜1.6%、CO:4〜8%、HCl:6〜10%、H2S:0.25〜0.6%、H2:残り、
反応雰囲気温度:980〜1060℃、
反応雰囲気圧力:6〜10kPa、
の条件、かつ、少なくとも蒸着反応終了前に反応ガス中のZrClの含有割合を増加させて上部層を蒸着形成すると、該上部層として、α型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布し、しかも、上部層の中間層側(工具基体側)よりも上部層の表面側においてより多くの酸化ジルコニウムが含有されている混合組織層(以下、改質α型(Al,Zr)O層ともいう)が形成される。
Next, a modified α-type Al 2 O 3 layer having a high (0001) plane orientation ratio formed by vapor deposition as described above is used as an intermediate layer on the surface thereof, for example, with a normal chemical vapor deposition apparatus.
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, ZrCl 4 : 0.6 to 1.6%, CO 2 : 4 to 8%, HCl: 6 to 10%, H 2 S: 0.25 ~0.6%, H 2: remainder,
Reaction atmosphere temperature: 980 to 1060 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
When the upper layer is vapor-deposited by increasing the content ratio of ZrCl 4 in the reaction gas at least before the completion of the vapor deposition reaction, the zirconium oxide phase is dispersed and distributed on the base of the α-type aluminum oxide phase as the upper layer. Moreover, a mixed structure layer (hereinafter referred to as a modified α-type (Al, Zr) O layer) containing more zirconium oxide on the surface side of the upper layer than on the intermediate layer side (tool base side) of the upper layer. Is also formed).

具体的には、例えば、蒸着の進行と共に反応ガス中のZrClの含有割合を連続的に増加させて上部層を蒸着形成すると、上部層の中間層側(工具基体側)から上部層の表面側に向かって、酸化ジルコニウム含有量が連続的に増加する混合組織層(以下、傾斜組成混合組織層という)が形成される。
また、反応ガス中に所定割合のZrClを含有させて蒸着を開始してから一定時間経過後に、反応ガス中のZrCl含有割合を増加させて蒸着を継続すると、上部層の中間層側(工具基体側)には、酸化ジルコニウム含有量が少ない層(以下、上部内面層という)が形成され、一方、上部層の表面側には、酸化ジルコニウム含有量が多い層(以下、上部外面層という)が形成され、その結果、酸化ジルコニウム含有量が上部内面層と上部外面層という異なる層の積層構造からなる混合組織層(以下、積層構造混合組織層という)が形成される。
Specifically, for example, when the upper layer is deposited by continuously increasing the content ratio of ZrCl 4 in the reaction gas as the deposition proceeds, the surface of the upper layer from the intermediate layer side (tool substrate side) of the upper layer is formed. A mixed structure layer (hereinafter referred to as a gradient composition mixed structure layer) in which the zirconium oxide content continuously increases is formed toward the side.
In addition, after a predetermined time has elapsed since the deposition of the reaction gas by containing a predetermined ratio of ZrCl 4 , when the deposition is continued by increasing the ZrCl 4 content ratio in the reaction gas, the intermediate layer side of the upper layer ( A layer having a low zirconium oxide content (hereinafter referred to as an upper inner surface layer) is formed on the tool base side, while a layer having a high zirconium oxide content (hereinafter referred to as an upper outer surface layer) is formed on the surface side of the upper layer. As a result, a mixed structure layer (hereinafter, referred to as a stacked structure mixed structure layer) having a stacked structure of different layers having a zirconium oxide content of an upper inner surface layer and an upper outer surface layer is formed.

そして、改質α型(Al,Zr)O層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、図5に示されるとおり、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が35〜70%である構成原子共有格子点分布グラフを示し、しかも、この改質α型(Al,Zr)O層は、前記従来α型(Al,Zr)O層に比して、一段とすぐれた高温強度および耐熱塑性変形性を有することがわかった。   The modified α-type (Al, Zr) O layer is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the cross-section polished surface. Based on the above, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, There are N lattice points that do not share constituent atoms between atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency) The even number of 4, 8, 14, 24, and 26 In the case where a constituent atomic shared lattice point distribution graph indicating the distribution ratio of each ΣN + 1 to the entire ΣN + 1 is created (in this case, from the above result, Σ5, Σ9) , .SIGMA.15, .SIGMA.25, and .SIGMA.27 are not present in the constituent atomic shared lattice point form), and as shown in FIG. 5, the highest peak exists in .SIGMA.3 and the distribution ratio of the .SIGMA. A graph showing the distribution of constituent atomic covalent lattice points of 70%, and this modified α-type (Al, Zr) O layer is much higher in temperature than the conventional α-type (Al, Zr) O layer. It was found to have strength and heat plastic deformation.

なお、前記特許文献1における従来α型(Al,Zr)O層について、上記と同様にして、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成したところ、図6に示される通り、Σ3の分布割合は20%以下の相対的に低い構成原子共有格子点分布グラフを示した。つまり、改質α型(Al,Zr)O層は、従来α型(Al,Zr)O層と異なり、改質α型Al23層が中間層として蒸着形成されていることによって、Σ3対応粒界の分布割合が非常に高くなり、その結果として、従来α型(Al,Zr)O層に比して高温強度および耐熱塑性変形性が一段と向上することがわかった。 For the conventional α-type (Al, Zr) O layer in Patent Document 1, a constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 was created in the same manner as described above. As shown in FIG. 6, the distribution ratio of Σ3 showed a relatively low constituent atom shared lattice point distribution graph of 20% or less. That is, the modified α-type (Al, Zr) O layer is different from the conventional α-type (Al, Zr) O layer, and the modified α-type Al 2 O 3 layer is formed by vapor deposition as an intermediate layer. It has been found that the distribution ratio of the corresponding grain boundary becomes very high, and as a result, the high-temperature strength and the heat-resistant plastic deformation are further improved as compared with the conventional α-type (Al, Zr) O layer.

上記のとおり、硬質被覆層として、Ti化合物層からなる下部層の表面に、中間層として前記改質α型Al23層を蒸着形成し、その上に更に上部層としての改質α型(Al,Zr)O層を蒸着形成した本発明の被覆工具は、従来被覆工具に比して、一段とすぐれた高温強度および耐熱塑性変形性を有することから、高熱発生を伴うと共に、切刃部に高負荷が作用する高送り、高切り込み等の高速重切削条件に用いた場合にも、すぐれた耐チッピング性とすぐれた耐摩耗性を発揮する。 As described above, the modified α-type Al 2 O 3 layer is deposited as an intermediate layer on the surface of the lower layer made of the Ti compound layer as the hard coating layer, and the modified α-type as the upper layer is further formed thereon. The coated tool of the present invention in which the (Al, Zr) O layer is formed by vapor deposition has a higher temperature strength and heat-resistant plastic deformation than the conventional coated tool, and thus is accompanied by high heat generation and a cutting edge portion. Excellent chipping resistance and excellent wear resistance even when used for high-speed heavy cutting conditions such as high feed and high cutting where high loads are applied.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層は、化学蒸着した状態でα型の結晶構造を有し、かつ、1〜3μmの平均層厚を有するα型酸化アルミニウム層であって、
該中間層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型酸化アルミニウム層、
(c)上部層は、化学蒸着した状態でα型の結晶構造を有し、2〜14μmの平均層厚を有し、かつ、α型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布する組織を有し、さらに、上部層の中間層側(工具基体側)よりも上部層の表面側においてより多くの酸化ジルコニウムが含有されている混合組織層であり、
該層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が35〜70%である構成原子共有格子点分布グラフを示すα型酸化アルミニウム相と酸化ジルコニウム相の混合組織層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具。
(2) 混合組織層は、上部層の中間層側(工具基体側)から上部層の表面側に向かって、酸化ジルコニウム含有量が連続的に増加している混合組織層であることを特徴とする前記(1)1記載の表面被覆切削工具。
(3) 混合組織層は、上部層の中間層側(工具基体側)に形成された酸化ジルコニウム含有量が少ない上部内面層と、上部層の表面側に形成された酸化ジルコニウム含有量が多い上部外面層との積層構造として構成された混合組織層であることを特徴とする前記(1)記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has a total thickness of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The intermediate layer is an α-type aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 3 μm,
For the intermediate layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to a pitch of 0.25 degrees. In addition, the maximum peak exists in the inclination angle division within the range of 0 to 10 degrees, and the above 0 to 10 are expressed in the inclination angle number distribution graph obtained by adding up the frequencies existing in each division. An α-type aluminum oxide layer showing a tilt angle number distribution graph in which the total number of frequencies existing in the range of degrees occupies a ratio of 45% or more of the total frequency in the tilt angle number distribution graph,
(C) The upper layer has an α-type crystal structure in a state of chemical vapor deposition, an average layer thickness of 2 to 14 μm, and a structure in which a zirconium oxide phase is distributed and distributed on a base of an α-type aluminum oxide phase And a mixed structure layer containing more zirconium oxide on the surface side of the upper layer than on the intermediate layer side (tool base side) of the upper layer,
For the layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, and the normal to the cross-sectional polished surface is obtained. The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, is measured. Based on the measured inclination angles, the crystal grains adjacent to each other are measured. At the interface, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom among the crystal grains is calculated, and the constituent atoms are not shared between the constituent atom shared lattice points. There are N lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency). When expressed as ΣN + 1, each ΣN + 1 is ΣN + The constituent atom shared lattice point distribution graph showing the distribution ratio in the whole shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 35 to 70%. mixed structure layer of α-type aluminum oxide phase and zirconium oxide phase,
A surface-coated cutting tool in which a hard coating layer composed of the above (a) to (c) is formed by vapor deposition, and the hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed heavy cutting.
(2) The mixed structure layer is a mixed structure layer in which the content of zirconium oxide continuously increases from the intermediate layer side (tool base side) of the upper layer toward the surface side of the upper layer. The surface-coated cutting tool according to (1) 1, wherein:
(3) The mixed structure layer includes an upper inner surface layer having a low zirconium oxide content formed on the intermediate layer side (tool base side) of the upper layer, and an upper portion having a high zirconium oxide content formed on the surface side of the upper layer. The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool is a mixed structure layer configured as a laminated structure with an outer surface layer. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、詳細に説明する。   Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.

下部層のTi化合物層:
Ti化合物層は、改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高負荷が作用する高速重切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Lower Ti compound layer:
The Ti compound layer exists as a lower layer of the modified α-type Al 2 O 3 layer, and contributes to improving the high-temperature strength of the hard coating layer by its excellent high-temperature strength, as well as the tool base and the modified α-type Al. The 2 O 3 layer adheres firmly to any of the layers, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above effect can be sufficiently exerted. On the other hand, if the average layer thickness exceeds 20 μm, high-speed heavy cutting in which a high load with high heat generation is applied tends to cause thermoplastic deformation, which causes uneven wear. The thickness was determined to be 3 to 20 μm.

中間層の改質α型Al23層:
中間層を構成する改質α型Al23層は、通常の化学蒸着装置にて、Ti化合物層からなる下部層の表面に、例えば、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を形成し、この場合、前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、α型Al23層を通常の条件で蒸着することにより形成することができる。
中間層の改質α型Al23層はすぐれた高温硬さを備え、耐摩耗性の向上に寄与するばかりか、下部層のTi化合物層および上部層の改質(Al,Zr)O層のいずれにも強固に密着し、硬質被覆層全体としての剥離強度を向上させる。
Modified α-type Al 2 O 3 layer of the intermediate layer:
The modified α-type Al 2 O 3 layer constituting the intermediate layer is formed on the surface of the lower layer made of a Ti compound layer, for example, with a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
At low temperature conditions, to form a Al 2 O 3 nuclei. In this case, the Al 2 O 3 nuclei is desirably in the range of Al 2 O 3 nuclei thin film with an average layer thickness of 20 to 200 nm, and subsequently, reaction atmosphere pressure: changed to a hydrogen atmosphere of 3~13KPa, the reaction atmosphere temperature in a state subjected to heat treatment to the Al 2 O 3 nuclei film under conditions the temperature was raised to 1100 to 1200 ° C., the α type the Al 2 O 3 layer It can be formed by vapor deposition under normal conditions.
The modified α-type Al 2 O 3 layer of the intermediate layer has excellent high-temperature hardness and contributes to the improvement of wear resistance, as well as the Ti compound layer of the lower layer and the modified (Al, Zr) O of the upper layer. It firmly adheres to any of the layers and improves the peel strength of the entire hard coating layer.

さらに、上記改質α型Al23層は、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、(0001)面配向率が高いものとなっている。
そして、このような(0001)面配向率が高い改質α型Al23層の上に、上部層としての改質α型(Al,Zr)O層を蒸着形成することによって、該改質α型(Al,Zr)O層にはZr成分が含有されているにもかかわらず、Σ3対応粒界が高い割合で形成されて粒界強度が向上し、その結果として、改質α型(Al,Zr)O層が、すぐれた耐熱塑性変形性とともにすぐれた高温強度を備えるようになる。
すなわち、中間層の改質α型Al23層は、配向性のない従来α型Al23層を中間層として設けた場合に比して、上部層の改質α型(Al,Zr)O層のΣ3対応粒界の分布割合を高めるという大きな役割を担っている。
ただ、上記改質α型Al23層についての傾斜角度数分布グラフにおいて、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%未満の場合には、上部層におけるΣ3対応粒界の割合の増加を期待できないことから、改質α型Al23層の(0001)面配向率を45%以上と定めた。
また、改質α型Al23層からなる中間層の平均層厚が1μm未満では、(0001)面配向率が45%未満であり、一方、平均層厚が3μmを超える場合には、上部層である改質α型(Al,Zr)O層との付着強度が低下するため、その平均層厚は1〜3μmと定めた。
Furthermore, the modified α-type Al 2 O 3 layer is irradiated with an electron beam on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the substrate surface, and the measurement inclination is in the range of 0 to 45 degrees among the measurement inclination angles. When the angle is divided into pitches of 0.25 degrees, and the inclination angle distribution graph is formed by summing up the frequencies existing in each section, the highest peak appears in the inclination angle section within the range of 0 to 10 degrees. And a tilt angle number distribution graph in which the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequency in the tilt angle frequency distribution graph, and (0001) plane orientation The rate is high.
Then, the modified α-type (Al, Zr) O layer as an upper layer is formed on the modified α-type Al 2 O 3 layer having a high (0001) plane orientation ratio by vapor deposition. The α-type (Al, Zr) O layer contains a Zr component, but the Σ3-compatible grain boundary is formed at a high rate and the grain boundary strength is improved. As a result, the modified α-type The (Al, Zr) O layer comes to have excellent high temperature strength as well as excellent heat plastic deformation.
That is, the reforming α type the Al 2 O 3 layer of the intermediate layer, as compared with the case of providing an orientation having no conventional α type the Al 2 O 3 layer as an intermediate layer, reforming α-type upper layer (Al, The Zr) O layer plays a major role in increasing the distribution ratio of the Σ3-compatible grain boundaries.
However, in the inclination angle frequency distribution graph for the modified α-type Al 2 O 3 layer, the sum of the frequencies existing in the range of 0 to 10 degrees is less than 45% of the entire frequency in the inclination angle frequency distribution graph. Since the increase in the ratio of the grain boundary corresponding to Σ3 in the upper layer cannot be expected, the (0001) plane orientation ratio of the modified α-type Al 2 O 3 layer was set to 45% or more.
Further, when the average layer thickness of the intermediate layer composed of the modified α-type Al 2 O 3 layer is less than 1 μm, the (0001) plane orientation ratio is less than 45%, while when the average layer thickness exceeds 3 μm, Since the adhesion strength with the modified α-type (Al, Zr) O layer, which is the upper layer, is lowered, the average layer thickness is determined to be 1 to 3 μm.

上部層の改質α型(Al,Zr)O層:
上部層を構成する改質α型(Al,Zr)O層は、通常の化学蒸着装置にて、改質α型Al23層からなる中間層の表面に、例えば、
反応ガス組成:容量%で、AlCl:6〜10%、ZrCl:0.6〜1.6%、CO:4〜8%、HCl:6〜10%、H2S:0.25〜0.6%、H2:残り、
反応雰囲気温度:980〜1060℃、
反応雰囲気圧力:6〜10kPa、
の条件、かつ、少なくとも蒸着反応終了前に反応ガス中のZrClの含有割合を増加させて上部層を蒸着ことにより形成することができる。
上部層の改質α型(Al,Zr)O層は、α型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布した混合組織を示し、特に、素地を構成するα型酸化アルミニウム相は層の高温硬さおよび耐熱性を向上させ、また、素地中に分散分布する酸化ジルコニウム相は高温強度と耐熱塑性変形性を向上させる。
Upper layer modified α-type (Al, Zr) O layer:
The modified α-type (Al, Zr) O layer constituting the upper layer is formed on the surface of the intermediate layer composed of the modified α-type Al 2 O 3 layer by a normal chemical vapor deposition apparatus, for example,
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, ZrCl 4 : 0.6 to 1.6%, CO 2 : 4 to 8%, HCl: 6 to 10%, H 2 S: 0.25 ~0.6%, H 2: remainder,
Reaction atmosphere temperature: 980 to 1060 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
The upper layer can be formed by vapor deposition by increasing the content ratio of ZrCl 4 in the reaction gas at least before the completion of the vapor deposition reaction.
The modified α-type (Al, Zr) O layer of the upper layer shows a mixed structure in which the zirconium oxide phase is dispersed and distributed on the base of the α-type aluminum oxide phase. In particular, the α-type aluminum oxide phase constituting the base is the layer High temperature hardness and heat resistance are improved, and the zirconium oxide phase dispersed and distributed in the substrate improves high temperature strength and heat plastic deformation.

また、改質α型(Al,Zr)O層からなる上部層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が35〜70%である構成原子共有格子点分布グラフを示すようになる。
Zr成分を含有するα型Al23では、通常、Σ3対応粒界が形成される割合は比較的小さいが、中間層として(0001)面配向率が高い改質α型Al23層を設けることにより、酸化ジルコニウム相を含有するα型Al23相においてもΣ3対応粒界の分布割合を高めることができ、粒界強度が高められため、その結果として、改質α型(Al,Zr)O層は高温強度、耐熱塑性変形性が一段とすぐれたものとなり、耐チッピング性、耐欠損性が向上する。
Further, for the upper layer composed of the modified α-type (Al, Zr) O layer, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope. And the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the cross-section polished surface. Based on the measured tilt angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated. The number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points is N (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal. The existing constituent atomic lattice point form is Σ When represented by N + 1, in the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1, the highest peak exists in Σ3, and the distribution ratio of the Σ3 in the entire ΣN + 1 is 35 to 70%. The constituent atomic shared lattice point distribution graph is shown.
In the α-type Al 2 O 3 containing a Zr component, a modified α-type Al 2 O 3 layer having a high (0001) plane orientation ratio is generally used as an intermediate layer, although the proportion at which Σ3 corresponding grain boundaries are formed is relatively small. In the α-type Al 2 O 3 phase containing the zirconium oxide phase, the distribution ratio of the grain boundary corresponding to Σ3 can be increased and the grain boundary strength is increased. As a result, the modified α-type ( The Al, Zr) O layer is further improved in high-temperature strength and heat-resistant plastic deformation, and chipping resistance and fracture resistance are improved.

さらに、本発明では、上部層がすぐれた高温強度と耐熱塑性変形性を相兼ね備えるようにするために、上部層の構造を、上部層の中間層側(工具基体側)よりも上部層の表面側でより多くの酸化ジルコニウム(Zr成分)を含有する改質α型Al23層で構成する。
これにより、本発明の被覆工具を高速重切削加工に供した場合でも、すぐれた耐チッピング性と耐摩耗性を充分かつ同時に発揮することができる。
例えば、上部層を、傾斜組成混合組織層で構成すると、酸化ジルコニウム含有量が少ない中間層側(工具基体側)の領域(即ち、中間層との界面)では、Σ3対応粒界の分布割合が相対的に高くなるため粒界強度が向上しすぐれた高温強度を示すようになり、また、酸化ジルコニウム含有量が多い上部層の表面側の領域では、Zr成分の含有量が高いため相対的に耐熱塑性変形性が向上するようになり、上部層全体としては、耐チッピング性が向上するとともに、偏摩耗等の発生が抑えられ耐摩耗性が向上するようになる。
なお、Σ3対応粒界の分布割合を高め、同時に、耐熱塑性変形性の向上を図るためには、Zr含有率(Al成分との合量に占めるZr成分の含有割合(但し、原子比))は、0.002〜0.2とすることが望ましく、0.002未満では、耐熱塑性変形性の改善効果が少なく、また、0.2を超えるとΣ3対応粒界が減少し、耐チッピング性が低下する。より好ましいZr含有率は0.004〜0.1である。
また、例えば、上部層を、積層構造混合組織層で構成すると、酸化ジルコニウム含有量が少ない中間層側(工具基体側)の上部内面層は、Σ3対応粒界の分布割合が相対的に高くなるため粒界強度が向上しすぐれた高温強度を示し、また、酸化ジルコニウム含有量が多い上部層の表面側の上部外面層は、Zr成分の含有量が相対的に高いため耐熱塑性変形性が向上し、前記傾斜組成混合組織層の場合と同様に、上部層全体として、耐チッピング性が向上し耐摩耗性が向上するようになる。
なお、Σ3対応粒界の分布割合を高め、同時に、耐熱塑性変形性の向上を図るためには、上部内面層におけるZr含有率は、0.002〜0.05とすることが望ましく、0.002未満では、耐熱塑性変形性の改善効果が期待できず、一方、0.05を超えるとΣ3対応粒界が減少し、高温強度が低下傾向を示すようになる。また、上部外面層におけるZr含有率は、0.05〜0.2とすることが望ましく、0.05未満では、耐熱塑性変形性の改善効果が少なく、一方、0.2を超えるとΣ3対応粒界の急激な減少により、上部層全体としての耐チッピング性の低下を招くことになる。好ましいZr含有率は、上部内面層において、0.002〜0.05であり、上部外面層においては、0.05〜0.2である。
Furthermore, in the present invention, the upper layer has a higher surface structure than the intermediate layer side (tool base side) of the upper layer so that the upper layer has both excellent high temperature strength and heat plastic deformation. It is composed of a modified α-type Al 2 O 3 layer containing more zirconium oxide (Zr component) on the side.
Thereby, even when the coated tool of the present invention is subjected to high-speed heavy cutting, excellent chipping resistance and wear resistance can be exhibited sufficiently and simultaneously.
For example, when the upper layer is composed of a gradient composition mixed structure layer, in the region on the intermediate layer side (tool base side) with a low zirconium oxide content (that is, the interface with the intermediate layer), the distribution ratio of the Σ3 corresponding grain boundary is Grain boundary strength is improved due to the relatively high level, and high temperature strength is exhibited. In addition, in the region on the surface side of the upper layer having a high zirconium oxide content, the content of Zr component is relatively high. As the entire upper layer is improved in resistance to heat plastic deformation, the chipping resistance is improved, and the occurrence of uneven wear is suppressed and the wear resistance is improved.
In addition, in order to increase the distribution ratio of the grain boundary corresponding to Σ3 and at the same time improve the heat-resistant plastic deformability, the Zr content (content ratio of Zr component in the total amount with Al component (however, atomic ratio)) Is preferably 0.002 to 0.2. If it is less than 0.002, the effect of improving the heat plastic deformation is small, and if it exceeds 0.2, the grain boundary corresponding to Σ3 decreases and chipping resistance is reduced. Decreases. A more preferable Zr content is 0.004 to 0.1.
For example, when the upper layer is composed of a laminated structure mixed structure layer, the distribution ratio of the Σ3 corresponding grain boundary is relatively high in the upper inner surface layer on the intermediate layer side (tool base side) with a low zirconium oxide content. Therefore, the grain boundary strength is improved and excellent high-temperature strength is exhibited, and the upper outer surface layer on the surface side of the upper layer having a high zirconium oxide content has a relatively high Zr component content, so that the heat-resistant plastic deformation property is improved. As in the case of the gradient composition mixed structure layer, the entire upper layer has improved chipping resistance and improved wear resistance.
In order to increase the distribution ratio of the Σ3-compatible grain boundaries and at the same time improve the heat-resistant plastic deformability, the Zr content in the upper inner surface layer is preferably 0.002 to 0.05. If it is less than 002, the improvement effect of heat-resistant plastic deformability cannot be expected. On the other hand, if it exceeds 0.05, the Σ3-compatible grain boundary decreases, and the high-temperature strength tends to decrease. Further, the Zr content in the upper outer surface layer is desirably 0.05 to 0.2, and if it is less than 0.05, the improvement effect of the heat plastic deformation is small, whereas if it exceeds 0.2, it corresponds to Σ3. The sharp decrease in grain boundaries leads to a reduction in chipping resistance as the entire upper layer. A preferable Zr content is 0.002 to 0.05 in the upper inner surface layer, and 0.05 to 0.2 in the upper outer surface layer.

改質α型(Al,Zr)O層からなる上部層は、その平均層厚が2μm未満では、すぐれた高温強度を発揮することができず、一方、その平均層厚が14μmを超えるとチッピング等を発生しやすくなるので、その平均層厚は、2〜14μmと定めた。
また、改質α型Al23層からなる中間層と改質α型(Al,Zr)O層からなる上部層との合計平均層厚は、チッピング発生防止等の観点から、3〜15μmとすることが望ましい。
The upper layer composed of the modified α-type (Al, Zr) O layer cannot exhibit excellent high-temperature strength when the average layer thickness is less than 2 μm, while chipping when the average layer thickness exceeds 14 μm. The average layer thickness is determined to be 2 to 14 μm.
Further, the total average layer thickness of the intermediate layer composed of the modified α-type Al 2 O 3 layer and the upper layer composed of the modified α-type (Al, Zr) O layer is 3 to 15 μm from the viewpoint of preventing occurrence of chipping and the like. Is desirable.

この発明の被覆工具は、各種の鋼や鋳鉄などの切削加工を、高い発熱を伴うと共に、切刃部に高負荷が作用する高送り、高切り込みの高速重切削条件で行うのに用いた場合にも、硬質被覆層の中間層として改質α型Al23層が設けられ、さらにこの上に改質α型(Al,Zr)O層が設けられたことによって、硬質被覆層が一段とすぐれた高温強度と耐熱塑性変形性を相兼ね備え、その結果、長期の使用に亘って一段とすぐれた耐チッピング性と耐摩耗性を発揮するものである。 The coated tool of the present invention is used when cutting various steels and cast irons, etc., under high-speed heavy cutting conditions with high feed and high cutting with high heat generation and high load on the cutting edge. In addition, a modified α-type Al 2 O 3 layer is provided as an intermediate layer of the hard coating layer, and a modified α-type (Al, Zr) O layer is further provided thereon, so that the hard coating layer is further improved. It combines excellent high-temperature strength and heat-resistant plastic deformability, and as a result, exhibits excellent chipping resistance and wear resistance over a long period of use.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表7に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表4に示される条件で、表7に示される組み合わせおよび目標層厚で改質α型Al23層を硬質被覆層の中間層として蒸着形成した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). Table 7 shows the combinations shown in Table 7 under the conditions shown in Table 7 below, which show the conditions for forming a TiCN layer having a vertically-grown crystal structure to be described. Then, a Ti compound layer is deposited as a lower layer of the hard coating layer with the target layer thickness, and then modified α-type Al 2 O 3 with the combinations and target layer thicknesses shown in Table 7 under the same conditions as shown in Table 4 The layer was deposited as an intermediate layer of a hard coating layer.

ついで、表5に示される条件で、表7に示される組み合わせおよび目標層厚で、傾斜組成混合組織層からなる改質α型(Al,Zr)O層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜10をそれぞれ製造した。
また、表6に示される条件で、表8に示される組み合わせおよびそれぞれの目標層厚で、積層構造混合組織層からなる改質α型(Al,Zr)O層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具11〜20をそれぞれ製造した。
Next, under the conditions shown in Table 5, a modified α-type (Al, Zr) O layer composed of a gradient composition mixed structure layer is deposited as an upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 7. By doing this, this invention coated tool 1-10 was manufactured, respectively.
Further, under the conditions shown in Table 6, the modified α-type (Al, Zr) O layer composed of the laminated structure mixed structure layer is used as the upper layer of the hard coating layer with the combinations shown in Table 8 and the respective target layer thicknesses. The coated tools 11 to 20 of the present invention were manufactured by vapor deposition.

比較の目的で、表9に示される通り、硬質被覆層の中間層として、表4に示される条件で、表9に示される目標層厚で従来α型Al23層を形成し、表6に示される(Al,Zr)O層形成条件で、表9に示される組み合わせおよび目標層厚で、従来α型(Al,Zr)O層を硬質被覆層の上部層として蒸着形成することにより比較被覆工具1〜10をそれぞれ製造した。 For the purpose of comparison, as shown in Table 9, a conventional α-type Al 2 O 3 layer was formed as the intermediate layer of the hard coating layer with the target layer thickness shown in Table 9 under the conditions shown in Table 4. By forming the conventional α-type (Al, Zr) O layer as an upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 9 under the (Al, Zr) O layer formation conditions shown in FIG. Comparative coated tools 1 to 10 were produced, respectively.

ついで、上記の本発明被覆工具1〜20および比較被覆工具1〜10の硬質被覆層の中間層を構成する改質α型Al23層および従来α型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した。
すなわち、工具基体表面と垂直な面をそれぞれ断面研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記断面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, for each of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present invention-coated tools 1-20 and comparative coated tools 1-10, Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-section polished surface is irradiated with an electron beam, and the crystal grain The inclination angle formed by the normal line of the (0001) plane which is the crystal plane is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, an inclination angle number distribution graph was created by counting the frequencies existing in each section.
That is, in a state where each surface perpendicular to the tool base surface is a cross-sectional polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and electrons having an acceleration voltage of 15 kV are incident on the cross-sectional polished surface at an incident angle of 70 degrees. A line is irradiated at an irradiation current of 1 nA to each crystal grain having a hexagonal crystal lattice existing in the measurement range of each polished surface, and an area of 30 × 50 μm is set to 0 using an electron backscatter diffraction image apparatus. The inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the substrate surface at an interval of 1 μm / step, and the measurement tilt is determined based on the measurement result. The measurement inclination angle within the range of 0 to 45 degrees out of the angles was divided for each pitch of 0.25 degrees, and the frequency existing in each section was totaled.

この結果得られた各種の改質α型Al23層および従来α型Al23層の傾斜角度数分布グラフから、最高ピークが存在する傾斜角区分、および、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布グラフにおける度数全体に占める割合を求め、この値をそれぞれ表7〜9に示した。 From the gradient angle distribution graphs of the various modified α-type Al 2 O 3 layers and conventional α-type Al 2 O 3 layers obtained as a result, the tilt angle segment where the highest peak exists and the range of 0 to 10 degrees The ratio of the total frequency existing in the total frequency in the inclination angle frequency distribution graph was determined, and these values are shown in Tables 7 to 9, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表7、8にそれぞれ示される通り、本発明被覆工具の改質α型Al23層は、いずれも0〜10度の範囲内に最高ピークが存在し、かつ、傾斜角度数分布グラフにおける度数全体に占める0〜10度の範囲内に存在する度数の合計の割合は、45%以上を示すのに対して、従来被覆工具の従来α型Al23層は、表9にそれぞれ示される通り、いずれも0〜10度の範囲内に最高ピークは存在せず、しかも、0〜10度の範囲内に存在する度数の合計の割合も高々20%という小さな割合であって、特定方向への(0001)面の配向性はなかった。
なお、図3は、本発明被覆工具3の改質α型Al23層の傾斜角度数分布グラフ、図4は、従来被覆工具4の従来α型Al23層の傾斜角度数分布グラフをそれぞれ示すものである。
In the various inclination angle distribution graphs described above, as shown in Tables 7 and 8, the modified α-type Al 2 O 3 layer of the coated tool of the present invention has the highest peak in the range of 0 to 10 degrees. The ratio of the total frequency existing in the range of 0 to 10 degrees in the entire frequency in the inclination angle frequency distribution graph is 45% or more, whereas the conventional α-type Al of the conventional coated tool As shown in Table 9, each of the 2 O 3 layers has no highest peak in the range of 0 to 10 degrees, and the ratio of the total frequencies existing in the range of 0 to 10 degrees is also high. The ratio was as small as 20%, and there was no orientation of the (0001) plane in a specific direction.
3 is an inclination angle number distribution graph of the modified α-type Al 2 O 3 layer of the coated tool 3 of the present invention, and FIG. 4 is an inclination angle number distribution of the conventional α-type Al 2 O 3 layer of the conventional coated tool 4. Each graph is shown.

次に、上記の本発明被覆工具1〜20および比較被覆工具1〜10の硬質被覆層の上部層を構成する改質α型(Al,Zr)O層および従来α型(Al,Zr)O層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型(Al,Zr)O層および従来α型(Al,Zr)O層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、図2に示されるように、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Next, the modified α-type (Al, Zr) O layer and the conventional α-type (Al, Zr) O constituting the upper layer of the hard coating layer of the present invention-coated tools 1-20 and comparative coated tools 1-10. Constituent atom sharing lattice point distribution graphs were created for each of the layers using a field emission scanning electron microscope.
That is, the constituent atomic shared lattice point distribution graph shows a field emission scanning in a state where the cross section of the modified α-type (Al, Zr) O layer and the conventional α-type (Al, Zr) O layer is a polished surface. Set in a lens barrel of an electron microscope and irradiate the polishing surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain existing within the measurement range of the polishing surface. Then, using an electron backscatter diffraction image apparatus, a 30 × 50 μm region at a spacing of 0.1 μm / step with respect to the normal of the cross-section polished surface (0001) plane that is the crystal plane of the crystal grains and The tilt angle formed by the normal of the (10-10) plane is measured, and based on the measured tilt angle obtained as a result, as shown in FIG. Each share one constituent atom between the grains The distribution of child points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist). In this case, each ΣN + 1 is created by calculating a distribution ratio of the entire ΣN + 1.

この結果得られた各種の改質α型(Al,Zr)O層および従来α型(Al,Zr)O層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ求め、この値をそれぞれ表7〜9に示した。
なお、本発明の傾斜組成混合組織層については、該層の層厚方向に沿った中間位置におけるΣ3の分布割合の値を、表7に、「Σ3の分布割合の平均値」として示した。また、本発明の積層構造混合組織層については、「上部内面層のΣ3の分布割合」および「上部外面層のΣ3の分布割合」のそれぞれの値を表8に示した。
As a result, in the constituent atomic shared lattice distribution graphs of the various modified α-type (Al, Zr) O layers and conventional α-type (Al, Zr) O layers obtained, the entire ΣN + 1 (from the above results, Σ3, Σ7, The distribution ratio of Σ3 in each of the distribution ratios of Σ11, Σ13, Σ17, Σ19, Σ21, Σ23, and Σ29) was determined, and these values are shown in Tables 7 to 9, respectively.
For the gradient composition mixed structure layer of the present invention, the value of the distribution ratio of Σ3 at an intermediate position along the layer thickness direction of the layer is shown in Table 7 as “average value of distribution ratio of Σ3”. Table 8 shows values of “distribution ratio of Σ3 in the upper inner surface layer” and “distribution ratio of Σ3 in the upper outer surface layer” for the laminated structure mixed structure layer of the present invention.

上記の各種の構成原子共有格子点分布グラフにおいて、表7、8にそれぞれ示される通り、本発明被覆工具の改質α型(Al,Zr)O層を構成する各層は、いずれもΣ3の占める分布割合が35〜70%である構成原子共有格子点分布グラフを示すのに対して、従来被覆工具の従来α型(Al,Zr)O層は、表9にそれぞれ示される通り、いずれもΣ3の分布割合が20%以下の構成原子共有格子点分布グラフを示すものであり、Σ3対応粒界の分布割合が小さいものであった。
なお、図5は、本発明被覆工具3の改質α型(Al,Zr)23層の構成原子共有格子点分布グラフ、図6は、従来被覆工具4の従来α型(Al,Zr)O層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-described various constituent atomic share lattice point distribution graphs, as shown in Tables 7 and 8, respectively, each layer constituting the modified α-type (Al, Zr) O layer of the coated tool of the present invention occupies Σ3. In contrast to the constituent atomic shared lattice point distribution graph having a distribution ratio of 35 to 70%, the conventional α-type (Al, Zr) O layer of the conventional coated tool has Σ3 as shown in Table 9, respectively. Is a constituent atom shared lattice point distribution graph with a distribution ratio of 20% or less, and the distribution ratio of grain boundaries corresponding to Σ3 is small.
FIG. 5 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type (Al, Zr) 2 O 3 layer of the coated tool 3 of the present invention, and FIG. 6 shows the conventional α-type (Al, Zr) of the conventional coated tool 4. ) Each of the constituent atomic shared lattice point distribution graphs of the O layer is shown.

また、本発明被覆工具1〜20および従来被覆工具1〜10の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of each structural layer of the hard coating layer of this invention coating tool 1-20 and the conventional coating tool 1-10 was measured using the scanning electron microscope (longitudinal section measurement), all were target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、上記の本発明被覆工具1〜20および従来被覆工具1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S20Cの丸棒、
切削速度:450 m/min、
切り込み:2.7 mm、
送り:0.9 mm/rev、
切削時間:10 分、
の条件(切削条件Aという)での炭素鋼の乾式高速高送り切削試験(通常の切削速度および送りは、それぞれ、350m/min、0.3mm/rev)、
被削材:JIS・SCM420の丸棒、
切削速度:315 m/min、
切り込み:2 mm、
送り:0.37 mm/rev、
切削時間:5 分、
の条件(切削条件Bという)での合金鋼の乾式高速高切込み切削試験(通常の切削速度および切込みは、それぞれ、250m/min、1.5mm)、
被削材:JIS・FC300の丸棒、
切削速度:545 m/min、
切り込み:5.7 mm、
送り:0.4 mm/rev、
切削時間:5 分、
の条件(切削条件Cという)での鋳鉄の湿式高速高切込み切削試験(通常の切削速度および切込みは、それぞれ、400m/min、4mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表10に示した。
Next, for the above-mentioned present invention coated tools 1-20 and conventional coated tools 1-10, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S20C round bar,
Cutting speed: 450 m / min,
Incision: 2.7 mm,
Feed: 0.9 mm / rev,
Cutting time: 10 minutes,
Dry high-speed high-feed cutting test of carbon steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 350 m / min and 0.3 mm / rev, respectively)
Work material: JIS / SCM420 round bar,
Cutting speed: 315 m / min,
Cutting depth: 2 mm,
Feed: 0.37 mm / rev,
Cutting time: 5 minutes,
Dry high-speed high-cut cutting test of alloy steel under the following conditions (referred to as cutting condition B) (normal cutting speed and cutting are 250 m / min and 1.5 mm, respectively),
Work material: JIS / FC300 round bar,
Cutting speed: 545 m / min,
Incision: 5.7 mm,
Feed: 0.4 mm / rev
Cutting time: 5 minutes,
Wet high-speed high-cut cutting test of cast iron under the following conditions (referred to as cutting condition C) (normal cutting speed and cutting are 400 m / min and 4 mm, respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 10.

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

Figure 0005286891
Figure 0005286891

表7〜10に示される結果から、本発明被覆工具1〜20は、改質α型Al23層からなる中間層の上に、上部層の中間層側(工具基体側)よりも上部層の表面側においてより多くの酸化ジルコニウムが含有されている混合組織層(改質α型(Al,Zr)O層)からなる上部層が形成されていることによって、高熱発生を伴い、かつ、切刃部に高負荷が作用する高速重切削でも、硬質被覆層がすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度と耐熱塑性変形性を相兼ね備え、すぐれた耐チッピング性と耐摩耗性を示すのに対して、従来α型Al23層の上に、Σ3対応粒界の分布割合が少ない従来α型(Al,Zr)O層が形成された従来被覆工具は、高速重切削加工では、硬質被覆層の特に高温強度、耐熱塑性変形性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 10, the coated tools 1 to 20 of the present invention are higher than the intermediate layer side (tool base side) of the upper layer on the intermediate layer made of the modified α-type Al 2 O 3 layer. With the formation of an upper layer made of a mixed structure layer (modified α-type (Al, Zr) O layer) containing more zirconium oxide on the surface side of the layer, accompanied by high heat generation, and Even in high-speed heavy cutting where a high load is applied to the cutting edge, in addition to high-temperature hardness and heat resistance with a hard coating layer, it combines excellent high-temperature strength and heat-resistant plastic deformation, and excellent chipping resistance. A conventional coated tool in which a conventional α-type (Al, Zr) O layer having a small distribution ratio of Σ3-compatible grain boundaries is formed on a conventional α-type Al 2 O 3 layer, while exhibiting wear resistance. In high-speed heavy cutting, the hard coating layer has particularly high-temperature strength and heat-resistant plastic deformation. To be sufficient, chipping occurs in the hard coating layer, it is apparent that lead to a relatively short time service life.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工は勿論のこと、特に高い高温強度と耐熱塑性変形性が要求される高送り、高切り込み等の高速重切削加工でも硬質被覆層がすぐれた耐チッピング性と耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only required for continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, but also requires high high-temperature strength and heat-resistant plastic deformation. Even in high-speed heavy cutting such as feed and high cutting, the hard coating layer exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. It can fully satisfy the labor-saving and energy-saving of cutting and cost reduction.

α型(Al,Zr)O層およびα型Al23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。α-type (Al, Zr) is a schematic explanatory view showing the measurement mode of the crystal grains (0001) plane and (10-10) plane inclination angle of the O layer and α-type the Al 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆工具3の改質α型Al23層の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the modified α-type Al 2 O 3 layer of the present coated tool 3. 従来被覆工具4の従来α型Al23層の傾斜角度数分布グラフである。4 is a graph showing the distribution of the number of inclination angles of a conventional α-type Al 2 O 3 layer of a conventional coated tool 4. 本発明被覆工具3の改質α型(Al,Zr)O層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified α-type (Al, Zr) O layer of the coated tool 3 of the present invention. 従来被覆工具4の従来α型(Al,Zr)O層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional α-type (Al, Zr) O layer of a conventional coated tool 4.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層は、化学蒸着した状態でα型の結晶構造を有し、かつ、1〜3μmの平均層厚を有するα型酸化アルミニウム層であって、
該中間層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型酸化アルミニウム層、
(c)上部層は、化学蒸着した状態でα型の結晶構造を有し、2〜14μmの平均層厚を有し、かつ、α型酸化アルミニウム相の素地に酸化ジルコニウム相が分散分布する組織を有し、さらに、上部層の中間層側(工具基体側)よりも上部層の表面側においてより多くの酸化ジルコニウムが含有されている混合組織層であり、
該層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が35〜70%である構成原子共有格子点分布グラフを示すα型酸化アルミニウム相と酸化ジルコニウム相の混合組織層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる、硬質被覆層が高速重切削加工ですぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has a total thickness of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The intermediate layer is an α-type aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 3 μm,
For the intermediate layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to a pitch of 0.25 degrees. In addition, the maximum peak exists in the inclination angle division within the range of 0 to 10 degrees, and the above 0 to 10 are expressed in the inclination angle number distribution graph obtained by adding up the frequencies existing in each division. An α-type aluminum oxide layer showing a tilt angle number distribution graph in which the total number of frequencies existing in the range of degrees occupies a ratio of 45% or more of the total frequency in the tilt angle number distribution graph,
(C) The upper layer has an α-type crystal structure in a state of chemical vapor deposition, an average layer thickness of 2 to 14 μm, and a structure in which a zirconium oxide phase is distributed and distributed on a base of an α-type aluminum oxide phase And a mixed structure layer containing more zirconium oxide on the surface side of the upper layer than on the intermediate layer side (tool base side) of the upper layer,
For the layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, and the normal to the cross-sectional polished surface is obtained. The inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, is measured. Based on the measured inclination angles, the crystal grains adjacent to each other are measured. At the interface, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom among the crystal grains is calculated, and the constituent atoms are not shared between the constituent atom shared lattice points. There are N lattice points (where N is an even number of 2 or more in the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency). When expressed as ΣN + 1, each ΣN + 1 is ΣN + The constituent atom shared lattice point distribution graph showing the distribution ratio in the whole shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 35 to 70%. mixed structure layer of α-type aluminum oxide phase and zirconium oxide phase,
A surface-coated cutting tool in which a hard coating layer composed of the above (a) to (c) is formed by vapor deposition, and the hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed heavy cutting.
混合組織層は、上部層の中間層側(工具基体側)から上部層の表面側に向かって、酸化ジルコニウム含有量が連続的に増加している混合組織層であることを特徴とする請求項1記載の表面被覆切削工具。 The mixed structure layer is a mixed structure layer in which the content of zirconium oxide continuously increases from the intermediate layer side (tool base side) of the upper layer toward the surface side of the upper layer. The surface-coated cutting tool according to 1. 混合組織層は、上部層の中間層側(工具基体側)に形成された酸化ジルコニウム含有量が少ない上部内面層と、上部層の表面側に形成された酸化ジルコニウム含有量が多い上部外面層との積層構造として構成された混合組織層であることを特徴とする請求項1記載の表面被覆切削工具。
The mixed structure layer includes an upper inner surface layer having a low zirconium oxide content formed on the intermediate layer side (tool base side) of the upper layer, and an upper outer surface layer having a high zirconium oxide content formed on the surface side of the upper layer. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is a mixed-structure layer configured as a laminated structure.
JP2008096930A 2008-04-03 2008-04-03 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting Active JP5286891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096930A JP5286891B2 (en) 2008-04-03 2008-04-03 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096930A JP5286891B2 (en) 2008-04-03 2008-04-03 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2009248217A JP2009248217A (en) 2009-10-29
JP5286891B2 true JP5286891B2 (en) 2013-09-11

Family

ID=41309387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096930A Active JP5286891B2 (en) 2008-04-03 2008-04-03 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting

Country Status (1)

Country Link
JP (1) JP5286891B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5440268B2 (en) * 2010-03-05 2014-03-12 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440269B2 (en) * 2010-03-05 2014-03-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440270B2 (en) * 2010-03-05 2014-03-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440267B2 (en) * 2010-03-05 2014-03-12 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440311B2 (en) * 2010-03-25 2014-03-12 三菱マテリアル株式会社 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP6162484B2 (en) * 2013-05-29 2017-07-12 京セラ株式会社 Surface covering member
JP6896229B2 (en) * 2017-09-29 2021-06-30 三菱マテリアル株式会社 Cutting tool with excellent welding resistance and chipping resistance

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246509A (en) * 1999-03-02 2000-09-12 Mitsubishi Materials Corp Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP4232333B2 (en) * 2000-09-18 2009-03-04 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP4019243B2 (en) * 2000-09-21 2007-12-12 三菱マテリアル株式会社 Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP4281262B2 (en) * 2001-06-11 2009-06-17 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide with high viscosity and excellent surface lubricity against cutting chips in high-speed cutting of difficult-to-cut materials where cutting chips easily adhere to the cutting edge surface
JP4591752B2 (en) * 2004-02-05 2010-12-01 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4645983B2 (en) * 2005-04-12 2011-03-09 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4984513B2 (en) * 2005-12-14 2012-07-25 三菱マテリアル株式会社 Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4863053B2 (en) * 2005-12-20 2012-01-25 三菱マテリアル株式会社 Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4822120B2 (en) * 2006-07-21 2011-11-24 三菱マテリアル株式会社 Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4836202B2 (en) * 2007-07-20 2011-12-14 日立ツール株式会社 Coated tool

Also Published As

Publication number Publication date
JP2009248217A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176659B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5286891B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP5176787B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5892380B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed intermittent cutting
JP2005279917A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5240667B2 (en) Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150