JP2008178943A - Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work - Google Patents

Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work Download PDF

Info

Publication number
JP2008178943A
JP2008178943A JP2007014262A JP2007014262A JP2008178943A JP 2008178943 A JP2008178943 A JP 2008178943A JP 2007014262 A JP2007014262 A JP 2007014262A JP 2007014262 A JP2007014262 A JP 2007014262A JP 2008178943 A JP2008178943 A JP 2008178943A
Authority
JP
Japan
Prior art keywords
layer
constituent
crystal
type
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007014262A
Other languages
Japanese (ja)
Inventor
Hiroshi Hara
央 原
Tetsuhiko Honma
哲彦 本間
Kazuhiro Kono
和弘 河野
Yoko Watanabe
陽子 渡辺
Toru Hasegawa
亨 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007014262A priority Critical patent/JP2008178943A/en
Publication of JP2008178943A publication Critical patent/JP2008178943A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface covered cutting tool with a hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work. <P>SOLUTION: This surface covered cutting tool is constituted by evaporating and forming a lower part layer made of a Ti compound layer having total average layer thickness of 3 to 20 μm and an upper part layer made of an Al<SB>2</SB>O<SB>3</SB>layer having average layer thickness of 2 to 15 μm and having an α type crystal structure in a chemically evaporated state on a surface of a tool base body constituted of WC group cemented carbide or a TiCN group cermet. The Al<SB>2</SB>O<SB>3</SB>layer existing on the lower part layer side and existing in a 30 to 50% layer thickness region of the upper part layer is constituted of an Al<SB>2</SB>O<SB>3</SB>layer showing a constitutional atomic covalent lattice point distribution graph a distribution ratio occupying in the whole of ΣN+1 of Σ3 of which is 60 to 80%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、特に各種の鋼や鋳鉄などの被削材の切削加工を、断続かつ高送りという切削条件で行った場合にも、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool that exhibits excellent wear resistance with a hard coating layer, especially when cutting various materials such as steel and cast iron under intermittent and high feed cutting conditions. (Hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)2〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム(以下、α型Al23層という)層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer, And a lower layer made of a Ti compound layer having one or more of carbonitride oxide (hereinafter referred to as TiCNO) layers and an overall average layer thickness of 3 to 20 μm,
(B) an upper layer made of an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. That is well known.

また、上記の被覆工具において、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。   Further, in the above-mentioned coated tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is used for the purpose of improving the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitride is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so as to have a vertically grown crystal structure. It is also known.

さらに、上記の被覆工具の硬質被覆層を構成するα型Al23層が、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造、すなわち図1にα型Al23の単位格子の原子配列が模式図[(a)は斜視図、(b)は横断面1〜9の平面図]で示される結晶構造を有する結晶粒で構成されることも知られている。
特開平6−31503号公報 特開平6−8010号公報
Further, the α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated tool has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points, that is, FIG. The atomic arrangement of the unit cell of α-type Al 2 O 3 is composed of crystal grains having a crystal structure represented by a schematic diagram [(a) is a perspective view, (b) is a plan view of cross sections 1 to 9]. Is also known.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化、高効率化の要求は強く、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを断続かつ高送り切削加工条件で行うのに用いた場合には、硬質被覆層を構成するα型Al23層が十分な耐衝撃性を具備するものでないために、前記硬質被覆層にチッピング(微少欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there are strong demands for labor-saving and energy-saving in cutting work, as well as lower costs and higher efficiency. There is no problem when it is used for continuous cutting and interrupted cutting under normal conditions, but especially when it is used for intermittent and high-feed cutting conditions, α-type Al constituting the hard coating layer Since the 2 O 3 layer does not have sufficient impact resistance, chipping (slight chipping) is likely to occur in the hard coating layer, and as a result, the service life is reached in a relatively short time. .

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆工具に着目し、特に前記α型Al23層の耐衝撃性向上を図るべく研究を行った結果、
(a)従来被覆工具の硬質被覆層を構成する上部層としてのα型Al23層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2〜4%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl:6〜10%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl、CO、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(「反応ガス成分高含有調整低圧条件」という)で、所定の層厚(上部層の層厚の30〜50%の層厚)になるまでα型Al23層を蒸着形成し、その後、最終的な目標層厚になるように上記通常条件でα型Al23層(以下、「従来α型Al23層」という)を蒸着形成すると、反応ガス成分高含有調整低圧条件で形成した上部層の層厚の30〜50%の層厚を有するα型Al23層(以下、「改質α型Al23層」という)は、高温強度が向上し、すぐれた耐機械的衝撃性を具備するようになることから、硬質被覆層の上部層が前記改質α型Al23層と従来α型Al23層とで構成された被覆工具は、特に激しい機械的衝撃を伴う断続高送り切削加工でも、前記硬質被覆層がチッピングを発生することもなく、長期に亘ってすぐれた耐摩耗性を示すようになること。
The present inventors have, from the viewpoint as described above, focuses on coated tool α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular of the α-type the Al 2 O 3 layer As a result of conducting research to improve impact resistance,
(A) The α-type Al 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: volume%, AlCl 3 : 2 to 4%, CO 2 : 6 to 8%, HCl: 1.5 to 3%, H 2 S: 0.05 to 0.2%, H 2 : remaining ,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (“reaction gas component”). The α-type Al 2 O 3 layer is formed by vapor deposition until a predetermined layer thickness (layer thickness of 30 to 50% of the upper layer thickness) is obtained under the “high content adjustment low pressure condition”, and then the final target When an α-type Al 2 O 3 layer (hereinafter referred to as “conventional α-type Al 2 O 3 layer”) is formed by vapor deposition under the above-mentioned normal conditions so as to obtain a layer thickness, an upper layer formed under a controlled low-pressure condition containing a high content of reactive gas The α-type Al 2 O 3 layer (hereinafter referred to as “modified α-type Al 2 O 3 layer”) having a layer thickness of 30 to 50% of the thickness of the film has improved high-temperature strength and excellent mechanical shock resistance. from becoming so equipped sex, the upper layer of the hard coating layer reforming α type the Al 2 O 3 layer and conventional α Coated tool, which is composed of a Al 2 O 3 layer is especially also intermittent high feed cutting accompanying severe mechanical impact, said that the hard layer is generated chipping without, wear resistance superior over a long period To come to show.

(b)上記従来α型Al23層と上記改質α型Al23層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図2(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型Al23層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型Al23層は、図4に例示される通り、Σ3の分布割合が60〜80%のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl、CO、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質α型Al23層および従来α型Al23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図3(a)〜(c)に示される通りとなる。
(B) About the conventional α-type Al 2 O 3 layer and the modified α-type Al 2 O 3 layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 2 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points as described above, and based on the measured tilt angle, crystal grains adjacent to each other are obtained. Each of the constituent atoms shares one constituent atom between the crystal grains at the interface The distribution of child points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist), and the existing constituent atomic shared lattice point form is expressed as ΣN + 1, When a constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 is created (in this case, there are constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27) In contrast to the conventional α-type Al 2 O 3 layer, as shown in FIG. 5, the distribution ratio of Σ3 shows a relatively low constituent atom shared lattice point distribution graph of 30% or less. The modified α-type Al 2 O 3 As shown in FIG. 4, the layer shows a very high constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 60 to 80%, and this high distribution ratio of Σ3 indicates AlCl 3 , CO constituting the reaction gas. 2 , and the content ratio of HCl and further change depending on the atmospheric reaction pressure.
In the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer, units of Σ3, Σ7, and Σ11 among constituent atomic shared lattice point forms at the interface between crystal grains adjacent to each other When the form is illustrated by a schematic diagram, it is as shown in FIGS.

(c)上記の改質α型Al23層は、α型Al23層自体が具備するすぐれた高温硬さと耐熱性に加えて、上記従来α型Al23層に比して一段と高い高温強度を具備するようになるので、改質α型Al23層と従来α型Al23層を硬質被覆層の上部層として蒸着形成してなる被覆工具は、同下部層であるTiCN層が具備するすぐれた高温強度と相俟って、特に大きな機械的衝撃がかかる断続高送り切削加工に用いた場合にも、上部層を従来α型Al23層のみで構成してなる従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性を示し、その結果長期に亘ってすぐれた耐摩耗性を発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The above-mentioned modified α-type Al 2 O 3 layer is superior to the conventional α-type Al 2 O 3 layer in addition to the excellent high-temperature hardness and heat resistance of the α-type Al 2 O 3 layer itself. The coated tool formed by vapor deposition of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer as the upper layer of the hard coating layer Combined with the excellent high-temperature strength provided by the TiCN layer, which is a layer, even when used for intermittent high-feed cutting where particularly large mechanical shock is applied, the upper layer is conventionally only an α-type Al 2 O 3 layer. Compared to the conventional coated tool constructed, the hard coating layer exhibits even better chipping resistance, and as a result exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)2〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具において、
(c)下部層側に位置し、かつ、上記上部層(b)の平均層厚の30〜50%の層厚領域に存在する酸化アルミニウム層を、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示す酸化アルミニウム層で構成した、
ことを特徴とする硬質被覆層が断続高送り切削加工ですぐれた耐摩耗性を発揮する表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) It consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A lower layer composed of a Ti compound layer,
(B) an upper layer comprising an aluminum oxide layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
(C) Surface-polishing an aluminum oxide layer located on the lower layer side and present in a layer thickness region of 30 to 50% of the average layer thickness of the upper layer (b) using a field emission scanning electron microscope Each crystal grain having a hexagonal crystal lattice existing within the measurement range of the plane is irradiated with an electron beam, and the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the polished surface and ( 10-10) The inclination angle formed by the normal of the plane is measured. In this case, the crystal grains have a corundum hexagonal close-packed crystal structure in which constituent atoms composed of Al and oxygen are present at lattice points, Based on the measurement tilt angle obtained as a result, lattice points where each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains (constituent atom shared lattice point). And calculate the distribution between the constituent atomic shared lattice points There are N lattice points that do not share constituent atoms (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8 , 14, 24, and 26 are not present) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 when the existing constituent atomic shared lattice point form is expressed by ΣN + 1, The highest peak is present in Σ3, and the distribution ratio of the Σ3 in the entire ΣN + 1 is 60 to 80%.
A surface-coated cutting tool (coated tool) whose hard coating layer exhibits excellent wear resistance in intermittent high-feed cutting. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を説明する。   Hereinafter, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
(A) Ti compound layer of the lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and contributes to improving the high temperature strength of the hard coating layer by its excellent high temperature strength. The substrate and the α-type Al 2 O 3 layer are firmly adhered to each other, thereby improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, the above-described operation is sufficiently achieved. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed cutting with high heat generation, which causes uneven wear. Was determined to be 3 to 20 μm.

(b)上部層の従来α型Al23
上部層の従来α型Al23層は、前記のとおり、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示し、すぐれた高温硬さと耐熱性を有し、硬質被覆層の上部層にすぐれた耐摩耗性を付与するが、断続高送り切削という、切刃部に対して大きな機械的衝撃がかかる切削加工条件においては、衝撃的負荷によりチッピングが発生し易くなるので、上部層の従来α型Al23層の一部を、耐衝撃的負荷に対してすぐれた耐チッピング性を示す改質α型Al23層で置き換えることにより、上部層全体として、すぐれた高温硬さ、耐熱性とすぐれた耐衝撃性を兼ね備えた硬質被覆層を構成する。
(B) the conventional α type the Al 2 O 3 layer prior α type the Al 2 O 3 layer upper layer of the upper layer, as described above, relatively low atom sharing lattice point distribution distribution ratio of 30% or less of Σ3 The graph shows excellent high-temperature hardness and heat resistance, and gives excellent wear resistance to the upper layer of the hard coating layer, but a large mechanical impact is applied to the cutting edge part called intermittent high feed cutting Under cutting conditions, chipping is likely to occur due to impact load, so a part of the conventional α-type Al 2 O 3 layer of the upper layer is modified to show excellent chipping resistance against impact load. By replacing with the α-type Al 2 O 3 layer, a hard coating layer having excellent high-temperature hardness, heat resistance and excellent impact resistance is formed as the entire upper layer.

(c)上部層の改質α型Al23
上記の改質α型Al23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl、CO、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60〜80%とすることができるが、この場合Σ3の分布割合が60%未満では、断続高送り切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、Σ3の分布割合を80%を越えて高くすることは層形成上困難であることから、Σ3の分布割合を60〜80%と定めた。このように前記改質α型Al23層は、すぐれた高温強度を有するが、その層厚が上部層全体の平均層厚(2〜15μm)の30%未満であると耐衝撃性の改善効果が少なく、一方、その層厚が上部層全体の平均層厚(2〜15μm)の50%を超えると、切刃に対する機械的衝撃が極めて大きい断続高送り切削加工においては切刃部にチッピングが発生しやすくなることから、改質α型Al23層の層厚を上部層全体の平均層厚の30〜50%と定めた。
(C) Modified α-type Al 2 O 3 layer of the upper layer The distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph of the modified α-type Al 2 O 3 layer is the AlCl constituting the reaction gas as described above. 3 , by adjusting the content ratio of CO 2 and HCl, and further the atmospheric reaction pressure, it can be set to 60 to 80%. In this case, when the distribution ratio of Σ3 is less than 60%, in intermittent high feed cutting, Chipping does not occur in the hard coating layer, and it is not possible to ensure an excellent effect of improving high-temperature strength. Therefore, the higher the distribution ratio of Σ3, the better, but it is desirable to increase the distribution ratio of Σ3 beyond 80%. Since the layer formation is difficult, the distribution ratio of Σ3 is set to 60 to 80%. As described above, the modified α-type Al 2 O 3 layer has excellent high-temperature strength. However, when the layer thickness is less than 30% of the average layer thickness (2 to 15 μm) of the entire upper layer, impact resistance is improved. On the other hand, if the layer thickness exceeds 50% of the average layer thickness (2 to 15 μm) of the entire upper layer, the mechanical impact on the cutting edge is extremely high. Since chipping easily occurs, the layer thickness of the modified α-type Al 2 O 3 layer is determined to be 30 to 50% of the average layer thickness of the entire upper layer.

(d)上部層の平均層厚
上部層を構成する改質α型Al23層の層厚と従来α型Al23層の層厚の合計層厚である上部層の平均層厚が2μm未満では、改質α型Al23層と従来α型Al23層からなる上部層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2〜15μmと定めた。
(D) Average layer thickness of the upper layer Average layer thickness of the upper layer, which is the total layer thickness of the modified α-type Al 2 O 3 layer constituting the upper layer and the layer thickness of the conventional α-type Al 2 O 3 layer Is less than 2 μm, the above-mentioned properties of the upper layer composed of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer cannot be sufficiently provided in the hard coating layer, while the average layer thereof When the thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness is set to 2 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、各種の鋼や鋳鉄などを、非常に大きな機械的衝撃を伴う断続高送り切削条件で切削加工した場合にも、特に、上部層を構成する改質α型Al23層と従来α型Al23層とからなる硬質被覆層が、すぐれた高温硬さと耐熱性に加えて、一段とすぐれた高温強度を具備するようになることから、チッピング性の発生を抑え、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated tool of the present invention is a modified α-type Al 2 O that constitutes the upper layer, particularly when various steels and cast irons are cut under intermittent high-feed cutting conditions with a very large mechanical impact. The hard coating layer consisting of three layers and the conventional α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, as well as superior high-temperature strength. It exhibits excellent wear resistance and can further extend the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表3に示される条件で改質α型Al23層(a)〜(f)のうちのいずれかと従来α型Al23層(a)〜(f)のうちのいずれかを、同じく表4に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜12をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 4 under the conditions shown in Table 4 below are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. Then, a Ti compound layer is deposited as a lower layer of the hard coating layer with a target layer thickness, and then any one of the modified α-type Al 2 O 3 layers (a) to (f) under the conditions shown in Table 3 Conventionally, any one of α-type Al 2 O 3 layers (a) to (f) is deposited as an upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 4 and coated according to the present invention. Tools 1-12 were produced respectively.

また、比較の目的で、表5に示される通り、硬質被覆層の上部層として、表3に示される条件で従来α型Al23層(a)〜(f)のうちのいずれかを同じく表5に示される組み合わせおよび目標層厚で硬質被覆層の上部層として蒸着形成する以外は同一の条件で従来被覆工具1〜12をそれぞれ製造した。 For comparison purposes, as shown in Table 5, as the upper layer of the hard coating layer, any one of the conventional α-type Al 2 O 3 layers (a) to (f) under the conditions shown in Table 3 is used. Similarly, the conventional coated tools 1 to 12 were manufactured under the same conditions except that they were formed by vapor deposition as the upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 5.

ついで、上記の本発明被覆工具1〜12、従来被覆工具1〜12の硬質被覆層の上部層を構成する改質α型Al23層、従来α型Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質α型Al23層および従来α型Al23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Then, for each of the above-mentioned present invention coated tools 1-12, the modified α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the conventional coated tools 1-12, and the conventional α-type Al 2 O 3 layer, Using a field emission scanning electron microscope, constituent atomic shared lattice point distribution graphs were prepared.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state where the surfaces of the modified α-type Al 2 O 3 layer and the conventional α-type Al 2 O 3 layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the surface polished surface. Using a backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step with respect to the normal line of the surface polished surface (0001) plane and (10 − 10) Measure the tilt angle formed by the normals of the surface, and based on the measured tilt angle obtained as a result, at the interface between adjacent crystal grains, each of the constituent atoms is one between the crystal grains. The number of lattice points that share constituent atoms (constituent atom shared lattice points) N is the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but in terms of distribution frequency) When the upper limit of N is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atomic shared lattice point form is expressed as ΣN + 1, each ΣN + 1 occupies the entire ΣN + 1 Created by determining the percentage.

この結果得られた各種の改質α型Al23層および従来α型Al23層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。 As a result, in the constituent atomic share lattice point distribution graphs of various modified α-type Al 2 O 3 layers and conventional α-type Al 2 O 3 layers obtained as a result, the entire ΣN + 1 (from the above results, Σ3, Σ7, Σ11, Σ13, The distribution ratios of Σ3 in the total distribution ratios of Σ17, Σ19, Σ21, Σ23, and Σ29) are shown in Tables 4 and 5, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、改質α型Al23層は、いずれもΣ3の占める分布割合が60〜80%である構成原子共有格子点分布グラフを示しており、一方、従来α型Al23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆工具2の改質α型Al23層の構成原子共有格子点分布グラフ、図5は、従来被覆工具12の従来α型Al23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-described various constituent atom sharing lattice point distribution graphs, as shown in Tables 4 and 5, each of the modified α-type Al 2 O 3 layers is a constituent atom in which the distribution ratio of Σ3 is 60 to 80%. The shared lattice point distribution graph is shown. On the other hand, the conventional α-type Al 2 O 3 layer shows a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less.
4 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type Al 2 O 3 layer of the coated tool 2 of the present invention, and FIG. 5 is a diagram showing constituent atoms of the conventional α-type Al 2 O 3 layer of the conventional coated tool 12. Each of the shared grid point distribution graphs is shown.

また、この結果得られた本発明被覆工具1〜12、従来被覆工具1〜12の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated tools 1 to 12 and the conventional coated tools 1 to 12 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement), Also showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆工具1〜12、従来被覆工具1〜12の各種被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S53Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min、
切り込み: 3.0 mm、
送り: 0.4 mm/rev、
切削時間: 8 分、
の条件(切削条件Aという)での炭素鋼の乾式断続高送り切削試験(通常の送りは、0.2mm/rev)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min、
切り込み: 3.5 mm、
送り: 0.45 mm/rev、
切削時間: 7 分、
の条件(切削条件Bという)での合金鋼の乾式断続高送り切削試験(通常の送りは、0.15mm/rev)、
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min、
切り込み: 3.0 mm、
送り: 0.4 mm/rev、
切削時間: 8 分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式断続高送り切削試験(通常の送りは、0.2mm/rev)を行い、
いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated tools of the present invention coated tools 1 to 12 and conventional coated tools 1 to 12, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS-S53C lengthwise equal length 4 round grooved round bar,
Cutting speed: 200 m / min,
Cutting depth: 3.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 8 minutes,
Dry intermittent high feed cutting test of carbon steel under the conditions (referred to as cutting condition A) (normal feed is 0.2 mm / rev),
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 220 m / min,
Cutting depth: 3.5 mm,
Feed: 0.45 mm / rev,
Cutting time: 7 minutes,
Dry interrupted high feed cutting test of alloy steel under the conditions (cutting condition B) (normal feed is 0.15 mm / rev),
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 250 m / min,
Cutting depth: 3.0 mm,
Feed: 0.4 mm / rev,
Cutting time: 8 minutes,
A dry intermittent high feed cutting test (normal feed is 0.2 mm / rev) of ductile cast iron under the conditions (cutting condition C)
In any cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 6.

Figure 2008178943
Figure 2008178943

Figure 2008178943
Figure 2008178943

Figure 2008178943
Figure 2008178943

Figure 2008178943
Figure 2008178943

Figure 2008178943
Figure 2008178943

Figure 2008178943
Figure 2008178943

表4〜6に示される結果から、本発明被覆工具1〜12は、いずれも硬質被覆層の上部層が、下部層側に位置するΣ3の分布割合が60〜80%の構成原子共有格子点分布グラフを示す改質α型Al23層とこの上部に位置する従来α型Al23層で構成され、機械的衝撃がきわめて高い鋼や鋳鉄の断続高送り切削でも、前記改質α型Al23層がすぐれた高温強度を有し、また、前記従来α型Al23層がすぐれた高温硬さと耐熱性を有し、すぐれた耐チッピング性、耐摩耗性を発揮することから、硬質被覆層のチッピング発生が著しく抑制されるとともにすぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来α型Al23層のみで構成された従来被覆工具1〜12においては、断続高送り切削では硬質被覆層の耐機械的衝撃性が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, the present invention coated tools 1 to 12 are constituent atomic shared lattice points in which the upper layer of the hard coating layer is located on the lower layer side and the distribution ratio of Σ3 is 60 to 80%. It is composed of a modified α-type Al 2 O 3 layer showing a distribution graph and a conventional α-type Al 2 O 3 layer located on the upper layer, and the modified α-type Al 2 O 3 layer is also used for intermittent high-feed cutting of steel and cast iron with extremely high mechanical impact. The α-type Al 2 O 3 layer has excellent high-temperature strength, and the conventional α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and exhibits excellent chipping resistance and wear resistance. Therefore, the occurrence of chipping in the hard coating layer is remarkably suppressed and excellent wear resistance is exhibited. On the other hand, the upper layer of the hard coating layer has a constituent atom shared lattice point with a Σ3 distribution ratio of 30% or less. conventional coating Engineering consisting only of conventional α form the Al 2 O 3 layer showing the distribution graph In 1 to 12, it is clear that intermittent high feed cutting has insufficient mechanical impact resistance of the hard coating layer, so that chipping occurs in the hard coating layer and the service life is reached in a relatively short time. is there.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い耐機械的衝撃性が要求される断続高送り切削でも硬質被覆層がすぐれた耐チッピング性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for intermittent high-feed cutting that requires particularly high mechanical shock resistance. The hard coating layer exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently.

α型Al23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図にして、(a)は斜視図、(b)は横断面1〜9の平面図である。FIG. 4 is a schematic diagram showing an atomic arrangement of a unit cell of a corundum type hexagonal close-packed crystal constituting an α-type Al 2 O 3 layer, where (a) is a perspective view and (b) is a plan view of cross sections 1 to 9. . α型Al23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。It is a schematic diagram showing the measurement mode of the inclination angle of the crystal grains (0001) plane and (10-10) plane in the α-type the Al 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆工具2の改質α型Al23層の構成原子共有格子点分布グラフである。It is a constituent atom shared lattice point distribution graph of the modified α-type Al 2 O 3 layer of the coated tool 2 of the present invention. 従来被覆工具12の従来α型Al23層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional α-type Al 2 O 3 layer of a conventional coated tool 12.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)2〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具において、
(c)下部層側に位置し、かつ、上記上部層(b)の平均層厚の30〜50%の層厚領域に存在する酸化アルミニウム層を、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示す酸化アルミニウム層で構成した、
ことを特徴とする硬質被覆層が断続高送り切削加工ですぐれた耐摩耗性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) It consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A lower layer composed of a Ti compound layer,
(B) an upper layer comprising an aluminum oxide layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
In the surface-coated cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
(C) Surface-polishing an aluminum oxide layer located on the lower layer side and present in a layer thickness region of 30 to 50% of the average layer thickness of the upper layer (b) using a field emission scanning electron microscope Each crystal grain having a hexagonal crystal lattice existing within the measurement range of the plane is irradiated with an electron beam, and the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the polished surface and ( 10-10) The inclination angle formed by the normal of the plane is measured. In this case, the crystal grains have a corundum hexagonal close-packed crystal structure in which constituent atoms composed of Al and oxygen are present at lattice points, Based on the measurement tilt angle obtained as a result, lattice points where each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains (constituent atom shared lattice point). And calculate the distribution between the constituent atomic shared lattice points There are N lattice points that do not share constituent atoms (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 in terms of distribution frequency, 4, 8 , 14, 24, and 26 are not present) In the constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 when the existing constituent atomic shared lattice point form is expressed by ΣN + 1, The highest peak is present in Σ3, and the distribution ratio of the Σ3 in the entire ΣN + 1 is 60 to 80%.
A surface-coated cutting tool with a hard coating layer that exhibits excellent wear resistance in intermittent high-feed cutting.
JP2007014262A 2007-01-24 2007-01-24 Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work Withdrawn JP2008178943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014262A JP2008178943A (en) 2007-01-24 2007-01-24 Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014262A JP2008178943A (en) 2007-01-24 2007-01-24 Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work

Publications (1)

Publication Number Publication Date
JP2008178943A true JP2008178943A (en) 2008-08-07

Family

ID=39723229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014262A Withdrawn JP2008178943A (en) 2007-01-24 2007-01-24 Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work

Country Status (1)

Country Link
JP (1) JP2008178943A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409798A4 (en) * 2009-03-18 2015-09-02 Mitsubishi Materials Corp Surface-coated cutting tool
WO2015174490A1 (en) * 2014-05-16 2015-11-19 三菱マテリアル株式会社 Surface coating cutting tool
WO2016208663A1 (en) * 2015-06-26 2016-12-29 三菱マテリアル株式会社 Coated surface cutting tool
JP2017013211A (en) * 2015-07-06 2017-01-19 三菱マテリアル株式会社 Surface coating and cutting tool
JP2017013223A (en) * 2015-06-26 2017-01-19 三菱マテリアル株式会社 Surface coating and cutting tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2409798A4 (en) * 2009-03-18 2015-09-02 Mitsubishi Materials Corp Surface-coated cutting tool
WO2015174490A1 (en) * 2014-05-16 2015-11-19 三菱マテリアル株式会社 Surface coating cutting tool
JP2015231662A (en) * 2014-05-16 2015-12-24 三菱マテリアル株式会社 Surface-coated cutting tool
US10307831B2 (en) 2014-05-16 2019-06-04 Mitsubishi Materials Corporation Surface coating cutting tool
WO2016208663A1 (en) * 2015-06-26 2016-12-29 三菱マテリアル株式会社 Coated surface cutting tool
JP2017013223A (en) * 2015-06-26 2017-01-19 三菱マテリアル株式会社 Surface coating and cutting tool
JP2017013211A (en) * 2015-07-06 2017-01-19 三菱マテリアル株式会社 Surface coating and cutting tool

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4716251B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP2009248218A (en) Surface-coated cutting tool having hard coating layer for exhibiting superior chipping resistance and abrasive resistance in high speed heavy cutting work
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4853121B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5263572B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4853120B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP2006341320A (en) SURFACE COATED CERMET CUTTING TOOL WHOSE THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP2009279694A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406