JP4730651B2 - Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys. - Google Patents

Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys. Download PDF

Info

Publication number
JP4730651B2
JP4730651B2 JP2005120643A JP2005120643A JP4730651B2 JP 4730651 B2 JP4730651 B2 JP 4730651B2 JP 2005120643 A JP2005120643 A JP 2005120643A JP 2005120643 A JP2005120643 A JP 2005120643A JP 4730651 B2 JP4730651 B2 JP 4730651B2
Authority
JP
Japan
Prior art keywords
layer
crystal
constituent
type
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005120643A
Other languages
Japanese (ja)
Other versions
JP2006297518A (en
Inventor
尚志 本間
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005120643A priority Critical patent/JP4730651B2/en
Publication of JP2006297518A publication Critical patent/JP2006297518A/en
Application granted granted Critical
Publication of JP4730651B2 publication Critical patent/JP4730651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた高温強度を有し、特に高い高温強度が要求されるNi合金やCo合金、さらにTi合金などの耐熱合金の高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   In the present invention, the hard coating layer has excellent high-temperature strength, and the hard coating layer is excellent in high-speed intermittent cutting of heat-resistant alloys such as Ni alloys, Co alloys, and Ti alloys that require particularly high high-temperature strength. The present invention relates to a surface-coated cermet cutting tool that exhibits chipping resistance (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足するAlとCrの複合酸化物[以下、α型(Al,Cr)23で示す)層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開昭52−66508号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, all formed by chemical vapor deposition as the lower layer A Ti compound layer composed of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, it has an average layer thickness of 1 to 15 μm, and an α-type crystal structure in a state of chemical vapor deposition,
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
A composite oxide of Al and Cr (hereinafter referred to as α-type (Al, Cr) 2 O 3 ) layer satisfying the following conditions:
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that it is used.
JP 52-66508 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれをNi合金やCo合金、さらにTi合金などの耐熱合金などの切削加工を、切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的衝撃の加わる高速断続切削に用いた場合、これを構成する硬質被覆層の下部層であるTi化合物層のうち、相対的に高い高温強度を有するTiCN層を所定層厚で形成しても、前記TiCN層の具備する高温強度が不十分である上、同上部層のα型(Al,Cr)23層はすぐれた高温硬さおよび耐熱性を具備するものの、高温強度のきわめて低いものであるために、前記の強い機械的衝撃に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. In coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron, but this is especially heat resistant alloys such as Ni alloys, Co alloys, and Ti alloys. Is the lower layer of the hard coating layer that constitutes the high-speed interrupted cutting with the most severe cutting conditions, that is, when it is used for high-speed interrupted cutting that repeatedly applies mechanical impact to the cutting edge at a very short pitch Among the Ti compound layers, even if a TiCN layer having a relatively high high-temperature strength is formed with a predetermined thickness, the high-temperature strength provided by the TiCN layer is insufficient, and the α type of the upper layer is formed. Al, Cr) but 2 O 3 layer is provided with excellent high-temperature hardness and heat resistance, because it is extremely low in high temperature strength can not cope satisfactorily with respect to the strong mechanical shocks As a result, the hard coating layer is likely to be chipped (small chipping), so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層として所定層厚で形成したTiCN層、すなわち、図1(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有するTiCN層、および同上部層であるα型(Al,Cr)23層、すなわち、図5に模式図(斜視図および横断面1〜9の平面図)で示される通り、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有するα型(Al,Cr)23層に着目し、これらの高温強度向上を図るべく研究を行った結果、
(1−a)通常、上記の従来被覆サーメット工具の硬質被覆層の下部層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、これを、同じく通常の化学蒸着装置で、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiClおよびCHCNを相対的に低く、かつN2ガスに代ってArガスを添加し、さらに雰囲気温度を相対的に高くした条件(反応ガス組成調整高温条件)で、かつ2.5〜15μmの平均層厚で蒸着形成すると、この結果の反応ガス組成調整高温条件で形成したTiCN層(以下、「改質TiCN層」という)は、高温強度が一段と向上し、すぐれた耐機械的衝撃性を具備するようになること。
In view of the above, the present inventors, from the above viewpoint, in order to improve the chipping resistance of the hard coating layer of the above coated cermet tool, a TiCN layer formed with a predetermined layer thickness as a lower layer thereof, that is, FIG. As shown in the schematic diagram of FIG. 1 (a), a crystal structure of NaCl type face centered cubic crystal in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points (note that FIG. 1 (b) is (011) TiCN layer having a state cut by a plane, and α-type (Al, Cr) 2 O 3 layer as the upper layer, that is, a schematic view (a perspective view and a plan view of cross sections 1 to 9) in FIG. ), The α-type (Al, Cr) 2 O 3 layer having a corundum-type hexagonal close-packed crystal structure in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points. To improve high temperature strength of steel The result of,
(1-a) Usually, the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the lower layer of the hard coating layer of the conventional coated cermet tool is a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed under the conditions of, but this is also a normal chemical vapor deposition device,
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The reaction gas composition is relatively low in TiCl 4 and CH 3 CN, Ar gas is added instead of N 2 gas, and the ambient temperature is relatively The TiCN layer (hereinafter referred to as “modified TiCN”) formed under the reaction gas composition adjustment high temperature condition as a result of vapor deposition with an average layer thickness of 2.5 to 15 μm (reaction gas composition adjustment high temperature condition). Layer)) has a further improved high-temperature strength and excellent mechanical shock resistance.

(1−b)上記の従来TiCN層と改質TiCN層について、電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、いずれのTiCN層もΣ3に最高ピークが存在するが、前記従来TiCN層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質TiCN層は、図3に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するTiClおよびCHCNと、Arの含有量、さらに雰囲気反応温度によって変化すること。 (1-b) For the conventional TiCN layer and the modified TiCN layer, the surface polished surface is measured using a field emission scanning electron microscope, as schematically illustrated in FIGS. 2 (a) and 2 (b). Inclination made by irradiating an electron beam to each crystal grain existing within the range and the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface The angle (FIG. 2 (a) shows that the (001) plane has an inclination angle of 0 degree and the (011) plane has an inclination angle of 45 degrees, and (b) shows the (001) plane inclination. The angle is 45 degrees, and the inclination angle of the (011) plane is 0 degree. All inclination angles of the crystal grains including these angles are measured. In this case, the crystal grains are As described above, the formation of NaCl-type face-centered cubic crystals in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points. Based on the measured tilt angle obtained as a result of this, at the interface between adjacent crystal grains, each of the constituent atoms shares one constituent atom between the crystal grains (configuration The distribution of atomic shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of NaCl-type face-centered cubic crystal). When the constituent atomic shared lattice point distribution graph is shown, which shows the distribution ratio of the individual atomic ΣN + 1 represented by ΣN + 1 and each ΣN + 1 occupying the entire ΣN + 1 (however, the upper limit is 28 in terms of frequency), Although any TiCN layer has the highest peak in Σ3, the conventional TiCN layer shows a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less as illustrated in FIG. Against TiCl the reformed TiCN layer, as illustrated in FIG. 3, shows an extremely high atom sharing lattice point distribution graph distribution ratio is 60% or more of the [sum] 3, the distribution ratio of the high [sum] 3 is to constitute the reaction gas 4 and CH 3 CN, the content of Ar, and the ambient reaction temperature.

(2−a)上記の従来被覆サーメット工具の硬質被覆層を構成する上部層としてのα型(Al,Cr)23層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:2.3〜4%、CrCl:0.04〜0.26%、CO:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl:6〜10%、CrCl:0.1〜0.65%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl、CrCl、CO、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で蒸着形成すると、この結果の反応ガス成分高含有調整低圧条件で形成したα型(Al,Cr)23層(以下、「改質α型(Al,Cr)23層」という)は、α型(Al,Cr)23層本来の具備するすぐれた高温硬さおよび耐熱性に加えて、高温強度が一段と向上し、すぐれた耐機械的衝撃性を具備するようになること。
(2-a) The α-type (Al, Cr) 2 O 3 layer as the upper layer constituting the hard coating layer of the conventional coated cermet tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 2.3~4%, CrCl 3: 0.04~0.26%, CO 2: 6~8%, HCl: 1.5~3%, H 2 S : 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CrCl 3 : 0.1 to 0.65%, CO 2 : 10 to 15%, HCl: 3 to 5%, H 2 S: 0.05 ~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CrCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (reaction) When vapor deposition is performed under a gas component high content adjustment low pressure condition, an α type (Al, Cr) 2 O 3 layer (hereinafter referred to as “modified α type (Al, Cr) formed under a control gas component high content adjustment low pressure condition” as a result. ) 2 O 3 layer ”is an α-type (Al, Cr) 2 O 3 layer that has excellent high-temperature hardness and heat resistance, as well as excellent mechanical shock resistance. Being equipped with sex.

(2−b)上記の上記の従来被覆サーメット工具の硬質被覆層の上部層を構成するα型(Al,Cr)23層(以下、「従来α型(Al,Cr)23層」という)と上記の改質α型(Al,Cr)23層について、
電界放出型走査電子顕微鏡を用い、図6(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図6(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記従来α型(Al,Cr)23層は、図9に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質α型(Al,Cr)23層は、図8に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl、CrCl、CO、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の改質α型(Al,Cr)23層および従来α型(Al,Cr)23層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると、図7(a)〜(c)に示される通りとなる(なお、上記の改質TiCN層および従来TiCN層においても同様である)。
(2-b) α-type (Al, Cr) 2 O 3 layer (hereinafter referred to as “conventional α-type (Al, Cr) 2 O 3 layer” constituting the upper layer of the hard coating layer of the above-described conventional coated cermet tool And the above modified α-type (Al, Cr) 2 O 3 layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 6A and 6B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface [FIG. 6 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al, Cr, and oxygen are present at lattice points as described above, and are adjacent to each other based on the measured tilt angle. Each of the constituent atoms forms one constituent atom between the crystal grains. The distribution of lattice points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is 2 on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist.) , When a constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 is created (in this case, the constituent atomic shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27 are The conventional α-type (Al, Cr) 2 O 3 layer is a relatively low constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less as illustrated in FIG. Before showing Reforming α-type (Al, Cr) 2 O 3 layer, as exemplified in FIG. 8, shows a very high atom sharing lattice point distribution graph distribution ratio is 60% or more of the [sum] 3, the distribution ratio of the high [sum] 3 Varies depending on the content ratio of AlCl 3 , CrCl 3 , CO 2 , and HCl constituting the reaction gas and the atmospheric reaction pressure.
In the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer, among the constituent atomic shared lattice point forms at the interface between adjacent crystal grains The unit forms of Σ3, Σ7, and Σ11 are schematically illustrated as shown in FIGS. 7A to 7C (the same applies to the modified TiCN layer and the conventional TiCN layer). .

(3)硬質被覆層の上部層が上記の改質α型(Al,Cr)23層、同下部層の1層が上記の改質TiCN層で構成された被覆サーメット工具は、前記硬質被覆層が前記改質α型(Al,Cr)23層および前記改質TiCN層によってすぐれた高温強度を具備するようになることから、特に激しい機械的衝撃を伴なう、Ni合金やCo合金、さらにTi合金などの耐熱合金の高速断続切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(1)〜(3)に示される研究結果を得たのである。
(3) A coated cermet tool in which the upper layer of the hard coating layer is composed of the modified α-type (Al, Cr) 2 O 3 layer and the lower layer is composed of the modified TiCN layer is the hard coating layer Since the coating layer has excellent high-temperature strength due to the modified α-type (Al, Cr) 2 O 3 layer and the modified TiCN layer, a Ni alloy or Even in high-speed intermittent cutting of heat-resistant alloys such as Co alloys and Ti alloys, the hard coating layer exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.
The research results shown in (1) to (3) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質TiCN層からなる下部層、
(b)1〜15μmの平均層厚を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足する改質α型(Al,Cr)23層からなる上部層、
以上(a)および(b)で構成し、上記(a)の下部層における改質TiCN層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質TiCN層、
で構成し、さらに、上記(b)の改質α型(Al,Cr)23層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質α型(Al,Cr)23層、
で構成してなる、耐熱合金の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention was made based on the above research results, and a hard coating layer formed by vapor deposition on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) All formed by chemical vapor deposition, comprising one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 0.1 to 5 μm A lower layer comprising a Ti compound layer and a modified TiCN layer having an average layer thickness of 2.5 to 15 μm,
(B) having an average layer thickness of 1 to 15 μm;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
An upper layer composed of a modified α-type (Al, Cr) 2 O 3 layer satisfying
The modified TiCN layer in the lower layer of the above (a), comprising the above (a) and (b),
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 A modified TiCN layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
And the modified α-type (Al, Cr) 2 O 3 layer of (b) above,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal, are measured. In this case, the crystal grains have constituent atoms composed of Al, Cr, and oxygen at lattice points. Corundum type hexagonal close-packed crystal structure, and based on the measurement tilt angle obtained as a result, each of the constituent atoms is one between the crystal grains at the interface between adjacent crystal grains. The distribution of lattice points that share constituent atoms (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum hexagonal close-packed crystal) Due to the crystal structure, it will be an even number of 2 or more. (If the upper limit of N is 28 from the point of cloth frequency, there is no even number of 4, 8, 14, 24, and 26.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is The constituent atom shared lattice point distribution graph showing the distribution ratio in the entire ΣN + 1 shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 60% or more. Modified α-type (Al, Cr) 2 O 3 layer,
It is characterized by a coated cermet tool that exhibits excellent chipping resistance with a hard coating layer by high-speed intermittent cutting of a heat-resistant alloy.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層である改質α型(Al,Cr)23層、さらに下部層を構成する改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜5μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer of lower layer The adhesive Ti compound layer is composed of a tool substrate and a modified α-type (Al, Cr) 2 O 3 layer as an upper layer, and a modified TiCN layer constituting the lower layer. It adheres firmly to both, and thus has the effect of improving the adhesion of the hard coating layer to the tool substrate. However, if the total average layer thickness is less than 0.1 μm, the desired excellent adhesion can be ensured. On the other hand, since the total average layer thickness up to 5 μm is sufficient for the adhesion, the total average layer thickness was determined to be 0.1 to 5 μm.

(b)下部層の改質TiCN層
上記の改質TiCN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するTiClおよびCHCNと、Arの含有量、さらに雰囲気反応温度を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質TiCN層は、上記の通りTiCN自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer of lower layer The distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified TiCN layer is the content of TiCl 4 and CH 3 CN constituting the reaction gas and Ar as described above The amount and further the atmospheric reaction temperature can be adjusted to 60% or more. In this case, when the distribution ratio of Σ3 is less than 60%, the chipping does not occur in the hard coating layer by high-speed intermittent cutting, which is excellent. Since the effect of improving the high temperature strength cannot be ensured, the distribution ratio of Σ3 was determined to be 60% or more. As described above, the modified TiCN layer has a further excellent high-temperature strength in addition to the high-temperature hardness and high-temperature strength of TiCN itself as described above. However, if the average layer thickness is less than 2.5 μm, it is desirable. However, if the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur and wear accelerates. Therefore, the average layer thickness was set to 2.5 to 15 μm.

(c)上部層の改質α型(Al,Cr)23
上記の改質α型(Al,Cr)23層において、これの構成成分であるAlは層の高温硬さおよび耐熱性を向上させ、同Cr成分にはAl成分との共存において、さらに一段と耐熱性を向上させる作用を有するが、Crの含有割合を示すX値が原子比で0.01未満では前記作用に所望の向上効果を確保することができず、一方同X値が0.1を越えると高温強度に低下傾向が現れるようになることから、前記X値を0.01〜0.1と定めた。
また、上記の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の反応ガスを構成するAlCl、CrCl、CO、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60〜80%とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。
さらに、上記改質α型(Al,Cr)23層は、上記の通りα型(Al,Cr)23層自体のもつすぐれた高温硬さと耐熱性に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が1μm未満では前記改質α型(Al,Cr)23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を1〜15μmと定めた。
(C) Modified α-type (Al, Cr) 2 O 3 layer of the upper layer In the above-mentioned modified α-type (Al, Cr) 2 O 3 layer, Al, which is a component of the modified α-type (Al, Cr) 2 O 3 layer, The Cr component has the effect of further improving the heat resistance in the coexistence of the Al component with the Cr component. However, when the X value indicating the Cr content ratio is less than 0.01 in terms of atomic ratio, the above effect is achieved. The desired improvement effect cannot be ensured. On the other hand, if the X value exceeds 0.1, the high temperature strength tends to decrease. Therefore, the X value is set to 0.01 to 0.1. .
In addition, the distribution ratio of Σ3 in the constituent atomic shared lattice distribution graph of the modified α-type (Al, Cr) 2 O 3 layer described above is AlCl 3 , CrCl 3 , CO 2 , and HCl constituting the reaction gas. However, in this case, when the distribution ratio of Σ3 is less than 60%, chipping does not occur in the hard coating layer by high-speed intermittent cutting. Since the excellent effect of improving the high temperature strength cannot be ensured, the distribution ratio of Σ3 is determined to be 60% or more.
Furthermore, the modified α-type (Al, Cr) 2 O 3 layer was further improved in addition to the excellent high-temperature hardness and heat resistance of the α-type (Al, Cr) 2 O 3 layer itself as described above. Although it has high-temperature strength, if the average layer thickness is less than 1 μm, the above-mentioned properties of the modified α-type (Al, Cr) 2 O 3 layer cannot be sufficiently provided in the hard coating layer, On the other hand, when the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur, and wear accelerates. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、硬質被覆層の最表面層として黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary as the outermost surface layer of the hard coating layer, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、特に激しい機械的衝撃を伴なう、Ni合金やCo合金、さらにTi合金などの耐熱合金の高速断続切削でも、硬質被覆層の下部層を構成する改質TiCN層および上部層の改質(Al,Cr)23層が一段とすぐれた高温強度を有することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。 The coated cermet tool according to the present invention includes a modified TiCN layer constituting a lower layer of a hard coating layer even in high-speed intermittent cutting of a heat-resistant alloy such as a Ni alloy, a Co alloy, and a Ti alloy with particularly severe mechanical impact. Since the modified (Al, Cr) 2 O 3 layer of the upper layer has a higher temperature strength, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で36時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the blending composition shown in Table 1, added with wax, ball milled in acetone for 36 hours, dried under reduced pressure, and pressed into a compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層の下部層である改質TiCN層(a)〜(k)および密着性Ti化合物層を、表5に示される組み合わせおよび目標層厚で蒸着形成し、ついで、上部層の改質(Al,Cr)23層(a)〜(g)を、同じく表4に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, on the surfaces of the tool bases A to F and the tool bases a to f, a modification that is a lower layer of the hard coating layer is performed under the conditions shown in Tables 3 and 4 using a normal chemical vapor deposition apparatus. The TiCN layers (a) to (k) and the adhesive Ti compound layer are formed by vapor deposition with the combinations and target layer thicknesses shown in Table 5, and then the upper layer modification (Al, Cr) 2 O 3 layer (a The coated cermet tools 1 to 13 of the present invention were produced by vapor-depositing the components)) to (g) with the combinations and target layer thicknesses shown in Table 5 under the same conditions shown in Table 4.

また、比較の目的で、上記の工具基体A〜Fおよび工具基体a〜fの表面に、同じく通常の化学蒸着装置を用い、表3,6に示される条件にて、硬質被覆層の下部層として従来TiCN層(a)〜(i)および密着性Ti化合物層を、表7に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、上部層の従来(Al,Cr)23層(a)〜(g)を、同じく表6に示される条件で、同じく表7に示される組み合わせおよび目標層厚で蒸着形成することにより従来被覆サーメット工具1〜13をそれぞれ製造した。 For the purpose of comparison, the lower layers of the hard coating layer are formed on the surfaces of the tool bases A to F and the tool bases a to f using the same ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 6. Conventional TiCN layers (a) to (i) and an adhesive Ti compound layer are formed by vapor deposition with the combination shown in Table 7 and with a target layer thickness, and then the conventional (Al, Cr) 2 O 3 of the upper layer is formed. Conventionally coated cermet tools 1 to 13 were produced by depositing layers (a) to (g) under the same conditions as shown in Table 6 and with combinations and target layer thicknesses also shown in Table 7.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質TiCN層および従来TiCN層、さらに改質α型(Al,Cr)23層および従来α型(Al,Cr)23層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質TiCN層および従来TiCN層、さらに改質α型(Al,Cr)23層および従来α型(Al,Cr)23層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記改質TiCN層および従来TiCN層については結晶粒の結晶面である(001)面および(011)面、前記改質α型(Al,Cr)23層および従来α型(Al,Cr)23層については、結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角をそれぞれ測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(この場合、前記改質TiCN層および従来TiCN層に関しては、NはNaCl型面心立方晶の結晶構造上2以上の偶数となり、一方前記改質α型(Al,Cr)23層および従来α型(Al,Cr)23層については、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在しないことになる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Next, the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, the modified α-type (Al, Cr) 2 O 3 layer, and the conventional α-type (Al , Cr) 2 O 3 layer, a constituent atom shared lattice point distribution graph was prepared using a field emission scanning electron microscope.
That is, the constituent atomic share lattice point distribution graph includes the modified TiCN layer and the conventional TiCN layer, the modified α-type (Al, Cr) 2 O 3 layer, and the conventional α-type (Al, Cr) 2 O 3 layer. In a state where the surface is a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA. Irradiate each individual crystal grain within the measurement range of the polished surface, and use an electron backscatter diffraction image apparatus to divide the 30 × 50 μm region at an interval of 0.1 μm / step with respect to the normal line of the surface polished surface. As for the modified TiCN layer and the conventional TiCN layer, the (001) and (011) planes, the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al , Cr) 2 O 3 layer, crystal grains The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are planes, are measured, respectively, and based on the measured tilt angles obtained as a result, the above-described configuration is obtained at the interface between crystal grains adjacent to each other. The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom among the crystal grains is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (In this case, with respect to the modified TiCN layer and the conventional TiCN layer, N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal, while the modified α type (Al, Cr) 2 O 3 layer and In the conventional α-type (Al, Cr) 2 O 3 layer, N is an even number of 2 or more in terms of the crystal structure of the corundum hexagonal close-packed crystal. , 8, 14, 24, and 26 are not even If represents the atom sharing lattice point forms bets will) be present in .SIGMA.N + 1, each .SIGMA.N + 1 is created by obtaining a distribution ratio of total .SIGMA.N + 1.

この結果得られた各種の構成原子共有格子点分布グラフにおいて、改質TiCN層および従来TiCN層については、Nが2〜28の範囲内のすべての偶数からなるΣN+1全体に占めるΣ3の分布割合、また、改質α型(Al,Cr)23層および従来α型(Al,Cr)23層については、上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計からなるΣN+1全体に占めるΣ3の分布割合をそれぞれ表5,7にそれぞれ示した。 In the various constituent atomic share lattice point distribution graphs obtained as a result, for the modified TiCN layer and the conventional TiCN layer, the distribution ratio of Σ3 in the entire ΣN + 1 consisting of all even numbers in the range of N from 2 to 28, For the modified α-type (Al, Cr) 2 O 3 layer and the conventional α-type (Al, Cr) 2 O 3 layer, from the above results, Σ3, Σ7, Σ11, Σ13, Σ17, Σ19, Σ21, Σ23 Tables 5 and 7 show the distribution ratios of Σ3 in the total ΣN + 1, which is the sum of the distribution ratios of Σ and Σ29, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表5,7にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層および改質α型(Al,Cr)23層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層および従来α型(Al,Cr)23層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図3は、本発明被覆サーメット工具7の改質TiCN層の構成原子共有格子点分布グラフ、図4は、従来被覆サーメット工具8の従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示し、また、図8は、本発明被覆サーメット工具7の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフ、図9は、従来被覆サーメット工具8の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In the above-described various constituent atomic share lattice point distribution graphs, as shown in Tables 5 and 7, respectively, the modified TiCN layer and the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool of the present invention are Shows a distribution graph of constituent atomic shared lattice points in which the distribution ratio of Σ3 is 60% or more, whereas the conventional TiCN layer and the conventional α-type (Al, Cr) 2 O 3 layer of the conventional coated cermet tool The graph also shows a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less.
3 shows a constituent atomic shared lattice point distribution graph of the modified TiCN layer of the coated cermet tool 7 of the present invention, and FIG. 4 shows a constituent atomic shared lattice point distribution graph of the conventional TiCN layer of the conventional coated cermet tool 8. FIG. 8 is a graph showing the distribution of constituent atomic shared lattice points of the modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool 7 of the present invention, and FIG. The constituent atomic shared lattice point distribution graphs of the Al, Cr) 2 O 3 layer are respectively shown.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiCN層およびTi化合物層と、α型(Al,Cr)23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a TiCN layer and a Ti compound layer having substantially the same composition as the target composition, and an α-type (Al, Cr) 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:質量%で、Ti−6.14%Al−3.96%Vの組成を有するTi合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:150m/min、
切り込み:1.2mm、
送り:0.1mm/rev、
切削時間:10分、
の条件(切削条件A)でのTi合金の湿式高速断続切削試験(通常の切削速度は80m/min)、
被削材:質量%で、Ni−19.3%Cr−18.1%Fe−5.4%Cd−4.9%Ta−3.2%Mo−0.9%Ti−0.48%Alの組成を有するNi合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:220m/min、
切り込み:1.0mm、
送り:0.1mm/rev、
切削時間:10分、
の条件(切削条件B)でのNi合金の湿式高速断続切削試験(通常の切削速度は140m/min)、
被削材:質量%で、Co−23.5%Cr−5.9%Mo−2.2%Ni−0.96%Fe−0.57%Si−0.42%Cの組成を有するCo合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度:130m/min、
切り込み:1.0mm、
送り:0.08mm/rev、
切削時間:10分、
の条件(切削条件C)でのCo合金の湿式高速断続切削試験(通常の切削速度は70m/min)を行い、いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: 4% fluted round bars with equal intervals in the longitudinal direction of a Ti alloy having a composition of Ti-6.14% Al-3.96% V in mass%,
Cutting speed: 150 m / min,
Cutting depth: 1.2mm,
Feed: 0.1 mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test (normal cutting speed is 80 m / min) of Ti alloy under the above conditions (cutting condition A),
Work Material: Ni-19.3% Cr-18. 1% Fe-5.4% Cd-4.9% Ta-3.2% Mo-0.9% Ti-0.48% by mass% Four longitudinally-grooved round bars with equal intervals in the length direction of a Ni alloy having a composition of Al,
Cutting speed: 220 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 10 minutes,
Wet high-speed intermittent cutting test of Ni alloy under the above conditions (cutting condition B) (normal cutting speed is 140 m / min),
Work material: Co having a composition of Co-23.5% Cr-5.9% Mo-2.2% Ni-0.96% Fe-0.57% Si-0.42% C in mass%. 4 vertical grooves with equal intervals in the length direction of the alloy,
Cutting speed: 130 m / min,
Cutting depth: 1.0 mm,
Feed: 0.08mm / rev,
Cutting time: 10 minutes,
A wet high-speed intermittent cutting test (normal cutting speed is 70 m / min) of the Co alloy under the above conditions (cutting condition C), and the flank wear width of the cutting edge is determined by any cutting test (using water-soluble cutting oil). It was measured. The measurement results are shown in Table 8.

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

Figure 0004730651
Figure 0004730651

表5,7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層のうちの1層がΣ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質TiCN層で構成され、さらに、同上部層が同じくΣ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質α型(Al,Cr)23層で構成され、機械的衝撃がきわめて高いNi合金やCo合金、さらにTi合金(耐熱合金)の高速断続切削でも、前記改質TiCN層および改質α型(Al,Cr)23層が一段と高温強度の向上したものになっているので、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層が、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来TiCN層および従来α型(Al,Cr)23層で構成された従来被覆サーメット工具1〜13においては、いずれも前記の耐熱合金の高速断続切削では硬質被覆層の高温強度不足が原因で、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 and 7, all of the coated cermet tools 1 to 13 of the present invention have a constituent atom shared lattice point distribution graph in which one of the lower layers of the hard coating layer has a Σ3 distribution ratio of 60% or more. Further, the upper layer is composed of a modified α-type (Al, Cr) 2 O 3 layer showing a constituent atomic shared lattice distribution graph in which the distribution ratio of Σ3 is 60% or more. Even in high-speed interrupted cutting of Ni alloys, Co alloys, and Ti alloys (heat-resistant alloys) with extremely high mechanical impact, the modified TiCN layer and the modified α-type (Al, Cr) 2 O 3 layer have higher temperature strength. Since it exhibits excellent chipping resistance, the occurrence of chipping in the hard coating layer is remarkably suppressed and excellent wear resistance is exhibited. Also has a distribution ratio of Σ3 0% or less of the atom sharing lattice point distribution prior show graphs TiCN layer and a conventional α-type (Al, Cr) in the conventional coated cermet tools 1 to 13, which is constituted by 2 O 3 layer, any of the heat-resistant alloy In high-speed intermittent cutting, it is clear that chipping occurs in the hard coating layer due to insufficient high-temperature strength of the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される耐熱合金の高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention is excellent not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons, but also for high-speed intermittent cutting of heat-resistant alloys that require particularly high high-temperature strength. It exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, so that it can sufficiently satisfy cutting equipment performance, labor saving and energy saving, and cost reduction. It is.

硬質被覆層の下部層を構成するTiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the TiCN layer which comprises the lower layer of a hard coating layer has. 硬質被覆層の下部層を構成するTiCN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the TiCN layer which comprises the lower layer of a hard coating layer. 本発明被覆サーメット工具7の硬質被覆層の下部層を構成する改質TiCN層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a modified TiCN layer constituting a lower layer of a hard coating layer of the coated cermet tool 7 of the present invention. 従来被覆サーメット工具8の硬質被覆層の下部層を構成する従来TiCN層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a conventional TiCN layer constituting a lower layer of a hard coating layer of a conventional coated cermet tool 8. α型(Al,Cr)23層を構成するコランダム型六方最密晶の単位格子の原子配列を示す模式図である。It is a schematic diagram showing an atomic arrangement of a unit cell of a corundum type hexagonal close-packed crystal constituting an α-type (Al, Cr) 2 O 3 layer. α型(Al,Cr)23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。α-type (Al, Cr) is a schematic explanatory view showing the measurement mode of the crystal grains (0001) plane and (10-10) plane inclination angle of the 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆サーメット工具7の改質α型(Al,Cr)23層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified α-type (Al, Cr) 2 O 3 layer of the coated cermet tool 7 of the present invention. 従来被覆サーメット工具8の従来α型(Al,Cr)23層の構成原子共有格子点分布グラフである。FIG. 6 is a constituent atomic shared lattice point distribution graph of a conventional α-type (Al, Cr) 2 O 3 layer of a conventional coated cermet tool 8.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質炭窒化チタン層からなる下部層、
(b)1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、さらに、
組成式:(Al1−XCr、(ただし、原子比で、X:0.01〜0.1)、
を満足する改質AlとCrの複合酸化物層からなる上部層、
以上(a)および(b)で構成し、上記(a)の下部層における改質炭窒化チタン層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質炭窒化チタン層、
で構成し、さらに、上記(b)の改質α型AlとCrの複合酸化物層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAl、Cr、および酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質α型AlとCrの複合酸化物層、
で構成したことを特徴とする耐熱合金の高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
A hard coating layer formed by vapor deposition on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) All are formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition, and 0.1 to 5 μm An adhesive Ti compound layer having a total average layer thickness, and a lower layer comprising a modified titanium carbonitride layer having an average layer thickness of 2.5 to 15 μm,
(B) having an average layer thickness of 1 to 15 μm and an α-type crystal structure in the state of chemical vapor deposition;
Composition formula: (Al 1-X Cr X ) 2 O 3, ( provided that an atomic ratio, X: 0.01 to 0.1),
An upper layer composed of a composite oxide layer of modified Al and Cr satisfying
(A) and (b), the modified titanium carbonitride layer in the lower layer (a),
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 A modified titanium carbonitride layer showing a constituent atom shared lattice distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
In addition, the modified α-type Al and Cr composite oxide layer of (b) above,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal, are measured. In this case, the crystal grains have constituent atoms composed of Al, Cr, and oxygen at lattice points. Corundum type hexagonal close-packed crystal structure, and based on the measurement tilt angle obtained as a result, each of the constituent atoms is one between the crystal grains at the interface between adjacent crystal grains. The distribution of lattice points that share constituent atoms (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is a corundum hexagonal close-packed crystal) Due to the crystal structure, it will be an even number of 2 or more. (If the upper limit of N is 28 from the point of cloth frequency, there is no even number of 4, 8, 14, 24, and 26.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is The constituent atom shared lattice point distribution graph showing the distribution ratio in the entire ΣN + 1 shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 60% or more. Modified α-type Al and Cr composite oxide layer,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of a heat-resistant alloy characterized by comprising a hard coating layer.
JP2005120643A 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys. Expired - Fee Related JP4730651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120643A JP4730651B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120643A JP4730651B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.

Publications (2)

Publication Number Publication Date
JP2006297518A JP2006297518A (en) 2006-11-02
JP4730651B2 true JP4730651B2 (en) 2011-07-20

Family

ID=37466216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120643A Expired - Fee Related JP4730651B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.

Country Status (1)

Country Link
JP (1) JP4730651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102463358B (en) * 2010-11-12 2016-01-06 三菱综合材料株式会社 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310607A (en) * 1991-05-16 1994-05-10 Balzers Aktiengesellschaft Hard coating; a workpiece coated by such hard coating and a method of coating such workpiece by such hard coating
JPH1076406A (en) * 1996-09-02 1998-03-24 Mitsubishi Materials Corp Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP2000107908A (en) * 1998-09-29 2000-04-18 Hitachi Metals Ltd Aluminum oxide film-coated tool

Also Published As

Publication number Publication date
JP2006297518A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716251B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4853120B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5088477B2 (en) Surface coated cutting tool
JP2009154248A (en) Surface coated cutting tool
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5267766B2 (en) Surface coated cutting tool
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP4716253B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees