JP4716252B2 - Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer - Google Patents
Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer Download PDFInfo
- Publication number
- JP4716252B2 JP4716252B2 JP2005150561A JP2005150561A JP4716252B2 JP 4716252 B2 JP4716252 B2 JP 4716252B2 JP 2005150561 A JP2005150561 A JP 2005150561A JP 2005150561 A JP2005150561 A JP 2005150561A JP 4716252 B2 JP4716252 B2 JP 4716252B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- constituent
- crystal
- type
- lattice points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011195 cermet Substances 0.000 title claims description 45
- 238000005520 cutting process Methods 0.000 title claims description 35
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title claims description 5
- 239000010410 layer Substances 0.000 claims description 215
- 239000013078 crystal Substances 0.000 claims description 89
- 239000000470 constituent Substances 0.000 claims description 86
- 238000009826 distribution Methods 0.000 claims description 82
- 239000011247 coating layer Substances 0.000 claims description 31
- 239000010936 titanium Substances 0.000 claims description 17
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000005259 measurement Methods 0.000 claims description 12
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- 229910052593 corundum Inorganic materials 0.000 claims description 8
- 239000010431 corundum Substances 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 7
- 239000011780 sodium chloride Substances 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 150000004767 nitrides Chemical class 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- 150000003608 titanium Chemical class 0.000 claims 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 60
- 239000000843 powder Substances 0.000 description 21
- 239000000203 mixture Substances 0.000 description 12
- 239000012495 reaction gas Substances 0.000 description 12
- 230000008719 thickening Effects 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229910001018 Cast iron Inorganic materials 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、硬質被覆層の上部層、すなわち化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al2O3層で示す)を、特に厚膜化した状態で、各種の鋼や鋳鉄などの切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, an upper layer of a hard coating layer, that is, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an α-type crystal structure in a state where chemical vapor deposition is formed is particularly thick. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance even when used for cutting various steels and cast iron.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層として、1〜15μmの平均層厚を有するα型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
また、上記硬質被覆層の下部層を構成するTiCN層が、図8(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造[なお、図8(b)は(011)面で切断した状態を示す]を有し、さらに同上部層であるα型Al2O3層が、図9にα型Al2O3の単位格子の原子配列が模式図(斜視図および横断面1〜9の平面図)で示される通り、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有することも知られている。
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer composed of one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 20 μm ,
(B) an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm as an upper layer;
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used.
Further, the TiCN layer constituting the lower layer of the hard coating layer has a NaCl-type face center in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points, as schematically shown in FIG. It has a cubic crystal structure [FIG. 8 (b) shows a state cut along the (011) plane], and the α-type Al 2 O 3 layer, which is the same upper layer, is shown in FIG. Corundum-type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points as shown in the schematic diagram (perspective view and plan view of cross sections 1 to 9) of the unit lattice of 2 O 3 It is also known to have a crystal structure of
近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具に対する使用寿命の一層の延命化を図る目的で、特に硬質被覆層を構成する上部層、すなわちすぐれた高温硬さと耐熱性を有するα型Al2 O3 層には一段の厚膜化が強く望まれているが、前記α型Al2 O3 層の層厚を従来実用に供されている最大平均層厚である15μmを越えて厚膜化すると、Al2 O3 結晶粒が急激に粗大化し、かつ層自体の緻密性が著しく低下し、この結果高温強度の低下が避けられなくなることから、かかる厚膜化α型Al2 O3 層を硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具においては、前記厚膜化α型Al2 O3 層が原因で、切刃部にチッピング(微少欠け)が発生し易くなり、この結果使用寿命のきわめて短いものとなることから、実用に供することができないのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work, and with this purpose, especially for the purpose of further extending the service life of cutting tools. upper layer constituting the hard coating layer, i.e. excellent but the hot hardness and thickening of one step in the α-type the Al 2 O 3 layer having heat resistance is strongly demanded, of the α-type the Al 2 O 3 layer When the layer thickness exceeds 15 μm, which is the maximum average layer thickness that has been practically used in the past, the Al 2 O 3 crystal grains become coarser and the denseness of the layer itself is significantly reduced. since the decrease in the high-temperature strength can not be avoided, the coated cermet tool formed by depositing formed as an upper layer of such thickening α type the Al 2 O 3 layer a hard coating layer, the thickening α-type Al 2 O 3 layer due to chipping to the cutting edge (fine Chipping) is likely to occur, since it becomes very short for this result useful life, it can not be put to practical use at present.
そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する1〜15μmの平均層厚を有するα型Al2O3層に着目し、これの層厚を平均層厚で15μmを越えて厚膜化しても、前記厚膜化α型Al2O3層が原因のチッピングが切刃部に発生しない被覆サーメット工具を開発するべく研究を行った結果、
(1−a)上記の従来被覆サーメット工具の硬質被覆層を構成する上部層としてのα型Al2O3層(以下、「従来α型Al2O3層」という)は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:2〜4%、CO2:6〜8%、HCl:1.5〜3%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:6〜10kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:1020〜1050℃、
反応雰囲気圧力:3〜5kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、AlCl3、CO2、およびHClの含有割合を相対的に高く、かつ雰囲気圧力を相対的に低くした条件(反応ガス成分高含有調整低圧条件)で、平均層厚で15μmを越えた16〜30μmの層厚に形成すると、この結果形成された厚膜化α型Al2O3層(以下、厚膜化改質α型Al2O3層という)においては、平均層厚で16〜30μmの層厚に厚膜化したにもかかわらず、Al2O3結晶粒の粗大化が著しく抑制され、かつ層自体の緻密性も保持されたものになるので、高温強度の低下が抑制され、寧ろ向上したものになること。
Therefore, the present inventors focused on the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm constituting the hard coating layer of the above-described conventional coated cermet tool from the above viewpoint, Research was conducted to develop a coated cermet tool in which chipping caused by the thickened α-type Al 2 O 3 layer does not occur at the cutting edge even if the layer thickness is increased to an average layer thickness exceeding 15 μm. result,
(1-a) An α-type Al 2 O 3 layer (hereinafter referred to as “conventional α-type Al 2 O 3 layer”) as an upper layer constituting the hard coating layer of the conventional coated cermet tool is, for example, a normal In chemical vapor deposition equipment,
Reaction gas composition: volume%, AlCl 3 : 2 to 4%, CO 2 : 6 to 8%, HCl: 1.5 to 3%, H 2 S: 0.05 to 0.2%, H 2 : remaining ,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 6 to 10 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, AlCl 3: 6~10%, CO 2: 10~15%, HCl: 3~5%, H 2 S: 0.05~0.2%, H 2: remainder,
Reaction atmosphere temperature: 1020 to 1050 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
In other words, in the reaction gas composition, the content ratio of AlCl 3 , CO 2 , and HCl is relatively high and the atmospheric pressure is relatively low (reaction gas component high). When the layer thickness is 16-30 μm, which exceeds 15 μm in average layer thickness under the content-adjusting low-pressure conditions, the resulting thickened α-type Al 2 O 3 layer (hereinafter referred to as “thickened modified α-type”) is formed. (Al 2 O 3 layer), although the average layer thickness is increased to 16-30 μm, the coarsening of Al 2 O 3 crystal grains is remarkably suppressed and the layer itself is dense. Since it is also retained, the decrease in high-temperature strength is suppressed and rather improved.
(1−b)上記の厚膜化改質α型Al2O3層、および上記の通常の条件で16〜30μmの平均層厚で蒸着形成された厚膜化α型Al2O3層(以下、厚膜化通常α型Al2O3層という)について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角[図1(a)には前記結晶面の傾斜角が0度の場合、同(b)には傾斜角が45度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角]を測定し、この場合前記結晶粒は、上記の通り格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、上記厚膜化通常α型Al2O3層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記厚膜化改質α型Al2O3層は、図3に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するAlCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力によって変化すること。
なお、上記の厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層において、相互に隣接する結晶粒の界面における構成原子共有格子点形態のうちのΣ3、Σ7、およびΣ11の単位形態を模式図で例示すると図2(a)〜(c)に示される通りとなる(なお、以下に述べる改質TiCN層および従来TiCN層においても同様である)。
(1-b) The above-described thickened modified α-type Al 2 O 3 layer and the thickened α-type Al 2 O 3 layer formed by vapor deposition with an average layer thickness of 16 to 30 μm under the above-described normal conditions ( (Hereinafter referred to as a thickened normal α-type Al 2 O 3 layer)
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 1A and 1B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The tilt angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the polished surface [FIG. 1 (a) shows the tilt angle of the crystal plane. (B) shows the case where the inclination angle is 45 degrees, all the inclination angles of the individual crystal grains including these angles are measured. In this case, the crystal grains Has a crystal structure of a corundum type hexagonal close-packed crystal in which constituent atoms composed of Al and oxygen are present at lattice points as described above, and based on the measured tilt angle, crystal grains adjacent to each other are obtained. Each of the constituent atoms shares one constituent atom between the crystal grains at the interface The distribution of child points (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist), and the existing constituent atomic shared lattice point form is expressed as ΣN + 1, When a constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 is created (in this case, the constituent atom shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27 exist) The thickened normal α-type Al 2 O 3 layer shows a relatively low constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less as illustrated in FIG. In contrast, the thickening reforming -Type Al 2 O 3 layer as illustrated in FIG. 3, shows an extremely high atom sharing lattice point distribution graph of the distribution ratio is 60% or more of the [sum] 3, the distribution ratio of the high [sum] 3 constitutes a reaction gas Vary depending on the AlCl 3 , CO 2 , and HCl content, and the atmospheric reaction pressure.
In addition, in the above-described thickened modified α-type Al 2 O 3 layer and thickened normal α-type Al 2 O 3 layer, Σ3 of constituent atomic shared lattice point forms at the interface between adjacent crystal grains, The unit forms of Σ7 and Σ11 are schematically illustrated as shown in FIGS. 2A to 2C (the same applies to the modified TiCN layer and the conventional TiCN layer described below).
(2−a)さらに、上記の従来被覆サーメット工具の硬質被覆層の下部層であるTi化合物層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl4:2〜10%、CH3CN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件で形成されるが、これを、同じく通常の化学蒸着装置で、
反応ガス組成:容量%で、TiCl4:0.1〜0.8%、CH3CN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiCl4およびCH3CNを相対的に低く、かつN2ガスに代ってArガスを添加し、さらに雰囲気温度を相対的に高くした条件(反応ガス組成調整高温条件)で蒸着形成すると、この結果の反応ガス組成調整高温条件で形成したTiCN層(以下、「改質TiCN層」という)は、高温強度が一段と向上するようになること。
(2-a) Furthermore, the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the Ti compound layer, which is the lower layer of the hard coating layer of the conventional coated cermet tool, is a normal chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed under the conditions of, but this is also a normal chemical vapor deposition device,
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The reaction gas composition is relatively low in TiCl 4 and CH 3 CN, Ar gas is added instead of N 2 gas, and the ambient temperature is relatively When the vapor deposition is carried out under the condition (reaction gas composition adjustment high temperature condition), the TiCN layer (hereinafter referred to as “modified TiCN layer”) formed under the reaction gas composition adjustment high temperature condition as a result is further improved in high temperature strength. To be like that.
(2−b)電界放出型走査電子顕微鏡を用い、図5(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図5(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、いずれのTiCN層もΣ3に最高ピークが存在するが、前記従来TiCN層は、図7に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質TiCN層は、図6に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するTiCl4およびCH3CNと、Arの含有量、さらに雰囲気反応温度によって変化すること。 (2-b) Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams of FIGS. 5A and 5B, an electron beam is individually applied to each crystal grain existing within the measurement range of the surface polished surface. The tilt angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface upon irradiation (the crystal plane in FIG. When the inclination angle of the (001) plane is 0 degree and the inclination angle of the (011) plane is 45 degrees, the inclination angle of the (001) plane is 45 degrees and the inclination angle of the (011) plane is (b). , The inclination angle of each of the crystal grains including these angles is measured, and in this case, the crystal grains have Ti, carbon, and nitrogen at lattice points as described above. The crystal structure of the NaCl type face centered cubic crystal in which each of the constituent atoms is present, and based on the measured tilt angle obtained as a result. The distribution of lattice points (constituent atom sharing lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, and the constituent atom sharing is calculated. The constitutive atom shared lattice point form in which N lattice points that do not share the constitutive atom between the lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face-centered cubic crystal) is expressed by ΣN + 1, and each ΣN + 1 When a constituent atomic shared lattice point distribution graph showing the distribution ratio of ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to frequency) is created, the highest peak exists in Σ3 in any TiCN layer, As shown in FIG. 7, the conventional TiCN layer shows a relatively low constituent atom sharing lattice distribution graph in which the distribution ratio of Σ3 is 30% or less, whereas the modified TiCN layer is shown in FIG. 6. As illustrated, Σ 3 shows a very high constituent atom shared lattice point distribution graph in which the distribution ratio of 3 is 60% or more, and this high distribution ratio of Σ3 is the content of TiCl 4 and CH 3 CN constituting the reaction gas, the content of Ar, and the atmospheric reaction Change with temperature.
(3)以上の結果から、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示す厚膜化改質α型Al2O3層を硬質被覆層の上部層とし、同じくΣ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示す改質TiCN層を同下部層として2.5〜15μmの平均層厚で蒸着形成してなる被覆サーメット工具は、α型Al2O3層を平均層厚で16〜30μmに厚膜化しても、前記厚膜化改質α型Al2O3層および改質TiCN層の具備する高温強度によって、上記の厚膜化通常α型Al2O3層を上部層とし、かつ上記従来TiCN層を同下部層として2.5〜15μmの平均層厚で蒸着形成した被覆サーメット工具に比して、特に切刃部にチッピングの発生なく、一段とすぐれた耐摩耗性を発揮するようになることから、使用寿命の一段の延命化が可能となること。
以上(1)〜(3)に示される研究結果を得たのである。
(3) From the above results, the thickened modified α-type Al 2 O 3 layer showing an extremely high constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more is used as the upper layer of the hard coating layer. A coated cermet tool formed by vapor-depositing an average layer thickness of 2.5 to 15 μm with a modified TiCN layer showing a very high constituent atomic shared lattice point distribution graph having a distribution ratio of Σ3 of 60% or more is α Even if the type Al 2 O 3 layer is thickened to an average thickness of 16 to 30 μm, the above thick film is formed by the high temperature strength of the thickened modified α-type Al 2 O 3 layer and the modified TiCN layer. Compared to a coated cermet tool having a normal α-type Al 2 O 3 layer as the upper layer and the conventional TiCN layer as the lower layer and deposited with an average layer thickness of 2.5 to 15 μm, particularly in the cutting edge portion Excellent wear resistance with no chipping From becoming so, it is possible to stage a life extension of the service life.
The research results shown in (1) to (3) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、上記工具基体の表面に蒸着形成した硬質被覆層を、
(a)いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質TiCN層からなる下部層、
(b)16〜30μmの平均層厚を有する厚膜化改質α型Al2O3層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質TiCN層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフ、
を示し、さらに、上記(b)の厚膜化改質α型Al2O3層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフ、
を示してなる、厚膜化α型Al2O3層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention has been made based on the above research results, and a hard coating layer formed by vapor deposition on the surface of the tool base is provided.
(A) All formed by chemical vapor deposition, comprising one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and having a total average layer thickness of 0.1 to 5 μm A lower layer comprising a Ti compound layer and a modified TiCN layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer composed of a thickened modified α-type Al 2 O 3 layer having an average layer thickness of 16 to 30 μm;
The modified TiCN layer composed of the above (a) and (b), and the lower layer of (a),
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 Constituent atom shared lattice distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
Further, the thickening-modified α-type Al 2 O 3 layer in (b) above is
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains are corundum type in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the measured tilt angle obtained as a result of the hexagonal close-packed crystal structure, each of the constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even number of 2 or more, but distribution frequency When the upper limit of N from the point is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is included in the entire ΣN + 1 In the constituent atom shared lattice point distribution graph showing the distribution ratio, a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 60% or more,
The thickened α-type Al 2 O 3 layer is characterized by a coated cermet tool that exhibits excellent chipping resistance.
また、この発明の被覆サーメット工具の硬質被覆層の構成層において、上記の通りに数値限定した理由を以下に説明する。
(a)下部層の密着性Ti化合物層
密着性Ti化合物層は、工具基体と上部層である厚膜化改質α型Al2O3層および改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は5μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜5μmと定めた。
In addition, the reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Lower layer adhesive Ti compound layer The adhesive Ti compound layer firmly adheres to both the tool substrate and the upper layer thickened modified α-type Al 2 O 3 layer and modified TiCN layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be secured, while the adhesion Since the total average layer thickness up to 5 μm is sufficient, the total average layer thickness was determined to be 0.1 to 5 μm.
(b)下部層の改質TiCN層
上記の改質TiCN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するTiCl4およびCH3CNと、Arの含有量、さらに雰囲気反応温度を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、高速断続切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。このように前記改質TiCN層は、上記の通りTiCN自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified TiCN layer of lower layer The distribution ratio of Σ3 in the constituent atomic shared lattice point distribution graph of the modified TiCN layer is the content of TiCl 4 and CH 3 CN constituting the reaction gas and Ar as described above The amount and further the atmospheric reaction temperature can be adjusted to 60% or more. In this case, when the distribution ratio of Σ3 is less than 60%, the chipping does not occur in the hard coating layer by high-speed intermittent cutting, which is excellent. Since the effect of improving the high temperature strength cannot be ensured, the distribution ratio of Σ3 was determined to be 60% or more. As described above, the modified TiCN layer has a further excellent high-temperature strength in addition to the high-temperature hardness and high-temperature strength of TiCN itself as described above. However, if the average layer thickness is less than 2.5 μm, it is desirable. However, if the average layer thickness exceeds 15 μm, thermoplastic deformation that causes uneven wear tends to occur and wear accelerates. Therefore, the average layer thickness was set to 2.5 to 15 μm.
(c)厚膜化改質α型Al2O3層
上記の厚膜化改質α型Al2O3層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り反応ガスを構成するAlCl3、CO2、およびHClの含有割合、さらに雰囲気反応圧力を調整することによって60%以上とすることができるが、この場合Σ3の分布割合が60%未満では、平均層厚で16〜30μmに厚膜化した場合に、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができないことから、Σ3の分布割合を60%以上と定めた。
また、上記厚膜化改質α型Al2O3層は、Al2O3層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が16μm未満では厚膜化の要求に十分満足に対応することができず、一方その平均層厚が30μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を16〜30μmと定めた。
(C) the distribution ratio of Σ3 in the atom sharing lattice point distribution graph of the thickening modified α type the Al 2 O 3 layer above thickening modified α-type Al 2 O 3 layer is the street reactive gas By adjusting the AlCl 3 , CO 2 , and HCl content ratios, and the atmospheric reaction pressure, it can be made 60% or more. In this case, if the distribution ratio of Σ3 is less than 60%, the average layer thickness is 16 When the film thickness is increased to ˜30 μm, chipping does not occur in the hard coating layer, and an excellent high-temperature strength improvement effect cannot be ensured. Therefore, the distribution ratio of Σ3 is determined to be 60% or more.
Further, the above-mentioned thickening modified α-type Al 2 O 3 layer contributes to the improvement of the wear resistance of the hard coating layer due to the excellent high temperature hardness and heat resistance of the Al 2 O 3 layer itself, but its average layer If the thickness is less than 16 μm, it is not possible to sufficiently satisfy the demand for thickening. On the other hand, if the average layer thickness exceeds 30 μm, chipping is likely to occur. It was determined to be 16 to 30 μm.
なお、被覆サーメット工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、硬質被覆層の最表面層として必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 For the purpose of identification before and after the use of the coated cermet tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer, but the average layer thickness in this case May be 0.1 to 1 μm, because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm. .
この発明の被覆サーメット工具は、これの硬質被覆層を構成する厚膜化改質α型Al2O3層が、図3に例示される通りΣ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、これを平均層厚で16〜30μmの層厚に厚膜化しても、図4に例示される通り、同じくΣ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示す改質TiCN層の具備する高温強度と相俟って、すぐれた耐チッピング性を発揮することから、各種の鋼や鋳鉄の切削加工で、すぐれた耐摩耗性を長期に亘って発揮し、使用寿命の一段の延命化をもたらすものである。 In the coated cermet tool of the present invention, the thickened modified α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool has a very high constituent atom in which the distribution ratio of Σ3 is 60% or more as illustrated in FIG. Even if the shared lattice point distribution graph is shown and the average layer thickness is increased to a layer thickness of 16 to 30 μm, as shown in FIG. 4, as shown in FIG. Combined with the high-temperature strength of the modified TiCN layer showing the lattice distribution graph, it exhibits excellent chipping resistance, so long-term excellent wear resistance can be achieved by cutting various types of steel and cast iron. It is demonstrated over a long period of time, leading to a further increase in service life.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で32時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.06mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the blending composition shown in Table 1, added with wax, ball milled in acetone for 32 hours, dried under reduced pressure, and pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.06 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで32時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 32 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.
つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、まず、表3,4に示される条件にて、硬質被覆層の下部層を構成する密着性Ti化合物層および改質TiCN層a〜kを表5に示される組み合わせで、かつ目標層厚で蒸着形成し、つぎに、上部層の厚膜化改質α型Al2O3層(a)〜(f)を、同じく表4に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, on the surfaces of the tool bases A to F and the tool bases a to f, a normal chemical vapor deposition apparatus is used, and first, the lower layer of the hard coating layer is configured under the conditions shown in Tables 3 and 4. The adhesion Ti compound layer and the modified TiCN layers a to k are formed by vapor deposition with the combination shown in Table 5 and with a target layer thickness, and then the upper layer thickened modified α-type Al 2 O 3 layer ( The coated cermet tools 1 to 13 of the present invention were manufactured by vapor-depositing a) to (f) with the combinations and target layer thicknesses shown in Table 5 under the same conditions as shown in Table 4.
また、比較の目的で、上記の工具基体A〜Fおよび工具基体a〜fの表面に、同じく通常の化学蒸着装置を用い、表3,6に示される条件にて、硬質被覆層の下部層として従来TiCN層(a)〜(i)および密着性Ti化合物層を、表7に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで、上部層の厚膜化通常α型Al2O3層(a)〜(f)を、同じく表6に示される条件で、同じく表7に示される組み合わせおよび目標層厚で蒸着形成することにより比較被覆サーメット工具1〜13をそれぞれ製造した。 For the purpose of comparison, the lower layers of the hard coating layer are formed on the surfaces of the tool bases A to F and the tool bases a to f using the same ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 6. Conventional TiCN layers (a) to (i) and an adhesive Ti compound layer are formed by vapor deposition in the combinations shown in Table 7 and with a target layer thickness, and then the upper layer is made thicker usually α-type Al 2 O Comparative coated cermet tools 1 to 13 were produced by vapor-depositing the three layers (a) to (f) under the conditions shown in Table 6 and the combinations and target layer thicknesses shown in Table 7, respectively.
ついで、上記の本発明被覆サーメット工具1〜13と比較被覆サーメット工具1〜13の硬質被覆層を構成する改質TiCN層および従来TiCN層、さらに厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質TiCN層および従来TiCN層、さらに厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記改質TiCN層および従来TiCN層については結晶粒の結晶面である(001)面および(011)面、前記厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層については、結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角をそれぞれ測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(この場合、前記改質TiCN層および従来TiCN層に関しては、NはNaCl型面心立方晶の結晶構造上2以上の偶数となり、一方前記厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層については、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在しないことになる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Subsequently, the modified TiCN layer and the conventional TiCN layer constituting the hard coating layers of the above-described coated cermet tools 1 to 13 of the present invention and the comparative coated cermet tools 1 to 13, and the thickened modified α-type Al 2 O 3 layer and For the thickened normal α-type Al 2 O 3 layer, a constituent atom sharing lattice point distribution graph was created using a field emission scanning electron microscope.
That is, the constituent atom sharing lattice point distribution graph shows the surface of the modified TiCN layer and the conventional TiCN layer, the thickened modified α-type Al 2 O 3 layer, and the thickened normal α-type Al 2 O 3 layer. Is set in a lens barrel of a field emission scanning electron microscope, and the surface polished surface is irradiated with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA. Each of the crystal grains existing within the measurement range is irradiated with an electron backscatter diffraction image apparatus, and a 30 × 50 μm region is spaced at a spacing of 0.1 μm / step with respect to the normal line of the surface polished surface. Regarding the modified TiCN layer and the conventional TiCN layer, the (001) plane and (011) plane which are crystal planes of crystal grains, the thickened modified α-type Al 2 O 3 layer and the thickened normal α-type Al 2 The O 3 layer is the crystal plane of the crystal grain (000 1) Measure the tilt angles formed by the normals of the plane and (10-10) plane, and based on the measured tilt angles obtained as a result, each of the constituent atoms at the interface between adjacent crystal grains The distribution of lattice points that share one constituent atom between the crystal grains (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (in this case, Regarding the modified TiCN layer and the conventional TiCN layer, N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal, while the thickened modified α type Al 2 O 3 layer and the thickened normal α As for the type Al 2 O 3 layer, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal, but when the upper limit of N is 28 from the point of distribution frequency, 4, 8, 14, 24 , And the even number of 26 will not be present) If represents the child sharing lattice points form in .SIGMA.N + 1, each .SIGMA.N + 1 is created by obtaining a distribution ratio of total .SIGMA.N + 1.
この結果得られた各種の構成原子共有格子点分布グラフにおいて、改質TiCN層および従来TiCN層については、Nが2〜28の範囲内のすべての偶数からなるΣN+1全体に占めるΣ3の分布割合、また、厚膜化改質α型Al2O3層および厚膜化通常α型Al2O3層については、上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計からなるΣN+1全体に占めるΣ3の分布割合をそれぞれ表5,7にそれぞれ示した。 In the various constituent atomic share lattice point distribution graphs obtained as a result, for the modified TiCN layer and the conventional TiCN layer, the distribution ratio of Σ3 in the entire ΣN + 1 consisting of all even numbers in the range of N from 2 to 28, For the thickened modified α-type Al 2 O 3 layer and the thickened normal α-type Al 2 O 3 layer, Σ3, Σ7, Σ11, Σ13, Σ17, Σ19, Σ21, Σ23, and Tables 5 and 7 show the distribution ratio of Σ3 in the entire ΣN + 1, which is the sum of the distribution ratios of Σ29.
上記の各種の構成原子共有格子点分布グラフにおいて、表5,7にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層および厚膜化改質α型Al2O3層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、比較被覆サーメット工具の従来TiCN層および厚膜化通常α型Al2O3層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図6は、本発明被覆サーメット工具8の改質TiCN層の構成原子共有格子点分布グラフ、図7は、比較被覆サーメット工具8の従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示し、また、図3は、本発明被覆サーメット工具8の厚膜化改質α型Al2O3層の構成原子共有格子点分布グラフ、図4は、比較被覆サーメット工具8の厚膜化通常α型Al2O3層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 5 and 7, respectively, the modified TiCN layer and the thickened modified α-type Al 2 O 3 layer of the coated cermet tool of the present invention are both In contrast to the constituent atomic shared lattice distribution graph in which the distribution ratio of Σ3 is 60% or more, the conventional TiCN layer and the thickened normal α-type Al 2 O 3 layer of the comparative coated cermet tool are both Σ3 This shows a distribution graph of constituent atom shared lattice points with a distribution ratio of 30% or less.
6 shows a constituent atomic shared lattice point distribution graph of the modified TiCN layer of the coated cermet tool 8 of the present invention, and FIG. 7 shows a constituent atomic shared lattice point distribution graph of the conventional TiCN layer of the comparative coated cermet tool 8. FIG. 3 is a graph showing the distribution of constituent atomic shared lattice points of the thickened modified α-type Al 2 O 3 layer of the coated cermet tool 8 according to the present invention, and FIG. 3 shows a constituent atomic shared lattice point distribution graph of a type Al 2 O 3 layer.
さらに、上記の本発明被覆サーメット工具1〜13および比較被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTiCN層および密着性Ti化合物層と、厚膜化α型Al2O3層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and comparative coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a TiCN layer and an adhesive Ti compound layer having substantially the same composition as the target composition, and a thickened α-type Al 2 O 3 layer. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および比較被覆サーメット工具1〜13について、
被削材:JIS・SCM420の丸棒、
切削速度:240m/min、
切り込み:1.8mm、
送り:0.3mm/rev、
切削時間:20分、
の条件(切削条件Aという)での合金鋼の乾式連続切削試験、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:20分、
の条件(切削条件Bという)での炭素鋼の乾式断続切削試験、さらに、
被削材:JIS・FC350の丸棒、
切削速度:280m/min、
切り込み:1.2mm、
送り:0.3mm/rev、
切削時間:20分、
の条件(切削条件Cという)での鋳鉄の乾式連続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 13 and the comparative coated cermet tools 1 to 13 in a state where all of the various coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / SCM420 round bar,
Cutting speed: 240 m / min,
Cutting depth: 1.8mm,
Feed: 0.3mm / rev,
Cutting time: 20 minutes,
Dry continuous cutting test of alloy steel under the following conditions (referred to as cutting condition A),
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 250 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
Cutting time: 20 minutes,
Dry interrupted cutting test of carbon steel under the conditions (referred to as cutting condition B),
Work material: JIS / FC350 round bar,
Cutting speed: 280 m / min,
Cutting depth: 1.2mm,
Feed: 0.3mm / rev,
Cutting time: 20 minutes,
The dry continuous cutting test of cast iron was performed under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
表5,7および表8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層のうちの1層がΣ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質TiCN層で構成され、さらに、同上部層が同じくΣ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す厚膜化改質α型Al2O3層で構成され、この結果前記改質TiCN層および厚膜化改質α型Al2O3層が一段と高温強度の向上したものになっているので、α型Al2O3層を平均層厚で16〜30μmの層厚に厚膜化しても、鋼や鋳鉄の切削加工で、特にα型Al2O3層の厚膜化が原因のチッピング発生がなくなり、長期に亘ってすぐれた耐摩耗性を示し、使用寿命の延命化を可能とするのに対して、硬質被覆層が、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来TiCN層および厚膜化通常α型Al2O3層で構成された比較被覆サーメット工具1〜13においては、いずれも硬質被覆層の高温強度不足が原因で、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 and 7 and Table 8, the coated cermet tools 1 to 13 of the present invention all have a constituent atomic shared lattice in which one of the lower layers of the hard coating layer has a distribution ratio of Σ3 of 60% or more. A thickened modified α-type Al 2 O 3 layer composed of a modified TiCN layer showing a point distribution graph, and the upper layer also showing a constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more As a result, the modified TiCN layer and the thickened modified α-type Al 2 O 3 layer are further improved in high-temperature strength, so that the α-type Al 2 O 3 layer has an average layer thickness. Even when the layer thickness is increased to 16 to 30 μm, chipping caused by the thickening of the α-type Al 2 O 3 layer is eliminated in cutting of steel and cast iron, and excellent wear resistance over a long period of time. It is possible to extend the service life, while the hard coating layer In comparison coated cermet tools 1 to 13, also the distribution ratio of Σ3 is composed of TiCN layer and thicker usual α-type the Al 2 O 3 layer prior to showing the atom sharing lattice point distribution graph of the 30%, both It is apparent that chipping occurs at the cutting edge due to insufficient high-temperature strength of the hard coating layer, and the service life is reached in a relatively short time.
上述のように、この発明の被覆サーメット工具は、これの硬質被覆層の上部層であるα型Al2O3層の層厚を平均層厚で16〜30μmに厚くしても、各種の鋼や鋳鉄などの切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮し、使用寿命の延命化を可能とするものであるから、切削加工のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool according to the present invention can be used for various steels even when the α-type Al 2 O 3 layer, which is the upper layer of the hard coating layer, has an average layer thickness of 16 to 30 μm. It shows excellent chipping resistance in cutting work such as cast iron and cast iron, exhibits excellent wear resistance over a long period of time, and can extend the service life. It can cope with labor saving, energy saving and cost reduction of processing sufficiently satisfactorily.
Claims (1)
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層以上からなり、かつ0.1〜5μmの合計平均層厚を有する密着性Ti化合物層と、2.5〜15μmの平均層厚を有する改質炭窒化チタン層からなる下部層、
(b)16〜30μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する厚膜化改質α型酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成し、かつ、上記(a)の下部層における改質炭窒化チタン層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフ、
を示し、さらに、上記(b)の厚膜化改質α型酸化アルミニウム層は、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフ、
を示すことを特徴とする厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。 A hard coating layer formed by vapor deposition on the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) All are formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition, and 0.1 to 5 μm An adhesive Ti compound layer having a total average layer thickness, and a lower layer comprising a modified titanium carbonitride layer having an average layer thickness of 2.5 to 15 μm,
(B) an upper layer composed of a thickened modified α-type aluminum oxide layer having an average layer thickness of 16 to 30 μm and having an α-type crystal structure in a state of chemical vapor deposition;
The modified titanium carbonitride layer in the lower layer of the above (a) is composed of the above (a) and (b),
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 Constituent atom shared lattice distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
Furthermore, the thickening-modified α-type aluminum oxide layer of (b) above is
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains are corundum type in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the measured tilt angle obtained as a result of the hexagonal close-packed crystal structure, each of the constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even number of 2 or more, but distribution frequency When the upper limit of N from the point is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is included in the entire ΣN + 1 In the constituent atom shared lattice point distribution graph showing the distribution ratio, a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 60% or more,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a thickened α-type aluminum oxide layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150561A JP4716252B2 (en) | 2005-05-24 | 2005-05-24 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005150561A JP4716252B2 (en) | 2005-05-24 | 2005-05-24 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006326713A JP2006326713A (en) | 2006-12-07 |
JP4716252B2 true JP4716252B2 (en) | 2011-07-06 |
Family
ID=37548965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005150561A Expired - Fee Related JP4716252B2 (en) | 2005-05-24 | 2005-05-24 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4716252B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2728705T3 (en) * | 2011-09-16 | 2019-10-28 | Walter Ag | Alpha-alumina coated cutting tool designed with grain boundaries |
JP6657594B2 (en) * | 2014-05-16 | 2020-03-04 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP6548072B2 (en) | 2014-05-30 | 2019-07-24 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP6738556B2 (en) * | 2015-06-26 | 2020-08-12 | 三菱マテリアル株式会社 | Surface coated cutting tool |
WO2016208663A1 (en) * | 2015-06-26 | 2016-12-29 | 三菱マテリアル株式会社 | Coated surface cutting tool |
KR102126102B1 (en) | 2015-07-13 | 2020-06-23 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Surface-coated cutting tool |
KR102126104B1 (en) * | 2015-07-13 | 2020-06-23 | 스미또모 덴꼬오 하드메탈 가부시끼가이샤 | Surface-coated cutting tool |
WO2017009929A1 (en) * | 2015-07-13 | 2017-01-19 | 住友電工ハードメタル株式会社 | Surface-coated cutting tool |
JP6439200B2 (en) * | 2015-11-25 | 2018-12-19 | 住友電工ハードメタル株式会社 | Method for manufacturing surface-coated cutting tool |
JP6535922B2 (en) * | 2015-11-25 | 2019-07-03 | 住友電工ハードメタル株式会社 | Method of manufacturing surface coated cutting tool |
JP6439201B2 (en) * | 2015-11-25 | 2018-12-19 | 住友電工ハードメタル株式会社 | Method for manufacturing surface-coated cutting tool |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3291775B2 (en) * | 1992-07-10 | 2002-06-10 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP3768136B2 (en) * | 2001-10-04 | 2006-04-19 | 日立ツール株式会社 | Coated tool |
JP3972299B2 (en) * | 2002-10-01 | 2007-09-05 | 三菱マテリアル株式会社 | Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting |
JP4518258B2 (en) * | 2004-08-11 | 2010-08-04 | 三菱マテリアル株式会社 | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP4518260B2 (en) * | 2005-01-21 | 2010-08-04 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting |
-
2005
- 2005-05-24 JP JP2005150561A patent/JP4716252B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006326713A (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4716252B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4518260B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4716251B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel | |
JP4518258B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4822120B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4474643B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP5263572B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4853121B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP4720418B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP5286930B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4716254B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP2008178943A (en) | Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work | |
JP4853120B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP2009166193A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP2006315154A (en) | SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE | |
JP4730656B2 (en) | Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting | |
JP4474644B2 (en) | Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting | |
JP4730651B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys. | |
JP5309697B2 (en) | Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP4857950B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting | |
JP5170829B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4822119B2 (en) | Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting | |
JP4748444B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4716253B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4716252 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110320 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140408 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |