JP4716254B2 - Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer - Google Patents

Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer Download PDF

Info

Publication number
JP4716254B2
JP4716254B2 JP2005166615A JP2005166615A JP4716254B2 JP 4716254 B2 JP4716254 B2 JP 4716254B2 JP 2005166615 A JP2005166615 A JP 2005166615A JP 2005166615 A JP2005166615 A JP 2005166615A JP 4716254 B2 JP4716254 B2 JP 4716254B2
Authority
JP
Japan
Prior art keywords
layer
constituent
crystal
type
coated cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005166615A
Other languages
Japanese (ja)
Other versions
JP2006341320A (en
Inventor
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005166615A priority Critical patent/JP4716254B2/en
Publication of JP2006341320A publication Critical patent/JP2006341320A/en
Application granted granted Critical
Publication of JP4716254B2 publication Critical patent/JP4716254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層の上部層、すなわち化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)を、特に厚膜化した状態で、各種の鋼や鋳鉄などの切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, an upper layer of a hard coating layer, that is, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an α-type crystal structure in a state where chemical vapor deposition is formed is particularly thick. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance even when used for cutting various steels and cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有するα型Al23層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平6−31503号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. , A carbon oxide (hereinafter referred to as TiCO) layer, and a carbonitride oxide (hereinafter referred to as TiCNO) layer, and has a total average layer thickness of 0.5 to 15 μm. Ti compound layer,
(B) an α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 1 to 15 μm;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Japanese Unexamined Patent Publication No. 6-31503

近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具に対する使用寿命の一層の延命化を図る目的で、特に硬質被覆層を構成する上部層、すなわちすぐれた高温硬さと耐熱性を有するα型Al23 層には一段の厚膜化が強く望まれているが、前記α型Al23 層の層厚を従来実用に供されている最大平均層厚である15μmを越えて厚膜化すると、Al23 結晶粒が急激に粗大化し、かつ層自体の緻密性が著しく低下し、この結果高温強度の低下が避けられなくなることから、かかる厚膜化α型Al23 層を硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具においては、前記厚膜化α型Al23 層が原因で、切刃部にチッピング(微少欠け)が発生し易くなり、この結果使用寿命のきわめて短いものとなることから、実用に供することができないのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work, and with this purpose, especially for the purpose of further extending the service life of cutting tools. upper layer constituting the hard coating layer, i.e. excellent but the hot hardness and thickening of one step in the α-type the Al 2 O 3 layer having heat resistance is strongly demanded, of the α-type the Al 2 O 3 layer When the layer thickness exceeds 15 μm, which is the maximum average layer thickness that has been practically used in the past, the Al 2 O 3 crystal grains become coarser and the denseness of the layer itself is significantly reduced. since the decrease in the high-temperature strength can not be avoided, the coated cermet tool formed by depositing formed as an upper layer of such thickening α type the Al 2 O 3 layer a hard coating layer, the thickening α-type Al 2 O 3 layer due to chipping to the cutting edge (fine Chipping) is likely to occur, since it becomes very short for this result useful life, it can not be put to practical use at present.

そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する1〜15μmの平均層厚を有するα型Al23層に着目し、これの層厚を平均層厚で15μmを越えて厚膜化しても、前記厚膜化α型Al23層が原因のチッピングが切刃部に発生しない被覆サーメット工具を開発すべく研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層を構成する下部層としてのTiCN層は、図1(a)に模式図で示される通り、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有し、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、これを、
反応ガス組成:容量%で、TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H2:残り、
反応雰囲気温度:930〜1000℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件に比して、反応ガス組成では、TiClおよびCHCNを相対的に低く、かつN2ガスに代ってArガスを添加し、さらに雰囲気温度を相対的に高くした条件(反応ガス組成調整高温条件)で蒸着形成すると、この結果形成されたTiCN層(以下、「改質TiCN層」という)は、上記の従来TiCN層と同じ結晶構造を有するが、組織的に改質されて、前記従来TiCN層に比して一段とすぐれた高温強度を有するようになること。
Therefore, the present inventors focused on the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm constituting the hard coating layer of the above-described conventional coated cermet tool from the above viewpoint, Research was conducted to develop a coated cermet tool in which chipping caused by the thickened α-type Al 2 O 3 layer does not occur at the cutting edge even if the layer thickness is increased to an average layer thickness exceeding 15 μm. result,
(A) The TiCN layer as the lower layer constituting the hard coating layer of the conventional coated cermet tool has constituent atoms composed of Ti, carbon, and nitrogen at lattice points, as schematically shown in FIG. It has an existing NaCl type face centered cubic crystal structure (note that FIG. 1 (b) shows a state cut by the (011) plane). For example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor deposition under the conditions (called normal conditions).
Reaction gas composition: by volume%, TiCl 4: 0.1~0.8%, CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.
Reaction atmosphere pressure: 6-20 kPa,
The reaction gas composition is relatively low in TiCl 4 and CH 3 CN, Ar gas is added instead of N 2 gas, and the ambient temperature is relatively When the vapor deposition is carried out under the conditions (reaction gas composition adjustment high temperature conditions), the resulting TiCN layer (hereinafter referred to as “modified TiCN layer”) has the same crystal structure as the conventional TiCN layer, It is systematically modified to have a high temperature strength that is far superior to that of the conventional TiCN layer.

(b)上記の従来TiCN層と上記(a)の改質TiCN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、いずれのTiCN層もΣ3に最高ピークが存在するが、前記従来TiCN層は、図4に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質TiCN層は、図3に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、反応ガスを構成するTiClおよびCHCNと、Arの含有量、さらに雰囲気反応温度によって変化すること。
(B) About the conventional TiCN layer and the modified TiCN layer of (a),
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 2A shows (001) of the crystal planes. When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. However, in this case, the crystal grains have the constituent atoms composed of Ti, carbon, and nitrogen at the lattice points as described above. Each has a NaCl-type face-centered cubic crystal structure, and based on the measured tilt angle, A distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at an interface between adjacent crystal grains, and between the constituent atomic shared lattice points. The constituent atom shared lattice point form in which N lattice points that do not share the constituent atoms (N is an even number of 2 or more on the crystal structure of the NaCl type face-centered cubic crystal) is represented by ΣN + 1, and each ΣN + 1 is the entire ΣN + 1 ( However, when a constituent atomic shared lattice point distribution graph showing the distribution ratio occupying the upper limit value is set to 28 in relation to the frequency), the highest peak exists in Σ3 in any TiCN layer, but the conventional TiCN layer is As shown in FIG. 4, the distribution ratio of Σ3 shows a relatively low constituent atom shared lattice point distribution graph of 30% or less, whereas the modified TiCN layer has the same structure as shown in FIG. 3. , Σ3 distribution This graph shows a very high distribution of atomic lattice points with a high compositional ratio of 60% or more. The distribution ratio of this high Σ3 varies depending on the TiCl 4 and CH 3 CN constituting the reaction gas, the Ar content, and the atmospheric reaction temperature. To do.

(c)上記の改質TiCN層および従来TiCN層の表面に、それぞれ従来α型Al23層の形成条件と同じ条件、すなわち、通常の化学蒸着装置にて、
反応ガス組成−体積%で、AlCl:1〜5%、CO:0.5〜10%、HCl:0.3〜3%、HS:0.02〜0.4%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件で、α型Al23層を平均層厚で15μmを越えた16〜30μmの層厚に形成すると、前記従来TiCN層の上に形成された厚膜化α型Al23層では、上記の通りAl23 結晶粒の粗大化が著しく、層自体の緻密性が著しく低下することから、高温強度の低下が避けられないのに対して、前記改質TiCN層上に形成された厚膜化α型Al23層では、形成時の前記α型Al23層は、前記改質TiCN層の結晶配列に著しく影響を受け、前記改質TiCN層のもつ結晶配列を履歴し、これを持続しながら成膜されるようになることから、この結果形成された厚膜化α型Al23層においては、平均層厚で16〜30μmの層厚に厚膜化したにもかかわらず、層厚方向に沿って、Al23結晶粒の粗大化が著しく抑制され、かつ層自体の緻密性も一様に保持されたものになるので、具備する高温強度は層厚が1〜15μmのα型Al23層のもつ高温強度と同等、寧ろそれ以上の高温強度を具備するようになり、この結果耐チッピング性の低下が著しく抑制されたものになること。
(C) On the surfaces of the modified TiCN layer and the conventional TiCN layer, the same conditions as the formation conditions of the conventional α-type Al 2 O 3 layer, that is, in a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 0.5~10%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2 :remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
When the α-type Al 2 O 3 layer is formed to an average layer thickness of 16 to 30 μm exceeding 15 μm, the thickened α-type Al 2 O 3 layer formed on the conventional TiCN layer is formed. In this case, as described above, the Al 2 O 3 crystal grains are greatly coarsened, and the denseness of the layer itself is remarkably lowered. Therefore, the high temperature strength is unavoidably lowered, but it is formed on the modified TiCN layer. the thickening α-type Al 2 O 3 layer is, the α-type the Al 2 O 3 layer at the time of formation, the reformed significantly influenced by the crystal array of TiCN layer, the crystal array having a said reformed TiCN layer In the thickened α-type Al 2 O 3 layer formed as a result, the film thickness is increased to an average layer thickness of 16 to 30 μm. Nevertheless ized, along the thickness direction, Al 2 O 3 grain coarsening significantly suppressed, and the layer Since also the density of the body becomes what is uniformly held, high temperature strength, comprising the equivalent high temperature strength with the layer thickness of α-type Al 2 O 3 layer of 1 to 15 m, but rather includes a more high-temperature strength As a result, the reduction in chipping resistance is remarkably suppressed.

(d)TiCN層の蒸着形成に際して、その形成条件を上記の通りの反応ガス組成調整高温条件とすることにより、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示す改質TiCN層が形成されるものであり、したがって、この場合、試験結果によれば、反応ガスを構成するTiClおよびCHCNと、Arの含有量が、それぞれTiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、の組成範囲を外れたり、また反応雰囲気温度が930〜1000℃の範囲を外れたりすると、構成原子共有格子点分布グラフにおけるΣ3の分布割合が60%未満となってしまい、改質TiCN層の厚膜化α型Al23層に及ぼす履歴作用が不十分となり、前記厚膜化α型Al23層に所望のすぐれた耐チッピング性を確保することができないこと。
以上(a)〜(d)に示される研究結果を得たのである。
(D) When the TiCN layer is formed by vapor deposition, the formation conditions are set to the reaction gas composition adjusted high temperature conditions as described above, thereby improving the constitutive atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 60% or more. Therefore, in this case, according to the test results, the contents of TiCl 4 and CH 3 CN constituting the reaction gas and Ar are TiCl 4 : 0.1 to 0, respectively. .8%, CH 3 CN: 0.05 to 0.3%, Ar: 10 to 30%, or if the reaction atmosphere temperature is out of the range of 930 to 1000 ° C. The distribution ratio of Σ3 in the lattice point distribution graph becomes less than 60%, and the hysteresis effect on the thickened α-type Al 2 O 3 layer of the modified TiCN layer becomes insufficient, and the thickened α-type Al 2 O 3 The desired excellent chipping resistance cannot be ensured in the layer.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、硬質被覆層として、
(a)いずれも化学蒸着形成された、TiC層、TiN層、およびTiCN層のうちの1層または2層以上からなり、かつ0.1〜2μmの合計平均層厚を有する密着性Ti化合物層、
(b)1〜10μmの平均層厚で化学蒸着形成され、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質TiCN層、
以上(a)および(b)の密着性Ti化合物層および改質TiCN層を介して、
(c)16〜30μmの平均層厚を有する厚膜化α型Al23層、
を蒸着形成してなる、厚膜化α型Al23層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and as a hard coating layer on the surface of a tool base made of WC-based cemented carbide or TiCN-based cermet,
(A) Adhesive Ti compound layer formed by chemical vapor deposition, consisting of one or more of TiC layer, TiN layer, and TiCN layer, and having a total average layer thickness of 0.1 to 2 μm ,
(B) formed by chemical vapor deposition with an average layer thickness of 1-10 μm, and
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 A modified TiCN layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
Through the adhesive Ti compound layer and the modified TiCN layer of (a) and (b) above,
(C) a thickened α-type Al 2 O 3 layer having an average layer thickness of 16 to 30 μm,
A thickened α-type Al 2 O 3 layer formed by vapor-depositing is characterized by a coated cermet tool that exhibits excellent chipping resistance.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)密着性Ti化合物層
密着性Ti化合物層は、工具基体および改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は2μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜2μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer The adhesive Ti compound layer adheres firmly to both the tool substrate and the modified TiCN layer, and thus has the effect of contributing to improved adhesion of the hard coating layer to the tool substrate. If the total average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be ensured. On the other hand, the total average layer thickness up to 2 μm is sufficient. Was determined to be 0.1 to 2 μm.

(b)改質TiCN層
上記の通り、構成原子共有格子点分布グラフにおけるΣ3の分布割合が60%以上である改質TiCN層はすぐれた高温強度を具備するようになるほか、これの上に形成される厚膜化α型Al23層の組織に影響を及ぼし、Al23結晶粒の粗大化を著しく抑制し、かつ層自体の緻密性を厚膜化しても層厚方向に沿って一様に保持せしめる作用があるが、その平均層厚が1μm未満では前記作用に所望の効果が得られず、一方その平均層厚が10μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、これが前記厚膜化α型Al23層のチッピング発生の原因となることから、その平均層厚を1〜10μmと定めた。
(B) Modified TiCN layer As described above, the modified TiCN layer in which the distribution ratio of Σ3 in the constituent atom sharing lattice distribution graph is 60% or more comes to have excellent high-temperature strength. It affects the structure of the thickened α-type Al 2 O 3 layer to be formed, significantly suppresses the coarsening of Al 2 O 3 crystal grains, and increases the thickness of the layer itself in the layer thickness direction. However, if the average layer thickness is less than 1 μm, the desired effect cannot be obtained. On the other hand, if the average layer thickness exceeds 10 μm, the thermoplastic deformation causes uneven wear. Since this causes the chipping of the thickened α-type Al 2 O 3 layer, the average layer thickness was set to 1 to 10 μm.

(c)厚膜化α型Al23
上記の通り改質TiCN層の介在によって、これの組織的履歴を受け、結晶粒の粗大化が抑制され、かつ、組織的緻密性が保持された厚膜化α型Al23層の形成が可能となり、この結果1〜15μmの平均層厚を有するα型Al23層が具備する高温強度と同等以上の高温強度を具備し、耐チッピング性の低下が抑制されるようになる外、Al23層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が16μm未満では厚膜化の要求に十分満足に対応することができず、一方その平均層厚が30μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を16〜30μmと定めた。
(C) Thickened α-type Al 2 O 3 layer As described above, due to the presence of the modified TiCN layer, it receives this organizational history, suppresses the coarsening of the crystal grains, and maintains the structural denseness. It is possible to form a thickened α-type Al 2 O 3 layer, and as a result, has a high-temperature strength equal to or higher than the high-temperature strength of the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm, In addition to the reduction in chipping resistance being reduced, the excellent high-temperature hardness and heat resistance of the Al 2 O 3 layer itself contributes to improving the wear resistance of the hard coating layer, but the average layer thickness is 16 μm. If the average layer thickness is less than 30 μm, the average layer thickness of 16-30 μm cannot be satisfactorily met. On the other hand, if the average layer thickness exceeds 30 μm, chipping is likely to occur. It was determined.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、硬質被覆層の最表面層として必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、硬質被覆層としての改質TiCN層がすぐれた高温強度を有し、かつ、これの上に形成される厚膜化α型Al23層に組織的影響を及ぼし、この結果前記厚膜化α型Al23層は前記改質TiCN層の履歴を受けて、1〜15μmの平均層厚を有するα型Al23層が具備する高温強度と同等、あるいはこれ以上の高温強度を具備するようになることから、平均層厚で16〜30μmの層厚に厚膜化したにもかかわらず、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになものである。 In the coated cermet tool of the present invention, the modified TiCN layer as a hard coating layer has excellent high-temperature strength, and has a systematic influence on the thickened α-type Al 2 O 3 layer formed thereon. As a result, the thickened α-type Al 2 O 3 layer receives the history of the modified TiCN layer and is equivalent to the high temperature strength of the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm. In addition, since it has a high temperature strength higher than this, it has excellent wear resistance over a long period of time without occurrence of chipping even though the average layer thickness is increased to a layer thickness of 16 to 30 μm. It is something that will be exhibited.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で36時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.06mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the blending composition shown in Table 1, added with wax, ball milled in acetone for 36 hours, dried under reduced pressure, and pressed into a compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.06 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで36時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.06mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet-mix for 36 hours with a ball mill, dry, and press-mold into green compact at 98 MPa pressure The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.06 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層として密着性Ti化合物層および改質TiCN層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、同厚膜化α型Al23層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, on the surfaces of these tool bases A to F and tool bases a to f, an ordinary chemical vapor deposition apparatus is used, and under the conditions shown in Tables 3 and 4, an adhesive Ti compound layer as a hard coating layer and The modified TiCN layer was formed by vapor deposition in the combination shown in Table 5 and with the target layer thickness, and then the same thickened α-type Al 2 O 3 layer was also shown in Table 5 under the same conditions as shown in Table 3. The coated cermet tools 1 to 13 of the present invention were produced by vapor deposition with the combinations shown and with the target layer thickness.

また、比較の目的で、表6に示される通り、本発明被覆サーメット工具1〜13の硬質被覆層を構成する改質TiCN層に代って、表3に示される条件で従来TiCN層を形成する以外は同一の条件で比較被覆サーメット工具1〜13をそれぞれ製造した。   For comparison purposes, as shown in Table 6, instead of the modified TiCN layer constituting the hard coating layer of the coated cermet tools 1 to 13 of the present invention, a conventional TiCN layer is formed under the conditions shown in Table 3. Comparative coated cermet tools 1 to 13 were produced under the same conditions except for the above.

ついで、上記の本発明被覆サーメット工具と比較被覆サーメット工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
Next, with respect to the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the comparative coated cermet tool, the constituent atomic shared lattice point distribution graphs are respectively shown using a field emission scanning electron microscope. Created.
That is, the constituent atomic shared lattice point distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the modified TiCN layer and the conventional TiCN layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA is applied to each crystal grain existing in the measurement range of the surface polished surface, and an electron backscatter diffraction image apparatus is used to measure 30 × The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the surface polished surface at an interval of 0.1 μm / step in a 50 μm region. Then, based on the measured tilt angle obtained as a result, lattice points (constituent atomic shared lattices) in which each of the constituent atoms share one constituent atom between the crystal grains at the interface between adjacent crystal grains. Point) distribution and the previous A constitutive atomic shared lattice point form in which N lattice points that do not share constituent atoms between constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of NaCl type face-centered cubic crystal) is represented by ΣN + 1. In this case, each ΣN + 1 is created by obtaining a distribution ratio of ΣN + 1 in the entire ΣN + 1 (however, the upper limit value is 28 because of the frequency).

この結果得られた各種の改質TiCN層および従来TiCNの構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表5,6にそれぞれ示した。   In each of the resulting modified TiCN layer and conventional TiCN constituent atomic point lattice distribution graphs, the distribution ratio of Σ3 in the entire ΣN + 1 (N is all even numbers in the range of 2 to 28) is shown in Table 5. , 6 respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、比較被覆サーメット工具の従来TiCN層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図3は、本発明被覆サーメット工具13の改質TiCN層の構成原子共有格子点分布グラフ、図4は、比較被覆サーメット工具13の従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atom sharing lattice point distribution graphs, as shown in Tables 5 and 6, the modified TiCN layer of the coated cermet tool of the present invention has constituent atoms whose distribution ratio of Σ3 is 60% or more. In contrast to the shared lattice point distribution graph, the conventional TiCN layer of the comparative coated cermet tool showed a constituent atomic shared lattice point distribution graph with a Σ3 distribution ratio of 30% or less.
3 shows a constituent atomic shared lattice point distribution graph of the modified TiCN layer of the coated cermet tool 13 of the present invention, and FIG. 4 shows a constituent atomic shared lattice point distribution graph of the conventional TiCN layer of the comparative coated cermet tool 13. Is.

さらに、上記の本発明被覆サーメット工具1〜13および比較被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する密着性Ti化合物層とα型Al23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and comparative coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of an adhesive Ti compound layer and an α-type Al 2 O 3 layer having substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SNCM415の長さ方向等間隔4本縦溝入り丸棒、
切削速度:230m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:18分、
の条件(切削条件A)での合金鋼の乾式断続切削試験、
被削材:JIS・S28Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:260m/min、
切り込み:1.2mm、
送り:0.2mm/rev、
切削時間:18分、
の条件(切削条件B)での炭素鋼の乾式断続切削試験、
被削材:JIS・FC300の丸棒、
切削速度:300m/min、
切り込み:2.5mm、
送り:0.25mm/rev、
切削時間:18分、
の条件(切削条件C)での鋳鉄の乾式連続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS / SNCM415 lengthwise equidistantly 4 round bars with flutes,
Cutting speed: 230 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
Cutting time: 18 minutes
Dry interrupted cutting test of alloy steel under the above conditions (cutting condition A),
Work material: JIS / S28C lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 260 m / min,
Cutting depth: 1.2mm,
Feed: 0.2mm / rev,
Cutting time: 18 minutes
Dry intermittent cutting test of carbon steel under the conditions (cutting condition B)
Work material: JIS / FC300 round bar,
Cutting speed: 300 m / min,
Incision: 2.5mm,
Feed: 0.25mm / rev,
Cutting time: 18 minutes
The dry continuous cutting test of cast iron was performed under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

Figure 0004716254
Figure 0004716254

表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層のうちの1層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質TiCN層で構成され、これの上に蒸着形成される厚膜化α型Al23層は前記改質TiCN層の履歴を強力に受け、組織的に影響されて、16〜30μmの厚膜であるにもかかわらず、1〜15μmの平均層厚を有するα型Al23層が具備する高温強度と同等、あるいはこれ以上の高温強度を具備することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来TiCN層の上に厚膜化α型Al23層を蒸着形成してなる比較被覆サーメット工具1〜13においては、いずれも前記厚膜化α型Al23層の高温強度不足が原因で、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, each of the coated cermet tools 1 to 13 of the present invention has a constituent atom shared lattice point distribution graph in which one of the hard coating layers has a distribution ratio of Σ3 of 60% or more. The thickened α-type Al 2 O 3 layer composed of the modified TiCN layer and deposited on the TiCN layer is strongly affected by the history of the modified TiCN layer and is systematically affected. Although it is a thick film, it has a high temperature strength equal to or higher than that of an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm, so that the chipping of the cutting edge portion is performed. While the generation is remarkably suppressed and excellent wear resistance is exhibited over a long period of time, the hard coating layer exhibits a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less. the thickening α type the Al 2 O 3 layer was deposited formed thereon In comparison coated cermet tools 1 to 13 comprising both a high temperature strength insufficient cause of the thickening α type the Al 2 O 3 layer, chipping occurs in the cutting edge, leading to a relatively short time using life It is clear.

上述のように、この発明の被覆サーメット工具は、これの硬質被覆層を構成するα型Al23層の層厚を平均層厚で16〜30μmに厚くしても、各種の鋼や鋳鉄などの切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮し、使用寿命の延命化を可能とするものであるから、切削加工のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool according to the present invention can be applied to various steels and cast irons even if the α-type Al 2 O 3 layer constituting the hard coating layer is thickened to an average layer thickness of 16 to 30 μm. It shows excellent chipping resistance in cutting processes, etc., exhibits excellent wear resistance over a long period of time, and can extend the service life. It can be used satisfactorily for labor saving, energy saving, and cost reduction.

硬質被覆層を構成する改質TiCN層および従来TiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the modified TiCN layer which comprises a hard coating layer, and the conventional TiCN layer have. 硬質被覆層を構成する各種TiCN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in various TiCN layers which comprise a hard coating layer. 本発明被覆サーメット工具13の硬質被覆層を構成する改質TiCN層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of a modified TiCN layer constituting a hard coating layer of the coated cermet tool 13 of the present invention. 比較被覆サーメット工具13の硬質被覆層を構成する従来TiCN層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a conventional TiCN layer constituting a hard coating layer of a comparative coated cermet tool 13.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層として、
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、および炭窒化物層のうちの1層または2層以上からなり、かつ0.1〜2μmの合計平均層厚を有する密着性Ti化合物層、
(b)1〜10μmの平均層厚で化学蒸着形成され、かつ、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質炭窒化チタン層、
以上(a)および(b)の密着性Ti化合物層および改質炭窒化チタン層を介して、
(c)16〜30μmの平均層厚を有し、かつ化学蒸着形成された状態でα型の結晶構造を有する厚膜化α型酸化アルミニウム層、
を蒸着形成してなる、厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
As a hard coating layer on the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) All are formed of one or more of Ti carbide layer, nitride layer, and carbonitride layer formed by chemical vapor deposition, and have a total average layer thickness of 0.1 to 2 μm. Adhesive Ti compound layer,
(B) formed by chemical vapor deposition with an average layer thickness of 1-10 μm, and
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubic crystals each having a constituent atom composed of Ti, carbon, and nitrogen at lattice points. A lattice point having a crystal structure, and each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result ( The distribution of the constituent atomic shared lattice points) is calculated, and N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more on the crystal structure of the NaCl type face centered cubic crystal) Existing constituent atomic shared lattice point form is ΣN + 1 In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the whole ΣN + 1 (however, the upper limit value is 28 due to the frequency), the highest peak exists in Σ3, and the Σ3 A modified titanium carbonitride layer showing a constituent atom shared lattice distribution graph in which the distribution ratio in the entire ΣN + 1 is 60% or more,
Through the adhesive Ti compound layer and modified titanium carbonitride layer of (a) and (b) above,
(C) a thickened α-type aluminum oxide layer having an average layer thickness of 16 to 30 μm and having an α-type crystal structure in a state of chemical vapor deposition;
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a thickened α-type aluminum oxide layer.
JP2005166615A 2005-06-07 2005-06-07 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer Active JP4716254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005166615A JP4716254B2 (en) 2005-06-07 2005-06-07 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005166615A JP4716254B2 (en) 2005-06-07 2005-06-07 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Publications (2)

Publication Number Publication Date
JP2006341320A JP2006341320A (en) 2006-12-21
JP4716254B2 true JP4716254B2 (en) 2011-07-06

Family

ID=37638660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005166615A Active JP4716254B2 (en) 2005-06-07 2005-06-07 Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Country Status (1)

Country Link
JP (1) JP4716254B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088469B2 (en) * 2007-06-12 2012-12-05 三菱マテリアル株式会社 Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof
JP5152690B2 (en) * 2007-08-31 2013-02-27 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5946016B2 (en) * 2012-05-22 2016-07-05 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939509B2 (en) * 2012-07-25 2016-06-22 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3768136B2 (en) * 2001-10-04 2006-04-19 日立ツール株式会社 Coated tool
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2006341320A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716251B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of high-hardness steel
JP4716252B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006334721A (en) SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4811782B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5286930B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5088477B2 (en) Surface coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4730651B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance due to high-speed intermittent cutting of heat-resistant alloys.
JP4756454B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP5088475B2 (en) Surface coated cutting tool
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP2009101462A (en) Surface-coated cutting tool
JP4752536B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness materials.
JP4716253B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110307

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4716254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3