JP2009101462A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2009101462A
JP2009101462A JP2007275345A JP2007275345A JP2009101462A JP 2009101462 A JP2009101462 A JP 2009101462A JP 2007275345 A JP2007275345 A JP 2007275345A JP 2007275345 A JP2007275345 A JP 2007275345A JP 2009101462 A JP2009101462 A JP 2009101462A
Authority
JP
Japan
Prior art keywords
layer
plane
normal lines
ticno
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007275345A
Other languages
Japanese (ja)
Other versions
JP5088476B2 (en
Inventor
Kazuhiro Kono
和弘 河野
Hiroshi Hara
央 原
Yoko Watanabe
陽子 渡辺
Makoto Nishida
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007275345A priority Critical patent/JP5088476B2/en
Publication of JP2009101462A publication Critical patent/JP2009101462A/en
Application granted granted Critical
Publication of JP5088476B2 publication Critical patent/JP5088476B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having a rigid coat layer exhibiting excellent chipping resistance in high-speed and high-feed intermittent cutting. <P>SOLUTION: The surface-coated cutting tool has a lower layer made of a Ti-based compound layer and an upper layer made of an Al<SB>2</SB>O<SB>3</SB>layer vapor-deposited on the surface of a tool base. At least one of Ti-based compound layers is a TiCrCN layer satisfying the relation: (Ti<SB>1-X</SB>Cr<SB>X</SB>)C<SB>1-Y</SB>N<SB>Y</SB>(where 0.005≤X≤0.05 and 0.45≤Y≤0.55). On the assumption that gradient angles of normal lines of a (001) plane and a (011) plane with respect to a normal line of a polished surface on a vertical section of the layer are measured by means of a field mission scanning electron microscope, and a grain boundary is specified when the angle of normal lines of the (001) plane intersecting with each other or normal lines of the (011) plane intersecting with each other is 2 degrees or larger, GBL is defined as a length of a grain boundary where the normal lines of the (001) plane intersect with each other and the normal lines of the (011) plane intersect with each other with an angle of 15 degrees or larger among crystal grain interfaces identified as the grain boundary in a measurement region. T is defined as a thickness of the measured TiCNO layer. At least one of other layers includes a modified TiCNO layer having a ratio of GBL/T ranging from 320 to 600. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、大きな発熱を伴うとともに、切刃部に対して繰り返し断続的に大きな衝撃的負荷がかかる鋼や鋳鉄などの高速高送り断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention exhibits high chipping resistance with a hard coating layer in high-speed, high-feed intermittent cutting such as steel and cast iron, which is accompanied by large heat generation and repeatedly and intermittently imposes a heavy load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

従来の被覆工具として、炭化タングステン基(以下、WC基で示す)超硬合金または炭窒化チタン基(以下、TiCN基で示す)サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
縦長成長結晶組織のTiCN(以下、l−TiCNで示す)層と、粒状結晶組織のTiC層、TiN層、TiCN層、TiCNO層からなるTi系化合物層と、Al層とを10〜30μmの平均層厚で蒸着形成した被覆工具において、
l−TiCN層に隣接して、
組成式;(Ti1−XCr)CN (ただし、原子比で、X:0.005〜0.05)を満足する縦長成長結晶組織のTiとCrの複合炭窒化物(以下、TiCrCNで示す)層を1〜10μmの平均層厚で介在させた被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平10−244405号公報
As a conventional coated tool, a base made of tungsten carbide group (hereinafter referred to as WC group) cemented carbide or titanium carbonitride group (hereinafter referred to as TiCN group) cermet (hereinafter collectively referred to as a tool base) On the surface)
A TiCN (hereinafter referred to as 1-TiCN) layer having a vertically grown crystal structure, a Ti-based compound layer composed of a TiC layer, a TiN layer, a TiCN layer, and a TiCNO layer having a granular crystal structure, and an Al 2 O 3 layer, In a coated tool deposited with an average layer thickness of 30 μm,
Adjacent to the l-TiCN layer,
Compositional formula; (Ti 1-X Cr X ) CN (wherein the atomic ratio is X: 0.005 to 0.05) Ti and Cr composite carbonitride (hereinafter referred to as TiCrCN) having a vertically grown crystal structure. It is also known that a coated tool having an average layer thickness of 1 to 10 μm is used, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast iron, for example. ing.
JP-A-10-244405

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化、省エネ化、高効率化、低コスト化の要求は強く、これに伴い、切削加工は一段と過酷な条件下で行われる傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高熱発生を伴い、かつ、切刃部に大きな衝撃的負荷が繰り返し断続的にかかる高速高送り断続切削条件で用いた場合には、硬質被覆層を構成するTi系化合物層の高温強度、耐熱性が不十分であるために、硬質被覆層にはチッピング(微小欠け)、熱塑性変形が発生し易くなり、その結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable, while demands for labor saving, energy saving, high efficiency, and low cost for cutting are strong, and accordingly, cutting tends to be performed under more severe conditions. However, in the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but this particularly involves high heat generation, and When used under high-speed, high-feed, intermittent cutting conditions in which a large impact load is repeatedly and intermittently applied to the cutting edge, the high temperature strength and heat resistance of the Ti-based compound layer constituting the hard coating layer are insufficient. In the present situation, chipping (small chipping) and thermoplastic deformation are likely to occur in the hard coating layer, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐チッピング性向上をはかるべく、Ti系化合物層のうちの、特に、TiCNO層に着目し、研究を行った結果、
(a)従来被覆工具の硬質被覆層のTi系化合物層を構成するTiCNO(以下、従来TiCNOという)層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CO:1〜5%、CH:0.1〜5%、N:5〜30%、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:6〜25kPa、
の条件(通常条件という)で蒸着形成されるが、
この蒸着条件を変更し、
反応ガス組成:容量%で、TiCl:2〜10%、CO:1〜5%、N:50〜60%、H2:残り、
反応雰囲気温度:850〜900℃、
反応雰囲気圧力:10〜22kPa、
の条件、即ち、通常条件に比して、メタン無添加の高窒素ガス組成かつ低温の蒸着条件で目標層厚(1〜8μm)になるまで蒸着形成すると、このような条件で蒸着形成されたTiCNO(以下、「改質TiCNO」という)層は、高温強度が一段と向上し、切削加工時、断続的かつ繰り返しかかる機械的衝撃に起因するチッピング発生を防止することができ、さらに、耐熱性も向上し、切削時に発生する高熱によって切刃部が過熱されても耐熱塑性変形にすぐれ、偏摩耗の発生が抑制されるので、改質TiCNO層を硬質被覆層の構成層とする被覆工具は、高速高送り断続切削加工ですぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
In view of the above, the inventors of the present invention focused on the TiCNO layer, particularly the TiCNO layer, in order to improve the chipping resistance of the hard coating layer of the above-mentioned coated tool. As a result,
(A) The TiCNO (hereinafter referred to as conventional TiCNO) layer constituting the Ti-based compound layer of the hard coating layer of the conventional coated tool is, for example, an ordinary chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CO: 1~5%, CH 4: 0.1~5%, N 2: 5~30%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 6-25 kPa,
It is formed by vapor deposition under the conditions (called normal conditions)
Change this deposition condition,
Reaction gas composition: volume%, TiCl 4 : 2 to 10%, CO: 1 to 5%, N 2 : 50 to 60%, H 2 : remaining,
Reaction atmosphere temperature: 850 to 900 ° C.
Reaction atmosphere pressure: 10-22 kPa,
In other words, compared to the normal conditions, when the vapor deposition was performed until the target layer thickness (1 to 8 μm) was reached under the high nitrogen gas composition without addition of methane and the low temperature vapor deposition conditions, the vapor deposition was performed under such conditions. The TiCNO (hereinafter referred to as “modified TiCNO”) layer has further improved high-temperature strength, can prevent the occurrence of chipping due to intermittent and repeated mechanical impacts during cutting, and also has heat resistance. Improved, even if the cutting edge is overheated by the high heat generated during cutting, it is excellent in heat-resistant plastic deformation and the occurrence of uneven wear is suppressed, so the coated tool with the modified TiCNO layer as a constituent layer of the hard coating layer is It exhibits excellent chipping resistance in high-speed, high-feed intermittent cutting, and exhibits excellent wear resistance over a long period of time.

(b)そして、上記の改質TiCNO層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、縦断面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、格子点にTi、炭素、窒素および酸素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求めた場合に、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定し、その上で電界放出型査電子顕微鏡を用い、上記改質TiCNO層の縦断面研磨面を、例えば、層厚×幅30μmの範囲で測定し、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm。以下、GBLという)を求め、さらに、このGBLと改質TiCNO層の層厚(μm。以下、Tで示す)の比(即ち、GBL/T)を求めると、前記改質TiCNO層は、表5、6に示される通り、GBL/Tが320〜600という大きな値を示し、この高いGBL/Tの値は、成膜時の反応ガス組成、反応雰囲気温度、反応雰囲気圧力の組み合わせによって変化すること(なお、前記通常条件で蒸着形成された従来TiCNO層は、表7、8に示される通り、GBL/Tは小さな値である。)。
(B) And about said modified TiCNO layer,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the vertical cross-section polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the vertical cross-section polished surface (FIG. When the tilt angle of the (001) plane is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. In this case, all inclination angles of the individual crystal grains including these angles are measured, and in this case, the crystal grains have constituent atoms composed of Ti, carbon, nitrogen and oxygen at lattice points. Each has a NaCl-type face-centered cubic crystal structure, and based on the resulting measured tilt angle, When the angles at which the (001) plane normals and the (011) plane normals intersect at the interface between adjacent crystal grains are obtained, the (001) plane normals and (011) The case where the angle between the normals of the planes is 2 degrees or more is set as a grain boundary, and a field emission electron microscope is used thereon, and the vertical cross-section polished surface of the modified TiCNO layer is, for example, a layer The length of the grain boundary where the angle between the normal lines of the (001) planes and the normal lines of the (011) planes of the portion measured as thickness x width 30 μm and identified as grain boundaries is 15 degrees or more. When the thickness (μm, hereinafter referred to as GBL) is obtained and the ratio of the thickness of the GBL to the modified TiCNO layer (μm, hereinafter denoted by T) (ie, GBL / T) is obtained, the modified TiCNO is obtained. As shown in Tables 5 and 6, the layer has a GBL / T of 320 to The high GBL / T value varies depending on the combination of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during the film formation (in addition, the conventional TiCNO deposited by vapor deposition under the above normal conditions). As for the layer, GBL / T is a small value as shown in Tables 7 and 8.)

(c)上記の改質TiCNO層は、上記従来TiCNO層に比して一段と高い高温強度と耐熱性を有し、そして、これを硬質被覆層の構成層として蒸着形成してなる被覆工具は、TiCrCN層がすぐれた高温強度と高温硬さを備えるとともに、上部層であるAl層が具備するすぐれた高温硬さおよび耐熱性と相俟って、特に切刃部に対して大きな熱的・衝撃的負荷がかかる高送り断続切削条件で用いた場合にも、従来TiCNO層を蒸着形成してなる従来被覆工具に比して、硬質被覆層が一段とすぐれた耐チッピング性および耐摩耗性を発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The above-mentioned modified TiCNO layer has a higher high-temperature strength and heat resistance than the conventional TiCNO layer, and a coated tool formed by vapor deposition as a constituent layer of a hard coating layer, The TiCrCN layer has excellent high-temperature strength and high-temperature hardness, and in combination with the excellent high-temperature hardness and heat resistance of the Al 2 O 3 layer, which is the upper layer, a large heat especially for the cutting edge portion. Even when used under high feed interrupted cutting conditions that are subject to mechanical and impact loads, chipping resistance and wear resistance have a hard coating layer superior to conventional coated tools with a conventional TiCNO layer deposited. To come out.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層、炭窒酸化物(TiCNO)層およびTiとCrの複合炭窒化物(TiCrCN)層のうちの少なくとも2層以上からなり、かつ2〜15μmの合計平均層厚を有するTi系化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム(Al)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
(c)上記下部層を構成するTi系化合物層のうちの少なくとも一つの層は、
組成式:(Ti1−XCr)C1−Y
で表した場合、0.005≦X≦0.05、0.45≦Y≦0.55(但し、X、Yはいずれも原子比)を満足する縦長成長結晶組織のTiとCrの複合炭窒化物(TiCrCN)層であり、
(d)上記下部層を構成するTi系化合物層のうちの少なくとも一つの層は、1〜8μmの平均層厚を有する炭窒酸化チタン層であり、かつ、該炭窒酸化チタン層について、電界放出型走査電子顕微鏡を用い、上記層の縦断面研磨面の幅30μmの測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm)を求め、この粒界の長さ(μm)と測定した炭窒酸化チタン層の層厚(μm)との比の値が320〜600を示す炭窒酸化チタン(改質TiCNO)層である、
ことを特徴とする表面被覆切削工具(被覆工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of a tool base made of tungsten carbide group (WC group) cemented carbide or titanium carbonitride group (TiCN group) cermet,
(A) A Ti carbide (TiC) layer, a nitride (TiN) layer, a carbonitride (TiCN) layer, a carbonate (TiCO) layer, a carbonitride oxide (which is formed by chemical vapor deposition in all cases) A Ti-based compound layer composed of at least two of a TiCNO) layer and a composite carbonitride (TiCrCN) layer of Ti and Cr and having a total average layer thickness of 2 to 15 μm,
(B) an aluminum oxide (Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed by forming the hard coating layer composed of (a) and (b) above,
(C) At least one of the Ti-based compound layers constituting the lower layer is
Formula: (Ti 1-X Cr X ) C 1-Y N Y
In this case, Ti and Cr composite charcoal having a vertically grown crystal structure satisfying 0.005 ≦ X ≦ 0.05 and 0.45 ≦ Y ≦ 0.55 (where X and Y are atomic ratios). A nitride (TiCrCN) layer;
(D) At least one of the Ti-based compound layers constituting the lower layer is a titanium carbonitride oxide layer having an average layer thickness of 1 to 8 μm, and an electric field is applied to the titanium carbonitride oxide layer. Using an emission scanning electron microscope, each crystal grain existing within the measurement range of 30 μm in width of the vertical cross section polished surface of the above layer is irradiated with an electron beam, and the crystal is compared with the normal line of the vertical cross section polished surface. The inclination angles formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the grains, are measured, and the normal lines of the (001) planes at the interfaces between adjacent crystal grains are determined from the measured tilt angles. And the angle at which the normal lines of the (011) plane intersect, and the angle at which the normal lines of the (001) plane and the normal lines of the (011) plane intersect each other is 2 degrees or more. Use field emission electron microscope after setting In the measurement region on the vertical cross-section polished surface of the layer, grains whose normals of the (001) plane and normals of the (011) plane intersect with each other among the parts identified as grain boundaries are 15 degrees or more. The length of the boundary (μm) is obtained, and the ratio of the grain boundary length (μm) to the measured thickness of the titanium carbonitride oxide layer (μm) is titanium carbonitride oxide (modified) Quality TiCNO) layer,
A surface-coated cutting tool (coated tool). "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層(Ti化合物層)
少なくとも、TiC層、TiN層、TiCN層(l−TiCN層も含む)、TiCO層、TiCrCN層、改質TiCNO層とからなるTi系化合物層は、それぞれが所定の高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl層のいずれにも強固に密着し、硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が2μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、特に、切刃部に対して繰り返し断続的に大きな衝撃的負荷がかかる高速高送り断続切削でチッピングを起し易くなることから、その合計平均層厚を2〜15μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated tool of the present invention are numerically limited as described above will be described below.
(A) Lower layer (Ti compound layer)
At least a Ti-based compound layer composed of a TiC layer, a TiN layer, a TiCN layer (including a 1-TiCN layer), a TiCO layer, a TiCrCN layer, and a modified TiCNO layer has a predetermined high-temperature strength. In addition to the high temperature strength of the hard coating layer due to its presence, it firmly adheres to both the tool base and the upper Al 2 O 3 layer, contributing to improved adhesion of the hard coating layer to the tool base. However, if the total average layer thickness is less than 2 μm, the above-described effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 15 μm, the cutting edge is repeatedly intermittent. Therefore, the total average layer thickness was determined to be 2 to 15 μm.

(b)下部層の改質TiCNO層
通常条件に比してメタン無添加の高窒素ガス組成かつ低温の蒸着条件、
即ち、
反応ガス組成:容量%で、TiCl:2〜10%、CO:1〜5%、N:50〜60%、H2:残り、
反応雰囲気温度:850〜900℃、
反応雰囲気圧力:10〜22kPa、
の条件で化学蒸着することにより形成される縦長成長結晶組織を有する改質TiCNO層は、格子点にTi、炭素、窒素および酸素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有しており、さらに、この改質TiCNO層について、電界放出型走査電子顕微鏡を用い、縦断面研磨面の測定範囲内に存在する改質TiCNO層の結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡により、改質TiCNO層の縦断面研磨面を、測定領域、例えば、層厚×幅30μmの範囲、で測定し、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界(以下、大傾角粒界という)についてその粒界の長さGBL(μm)を求め、そして、GBL(μm)と、改質TiCNO層の層厚T(μm)との比を求めると、GBL/Tは320〜600という値を示し、そして、GBL/Tがこのように大きな値を示す改質TiCNO層は、一段とすぐれた高温強度を備えるようになるため、高速高送り断続切削加工により、切刃部に対して大きな熱的・衝撃的負荷が加わったとしても、硬質被覆層にチッピングが発生する危険性を大幅に低減することができる。
しかし、GBL/T値が600を超えるようになると、改質TiCNO層自体に脆化傾向がみられるようになり、一方、GBL/T値が320未満の小さな値(通常条件で蒸着形成した従来TiCNO層のGBL/T値は320未満である)になると、高温強度が不足し、耐チッピング性の改善を期待することはできないため、GBL/Tの値を320〜600と定めた。
なお、GBL/Tの値は、反応ガス組成、反応雰囲気温度によって影響され、例えば、改質TiCNO層の蒸着条件より、低窒素ガス組成かつ高温条件で蒸着形成された従来TiCNO層におけるGBL/Tの値は、200未満程度の小さな値(表7、8参照)であって、高温強度の改善が図られていないため、高速高送り断続切削という厳しい切削条件では硬質被覆層にチッピングの発生が見られた(表9参照)。
また、前記改質TiCNO層は、従来TiCNO層に比して一段とすぐれた高温強度を有するようになるのであるが、その平均層厚が1μm未満では十分な高温強度向上効果を期待できず、一方、その平均層厚が8μmまでであれば十分な耐チッピング性を発揮できることから、その平均層厚を1〜8μmと定めた。
(B) Lower modified TiCNO layer High nitrogen gas composition without addition of methane and low temperature deposition conditions compared to normal conditions,
That is,
Reaction gas composition: volume%, TiCl 4 : 2 to 10%, CO: 1 to 5%, N 2 : 50 to 60%, H 2 : remaining,
Reaction atmosphere temperature: 850 to 900 ° C.
Reaction atmosphere pressure: 10-22 kPa,
The modified TiCNO layer having a vertically grown crystal structure formed by chemical vapor deposition under the above conditions is a crystal structure of NaCl type face centered cubic crystal in which constituent atoms composed of Ti, carbon, nitrogen and oxygen are present at lattice points, respectively. Furthermore, the modified TiCNO layer was irradiated with an electron beam on each crystal grain of the modified TiCNO layer existing within the measurement range of the vertical cross-section polished surface, using a field emission scanning electron microscope. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface. The angles of the (001) plane normal lines and the (011) plane normal lines at the interface between adjacent crystal grains are obtained, and the (001) plane normal lines and (011) ) Surface law After setting the case where the angle of crossing is 2 degrees or more as a grain boundary, the vertical cross-section polished surface of the modified TiCNO layer was measured with a field emission electron microscope, in a measurement region, for example, layer thickness × width 30 μm. Among the parts identified as grain boundaries, the angle between the normals of the (001) planes and the normal lines of the (011) planes is 15 ° or more. When the grain boundary length GBL (μm) is determined for the tilted grain boundary) and the ratio of GBL (μm) to the layer thickness T (μm) of the modified TiCNO layer is determined, GBL / T is 320 Since the modified TiCNO layer having a value of ~ 600 and GBL / T having such a large value comes to have a higher temperature strength, the cutting edge portion is formed by high-speed high-feed intermittent cutting. In contrast, a large thermal and shock load is applied. Even, it is possible to greatly reduce the risk of chipping in the hard coating layer.
However, when the GBL / T value exceeds 600, the modified TiCNO layer itself tends to become brittle, while the GBL / T value is less than 320 (conventional deposition formed under normal conditions). When the GBL / T value of the TiCNO layer is less than 320), the high temperature strength is insufficient, and improvement in chipping resistance cannot be expected. Therefore, the value of GBL / T is set to 320 to 600.
Note that the value of GBL / T is influenced by the reaction gas composition and the reaction atmosphere temperature. For example, the GBL / T in a conventional TiCNO layer formed by vapor deposition under a low nitrogen gas composition and a high temperature condition rather than the deposition condition of the modified TiCNO layer. Is a small value of less than about 200 (see Tables 7 and 8), and high-temperature strength has not been improved. Therefore, chipping occurs in the hard coating layer under severe cutting conditions such as high-speed and high-feed intermittent cutting. It was seen (see Table 9).
In addition, the modified TiCNO layer has a higher temperature strength than that of the conventional TiCNO layer, but if the average layer thickness is less than 1 μm, a sufficient high temperature strength improvement effect cannot be expected. If the average layer thickness is up to 8 μm, sufficient chipping resistance can be exhibited, so the average layer thickness was set to 1 to 8 μm.

(c)下部層のTiCrCN層
組成式:(Ti1−XCr)C1−Y
で表わされる縦長成長結晶組織を有するTiCrCN層は、該層中のTiとの合量に占めるCr含有割合(X値)が0.005≦X≦0.05(但し、原子比)、また、C成分との合量に占めるN成分の含有割合(Y値)が0.45≦Y≦0.55(但し、原子比)の範囲内において、すぐれた高温強度とすぐれた高温硬さを備える。すなわち、Crの含有割合(X値)が0.005未満でも、0.05を越えても、高速高送り断続切削加工で、チッピング発生を抑制するに足りるすぐれた高温強度を付与することはできず、また、N成分の含有割合(Y値)が0.45未満では所望の強度を確保することができず、一方、Y値が0.55を越えた場合には、所望の高硬度が得られなくなる。
また、TiCrCN層は、その平均層厚が1μm未満では高温強度向上効果、高温硬さ向上効果を期待することはできず、一方その平均層厚が14μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚は1〜14μmとすることが望ましい。
(C) TiCrCN layer of lower layer Composition formula: (Ti 1-X Cr X ) C 1-Y N Y
In the TiCrCN layer having a vertically grown crystal structure represented by the following formula, the Cr content (X value) in the total amount with Ti in the layer is 0.005 ≦ X ≦ 0.05 (however, atomic ratio), When the content ratio (Y value) of the N component in the total amount with the C component is within the range of 0.45 ≦ Y ≦ 0.55 (however, the atomic ratio), it has excellent high temperature strength and excellent high temperature hardness. . In other words, whether the Cr content (X value) is less than 0.005 or more than 0.05, it is possible to provide excellent high-temperature strength sufficient to suppress chipping in high-speed, high-feed intermittent cutting. In addition, when the content ratio (Y value) of the N component is less than 0.45, a desired strength cannot be ensured. On the other hand, when the Y value exceeds 0.55, a desired high hardness is obtained. It can no longer be obtained.
In addition, when the average thickness of the TiCrCN layer is less than 1 μm, the effect of improving the high temperature strength and the effect of improving the high temperature hardness cannot be expected. On the other hand, when the average layer thickness exceeds 14 μm, the thermoplasticity causes uneven wear. Since deformation tends to occur and wear is accelerated, the average layer thickness is preferably 1 to 14 μm.

(d)上部層のAl
Al層からなる上部層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を付与せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(D) an upper layer of Al 2 O 3 layer the Al 2 O 3 layer of the upper layer has excellent high-temperature hardness and heat resistance and contributes to improvement in wear resistance of the hard coating layer, the average layer thickness thereof If the thickness is less than 1 μm, sufficient wear resistance cannot be imparted to the hard coating layer, while if the average layer thickness exceeds 15 μm, chipping is likely to occur. Was set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明の被覆工具は、大きな発熱を伴うとともに、切刃部に対して繰り返し断続的に大きな衝撃的負荷がかかる鋼や鋳鉄などの高速高送り断続切削加工に用いた場合でも、硬質被覆層の下部層の少なくとも一つの層を、改質TiCNO層で構成したことにより、一段とすぐれた高温強度および高温硬さを具備することから、硬質被覆層にチッピングの発生はなく、長期の使用に亘ってすぐれた耐摩耗性を発揮するものである。   Even when the coated tool of the present invention is used for high-speed high-feed intermittent cutting such as steel and cast iron, which is accompanied by large heat generation and repeatedly receives a large impact load on the cutting edge, Since at least one layer of the lower layer is composed of the modified TiCNO layer, it has excellent high-temperature strength and high-temperature hardness, so there is no chipping in the hard coating layer, and it can be used over a long period of use. It exhibits excellent wear resistance.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having an insert shape of standard / CNMG12041 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層としてTi系化合物層(但し、改質TiCNO層を除く)を表3に示される条件で蒸着形成した。
ついで、改質TiCNO層を、
反応ガス組成:容量%で、TiCl:2〜10%の範囲内の所定量、CO:1〜5%の範囲内の所定量、N:50〜60%の範囲内の所定量、H2:残り、
反応雰囲気温度:850〜900℃の範囲内の所定温度、
反応雰囲気圧力:10〜22kPaの範囲内の所定圧力、
の表4に示される条件で、表5、6に示される組み合わせで、かつ同じく表5、6に示される目標層厚で蒸着形成し、その後同じく表3に示される条件にて、上部層としてのAl層を同じく表5、6に示される目標層厚で蒸着形成することにより本発明被覆工具1〜20をそれぞれ製造した。
Next, on the surface of these tool bases A to F and tool bases a to f, a Ti-based compound layer (except for the modified TiCNO layer) is used as a lower layer of the hard coating layer using a normal chemical vapor deposition apparatus. Vapor deposition was performed under the conditions shown in Table 3.
The modified TiCNO layer is then
Reaction gas composition: volume%, TiCl 4 : predetermined amount in the range of 2 to 10%, CO: predetermined amount in the range of 1 to 5%, N 2 : predetermined amount in the range of 50 to 60%, H 2 : the rest,
Reaction atmosphere temperature: a predetermined temperature within a range of 850 to 900 ° C,
Reaction atmosphere pressure: a predetermined pressure in the range of 10-22 kPa,
In the conditions shown in Table 4, vapor deposition is performed with the combinations shown in Tables 5 and 6 and with the target layer thicknesses shown in Tables 5 and 6 as well. The present invention coated tools 1 to 20 were respectively produced by vapor-depositing Al 2 O 3 layers with the target layer thicknesses shown in Tables 5 and 6 respectively.

また、比較の目的で、硬質被覆層の下部層として、Ti系化合物層(従来TiCNO層)を表3に示される条件で、表7、8に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl層を、表3に示される条件で、かつ表7、8に示される目標層厚で蒸着形成することにより従来被覆工具1〜20をそれぞれ製造した。 For the purpose of comparison, as a lower layer of the hard coating layer, a Ti-based compound layer (conventional TiCNO layer) is vapor-deposited with the combinations and target layer thicknesses shown in Tables 7 and 8 under the conditions shown in Table 3. further the Al 2 O 3 layer as an upper layer, under the conditions shown in Table 3, and were respectively manufactured conventional coated tool 20 by vapor deposited at the target layer thickness shown in tables 7 and 8.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質TiCNO層および従来TiCNO層について、電界放出型走査電子顕微鏡を用いて、上記各層の縦断面研磨面のGBL(μm)を測定し、そして、GBL(μm)と、TiCNO層の層厚(μm)の比を求めた。
すなわち、上記の改質TiCNO層および従来TiCNO層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、所定測定領域を0.1μm/stepの間隔で、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型走査電子顕微鏡により、改質TiCNO層の縦断面研磨面の測定領域(層厚×幅30μmの範囲の領域)を走査し、該測定領域内で、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界についてその粒界の長さGBL(μm)を求めた。そして、GBL(μm)と、改質TiCNO層の層厚T(μm)との比の値(改質TiCNO層の単位層厚当たりの粒界の長さに相当)を求めた。
Next, with respect to the modified TiCNO layer and the conventional TiCNO layer constituting the hard coating layer of the present invention-coated tool and the conventional coated tool, using a field emission scanning electron microscope, the GBL (μm ) And the ratio of GBL (μm) to the thickness of the TiCNO layer (μm) was determined.
That is, the modified TiCNO layer and the conventional TiCNO layer are set in a lens barrel of a field emission scanning electron microscope in a state where the longitudinal cross-sections of the TiCNO layer and the conventional TiCNO layer are used as a polished surface, and the surface is accelerated by 15 kV at an incident angle of 70 degrees A voltage electron beam is irradiated at an irradiation current of 1 nA to individual crystal grains existing within the measurement range of the vertical cross-section polished surface, and a predetermined measurement region is set to 0.1 μm / step using an electron backscatter diffraction image apparatus. At an interval, the inclination angle formed by the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface, and the measured inclination obtained as a result Based on the angles, the angles at which the (001) plane normal lines and the (011) plane normal lines intersect each other at the interface between adjacent crystal grains are obtained. , And (011) plane normal After setting the case where the angle at which the crossing angle is 2 degrees or more as the grain boundary, the field emission scanning electron microscope was used to measure the vertical cross-section polished surface of the modified TiCNO layer (layer thickness × width 30 μm range). The region where the normals of the (001) planes and the normals of the (011) planes intersect with each other among the parts identified as grain boundaries in the measurement region is 15 degrees or more. The grain boundary length GBL (μm) was determined for the boundary. Then, the value of the ratio between GBL (μm) and the layer thickness T (μm) of the modified TiCNO layer (corresponding to the length of the grain boundary per unit layer thickness of the modified TiCNO layer) was determined.

この結果得られた各種の改質TiCNO層および従来TiCNO層についてのGBL,T,GBL/Tの値を、それぞれ表5〜8に示した。   The values of GBL, T, and GBL / T for various modified TiCNO layers and conventional TiCNO layers obtained as a result are shown in Tables 5 to 8, respectively.

表5〜8にそれぞれ示される通り、本発明被覆工具の改質TiCNO層は、いずれもGBL/Tの値が320〜600の範囲内の数値であるのに対して、従来被覆工具の従来TiCNO層は、いずれもGBL/Tの値が320未満であった。   As shown in Tables 5 to 8 respectively, the modified TiCNO layer of the coated tool of the present invention has a GBL / T value in the range of 320 to 600, whereas the conventional TiCNO of the conventional coated tool. All the layers had a GBL / T value of less than 320.

さらに、上記の本発明被覆工具1〜20および従来被覆工具1〜20について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi系化合物層とAl層からなることが確認された。
また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Further, regarding the above-described coated tools 1 to 20 of the present invention and the conventional coated tools 1 to 20, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer). As a result, it was confirmed that both the former and the latter were composed of a Ti-based compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition.
Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜20および従来被覆工具1〜20について、
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 450 m/min、
切り込み: 1.5 mm、
送り: 0.6 mm/rev、
切削時間: 8 分、
の条件(切削条件A)でのダクタイル鋳鉄の乾式高速高送り断続切削試験(通常の切削速度および送りは、それぞれ、200m/min、0.3mm/rev)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 450 m/min、
切り込み: 2 mm、
送り: 0.55 mm/rev、
切削時間: 8 分、
の条件(切削条件B)での合金鋼の乾式高速高送り断続切削試験(通常の切削速度および送りは、それぞれ、250m/min、0.25mm/rev)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 500 m/min、
切り込み: 2.0 mm、
送り: 0.6 mm/rev、
切削時間: 7 分、
の条件(切削条件C)での炭素鋼の湿式高速高送り断続切削試験(通常の切削速度および送りは、それぞれ、250m/min、0.3mm/rev)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1-20 and the conventional coated tools 1-20,
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 450 m / min,
Cutting depth: 1.5 mm,
Feed: 0.6 mm / rev,
Cutting time: 8 minutes,
Dry high-speed high-feed intermittent cutting test under normal conditions (cutting conditions A) (normal cutting speed and feed are 200 m / min and 0.3 mm / rev, respectively)
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 450 m / min,
Incision: 2 mm,
Feed: 0.55 mm / rev,
Cutting time: 8 minutes,
Dry high-speed high-feed intermittent cutting test of alloy steel under the following conditions (cutting condition B) (normal cutting speed and feed are 250 m / min and 0.25 mm / rev, respectively)
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 500 m / min,
Cutting depth: 2.0 mm,
Feed: 0.6 mm / rev,
Cutting time: 7 minutes,
Wet high-speed high-feed intermittent cutting test under normal conditions (cutting condition C) (normal cutting speed and feed are 250 m / min and 0.3 mm / rev, respectively)
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 9.

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

Figure 2009101462
Figure 2009101462

表5〜9に示される結果から、本発明被覆工具1〜20は、いずれも硬質被覆層の下部層のうちの少なくとも一つの層が、GBL/T=320〜600である改質TiCNO層で構成されていることから、切刃部に対して繰り返し断続的に大きな衝撃的負荷がかかる高速高送り断続切削でも、前記改質TiCNO層が一段とすぐれた高温強度を備え、すぐれた耐チッピング性を発揮し、硬質被覆層のチッピング発生が著しく抑制されると同時にすぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層のうちのTiCNO層が、GBL/T値が320未満、あるいは、600超の従来TiCNO層で構成された従来被覆工具1〜20においては、硬質被覆層の高温強度、耐熱性が不十分であるために、高速高送り断続切削加工では硬質被覆層にチッピングが発生し、あるいは、耐摩耗性が低く、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 5 to 9, all of the coated tools 1 to 20 of the present invention are modified TiCNO layers in which at least one of the lower layers of the hard coating layer is GBL / T = 320 to 600. As a result, the modified TiCNO layer has superior high-temperature strength and excellent chipping resistance even in high-speed, high-feed, intermittent cutting, where a large impact load is repeatedly and intermittently applied to the cutting edge. The TiCNO layer of the lower layer of the hard coating layer has a GBL / T value of less than 320, while exhibiting excellent chipping of the hard coating layer and excellent wear resistance at the same time. In the conventional coated tools 1 to 20 composed of more than 600 conventional TiCNO layers, the high temperature strength and heat resistance of the hard coating layer is insufficient. Chipping occurs, or, abrasion resistance was apparently too low can lead to a relatively short time service life.

上述のように、この発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃部に対して繰り返し断続的に大きな衝撃的負荷がかかる高速高送り断続切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also a high speed that repeatedly and intermittently applies a large impact load to the cutting edge portion. The hard coating layer shows excellent chipping resistance even during high-feed interrupted cutting, and exhibits excellent cutting performance over a long period of time. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

硬質被覆層の下部層を構成するTiCNO層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the TiCNO layer which comprises the lower layer of a hard coating layer has. 硬質被覆層の下部層を構成するTiCNO層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the TiCNO layer which comprises the lower layer of a hard coating layer.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、炭窒酸化物層およびTiとCrの複合炭窒化物層のうちの少なくとも2層以上からなり、かつ2〜15μmの合計平均層厚を有するTi系化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
(c)上記下部層を構成するTi系化合物層のうちの少なくとも一つの層は、
組成式:(Ti1−XCr)C1−Y
で表した場合、0.005≦X≦0.05、0.45≦Y≦0.55(但し、X、Yはいずれも原子比)を満足する縦長成長結晶組織のTiとCrの複合炭窒化物層であり、
(d)上記下部層を構成するTi系化合物層のうちの少なくとも一つの層は、1〜8μmの平均層厚を有する炭窒酸化チタン層であり、かつ、該炭窒酸化チタン層について、電界放出型走査電子顕微鏡を用い、上記層の縦断面研磨面の幅30μmの測定範囲内に存在する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を粒界であるとして設定した上で、電界放出型査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さ(μm)を求め、この粒界の長さ(μm)と測定した炭窒酸化チタン層の層厚(μm)との比の値が320〜600を示す炭窒酸化チタン層である、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Of the Ti carbide layer, nitride layer, carbonitride layer, carbonitride layer, carbonitride oxide layer, and Ti and Cr composite carbonitride layer, all of which the lower layer is formed by chemical vapor deposition And a Ti-based compound layer having a total average layer thickness of 2 to 15 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed by forming the hard coating layer composed of (a) and (b) above,
(C) At least one of the Ti-based compound layers constituting the lower layer is
Formula: (Ti 1-X Cr X ) C 1-Y N Y
In this case, Ti and Cr composite charcoal having a vertically grown crystal structure satisfying 0.005 ≦ X ≦ 0.05 and 0.45 ≦ Y ≦ 0.55 (where X and Y are atomic ratios). A nitride layer,
(D) At least one of the Ti-based compound layers constituting the lower layer is a titanium carbonitride oxide layer having an average layer thickness of 1 to 8 μm, and an electric field is applied to the titanium carbonitride oxide layer. Using an emission scanning electron microscope, each crystal grain existing within the measurement range of 30 μm in width of the vertical cross section polished surface of the above layer is irradiated with an electron beam, and the crystal is compared with the normal line of the vertical cross section polished surface. The inclination angles formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the grains, are measured, and the normal lines of the (001) planes at the interfaces between adjacent crystal grains are determined from the measured tilt angles. And the angle at which the normal lines of the (011) plane intersect, and the angle at which the normal lines of the (001) plane and the normal lines of the (011) plane intersect each other is 2 degrees or more. Use field emission electron microscope after setting In the measurement region on the vertical cross-section polished surface of the layer, grains whose normals of the (001) plane and normals of the (011) plane intersect with each other among the parts identified as grain boundaries are 15 degrees or more. The length of the boundary (μm) is obtained, and the ratio of the grain boundary length (μm) to the measured thickness of the titanium carbonitride oxide layer (μm) is a titanium carbonitride oxide layer having a value of 320 to 600. is there,
A surface-coated cutting tool characterized by that.
JP2007275345A 2007-10-23 2007-10-23 Surface coated cutting tool Expired - Fee Related JP5088476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007275345A JP5088476B2 (en) 2007-10-23 2007-10-23 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007275345A JP5088476B2 (en) 2007-10-23 2007-10-23 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2009101462A true JP2009101462A (en) 2009-05-14
JP5088476B2 JP5088476B2 (en) 2012-12-05

Family

ID=40703774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007275345A Expired - Fee Related JP5088476B2 (en) 2007-10-23 2007-10-23 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP5088476B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418069A (en) * 2011-10-24 2012-04-18 天津大学 Epitaxial Ti0.53Cr0.47N film material with low-temperature magneto-resistance effect, and preparation method thereof
CN107438491A (en) * 2016-04-08 2017-12-05 住友电工硬质合金株式会社 Surface-coated cutting tool and its manufacture method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120105A (en) * 2001-08-21 2002-04-23 Hitachi Metals Ltd Aluminum oxide coated tool and its manufacturing method
JP2006297519A (en) * 2005-04-19 2006-11-02 Mitsubishi Materials Corp Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002120105A (en) * 2001-08-21 2002-04-23 Hitachi Metals Ltd Aluminum oxide coated tool and its manufacturing method
JP2006297519A (en) * 2005-04-19 2006-11-02 Mitsubishi Materials Corp Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102418069A (en) * 2011-10-24 2012-04-18 天津大学 Epitaxial Ti0.53Cr0.47N film material with low-temperature magneto-resistance effect, and preparation method thereof
CN107438491A (en) * 2016-04-08 2017-12-05 住友电工硬质合金株式会社 Surface-coated cutting tool and its manufacture method
CN107438491B (en) * 2016-04-08 2020-02-07 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same

Also Published As

Publication number Publication date
JP5088476B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP4534790B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006075976A (en) Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting work
JP4474646B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5088476B2 (en) Surface coated cutting tool
JP5267767B2 (en) Surface coated cutting tool
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP5088477B2 (en) Surface coated cutting tool
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP5088475B2 (en) Surface coated cutting tool
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5267766B2 (en) Surface coated cutting tool
JP5170830B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting
JP4857950B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4756454B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5682500B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP4483510B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees