JP2006297519A - Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting - Google Patents

Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting Download PDF

Info

Publication number
JP2006297519A
JP2006297519A JP2005120644A JP2005120644A JP2006297519A JP 2006297519 A JP2006297519 A JP 2006297519A JP 2005120644 A JP2005120644 A JP 2005120644A JP 2005120644 A JP2005120644 A JP 2005120644A JP 2006297519 A JP2006297519 A JP 2006297519A
Authority
JP
Japan
Prior art keywords
layer
constituent
hard coating
cutting
coated cermet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005120644A
Other languages
Japanese (ja)
Other versions
JP4716250B2 (en
Inventor
Hisashi Honma
尚志 本間
Akira Osada
晃 長田
Keiji Nakamura
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005120644A priority Critical patent/JP4716250B2/en
Publication of JP2006297519A publication Critical patent/JP2006297519A/en
Application granted granted Critical
Publication of JP4716250B2 publication Critical patent/JP4716250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool having a hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting. <P>SOLUTION: The hard coating layer of the surface coated cermet cutting tool is composed of a lower layer and an upper layer, wherein (a) the lower layer is Ti compound layer which is composed of one or more layers of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer each formed by chemical deposition, and a reformed TiCN layer which has an average layer thickness of 2.5 to 15 μm, satisfies a formula (Ti<SB>1-X</SB>Cr<SB>X</SB>)C<SB>1-Y</SB>N<SB>Y</SB>, (where X is 0.005 to 0.05, Y is 0.45 to 0.55 by atomic ratio.) and indicates a specific constituent atom sharing lattice point distribution graph, and has total average layer thickness of 3 to 20 μm, and (b) the abovementioned upper layer is Al<SB>2</SB>O<SB>3</SB>layer which has an average layer thickness of 1 to 15 μm and α-type crystal structure in a state formed by chemical vapor deposition. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に鋼や鋳鉄などの高速重切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance with a hard coating layer, particularly in high-speed heavy cutting of steel or cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
特開平6−31503号公報
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an upper layer having an average layer thickness of 1 to 15 μm, and an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in a state of chemical vapor deposition;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
Japanese Unexamined Patent Publication No. 6-31503

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削効率の向上を目的として、切削速度を高速化し、かつ切り込みや送りなどを大きくする高速重切削条件での切削加工が行われる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の厳しい高速重切削加工、すなわち切刃部にきわめて高い機械的負荷が加わる高速重切削加工に用いた場合、これを構成する硬質被覆層は下部層のTi化合物層による高温強度、同上部層のAl23層による高温硬さおよび耐熱性を具備するものの、前記Ti化合物層による高温強度が不十分であるために、前記の機械的高負荷に対して満足に対応することができず、この結果硬質被覆層にはチッピング(微小欠け)が発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable, while there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting speed has been increased for the purpose of improving cutting efficiency, and Cutting tends to be performed under high-speed heavy cutting conditions that increase cutting depth and feed, etc., but the above-mentioned conventional coated cermet tools can be used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. There is no problem when it is used, but when it is used for high-speed heavy cutting with severe cutting conditions, that is, when it is used for high-speed heavy cutting where a very high mechanical load is applied to the cutting edge, the hard coating layer constituting this the high-temperature strength by Ti compound layer of the lower layer, although provided with a high-temperature hardness and heat resistance by the Al 2 O 3 layer of the upper layer, is insufficient high-temperature strength by the Ti compound layer For this reason, the mechanical high load cannot be satisfied satisfactorily, and as a result, the hard coating layer is likely to be chipped (small chipping), so that the service life is reached in a relatively short time. is the current situation.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の耐チッピング性向上をはかるべく、これの下部層であるTi化合物層を構成するTiCN層、すなわちTi化合物層のうちで相対的に高い高温強度を有し、かつ図2(a)に模式図で示される通り、格子点にTi、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図2(b)は(011)面で切断した状態を示す)を有するTiCN層に着目し、研究を行った結果、
(a)従来被覆サーメット工具の硬質被覆層において、下部層を構成するTi化合物層のうちのTiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N2:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されるが、
反応ガス組成:容量%で、TiCl:2〜10%、CrCl:0.01〜0.5%、CHCN:1〜4%、N2:20〜40%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件、すなわち上記の通常条件における反応ガスにCrClガスをきわめて少量加えた条件で蒸着形成して、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.005〜0.05、Y:0.45〜0.55)、
を満足するTi系炭窒化物層を形成すると、この結果のTi系炭窒化物層(以下、「改質Ti系CN層」という)は、上記の図2に示されるTiCN層と同様の結晶構造、すなわち図1(a)に模式図で示される通り、格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有すること。
In view of the above, the present inventors, from the above viewpoint, in order to improve the chipping resistance of the hard coating layer of the above-mentioned coated cermet tool, the TiCN layer constituting the Ti compound layer, which is the lower layer thereof, that is, Ti The compound layer has a relatively high high-temperature strength and, as shown in the schematic diagram of FIG. 2A, the constituent atoms composed of Ti, carbon (C), and nitrogen (N) are respectively present at the lattice points. As a result of conducting research by focusing on a TiCN layer having an existing NaCl-type face-centered cubic crystal structure (note that FIG. 2 (b) shows a state cut by the (011) plane),
(A) In the hard coating layer of the conventional coated cermet tool, the TiCN layer of the Ti compound layer constituting the lower layer is, for example, an ordinary chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor deposition under the conditions (called normal conditions)
Reaction gas composition: by volume%, TiCl 4: 2~10%, CrCl 3: 0.01~0.5%, CH 3 CN: 1~4%, N 2: 20~40%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the above conditions, that is, the reaction gas in the above normal conditions with a very small amount of CrCl 3 gas added,
Composition formula: (Ti 1-X Cr X ) C 1-Y N Y (however, in atomic ratio, X: 0.005-0.05, Y: 0.45-0.55),
When the Ti-based carbonitride layer satisfying the above is formed, the resulting Ti-based carbonitride layer (hereinafter referred to as “modified Ti-based CN layer”) has the same crystal structure as the TiCN layer shown in FIG. Structure, that is, a crystal structure of NaCl-type face-centered cubic crystals in which constituent atoms composed of Ti, Cr, carbon (C), and nitrogen (N) are present at lattice points, as schematically shown in FIG. (In addition, FIG.1 (b) shows the state cut | disconnected by the (011) plane).

(b)上記の従来被覆サーメット工具の硬質被覆層の下部層を構成するTiCN層(以下、「従来TiCN層」という)と上記(a)の改質Ti系CN層について、
電界放出型走査電子顕微鏡を用い、図2(a),(b)に概略説明図で例示される通り、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図3(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点に、前記従来TiCN層ではTi、炭素(C)、および窒素(N)、前記改質Ti系CN層ではTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現し、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合、前記改質Ti系CN層および従来TiCN層のいずれにも、Σ3に最高ピークが存在するが、前記従来TiCN層は、図5に例示される通り、Σ3の分布割合が30%以下の相対的に低い構成原子共有格子点分布グラフを示すのに対して、前記改質Ti系CN層は、図4に例示される通り、Σ3の分布割合が60%以上のきわめて高い構成原子共有格子点分布グラフを示し、この高いΣ3の分布割合は、前記改質Ti系CN層におけるCrの含有割合を調整することにより変化すること。
(B) About the TiCN layer (hereinafter referred to as “conventional TiCN layer”) constituting the lower layer of the hard coating layer of the conventional coated cermet tool and the modified Ti-based CN layer of (a) above,
Using a field emission scanning electron microscope, as illustrated in the schematic explanatory diagrams in FIGS. 2A and 2B, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface polished surface (FIG. 3A shows (001) of the crystal planes). When the tilt angle of the surface is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. In this case, the crystal grains are measured at lattice points as described above, and in the conventional TiCN layer, Ti, carbon (C ), Nitrogen (N), and the modified Ti-based CN layer is composed of Ti, Cr, carbon (C), and nitrogen (N) Each of the constituent atoms has an interfacial crystal structure at the interface between adjacent crystal grains based on the measured tilt angle. The distribution of lattice points that share one constituent atom between them (constituent atom shared lattice points) is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl-type face-centered cubic) The distribution of constitutive atomic shared lattice points is expressed as ΣN + 1, and the distribution ratio of each ΣN + 1 to the entire ΣN + 1 (however, the upper limit is 28 due to the frequency) When the constituent atomic share lattice distribution graph shown is created, the highest peak exists in Σ3 in both the modified Ti-based CN layer and the conventional TiCN layer, but the conventional TiCN layer is illustrated in FIG. Street, Σ3 In contrast to the relatively low constituent atom shared lattice point distribution graph with a distribution ratio of 30% or less, the modified Ti-based CN layer has a Σ3 distribution ratio of 60% or more as illustrated in FIG. 2 shows a distribution graph of extremely high constituent atomic shared lattice points, and the distribution ratio of this high Σ3 is changed by adjusting the content ratio of Cr in the modified Ti-based CN layer.

(c)上記改質Ti系CN層の形成に際して、層中のCr含有割合を、上記の通りTiとの合量に占める原子比で0.005〜0.5とすることによって、構成原子共有格子点分布グラフでのΣ3の分布割合が60%以上のきわめて高いものとなり、この結果層は上記従来TiCN層と比して、一段と高温強度の向上したものとなるのであり、したがって、層中のCr含有割合が前記の範囲から低い方に外れても、あるいは高い方に外れても、構成原子共有格子点分布グラフでのΣ3の分布割合が60%未満になってしまい、所望の高温強度向上効果が得られなくなること。 (C) When forming the modified Ti-based CN layer, the atomic ratio of the Cr content in the layer is 0.005 to 0.5 in terms of the atomic ratio to the total amount with Ti as described above, thereby sharing the constituent atoms The distribution ratio of Σ3 in the lattice point distribution graph becomes extremely high of 60% or more, and as a result, the layer has a further improved high-temperature strength as compared with the conventional TiCN layer. Even if the Cr content ratio deviates from the lower range or the higher range, the distribution ratio of Σ3 in the constituent atom shared lattice point distribution graph becomes less than 60%, and the desired high temperature strength is improved. The effect cannot be obtained.

(d)硬質被覆層の上部層が前記Al23層、下部層が上記Ti化合物層で構成され、かつ前記Ti化合物層のうちの1層が前記改質Ti系CN層からなる被覆サーメット工具は、前記改質Ti系CN層が上記従来TiCN層に比して一段と高い高温強度を有するので、同上部層であるAl23層が具備するすぐれた高温硬さおよび耐熱性と相俟って、特にきわめて高い負荷のかかる高速重切削加工でも、前記硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示すようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(D) A coated cermet in which the upper layer of the hard coating layer is composed of the Al 2 O 3 layer, the lower layer is composed of the Ti compound layer, and one of the Ti compound layers is composed of the modified Ti-based CN layer. In the tool, since the modified Ti-based CN layer has a higher high-temperature strength than the conventional TiCN layer, the high-temperature hardness and heat resistance provided by the Al 2 O 3 layer as the upper layer are compatible. In other words, the hard coating layer exhibits excellent chipping resistance even in high-speed heavy cutting with extremely high load, and exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上と、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.005〜0.05、Y:0.45〜0.55)、を満足すると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Cr、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質Ti系CN層、
からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有するAl層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) One or more of the TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition of the lower layer, and an average layer thickness of 2.5 to 15 μm And having
While satisfying the composition formula: (Ti 1-X Cr X ) C 1-Y N Y (wherein, X: 0.005 to 0.05, Y: 0.45 to 0.55 in atomic ratio)
Using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal plane of the crystal grain is normal to the surface polished surface ( The inclination angle formed by the normal lines of the (001) plane and the (011) plane is measured. In this case, the crystal grains are NaCl-type face-centered cubes in which constituent atoms composed of Ti, Cr, carbon, and nitrogen exist at lattice points. A lattice in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains based on the measured tilt angle obtained as a result of the crystal structure The distribution of the points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share the constituent atoms between the constituent atom shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal). ΣN is the existing configuration of atomic atom lattice points. In the constituent atom sharing lattice distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 due to the frequency), the highest peak exists in Σ3, A modified Ti-based CN layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of Σ3 to the entire ΣN + 1 is 60% or more;
And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) The upper layer has an average layer thickness of 1 to 15 μm, and an Al 2 O 3 layer having an α-type crystal structure in the state of chemical vapor deposition,
The present invention is characterized by a coated cermet tool that forms the hard coating layer constituted by (a) and (b) and exhibits excellent chipping resistance in high-speed heavy cutting.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength, and firmly adheres to both the tool base and the upper Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited, while the total average layer thickness is If it exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly by high-speed intermittent cutting accompanied by generation of high heat, which causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)改質Ti系CN層(下部層)
上記の改質Ti系CN層の構成原子共有格子点分布グラフにおけるΣ3の分布割合は、上記の通り層中のCr含有割合(X値)をTiとの合量に占める原子比で、0.005〜0.5とすることによって60%以上とすることができるが、その含有割合が0.005未満でも、0.05を越えても、Σ3の分布割合は60%未満となってしまい、高速重切削加工で、硬質被覆層にチッピングが発生しない、すぐれた高温強度向上効果を確保することができず、したがってΣ3の分布割合は高ければ高いほど望ましいが、この場合Σ3の分布割合を80%を越えて高くすることは層形成上困難である。
また、改質Ti系CN層におけるC成分には層の硬さを向上させ、一方N成分には強度を向上させる作用があり、これら両成分を共存含有することにより高い硬さとすぐれた強度を具備するようになるものであり、したがって、層中のN成分の含有割合(Y値)がC成分との合量に占める原子比で0.45未満では所望の強度を確保することができず、一方その含有割合(Y値)が同じく0.55を越えると、相対的にC成分の含有割合が少なくなり過ぎて、所望の高硬度が得られなくなることから、Y値を原子比で0.45〜0.55と定めた。
このように前記改質Ti系CN層は、上記の通り従来TiCN層に比して、一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が15μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚を2.5〜15μmと定めた。
(B) Modified Ti-based CN layer (lower layer)
The distribution ratio of Σ3 in the constituent atomic share lattice point distribution graph of the modified Ti-based CN layer is the atomic ratio of the Cr content ratio (X value) in the layer to the total amount with Ti as described above. Although it can be set to 60% or more by setting 005 to 0.5, even if the content ratio is less than 0.005 or more than 0.05, the distribution ratio of Σ3 is less than 60%, In high-speed heavy cutting, the hard coating layer does not cause chipping and an excellent effect of improving high-temperature strength cannot be secured. Therefore, the higher the distribution ratio of Σ3, the better, but in this case the distribution ratio of Σ3 is 80 It is difficult for the layer formation to be higher than%.
In addition, the C component in the modified Ti-based CN layer improves the hardness of the layer, while the N component has the effect of improving the strength. By coexisting these two components, high hardness and excellent strength can be obtained. Therefore, if the content ratio (Y value) of the N component in the layer is less than 0.45 in terms of the atomic ratio to the total amount with the C component, the desired strength cannot be secured. On the other hand, if the content ratio (Y value) similarly exceeds 0.55, the content ratio of the C component becomes relatively small and the desired high hardness cannot be obtained. .45 to 0.55.
As described above, the modified Ti-based CN layer has higher temperature strength than the conventional TiCN layer as described above. However, if the average layer thickness is less than 2.5 μm, the desired excellent high temperature is obtained. The hard coating layer cannot be sufficiently provided with the effect of improving the strength. On the other hand, if the average layer thickness exceeds 15 μm, the thermoplastic deformation that causes uneven wear tends to occur, and wear is accelerated. Therefore, the average layer thickness was determined to be 2.5 to 15 μm.

(c)Al23層(上部層)
Al23層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Al 2 O 3 layer (upper layer)
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を最表面層として、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, the TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case is 0.1 to 1 μm may be sufficient, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的負荷がきわめて高い鋼や鋳鉄などの高速重切削加工でも、硬質被覆層の下部層であるTi化合物層のうちの1層である改質Ti系CN層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示すものである。   The coated cermet tool according to the present invention has a modified Ti-based CN layer, which is one of the Ti compound layers as the lower layer of the hard coating layer, even in high-speed heavy cutting such as steel and cast iron with extremely high mechanical load. Since it has excellent high-temperature strength and exhibits excellent chipping resistance, the hard coating layer exhibits excellent wear resistance without occurrence of chipping.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape defined in ISO · CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, blend these raw material powders into the composition shown in Table 2, wet mix with a ball mill for 24 hours, dry, and press-mold into a green compact at 98 MPa pressure The green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a chip shape conforming to ISO standards / CNMG 120212 were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、改質Ti系CN層を含むTi化合物層を表3に示される条件で、表4に示される組み合わせおよび目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、上部層としてのAl23層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, a Ti compound layer including a modified Ti-based CN layer is formed as a lower layer of the hard coating layer on the surface of the tool bases A to F and the tool bases a to f using a normal chemical vapor deposition apparatus. In the conditions shown in Table 4, vapor deposition is performed with the combinations and target layer thicknesses shown in Table 4, and then the Al 2 O 3 layer as the upper layer is also used in the combinations shown in Table 4 under the conditions shown in Table 3 And this invention covering cermet tool 1-13 was manufactured by carrying out vapor deposition formation with target layer thickness, respectively.

また、比較の目的で、硬質被覆層の下部層として、従来TiCN層を含むTi化合物層を表3に示される条件で、表5に示される組み合わせおよび目標層厚で蒸着形成し、さらに上部層としてのAl23層を、表3に示される条件で、かつ同じく表5に示される目標層厚で蒸着形成することにより従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as a lower layer of the hard coating layer, a Ti compound layer including a conventional TiCN layer is vapor-deposited with the combinations and target layer thicknesses shown in Table 5 under the conditions shown in Table 3, and the upper layer. Conventionally coated cermet tools 1 to 13 were manufactured by depositing the Al 2 O 3 layer under the conditions shown in Table 3 and with the target layer thicknesses shown in Table 5, respectively.

ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する改質Ti系CN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質Ti系CN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を求めることにより作成した。
Next, with respect to the modified Ti-based CN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, a constituent atomic shared lattice point distribution graph is obtained using a field emission scanning electron microscope. Was created respectively.
That is, the constituent atomic shared lattice point distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the surfaces of the modified Ti-based CN layer and the conventional TiCN layer are polished surfaces. An electron backscatter diffraction image apparatus is used by irradiating an electron beam with an acceleration voltage of 15 kV on a surface with an irradiation current of 15 kV with an irradiation current of 1 nA and on each crystal grain existing in the measurement range of the surface polished surface. Inclination angles formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the surface-polished surface in a 30 × 50 μm region at an interval of 0.1 μm / step Based on the measurement inclination angle obtained as a result of this, lattice points (constituent atoms) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains are measured. Share grid point) distribution, The constitutive atomic shared lattice point form is expressed by ΣN + 1 where there are N lattice points that do not share the constituent atoms between the constituent atomic shared lattice points (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal). In this case, each ΣN + 1 is created by determining the distribution ratio of ΣN + 1 in the entire ΣN + 1 (however, the upper limit value is 28 in relation to the frequency).

この結果得られた各種の改質Ti系CN層および従来TiCNの構成原子共有格子点分布グラフにおいて、ΣN+1全体(Nは2〜28の範囲内のすべての偶数)に占めるΣ3の分布割合をそれぞれ表4,5にそれぞれ示した。   In the resulting modified Ti-based CN layer and the conventional TiCN shared lattice point distribution graph of TiCN, the distribution ratio of Σ3 in the entire ΣN + 1 (N is all even numbers in the range of 2 to 28) The results are shown in Tables 4 and 5, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の改質Ti系CN層は、いずれもΣ3の占める分布割合が60%以上である構成原子共有格子点分布グラフを示すのに対して、従来被覆サーメット工具の従来TiCN層は、いずれもΣ3の分布割合が30%以下の構成原子共有格子点分布グラフを示すものであった。
なお、図4は、本発明被覆サーメット工具3の改質Ti系CN層の構成原子共有格子点分布グラフ、図4は、従来被覆サーメット工具5の従来TiCN層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atomic share lattice point distribution graphs, as shown in Tables 4 and 5, each of the modified Ti-based CN layers of the coated cermet tool of the present invention has a distribution ratio of Σ3 of 60% or more. While the constituent atom sharing lattice point distribution graph is shown, the conventional TiCN layer of the conventional coated cermet tool shows a constituent atom sharing lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less.
4 is a constituent atomic shared lattice point distribution graph of the modified Ti-based CN layer of the coated cermet tool 3 of the present invention, and FIG. 4 is a constituent atomic shared lattice point distribution graph of the conventional TiCN layer of the conventional coated cermet tool 5. Each is shown.

さらに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl23層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, for the above-described coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analysis device (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・S53Cの丸棒、
切削速度:450m/min、
切り込み:5mm、
送り:0.25mm/rev、
切削時間:8分、
の条件(切削条件A)での炭素鋼の湿式連続高速高切り込み切削試験(通常の切削速度および切り込み量は、それぞれ200m/minおよび1.5mm)、
被削材:JIS・FCD500の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.5mm、
送り:0.5mm/rev、
切削時間:8分、
の条件(切削条件B)でのダクタイル鋳鉄の湿式断続高速高送り切削試験(通常の切削速度および送りは200m/minおよび0.3mm/rev)、
被削材:JIS・SNCM625の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:4.5mm、
送り:0.3mm/rev、
切削時間:8分、
の条件(切削条件C)での合金鋼の湿式断続高速高切り込み切削試験(通常の切削速度および切り込み量は、それぞれ180m/minおよび1.5mm)を行い、いずれの切削試験(水溶性切削油使用)でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 in the state where all the above-mentioned various coated cermet tools are screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS / S53C round bar,
Cutting speed: 450 m / min,
Cutting depth: 5mm,
Feed: 0.25mm / rev,
Cutting time: 8 minutes
Wet continuous high-speed high-cut cutting test of carbon steel under the above conditions (cutting condition A) (normal cutting speed and cutting amount are 200 m / min and 1.5 mm, respectively),
Work material: JIS / FCD500 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 350 m / min,
Incision: 1.5mm,
Feed: 0.5mm / rev,
Cutting time: 8 minutes
Wet intermittent high-speed high-feed cutting test of ductile cast iron under the following conditions (cutting condition B) (normal cutting speed and feed are 200 m / min and 0.3 mm / rev),
Work material: JIS / SNCM625 lengthwise equally spaced 4 rods with vertical grooves,
Cutting speed: 380 m / min,
Cutting depth: 4.5mm,
Feed: 0.3mm / rev,
Cutting time: 8 minutes
Wet intermittent high-speed high-cut cutting test (normal cutting speed and cutting depth are 180 m / min and 1.5 mm, respectively) of alloy steel under the above conditions (cutting condition C), and any cutting test (water-soluble cutting oil) Use), the flank wear width of the cutting edge was also measured. The measurement results are shown in Table 6.

Figure 2006297519
Figure 2006297519

Figure 2006297519
Figure 2006297519

Figure 2006297519
Figure 2006297519

Figure 2006297519
Figure 2006297519

Figure 2006297519
Figure 2006297519

Figure 2006297519
Figure 2006297519

表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の下部層であるTi化合物層のうちの1層が、Σ3の分布割合が60%以上の構成原子共有格子点分布グラフを示す改質Ti系CN層で構成され、機械的負荷がきわめて高い鋼や鋳鉄の高速重切削でも、前記改質Ti系CN層が一段とすぐれた高温強度を有し、すぐれた耐チッピング性を発揮することから、硬質被覆層のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の下部層であるTi化合物層のうちの1層が、Σ3の分布割合が30%以下の構成原子共有格子点分布グラフを示す従来TiCN層で構成された従来被覆サーメット工具1〜13においては、いずれも高速重切削では硬質被覆層の高温強度不足が原因で、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 to 6, the coated cermet tools 1 to 13 of the present invention each have a structure in which one of the Ti compound layers as the lower layer of the hard coating layer has a distribution ratio of Σ3 of 60% or more. It is composed of a modified Ti-based CN layer showing an atomic shared lattice point distribution graph, and even in high-speed heavy cutting of steel and cast iron with extremely high mechanical load, the modified Ti-based CN layer has a higher temperature strength that is even better. One of the Ti compound layers, which is the lower layer of the hard coating layer, exhibits excellent chipping resistance, so that the occurrence of chipping in the hard coating layer is remarkably suppressed and exhibits excellent wear resistance. However, in the conventional coated cermet tools 1 to 13 composed of the conventional TiCN layer showing the constituent atomic shared lattice point distribution graph in which the distribution ratio of Σ3 is 30% or less, all of the high-temperature heavy cutting lacks the high-temperature strength of the hard coating layer. Gahara For this reason, it is apparent that chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高い高温強度が要求される高速重切削加工でも硬質被覆層がすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has a hard coating layer not only for continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron, but also for high-speed heavy cutting that requires particularly high high-temperature strength. Since it exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it is fully satisfactory for higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction. It can be done.

硬質被覆層の下部層であるTi化合物層を構成する改質Ti系CN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the modified Ti type | system | group CN layer which comprises the Ti compound layer which is a lower layer of a hard coating layer has. 硬質被覆層の下部層であるTi化合物層を構成する従来TiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the conventional TiCN layer which comprises the Ti compound layer which is a lower layer of a hard coating layer has. 硬質被覆層の下部層であるTi化合物層を構成する改質Ti系CN層および従来TiCN層における結晶粒の(001)面および(011)面の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the (001) plane of a crystal grain and the (011) plane in the modified Ti type | system | group CN layer which comprises the Ti compound layer which is a lower layer of a hard coating layer, and the conventional TiCN layer. . 本発明被覆サーメット工具3の硬質被覆層の下部層であるTi化合物層を構成する改質TiCN層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice distribution graph of a modified TiCN layer constituting a Ti compound layer that is a lower layer of a hard coating layer of the coated cermet tool 3 of the present invention. 従来被覆サーメット工具5の硬質被覆層の下部層であるTi化合物層を構成する従来TiCN層の構成原子共有格子点分布グラフである。4 is a constituent atomic share lattice point distribution graph of a conventional TiCN layer constituting a Ti compound layer that is a lower layer of a hard coating layer of a conventional coated cermet tool 5.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上と、2.5〜15μmの平均層厚を有し、かつ、
組成式:(Ti1−XCr)C1−Y(ただし、原子比で、X:0.005〜0.05、Y:0.45〜0.55)、
を満足すると共に、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、Cr、炭素(C)、および窒素(N)からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値を28とする)に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60%以上である構成原子共有格子点分布グラフを示す改質Ti系炭窒化物層、からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる、高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by chemical vapor deposition, Having an average layer thickness of 2.5 to 15 μm, and
Composition formula: (Ti 1-X Cr X ) C 1-Y N Y (however, in atomic ratio, X: 0.005-0.05, Y: 0.45-0.55),
And using a field emission scanning electron microscope, each crystal grain existing within the measurement range of the surface polished surface is irradiated with an electron beam, and the crystal grain The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes, is measured. In this case, the crystal grains are composed of Ti, Cr, carbon (C), and nitrogen (N) at lattice points. Each of the constituent atoms has a crystal structure of an NaCl type face centered cubic crystal in which each constituent atom exists, and at the interface between adjacent crystal grains based on the measurement tilt angle obtained as a result. The distribution of lattice points (constituent atom shared lattice points) that share one constituent atom between each other is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points (N is a NaCl type face center) (It will be an even number of 2 or more in the cubic crystal structure) When the constituent atomic shared lattice point form is expressed as ΣN + 1, in the constituent atomic shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 (however, the upper limit is 28 in relation to the frequency), A total average of 3 to 20 μm, which is composed of a modified Ti-based carbonitride layer showing a constituent atomic shared lattice point distribution graph in which the highest peak exists and the distribution ratio of the Σ3 to the entire ΣN + 1 is 60% or more A Ti compound layer having a layer thickness,
(B) an upper layer has an average layer thickness of 1 to 15 μm, and an aluminum oxide layer having an α-type crystal structure in the state of chemical vapor deposition;
A surface-coated cermet cutting tool that exhibits excellent chipping resistance in a high-speed heavy cutting process, which is formed by vapor-depositing the hard coating layer composed of (a) and (b) above.
JP2005120644A 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting Active JP4716250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005120644A JP4716250B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005120644A JP4716250B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Publications (2)

Publication Number Publication Date
JP2006297519A true JP2006297519A (en) 2006-11-02
JP4716250B2 JP4716250B2 (en) 2011-07-06

Family

ID=37466217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005120644A Active JP4716250B2 (en) 2005-04-19 2005-04-19 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting

Country Status (1)

Country Link
JP (1) JP4716250B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254158A (en) * 2007-04-09 2008-10-23 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2008260099A (en) * 2007-04-12 2008-10-30 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer with excellent chipping resistance
JP2009056563A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009056562A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009101462A (en) * 2007-10-23 2009-05-14 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009101463A (en) * 2007-10-23 2009-05-14 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009154235A (en) * 2007-12-26 2009-07-16 Mitsubishi Materials Corp Surface coated cutting tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256336A (en) * 1998-03-10 1999-09-21 Hitachi Metals Ltd Titanium carbonitride-coated tool
JP2003117706A (en) * 2001-10-04 2003-04-23 Hitachi Tool Engineering Ltd Covered tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254158A (en) * 2007-04-09 2008-10-23 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2008260099A (en) * 2007-04-12 2008-10-30 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer with excellent chipping resistance
JP2009056563A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009056562A (en) * 2007-08-31 2009-03-19 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009101462A (en) * 2007-10-23 2009-05-14 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009101463A (en) * 2007-10-23 2009-05-14 Mitsubishi Materials Corp Surface-coated cutting tool
JP2009154235A (en) * 2007-12-26 2009-07-16 Mitsubishi Materials Corp Surface coated cutting tool

Also Published As

Publication number Publication date
JP4716250B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4518258B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4716250B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4756453B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5170828B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5023896B2 (en) Surface coated cutting tool
JP4716254B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2008080476A (en) Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work
JP2009006427A (en) Surface coated cutting tool
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting
JP2009056562A (en) Surface-coated cutting tool
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5309697B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP2009101462A (en) Surface-coated cutting tool
JP2008168419A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP4720995B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP4752536B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance in high-speed intermittent cutting of high-hardness materials.
JP4894406B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080321

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110307

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Effective date: 20110320

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3