JP5440311B2 - Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer - Google Patents

Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer Download PDF

Info

Publication number
JP5440311B2
JP5440311B2 JP2010069068A JP2010069068A JP5440311B2 JP 5440311 B2 JP5440311 B2 JP 5440311B2 JP 2010069068 A JP2010069068 A JP 2010069068A JP 2010069068 A JP2010069068 A JP 2010069068A JP 5440311 B2 JP5440311 B2 JP 5440311B2
Authority
JP
Japan
Prior art keywords
layer
inclination angle
crystal
degrees
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010069068A
Other languages
Japanese (ja)
Other versions
JP2011200953A (en
Inventor
興平 冨田
誠 五十嵐
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010069068A priority Critical patent/JP5440311B2/en
Publication of JP2011200953A publication Critical patent/JP2011200953A/en
Application granted granted Critical
Publication of JP5440311B2 publication Critical patent/JP5440311B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、例えば、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の切削加工を、高熱発生を伴い、かつ、切刃部に衝撃的負荷が作用する高速重断続切削条件で行った場合でも、硬質被覆層が剥離、チッピングを発生することなく、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, for example, cutting of high hardness steel such as a hardened material of alloy tool steel or bearing steel was performed under high-speed heavy interrupted cutting conditions with high heat generation and an impact load acting on the cutting edge portion. Even in this case, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use without causing peeling or chipping of the hard coating layer.

特許文献1に示すように、従来、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層は、Ti化合物層、
(b)上部層は、化学蒸着形成した状態でα型の結晶構造を有し、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型Al23層、
で構成された硬質被覆層を形成してなる被覆工具(従来被覆工具1という)が知られており、この従来被覆工具1は、上部層の高温強度が優れることから、合金鋼、炭素鋼、鋳鉄等の高速断続切削ですぐれた耐チッピング性を示すことが知られている。
また、特許文献2に示すように、工具基体の表面に、
(a)下部層は、Ti化合物層、
(b)上部層は、平板多角形(平坦六角形状を含む)状かつたて長形状の結晶粒組織構造を有し、かつ、上部層の結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているZr含有α型Al層(以下、従来AlZrO層という)、
で構成された硬質被覆層を形成してなる被覆工具(従来被覆工具2という)が知られており、この従来被覆工具2は、硬質被覆層の上部層が、すぐれた高温硬さ、高温強度、表面性状を備えることから、合金鋼、炭素鋼、鋳鉄等の高速重切削加工において、すぐれたチッピング性を発揮することが知られている。
As shown in Patent Document 1, conventionally, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as a tool). On the surface of the substrate)
(A) The lower layer is a Ti compound layer,
(B) The upper layer has an α-type crystal structure in a state in which chemical vapor deposition is formed, and an inclination within a range of 0 to 10 degrees in an inclination angle number distribution graph obtained by counting the frequencies existing in each section. Α showing an inclination angle distribution graph in which the highest peak exists in the angle section and the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire frequencies in the inclination angle distribution graph. Type Al 2 O 3 layer,
A coated tool formed by forming a hard coating layer (referred to as a conventional coated tool 1) is known, and this conventional coated tool 1 is superior in the high-temperature strength of the upper layer, so alloy steel, carbon steel, It is known to show excellent chipping resistance by high-speed intermittent cutting of cast iron or the like.
Further, as shown in Patent Document 2, on the surface of the tool base,
(A) The lower layer is a Ti compound layer,
(B) The upper layer has a flat-plate polygonal shape (including a flat hexagonal shape) and a long and long crystal grain structure structure, and crystals having an area ratio of 60% or more among the crystal grains of the upper layer The inside of the grain is a Zr-containing α-type Al 2 O 3 layer (hereinafter referred to as a conventional AlZrO layer) that is divided by a crystal lattice interface composed of at least one constituent atom shared lattice point represented by Σ3,
A coated tool formed by forming a hard coating layer (referred to as a conventional coated tool 2) is known. The conventional coated tool 2 has an upper layer of a hard coated layer having excellent high-temperature hardness and high-temperature strength. Since it has surface properties, it is known to exhibit excellent chipping properties in high-speed heavy cutting of alloy steel, carbon steel, cast iron and the like.

ただ、上記従来被覆工具1、従来被覆工具2の何れにおいても、硬質被覆層全体としての特性の向上を目指しているが、被覆工具は、すくい面と逃げ面によって求められる特性が異なるという点から、それぞれの面に応じた特性を付与することも知られている。
例えば、特許文献3に示すように、硬質被覆層の下部層を構成するTiCN層について、すくい面におけるTiCN層の(422)面配向係数を、逃げ面におけるそれより大きくすることによって、すくい面における耐衝撃性を高めると同時に、逃げ面における耐摩耗性を高めた被覆工具(以下、従来被覆工具3という)も知られている。
However, both the conventional coated tool 1 and the conventional coated tool 2 aim to improve the characteristics of the hard coating layer as a whole, but the coated tool has different characteristics required for the rake face and the flank face. It is also known to impart characteristics according to each surface.
For example, as shown in Patent Document 3, for the TiCN layer constituting the lower layer of the hard coating layer, by making the (422) plane orientation coefficient of the TiCN layer on the rake face larger than that on the flank face, A coated tool (hereinafter referred to as a conventional coated tool 3) is also known which has improved impact resistance and at the same time improved wear resistance on the flank.

特開2005−205586号公報JP-A-2005-205586 特開2009−172748号公報JP 2009-172748 A 特開2006−305714号公報JP 2006-305714 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高能率化し、切削工具の汎用化も求められているが、上記従来被覆工具においては、これを通常の鋼、鋳鉄等の被削材を、高送り、高切込み等の高速重切削加工に用いた場合には特に問題はないが、特にこれを、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の、刃先に高熱発生及び断続的・衝撃的な高負荷が作用する高速重断続切削条件加工に用いた場合には、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work. As a result, cutting has become faster and more efficient. However, in the above conventional coated tool, there is no problem in particular when a work material such as normal steel or cast iron is used for high-speed heavy cutting such as high feed and high cutting. However, when this is used for high-speed heavy interrupted cutting conditions machining of high hardness steel, such as hardened alloy tool steel and bearing steel, where high heat generation and intermittent / impact high loads act on the cutting edge. At present, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、切削工具の刃先に高熱発生及び断続的・衝撃的な高負荷が作用する高硬度鋼の高速重断続切削加工に用いた場合にも、長期の使用に亘ってすぐれた耐チッピング、耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下の知見を得た。   Therefore, the present inventors, from the viewpoint as described above, even when used for high-speed heavy interrupted cutting of high hardness steel in which high heat generation and intermittent / impact high loads act on the cutting edge of the cutting tool, As a result of earnest research to develop a coated tool that exhibits excellent chipping resistance and wear resistance over a long period of use, the following findings were obtained.

上記の従来被覆工具においては、Ti化合物からなる下部層を形成した後、これに引き続いて、上部層(例えば、上記従来被覆工具1におけるα型Al層、また、上記従来被覆工具2における従来AlZrO層)が成膜されるが、被覆工具の切削性能を高めるために、中間層を介して上部層を成膜することも行われていることから、本発明者らは、従来被覆工具1におけるα型Al層を中間層とし、その上に、従来被覆工具2における従来AlZrO層をさらに上部層として形成することにより、被覆工具の切削性能を高めることを試みたところ、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重断続切削加工に用いた場合には、硬質被覆層の切刃部の耐剥離性および耐チッピング性が依然として不十分であるとの結論に至った。 In the above conventional coated tool, after forming a lower layer made of a Ti compound, subsequently, an upper layer (for example, the α-type Al 2 O 3 layer in the conventional coated tool 1 or the conventional coated tool 2 described above). In order to improve the cutting performance of the coated tool, the upper layer is also formed through an intermediate layer. When the α-type Al 2 O 3 layer in the tool 1 was used as an intermediate layer, and the conventional AlZrO layer in the conventional coated tool 2 was further formed thereon as an upper layer, an attempt was made to improve the cutting performance of the coated tool. When used for high-speed heavy interrupted cutting of hardened steel such as alloy tool steel and bearing steel quenching material, the peeling resistance and chipping resistance of the cutting edge of the hard coating layer are still insufficient. Conclusion It came to.

そこで、本発明者らは切刃部の硬質被覆層の層構造についてさらに研究を進めたところ、工具基体表面全体にTi化合物からなる下部層を形成し、(0001面の配向性の高いα型Al層を中間層として形成し、さらに、上部層としてΣ3の分布割合が60%以上のZr含有Al層を成膜することにより、切削工具の切刃部の全体に、上記(0001)面の配向性の高いα型Al層を露出させる。
このように、切刃部表面のみに前記中間層を露出形成した場合には、高硬度鋼の高速重断続切削において、切刃部に対して作用する断続的・衝撃的な負荷を低減し得るとともに、切刃部におけるチッピング、剥離の発生を抑制することができ、よって、長期の使用にわたり、切削性能の低下を招くことなく工具寿命の延命化を図り得ることを見出したのである。
なお、この発明でいうところのすくい面、逃げ面および切刃部とは、図5に示される概略模式図のとおりであるが、被覆工具のすくい面と逃げ面に接し、曲率を持った曲線で囲われる部分が切刃部である。ただ、すくい面と逃げ面とが直線的に交差し、曲線で囲われる部分が形成されない場合には、直線の交点から膜深さ方向で囲まれる部分(図5中の斜線領域)が切刃部となる。
Therefore, the present inventors have further studied the layer structure of the hard coating layer of the cutting edge part, and formed a lower layer made of a Ti compound on the entire tool base surface, and (α-type with high orientation on the 0001 plane) By forming an Al 2 O 3 layer as an intermediate layer and further forming a Zr-containing Al 2 O 3 layer having a distribution ratio of Σ3 of 60% or more as an upper layer, the entire cutting edge portion of the cutting tool is formed, The α-type Al 2 O 3 layer having high orientation on the (0001) plane is exposed.
Thus, when the intermediate layer is exposed only on the surface of the cutting edge, the intermittent and impact load acting on the cutting edge can be reduced in high-speed heavy interrupted cutting of high-hardness steel. At the same time, it has been found that the occurrence of chipping and peeling at the cutting edge portion can be suppressed, and that the tool life can be extended without deteriorating the cutting performance over a long period of use.
Note that the rake face, flank face, and cutting edge in the present invention are as shown in the schematic diagram shown in FIG. The part surrounded by is the cutting edge part. However, when the rake face and the flank face intersect linearly and the part surrounded by the curve is not formed, the part surrounded by the film depth direction from the intersection of the straight lines (the hatched area in FIG. 5) is the cutting edge. Part.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の逃げ面およびすくい面には、
下部層として、
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、2〜15μmの合計平均層厚を有するTi化合物層、
中間層として、
(b)1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
上部層として、
(c)2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するZr含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層が蒸着形成され、
一方、上記工具基体の切刃部には、上記(a)のTi化合物層および上記(b)の酸化アルミニウム層が蒸着形成された表面被覆切削工具において、
(d)上記逃げ面、すくい面および切刃部の上記(b)の酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、2〜8度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜8度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)また、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、
(f)さらに、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するZr含有酸化アルミニウム層であり、
(g)さらに、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、逃げ面およびすくい面における上記(c)のZr含有酸化アルミニウム層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているZr含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
(2) 逃げ面およびすくい面における上記(c)のZr含有酸化アルミニウム層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める
前記(1)に記載の表面被覆切削工具。」
(3) 上記(b)の酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、12〜18度の範囲内の傾斜角区分にピークが存在し、その範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の15%以上40%未満の割合を占める傾斜角度数分布グラフを示す前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) The flank and rake face of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet
As a lower layer,
(A) All are formed by chemical vapor deposition, consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and 2 to 2 A Ti compound layer having a total average layer thickness of 15 μm,
As an intermediate layer,
(B) an aluminum oxide layer having an average layer thickness of 1 to 5 μm and having an α-type crystal structure in a chemical vapor deposited state;
As an upper layer,
(C) a Zr-containing aluminum oxide layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
A hard coating layer comprising the above (a) to (c) is formed by vapor deposition,
On the other hand, in the surface-coated cutting tool in which the Ti compound layer of (a) and the aluminum oxide layer of (b) are deposited on the cutting edge portion of the tool base,
(D) A hexagonal crystal existing in the measurement range of the surface polished surface of the tool base, using a field emission scanning electron microscope, with respect to the aluminum oxide layer (b) of the flank, rake face and cutting edge. By irradiating each crystal grain having a lattice with an electron beam, an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface, and the measurement is performed. The measured inclination angle within the range of 0 to 45 degrees of the inclination angles is divided for each pitch of 0.25 degrees, and the angle existing in each division is represented by an inclination angle number distribution graph. In this case, the highest peak exists in the inclination angle section within the range of 2 to 8 degrees, and the total of the frequencies existing within the range of 2 to 8 degrees is 45% or more of the entire degrees in the inclination angle frequency distribution graph. An inclination angle number distribution graph occupying a ratio is shown,
(E) Further, the Zr-containing aluminum oxide layer (c) formed on the flank and rake face is present within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Each crystal grain having a hexagonal crystal lattice is irradiated with an electron beam, and an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface. An inclination angle number distribution graph obtained by dividing the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each division. When the maximum peak is present in the inclination angle section within the range of 0 to 10 degrees, the sum of the frequencies existing within the range of 0 to 10 degrees is 60 of the entire degrees in the inclination angle frequency distribution graph. % Of inclination angle that occupies more than% It shows a graph,
(F) Further, when the microstructure of the Zr-containing aluminum oxide layer (c) formed on the flank and rake face is observed with a field emission scanning electron microscope, a flat plate is formed in a plane perpendicular to the layer thickness direction. A Zr-containing aluminum oxide layer having a polygonal shape and a textured structure composed of crystal grains having a long shape in the layer thickness direction in a plane parallel to the layer thickness direction;
(G) Further, with respect to the Zr-containing aluminum oxide layer of (c) formed on the flank and rake face, using a field emission scanning electron microscope and an electron backscatter diffraction image device, within the measurement range of the surface polished surface Irradiate each individual crystal grain with an electron beam, and measure the angle at which each normal of the crystal lattice plane composed of hexagonal crystal lattice intersects with the normal of the substrate surface. The mutual crystal orientation relationship is calculated, and the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices is calculated. There are N lattice points that do not share constituent atoms between atomic shared lattice points (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency) 4, 8, (Even numbers of 4, 24 and 26 do not exist) When the constituent atomic shared lattice point form is represented by ΣN + 1, the crystal grains constituting the Zr-containing aluminum oxide layer of (c) above on the flank and rake face Among them, the inside of the crystal grains having an area ratio of 60% or more is a Zr-containing aluminum oxide layer divided by a crystal lattice interface composed of at least one constituent atom shared lattice point represented by Σ3.
A surface-coated cutting tool characterized by that.
(2) When the Zr-containing aluminum oxide layer (c) of (c) above on the flank and rake face is observed with a field emission scanning electron microscope, a flat hexagonal shape in the plane perpendicular to the layer thickness direction, and the layer thickness The surface-coated cutting according to (1), wherein the crystal grains having a long shape in the layer thickness direction in a plane parallel to the direction occupy an area ratio of 35% or more in the plane perpendicular to the layer thickness direction tool. "
(3) For the aluminum oxide layer of (b), an electron beam is irradiated to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Then, the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the surface polished surface, and the range of 0 to 45 degrees of the measured inclination angle When the measured inclination angle is divided into pitches of 0.25 degrees and the frequency existing in each section is tabulated, the inclination angle is within a range of 12 to 18 degrees. (1) or (1) showing the inclination angle distribution graph in which a peak is present in the angle section and the sum of the frequencies existing in the range occupies a ratio of 15% or more and less than 40% of the entire frequency in the inclination angle distribution graph (2) Surface coating cutting machine Ingredients. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、化学蒸着によって形成することができ、基本的には中間層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた靭性及び耐摩耗性によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が2μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、特に断続的・衝撃的な高負荷が繰り返し作用する高速重断続切削条件では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を2〜15μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitriding A Ti compound layer composed of one or more of the material (hereinafter referred to as TiCNO) layers can be formed by chemical vapor deposition, and basically a modified α-type Al 2 O 3 that is an intermediate layer. It exists as a lower layer of the layer and contributes to improving the high-temperature strength of the hard coating layer by its excellent toughness and wear resistance, and it is firmly attached to both the tool base and the modified α-type Al 2 O 3 layer It has an action that contributes to improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 2 μm, the above-mentioned action cannot be sufficiently exerted, whereas the total average layer When the thickness exceeds 15 μm, Easily cause thermal plastic deformation in a high-speed heavy interrupted cutting conditions intermittently and impact, high load is repeatedly exerted on, this is because the cause of the uneven wear, defining a total average layer thickness thereof and 2 to 15 [mu] m.

(c)α型Al23層(中間層)
α型Al23層からなる中間層は、Ti化合物層からなる下部層上に、例えば、前記特許文献1に記載される化学蒸着条件、すなわち、
通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C24:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の条件で、下部層であるTi化合物層の表面にAl23核を形成し、この場合Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、核形成後、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件でAl23核薄膜に加熱処理を施した状態で、α型Al23層を蒸着することによって形成することができる。
そして、下部層の上に化学蒸着されたα型AlO3層について、電界放出型走査電子顕微鏡を用い、図1a), (bに示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25
度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表した場合、図2aに例示される通り、傾斜角区分2〜8度の範囲内にシャープな最高ピークが現れる。
そして、α型Alの傾斜角度度数分布グラフにおける測定傾斜角の最高ピーク位置は、所定層厚のAl核(薄膜)形成後に加熱処理を施すことによって変化させることができ、それと同時に、傾斜角区分2〜8度の範囲内に存在する度数の合計が45%以上の割合を占める傾斜角度数分布グラフを示す((0001)面配向率)が高い)ようになるものであり、したがって、上記Al核(薄膜)の層厚が小さい方に外れても、また大きい方に外れても、測定傾斜角の最高ピークは2〜8度の範囲から外れてしまうと共に、これに対応して傾斜角度数分布グラフにおける前記2〜8度の範囲内に存在する度数も度数全体の割合の45%未満となってしまい、すぐれた高温強度を確保することができない。
α型Al23層は、すぐれた高温硬さ、耐熱性、高温強度を有するが、α型Al23層を、(0001)面配向率の高い中間層として構成しておくことにより、逃げ面およびすくい面において、この上に蒸着形成されるZr含有酸化アルミニウム(以下、Zr含有Al23という)層の(0001)面配向率を高めることができ、その結果として、逃げ面およびすくい面におけるZr含有Al23層からなる上部層の表面性状の改善を図るとともに高温強度の向上を図ることができる。
ただ、α型Al23層からなる中間層の平均層厚が1μm未満ではα型Al23層の有する前記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5μmを越えると、切削時に発生する高熱と切刃に作用する断続的かつ衝撃的高負荷によって、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになることから、その平均層厚は1〜5μmと定めた。
(C) α-type Al 2 O 3 layer (intermediate layer)
The intermediate layer composed of the α-type Al 2 O 3 layer is formed on the lower layer composed of the Ti compound layer, for example, the chemical vapor deposition conditions described in Patent Document 1, that is,
With normal chemical vapor deposition equipment,
Reaction gas composition:% by volume, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
Under these conditions, Al 2 O 3 nuclei are formed on the surface of the Ti compound layer as the lower layer. In this case, the Al 2 O 3 nuclei are Al 2 O 3 nuclei thin films having an average layer thickness of 20 to 200 nm. Desirably, after the nucleation, the reaction atmosphere is changed to a hydrogen atmosphere at a pressure of 3 to 13 kPa, and the Al 2 O 3 nucleus thin film is subjected to heat treatment under the condition that the reaction atmosphere temperature is raised to 1100 to 1200 ° C. The α-type Al 2 O 3 layer can be formed by vapor deposition.
Then, the α-type Al 2 O3 layer which is chemically deposited on the lower layer, using a field emission scanning electron microscope, Fig. 1a), as shown in (b, hexagonal present within the measuring range of the surface polishing plane Irradiating an electron beam to each crystal grain having a crystal lattice, and measuring an inclination angle formed by a normal line of a (0001) plane that is a crystal plane of the crystal grain with respect to a normal line of the surface-polished surface; Among the measurement inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is set to 0.25.
When it is divided into pitches of degrees and is represented by an inclination angle number distribution graph obtained by summing up the frequencies existing in each division, as illustrated in FIG. The sharpest peak appears.
And the highest peak position of the measured inclination angle in the inclination angle frequency distribution graph of α-type Al 2 O 3 can be changed by applying a heat treatment after the formation of an Al 2 O 3 nucleus (thin film) having a predetermined layer thickness, At the same time, it shows an inclination angle number distribution graph (high (0001) plane orientation ratio) that occupies a ratio of 45% or more of the total frequencies existing in the range of the inclination angle sections of 2 to 8 degrees. Therefore, even if the layer thickness of the Al 2 O 3 nucleus (thin film) is smaller or smaller, the maximum peak of the measurement tilt angle is out of the range of 2 to 8 degrees. Correspondingly, the frequency existing in the range of 2 to 8 degrees in the inclination angle frequency distribution graph is also less than 45% of the ratio of the entire frequency, and excellent high-temperature strength cannot be secured.
The α-type Al 2 O 3 layer has excellent high-temperature hardness, heat resistance, and high-temperature strength. By configuring the α-type Al 2 O 3 layer as an intermediate layer having a high (0001) plane orientation ratio, In the flank and rake face, the (0001) plane orientation rate of the Zr-containing aluminum oxide (hereinafter referred to as Zr-containing Al 2 O 3 ) layer formed on the flank can be increased, and as a result, the flank In addition, it is possible to improve the surface properties of the upper layer composed of the Zr-containing Al 2 O 3 layer on the rake face and improve the high-temperature strength.
However, if the average layer thickness of the intermediate layer composed of the α-type Al 2 O 3 layer is less than 1 μm, the above-mentioned properties of the α-type Al 2 O 3 layer cannot be sufficiently provided in the hard coating layer, When the average layer thickness exceeds 5 μm, the high heat generated at the time of cutting and the intermittent and shocking high load acting on the cutting edge make it easier for the thermoplastic deformation to cause uneven wear and accelerate the wear. Therefore, the average layer thickness was determined to be 1 to 5 μm.

また、上記の中間層の蒸着において、Al核(薄膜)形成後、成膜を一時中断し、逃げ面、すくい面、切刃部にレーザー処理を施すと、図2(b)が示すように、α型Alの傾斜角度度数分布において、12〜18度の範囲内の傾斜角区分にピークが存在し、その範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の15%以上40%未満の割合を占め、かつ、(0001)面配向率の高いα型Al層が形成される。なお、レーザー処理条件は、核薄膜にレーザーを照射し、各走査線間隔が一定となるように線状にレーザーを走査・照射する。その際、レーザービームの断面強度は、ガウシアン分布して波長190〜360nmとし、ビームの断面形状を走査方向に対して扁平させた楕円にする。即ち、この形状は、走査方向を短軸、走査方向と直交する方向を長軸とした楕円形状である。そして、楕円の長軸/短軸比を1.5以上とし、走査線の重なりを長軸径の1/4〜1/3とする。また、走査するレーザービームのピークパワー密度は、0.8〜1.5MW/cmとする。
この際、走査速度はレーザーの繰り返し周波数と走査方向(短軸長さ)の1/4〜1/3に対し、次の関係が成り立つ速度にて走査する。
走査速度[mm/sec]
=(1/3>走査方向径>1/4[μm])/(1/繰り返し周波数[Hz])
例えば、本発明被覆工具14では、レーザービームの断面強度は、ガウシアン分布して波長355nmとし、走査するレーザービームのピークパワー密度は、1.0MW/cmとし、走査速度は1.25mm/secという条件でレーザー処理を行った。
Further, in the deposition of the intermediate layer, after the formation of the Al 2 O 3 nucleus (thin film), the film formation is temporarily interrupted, and when the flank, rake face, and cutting edge are subjected to laser treatment, FIG. As shown, in the inclination angle frequency distribution of α-type Al 2 O 3 , there is a peak in the inclination angle section within the range of 12 to 18 degrees, and the total of the frequencies existing in the range is the inclination angle frequency distribution graph. An α-type Al 2 O 3 layer that occupies a ratio of 15% or more and less than 40% of the entire frequency and has a high (0001) plane orientation ratio is formed. The laser treatment condition is that the core thin film is irradiated with laser, and the laser is scanned and irradiated linearly so that the interval between the scanning lines is constant. At this time, the cross-sectional intensity of the laser beam is a Gaussian distribution with a wavelength of 190 to 360 nm, and the cross-sectional shape of the beam is an ellipse flattened in the scanning direction. That is, this shape is an elliptical shape in which the scanning direction is the short axis and the direction orthogonal to the scanning direction is the long axis. The major axis / minor axis ratio of the ellipse is set to 1.5 or more, and the overlap of the scanning lines is set to ¼ to 3 of the major axis diameter. The peak power density of the laser beam to be scanned is 0.8 to 1.5 MW / cm 2 .
At this time, scanning is performed at a speed that satisfies the following relationship with respect to the laser repetition frequency and 1/4 to 1/3 of the scanning direction (short axis length).
Scanning speed [mm / sec]
= (1/3> scanning direction diameter> 1/4 [μm]) / (1 / repetition frequency [Hz])
For example, in the coated tool 14 of the present invention, the cross-sectional intensity of the laser beam is Gaussian distributed with a wavelength of 355 nm, the peak power density of the laser beam to be scanned is 1.0 MW / cm 2 , and the scanning speed is 1.25 mm / sec. The laser treatment was performed under the conditions.

(c)Zr含有Al23層(上部層)
中間層の上に化学蒸着されたZr含有Al23層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させ、また、層中に微量(Alとの合量に占める割合で、Zr/(Al+Zr)が0.002〜0.01(但し、原子比))含有されたZr成分が、改質AlZrO層の結晶粒界面強度を向上させ、高温強度の向上に寄与するが、Zr成分の含有割合が0.002未満では、上記作用を期待することはできず、一方、Zr成分の含有割合が0.01を超えた場合には、層中にZrO粒子が析出することによって粒界面強度が低下するため、Al成分との合量に占めるZr成分の含有割合(Zr/(Al+Zr)の比の値)は0.002〜0.01(但し、原子比)であることが望ましい。
(C) Zr-containing Al 2 O 3 layer (upper layer)
In the upper layer composed of the Zr-containing Al 2 O 3 layer chemically vapor-deposited on the intermediate layer, the constituent Al component improves the high-temperature hardness and heat resistance of the layer, and a small amount ( Zr component containing Zr / (Al + Zr) in the ratio of the total amount with Al in the range of 0.002 to 0.01 (however, atomic ratio) improves the grain boundary strength of the modified AlZrO layer, Although it contributes to the improvement of the high temperature strength, if the content ratio of the Zr component is less than 0.002, the above effect cannot be expected. On the other hand, if the content ratio of the Zr component exceeds 0.01, Since the grain interface strength decreases due to precipitation of ZrO 2 particles therein, the content ratio of the Zr component in the total amount with the Al component (value of the ratio of Zr / (Al + Zr)) is 0.002 to 0.01. (However, the atomic ratio) is desirable.

上記Zr含有Al23層は、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、例えば、以下のとおり調整することによって蒸着形成することができる。
即ち、まず、
(イ)反応ガス組成(容量%):
AlCl: 1〜5 %、
ZrCl: 0.05〜0.1 %、
CO2: 2〜6 %、
HCl: 1〜5 %、
S: 0.25〜0.75 %、
2:残り、
(ロ)反応雰囲気温度; 1020〜1050 ℃、
(ハ)反応雰囲気圧力; 3〜5 kPa、
の条件で第1段階の蒸着を約1時間行った後、
次に、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
ZrCl: 0.6〜1.2 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で第2段階の蒸着を行うことによって、1〜15μmの平均層厚の蒸着層を成膜すると、Zr/(Al+Zr)の比の値が原子比で0.002〜0.01である改質AlZrO層を形成することができる。
The Zr-containing Al 2 O 3 layer can be formed by vapor deposition by adjusting the chemical vapor deposition conditions of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during the vapor deposition, for example, as follows.
That is, first,
(B) Reaction gas composition (volume%):
AlCl 3 : 1 to 5%,
ZrCl 4: 0.05~0.1%,
CO 2 : 2-6%,
HCl: 1-5%,
H 2 S: 0.25~0.75%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 1020 to 1050 ° C.,
(C) Reaction atmosphere pressure; 3-5 kPa,
After performing the first stage deposition for about 1 hour under the conditions of
next,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
ZrCl 4: 0.6~1.2%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When a vapor deposition layer having an average layer thickness of 1 to 15 μm is formed by performing the second stage vapor deposition under the above conditions, the value of the ratio of Zr / (Al + Zr) is 0.002 to 0.01 in atomic ratio. A modified AlZrO layer can be formed.

そして、上記Zr含有Al23層について、電界放出型走査電子顕微鏡で組織観察すると、図3(a)に示されるように、層厚方向に垂直な面内で見た場合に、結晶粒径の大きい平板多角形状であり、また、図3(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であって、しかも、層厚方向にたて長形状を有する結晶粒(平板多角形たて長形状結晶粒)からなる組織構造が形成される。 When the structure of the Zr-containing Al 2 O 3 layer is observed with a field emission scanning electron microscope, as shown in FIG. 3A, the crystal grains are observed in a plane perpendicular to the layer thickness direction. It is a flat polygonal shape having a large diameter, and as shown in FIG. 3B, the layer surface is substantially flat when viewed in a plane parallel to the layer thickness direction, and the layer thickness direction A texture structure composed of crystal grains having a long shape (flat plate-shaped long crystal grains) is formed.

上記Zr含有Al23層について、中間層を構成するα型Al23層の場合と同様に、その表面研磨面の法線に対して、(0001)面の法線がなす傾斜角を測定することにより傾斜角度数分布グラフを作成すると、傾斜角区分0〜10度の範囲内にピーク存在するとともに、0〜10度の範囲内の度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、上部層を構成するZr含有Al23層の(0001)面配向率が高いことがわかる。
即ち、Zr含有Al23層は、中間層であるα型Al23層の(0001)面配向率が45%以上のものとして形成されていることから、Zr含有Al23層も(0001)面配向率の高い層((0001)面配向率は60%以上)として形成される。
そして、上記上部層を層厚方向に平行な面内で見た場合、層表面はほぼ平坦な平板状に形成され、すぐれた表面性状を呈し、その結果として、すぐれた耐チッピング性を示す。
About the Zr-containing Al 2 O 3 layer, as in the case of the α-type Al 2 O 3 layer constituting the intermediate layer, the inclination angle formed by the normal of the (0001) plane with respect to the normal of the surface polished surface When the inclination angle frequency distribution graph is created by measuring the angle, the peak exists in the inclination angle range of 0 to 10 degrees, and the total of the frequencies in the range of 0 to 10 degrees is the frequency in the inclination angle distribution graph. An inclination angle distribution graph occupying a ratio of 60% or more of the whole is shown, and it can be seen that the (0001) plane orientation rate of the Zr-containing Al 2 O 3 layer constituting the upper layer is high.
That, Zr-containing Al 2 O 3 layer is the fact that an intermediate layer α type the Al 2 O 3 layer of (0001) plane orientation ratio is formed as more than 45%, Zr content the Al 2 O 3 layer Is formed as a layer having a high (0001) plane orientation ratio (the (0001) plane orientation ratio is 60% or more).
When the upper layer is viewed in a plane parallel to the layer thickness direction, the layer surface is formed in a substantially flat plate shape, exhibits excellent surface properties, and as a result, exhibits excellent chipping resistance.

また、上記Zr含有Al23層の蒸着において、より限定した条件(例えば、第1段階における反応ガス中のHSを0.50〜0.75容量%、反応雰囲気温度を1020〜1030℃とし、さらに、第2段階における反応ガス中のZrClを0.6〜0.9容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、図3(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図3(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。 Further, in the deposition of the Zr-containing Al 2 O 3 layer, more limited conditions (for example, H 2 S in the reaction gas in the first stage is 0.50 to 0.75% by volume, and the reaction atmosphere temperature is 1020 to 1030). Furthermore, ZrCl 4 in the reaction gas in the second stage was 0.6 to 0.9% by volume, H 2 S was 0.25 to 0.4% by volume, and the reaction atmosphere temperature was 960 to 980 ° C. When the vapor deposition is performed under the condition (2), as shown in FIG. 3 (c), when viewed in a plane perpendicular to the layer thickness direction, it is a flat hexagonal shape with a large grain size and parallel to the layer thickness direction. 3B, the surface of the layer is substantially flat, and the crystal grains having a long shape in the layer thickness direction are perpendicular to the layer thickness direction, as shown in FIG. A tissue structure occupying an area ratio of 35% or more of the whole is formed.

さらに、上記Zr含有Al23層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表すと、
図4に示すように、電界放出型走査電子顕微鏡で観察されるZr含有Al23層を構成する平板多角形たて長形状の結晶粒の内、上記平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかる。
そして、Zr含有Al23層の平板多角形(平坦六角形を含む)たて長形状結晶粒の内部に、上記のΣ3対応界面が存在することによって、結晶粒内強度の向上が図られ、その結果として、高負荷が作用する高硬度鋼の高速重断続切削加工時に、逃げ面及びすくい面のZr含有Al23層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が妨げられ、耐チッピング性、耐欠損性、耐剥離性の向上が図られる。
Further, with respect to the Zr-containing Al 2 O 3 layer, a field emission scanning electron microscope and an electron backscatter diffraction image apparatus were used to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam. Measure the angle at which each normal of the crystal lattice plane composed of crystal crystal lattice intersects the normal of the surface polished surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) When the upper limit of N is 28 from this point, the even number of 4, 8, 14, 24 and 26 does not exist.)
As shown in FIG. 4, the flat plate polygons (including flat hexagons) among the long rectangular crystal grains constituting the Zr-containing Al 2 O 3 layer observed with a field emission scanning electron microscope. ) It can be seen that among the long-shaped crystal grains, the interior of the crystal grains having an area ratio of 60% or more is divided by at least one Σ3-compatible interface.
Further, the presence of the above-mentioned Σ3-corresponding interface inside the Zr-containing Al 2 O 3 layer flat polygonal (including flat hexagonal) long crystal grains improves the strength within the grains. As a result, cracks are suppressed from occurring in the Zr-containing Al 2 O 3 layer on the flank face and rake face during high-speed heavy interrupted machining of high-hardness steel subjected to a high load. Even if they occur, the growth and propagation of cracks are hindered, and chipping resistance, chipping resistance, and peel resistance are improved.

したがって、(0001)面配向率が高く表面平坦な表面性状を備え、かつ、平板多角形(平坦六角形を含む)たて長形状の結晶粒の内部にΣ3対応界面が存在するZr含有Al23層からなる本発明の逃げ面およびすくい面の硬質被覆層の上部層は、高熱発生を伴うとともに、断続的かつ衝撃的高負荷が切刃に対して作用する高硬度鋼の高速重断続切削加工においても、チッピング、欠損、剥離等を発生することなく、また、熱塑性変形、偏摩耗等の発生もなく、すぐれた耐チッピング性及び耐摩耗性を長期に亘って発揮する。
ただ、Zr含有Al23層からなる上部層の層厚が2μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えると偏摩耗の原因となる熱塑性変形が発生しやすくなり、また、チッピングも発生しやすくなることから、上部層の平均層厚を2〜15μmと定めた。
Therefore, a Zr-containing Al 2 having a high (0001) plane orientation ratio and a flat surface property, and having a Σ3-compatible interface inside the long crystal grains of flat plate polygons (including flat hexagons). The upper layer of the flank face and the rake face hard coating layer of the O 3 layer is accompanied by high heat generation, and high-speed heavy interruption of high-hardness steel in which intermittent and impact high load acts on the cutting edge. Even in cutting, excellent chipping resistance and wear resistance are exhibited over a long period of time without occurrence of chipping, chipping, peeling, and the like, and without occurrence of thermoplastic deformation and uneven wear.
However, if the thickness of the upper layer composed of the Zr-containing Al 2 O 3 layer is less than 2 μm, the excellent characteristics of the upper layer cannot be fully exhibited, while if the layer thickness of the upper layer exceeds 15 μm. Since the thermoplastic deformation that causes uneven wear is likely to occur and chipping is also likely to occur, the average thickness of the upper layer is set to 2 to 15 μm.

上述のごとき下部層、中間層および上部層からなる硬質被覆層を切削工具の逃げ面、すくい面および切刃部に形成した後、本発明では、切刃部のZr含有Al23層からなる上部層を、例えば、集束イオンビーム加工により除去し、切刃部最表面には、逃げ面、すくい面において中間層として形成したα型Al23層を露出形成し、切刃部表面のみをα型Al23層で構成することにより、切刃部のα型Al23層がすぐれた高温硬さ、耐熱性、高温強度、表面性状を備えることから、高熱発生を伴う高硬度鋼の高速重断続切削加工で、切刃に作用する断続的・衝撃的負荷を緩和し、もって、切刃部におけるチッピング、剥離の発生を抑制することができる。
尚、集束イオンビーム加工は、走査イオン顕微鏡を用いて、集束イオンビームを切刃部に対して照射し、切刃の上部層をエッチング加工である。その際、イオンビーム種にはGaイオンを用い、加速電圧2kV〜40kV、ビーム電流5nA〜50nA、ビーム径750nm〜2.6μmの条件にて行った。
例えば、本発明被覆工具2では、加速電圧30kV、ビーム電流7nA、ビーム径750nmの条件にて集束イオンビーム加工を行った。
After forming the hard coating layer composed of the lower layer, the intermediate layer and the upper layer on the flank, rake surface and cutting edge portion of the cutting tool as described above, in the present invention, from the Zr-containing Al 2 O 3 layer of the cutting blade portion, The upper layer is removed by, for example, focused ion beam processing, and the α-type Al 2 O 3 layer formed as an intermediate layer on the flank face and rake face is exposed and formed on the outermost surface of the cutting edge part. Is composed of an α-type Al 2 O 3 layer, so that the α-type Al 2 O 3 layer of the cutting edge portion has excellent high-temperature hardness, heat resistance, high-temperature strength, and surface properties, resulting in high heat generation. In the high-speed heavy intermittent cutting of high hardness steel, the intermittent / impact load acting on the cutting edge can be alleviated, and the occurrence of chipping and peeling at the cutting edge can be suppressed.
In the focused ion beam processing, a focused ion beam is applied to the cutting edge portion using a scanning ion microscope, and the upper layer of the cutting edge is etched. At that time, Ga ions were used as the ion beam species, and the conditions were an acceleration voltage of 2 kV to 40 kV, a beam current of 5 nA to 50 nA, and a beam diameter of 750 nm to 2.6 μm.
For example, in the coated tool 2 of the present invention, focused ion beam processing was performed under the conditions of an acceleration voltage of 30 kV, a beam current of 7 nA, and a beam diameter of 750 nm.

この発明の被覆工具は、切刃部の最表面に露出形成されたα型Al23層において、すぐれた高温硬さ、耐熱性、高温強度、表面性状を備えることから、高硬度鋼の高速重断続切削加工に際し、切刃に作用する断続的・衝撃的負荷が緩和され、その結果、切刃部におけるチッピング、剥離の発生が抑制され、また、逃げ面、すくい面においても、上部層としてZr含有Al23層が形成されていることによって、特に高温強度が向上し、その結果、硬質被覆層の熱塑性変形、偏摩耗等の発生もなく、すぐれた耐チッピング性、耐摩耗性が維持され、使用寿命の一層の延命化が可能となる。 The coated tool of the present invention has excellent high-temperature hardness, heat resistance, high-temperature strength, and surface properties in the α-type Al 2 O 3 layer exposed and formed on the outermost surface of the cutting edge portion. During high-speed heavy interrupted cutting, the intermittent and impact load acting on the cutting edge is alleviated, and as a result, the occurrence of chipping and peeling at the cutting edge is suppressed, and the flank and rake face are also the upper layer. As a Zr-containing Al 2 O 3 layer is formed, the high-temperature strength is particularly improved. As a result, there is no occurrence of thermoplastic deformation or uneven wear of the hard coating layer, and excellent chipping resistance and wear resistance. Is maintained, and the service life can be further extended.

硬質被覆層を構成するα型Al23層の結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle in the case of measuring the (0001) plane crystal grains of the α-type the Al 2 O 3 layer constituting the hard coating layer. (a)は、本発明被覆工具6の切刃部の中間層を構成するα型Al23層の傾斜角度数分布グラフであり、(b)は本発明被覆工具15の切刃部の中間層を構成するα型Al23層の傾斜度数分布グラフである。(A) is an inclination angle number distribution graph of the α-type Al 2 O 3 layer constituting the intermediate layer of the cutting edge portion of the coated tool 6 of the present invention, and (b) is the cutting edge portion of the coated tool 15 of the present invention. It is a gradient frequency distribution graph of the α-type Al 2 O 3 layer constituting the intermediate layer. (a)は、本発明被覆工具2の逃げ面のα型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具11の逃げ面のZr含有α型Al23層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) was obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction of the upper layer composed of the α-type Al 2 O 3 layer on the flank face of the coated tool 2 of the present invention. It is a schematic diagram which shows a flat-plate polygonal crystal grain structure structure, and (b) is a layer surface obtained by observation with a field emission scanning electron microscope in a plane parallel to the layer thickness direction. And (c) is an upper part composed of a Zr-containing α-type Al 2 O 3 layer on the flank face of the coated tool 11 according to the present invention. It is a schematic diagram showing a flat hexagonal crystal grain structure structure obtained by observation with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction of the layer. 本発明被覆工具2の逃げ面のZr含有α型Al23層からなる上部層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて測定した、層厚方向に垂直な面における粒界解析図であり、実線は、電界放出型走査電子顕微鏡で観察される平板多角形状の結晶粒界を示し、破線は、電子後方散乱回折像装置により測定された結晶粒内のΣ3対応界面を示す。The surface perpendicular to the layer thickness direction of the upper layer composed of the Zr-containing α-type Al 2 O 3 layer on the flank of the coated tool 2 of the present invention, measured using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus The solid line shows the polygonal crystal grain boundary observed with a field emission scanning electron microscope, and the broken line corresponds to Σ3 in the crystal grain measured by the electron backscatter diffraction image apparatus. The interface is shown. 被覆工具のすくい面、逃げ面、切刃部を示す概略模式図であり、図示される斜線部分(すくい面、逃げ面から直線を引き、その直線と工具基体のコーナーR終わり、接点から膜厚深さ方向で囲まれる部分)が切刃部である。但し、工具基体のコーナーRがゼロの場合は、図示される二重斜線部分(すくい面、逃げ面から引いた直線の交点から膜厚深さ方向で囲まれる部分)が切刃部となる。It is a schematic diagram showing a rake face, a flank face, and a cutting edge portion of a coated tool, and a hatched portion shown in the drawing (a straight line is drawn from the rake face and the flank face, and the straight line and the corner R end of the tool base, the thickness from the contact The portion surrounded by the depth direction) is the cutting edge portion. However, when the corner R of the tool base is zero, the double hatched portion shown in the figure (the portion surrounded by the film thickness depth direction from the intersection of the rake face and the straight line drawn from the flank face) is the cutting edge portion.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408 chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、表4に示される条件でTi化合物層(下部層)上にAl23核薄膜を形成し、その後成膜を一時中断し、レーザー処理を施した後、加熱処理を施した状態で、表3に示される条件にて、表7、表8に示される目標層厚のα型Al23層からなる中間層を、切刃部、すくい面、逃げ面に蒸着形成し、
(c)次に、表5に示される蒸着条件により、同じく表7、表8に示される目標層厚のZr含有α型Al23層を硬質被覆層の上部層として蒸着形成し、集束イオンビーム加工によって、切刃部の上部層をエッチングすることにより、切刃部最表面には逃げ面、すくい面において中間層として形成したα型Al層を露出形成することにより本発明被覆工具1〜15をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 6), the Ti compound layer having the target layer thickness shown in Table 6 is deposited as the lower layer of the hard coating layer,
(B) Next, an Al 2 O 3 core thin film is formed on the Ti compound layer (lower layer) under the conditions shown in Table 4, and then the film formation is temporarily interrupted, laser treatment is performed, and heat treatment is performed. In this state, under the conditions shown in Table 3, an intermediate layer composed of an α-type Al 2 O 3 layer having the target layer thickness shown in Tables 7 and 8 is deposited on the cutting edge, rake face, and flank face. And
(C) Next, according to the vapor deposition conditions shown in Table 5, the Zr-containing α-type Al 2 O 3 layer having the target layer thickness shown in Tables 7 and 8 is also vapor-deposited as the upper layer of the hard coating layer. By etching the upper layer of the cutting edge by ion beam processing, the α-type Al 2 O 3 layer formed as an intermediate layer on the flank and rake face is exposed on the outermost surface of the cutting edge. Coated tools 1 to 15 were produced.

また、比較の目的で、硬質被覆層の下部層を表3に示される条件にて形成し、表4に示される条件でTi化合物層(下部層)上にAl23核薄膜を形成し、その後加熱処理を施した状態で、表3に示される条件にて、表9に示される目標層厚のα型Al23層からなる中間層を、切刃部、すくい面、逃げ面に蒸着形成し、ついで、表5に示される蒸着条件により、表9に示される目標層厚のZr含有α型Al23層を硬質被覆層の上部層として蒸着形成することにより、表9に示される目標層厚のTi化合物層とα型Al23層とZr含有α型Al23層とからなる硬質被覆層を設けた比較被覆工具1〜15をそれぞれ製造した。
なお、比較被覆工具1〜15の工具基体種別、下部層種別、下部層厚、中間層厚および上部層厚は、それぞれ、本発明被覆工具1〜15のそれと同じである。
For comparison purposes, the lower layer of the hard coating layer is formed under the conditions shown in Table 3, and the Al 2 O 3 core thin film is formed on the Ti compound layer (lower layer) under the conditions shown in Table 4. Then, after the heat treatment, the intermediate layer composed of the α-type Al 2 O 3 layer having the target layer thickness shown in Table 9 under the conditions shown in Table 3, the cutting edge, rake face, flank face Then, according to the vapor deposition conditions shown in Table 5, the Zr-containing α-type Al 2 O 3 layer having the target layer thickness shown in Table 9 is vapor-deposited as the upper layer of the hard coating layer. Comparative coating tools 1 to 15 provided with a hard coating layer composed of a Ti compound layer, an α-type Al 2 O 3 layer, and a Zr-containing α-type Al 2 O 3 layer with the target layer thickness shown in FIG.
The tool base type, the lower layer type, the lower layer thickness, the intermediate layer thickness, and the upper layer thickness of the comparative coated tools 1 to 15 are the same as those of the inventive coated tools 1 to 15, respectively.

ついで、上記の本発明被覆工具1〜15および比較被覆工具1〜15の硬質被覆層の中間層を構成するα型Al23層、同上部層を構成するZr含有α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜15、比較被覆工具1〜15の各層について、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、傾斜角度数分布グラフ作成した。
傾斜角度数分布グラフの一例として、図2(a)に、本発明被覆工具3の切刃部の中間層を構成するα型Al23層の傾斜角度数分布グラフ、図2(b)に、本発明被覆工具15の切刃部の中間層を構成するα型Al23層の(0001)面の傾斜角度数分布グラフを示す。
なお、この発明でいう“表面”とは、基体表面に平行な面ばかりでなく、基体表面に対して傾斜する面、例えば、層の切断面、をも含む。
Subsequently, the α-type Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present invention-coated tools 1 to 15 and the comparative coated tools 1 to 15 and the Zr-containing α-type Al 2 O 3 constituting the upper layer. About the layer, the inclination angle number distribution graph was each created using the field emission scanning electron microscope.
That is, the inclination angle number distribution graph shows the column of the field emission scanning electron microscope with the respective surfaces of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15 being polished surfaces. A crystal grain having a hexagonal crystal lattice existing in the measurement range of each surface polished surface with an electron beam with an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 degrees on the polished surface. Individually irradiated, using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm at a spacing of 0.1 μm / step is a crystal plane of the crystal grain with respect to the normal of the polished surface (0001 ) The inclination angle formed by the normal of the surface is measured, and based on the measurement result, the measurement inclination angle within the range of 0 to 45 degrees of the measurement inclination angles is divided for each pitch of 0.25 degrees. As well as the frequencies present in each category By aggregate was prepared inclination angle frequency distribution graph.
As an example of the inclination angle number distribution graph, FIG. 2A shows an inclination angle number distribution graph of the α-type Al 2 O 3 layer constituting the intermediate layer of the cutting edge portion of the coated tool 3 of the present invention, FIG. The graph of the inclination angle number distribution of the (0001) plane of the α-type Al 2 O 3 layer constituting the intermediate layer of the cutting edge portion of the coated tool 15 of the present invention is shown in FIG.
The “surface” in the present invention includes not only a surface parallel to the substrate surface but also a surface inclined with respect to the substrate surface, for example, a cut surface of a layer.

表7〜表9には、本発明被覆工具1〜15および比較被覆工具1〜15のα型Al23層、Zr含有α型Al23層の傾斜角度数分布グラフにおいて、2〜8度と12〜18度の範囲内の傾斜角区分に存在する度数の、それぞれ傾斜角度数分布グラフ全体に占める割合を示した。
表7、表8から明らかなように、本発明被覆工具1〜15のすくい面および逃げ面においては、傾斜角度数分布グラフにおける0〜10度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では45%以上、また、Zr含有α型Al23層では60%以上であるのに対して、本発明被覆工具1〜15の切刃部においては、傾斜角度数分布グラフにおける2〜8度と12〜18度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では、それぞれ45%以上、15%以上〜40%未満であった。
なお、表9に示すように、比較被覆工具1〜15では、切刃部、すくい面および逃げ面のいずれの面についても、傾斜角度数分布グラフにおける2〜8度の範囲内の傾斜角区分に存在する度数割合は、α型Al23層では45%以上、また、Zr含有α型Al23層では60%以上であった。
In Table 7 to Table 9, the inclination angle number distribution graphs of the α-type Al 2 O 3 layer and the Zr-containing α-type Al 2 O 3 layer of the present invention coated tools 1 to 15 and the comparative coated tools 1 to 15 The ratios of the frequencies existing in the inclination angle sections within the range of 8 degrees and 12 to 18 degrees to the entire inclination angle number distribution graph are shown.
As is clear from Tables 7 and 8, on the rake face and flank face of the coated tools 1 to 15 of the present invention, the frequency ratio existing in the inclination angle section within the range of 0 to 10 degrees in the inclination angle number distribution graph is In the α-type Al 2 O 3 layer, it is 45% or more, and in the Zr-containing α-type Al 2 O 3 layer, it is 60% or more. In the angle distribution graph, the frequency ratios existing in the inclination angle sections in the range of 2 to 8 degrees and 12 to 18 degrees are 45% or more and 15% or more to less than 40%, respectively, in the α-type Al 2 O 3 layer. there were.
In addition, as shown in Table 9, in the comparative coating tools 1 to 15, the inclination angle classification within the range of 2 to 8 degrees in the inclination angle number distribution graph for any of the cutting edge portion, the rake face, and the flank face The frequency ratio existing in the α-type Al 2 O 3 layer was 45% or more, and the Zr-containing α-type Al 2 O 3 layer was 60% or more.

ついで、上記の本発明被覆工具1〜15および比較被覆工具1〜15の上部層を構成するZr含有α型Al23層について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用いて、結晶粒組織構造および構成原子共有格子点形態を調査した。
すなわち、まず、上記の本発明被覆工具1〜15および比較被覆工具1〜15の逃げ面のZr含有α型Al23層について、電界放出型走査電子顕微鏡を用いて観察したところ、本発明被覆工具1〜15では、図3(a)、(b)で代表的に示される平板多角形(平坦六角形を含む)状かつたて長形状の大きな粒径の結晶粒組織構造が観察された(なお、図3(a)は、層厚方向に垂直な面内で見た本発明被覆工具2の組織構造模式図、また、図3(c)は、層厚方向に垂直な面内で見た本発明被覆工具11の、平坦六角形状かつたて長形状の大きな粒径の結晶粒からなる組織構造模式図)。
また、比較被覆工具1〜15の切刃部についても、本発明の場合と同様な結晶粒組織構造が観察された。
Next, a field emission scanning electron microscope and an electron backscatter diffraction image apparatus are used for the Zr-containing α-type Al 2 O 3 layer constituting the upper layer of the present invention coated tools 1 to 15 and comparative coated tools 1 to 15. Thus, the grain structure and the constituent atom shared lattice point morphology were investigated.
That is, first, the Zr-containing α-type Al 2 O 3 layer on the flank face of the inventive coated tools 1 to 15 and the comparative coated tools 1 to 15 was observed using a field emission scanning electron microscope. In the coated tools 1 to 15, a crystal grain structure having a large grain size of a flat plate polygon (including a flat hexagon) and a long shape typically shown in FIGS. 3 (a) and 3 (b) is observed. (FIG. 3 (a) is a schematic diagram of the structure of the coated tool 2 of the present invention viewed in a plane perpendicular to the layer thickness direction, and FIG. 3 (c) is an in-plane perpendicular to the layer thickness direction. The structure-structure schematic diagram which consists of a crystal grain of the flat hexagonal shape and long shape of a large grain size of this invention coated tool 11 seen in ().
Moreover, the crystal grain structure similar to the case of this invention was observed also about the cutting blade part of the comparative coating tools 1-15.

つぎに、上記の本発明被覆工具1〜15および比較被覆工具1〜15のすくい面、逃げ面のZr含有α型Al23層を構成する結晶粒の内部にΣ3対応界面が存在する結晶粒の面積割合を測定した。
まず、本発明被覆工具1〜15のすくい面、逃げ面の各面のZr含有α型Al23層について、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、Zr含有α型Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表7、表8に示した。
また、比較被覆工具1〜15についても、本発明被覆工具の場合と同様な方法により、Zr含有α型Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を、Σ3対応界面割合(%)として表9に示した。
Σ3対応界面割合は、測定範囲内(30×50μmに存在する各々の結晶粒を色彩識別することで、各々の結晶粒の面積を算出し、その中で、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積を全結晶粒の面積各結晶粒の総和で除することで算出し、前記算出法によって求めた5箇所の測定範囲の平均値をΣ3対応界面割合(%)として定義した。
Next, a crystal in which a Σ3-corresponding interface exists in the crystal grains constituting the Zr-containing α-type Al 2 O 3 layer of the rake face and flank face of the above-described inventive coated tools 1 to 15 and comparative coated tools 1 to 15 The area ratio of the grains was measured.
First, with respect to the Zr-containing α-type Al 2 O 3 layer on each of the rake face and flank face of the coated tools 1 to 15 of the present invention, the surface of the Zr-containing α-type Al 2 O 3 layer is a polished surface, and the inside of the column of the field emission scanning electron microscope A crystal grain having a hexagonal crystal lattice existing in the measurement range of each surface polished surface with an electron beam with an acceleration voltage of 15 kV and an irradiation current of 1 nA at an incident angle of 70 degrees on the surface polished surface. Individual electron beams are irradiated, and an electron backscatter diffraction image apparatus is used, and each normal line of each crystal lattice plane of the crystal grain is defined on the surface of the substrate at an interval of 0.1 μm / step in a 30 × 50 μm region. The angle intersecting the normal is measured, and from this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices. Lattice points (constituent atom sharing Distribution of lattice points), and N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, (If the upper limit of N is 28 in terms of distribution frequency, there is no even number of 4, 8, 14, 24, and 26) When the existing configuration of the shared atom point is represented by ΣN + 1, the Zr-containing α-type Among all the crystal grains existing in the measurement range of the Al 2 O 3 layer, the area ratio of crystal grains in which at least one Σ3-compatible interface exists inside the crystal grain is obtained, and the value is determined as Σ3-compatible. Tables 7 and 8 show the interface ratio (%).
Further, the comparison coated tool 15 also optionally the same method of the present invention coated tools, among all crystal grains existing within the measuring range of the Zr-containing α-type the Al 2 O 3 layer, the interior of the crystal grains In addition, the area ratio of crystal grains in which at least one Σ3-corresponding interface exists was determined, and the value is shown in Table 9 as the Σ3-compatible interface ratio (%).
The Σ3-corresponding interface ratio is calculated within the measurement range (color identification of each crystal grain existing in 30 × 50 μm to calculate the area of each crystal grain, and among them, at least one of the crystal grains is inside. The above-mentioned Σ3-corresponding interface is calculated by dividing the area of the crystal grains by the sum of the area of all crystal grains, and the average value of the five measurement ranges obtained by the above calculation method is the Σ3-compatible interface ratio. (%).

表7、表8に示される通り、本発明被覆工具1〜15のすくい面および逃げ面のZr含有α型Al23層については、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であることがわかる。
また、比較被覆工具1〜15については、表9に示される通り、切刃部、すくい面および逃げ面のいずれの面についても、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率は60%以上であった。
As shown in Tables 7 and 8, for the Zr-containing α-type Al 2 O 3 layer on the rake face and flank face of the coated tools 1 to 15 of the present invention, at least one Σ3 corresponding interface is present inside the crystal grains. It can be seen that the area ratio of the existing crystal grains is 60% or more.
Further, as shown in Table 9, for the comparative coated tools 1 to 15, at least one Σ3 corresponding interface exists in the crystal grains for any of the cutting edge portion, the rake face, and the flank face. The area ratio of the crystal grains was 60% or more.

また、本発明被覆工具1〜15のすくい面および逃げ面のZr含有α型Al23層および比較被覆工具1〜15のすくい面、逃げ面および切刃部のZr含有α型Al23層について、電界放出型走査電子顕微鏡を用いて、層厚方向に垂直な面内に存在する、大粒径の平坦六角形状の結晶粒の面積割合を求めた。この値を表7〜表9に示す。
なお、ここで言う「大粒径の平坦六角形状」の結晶粒とは、
「電界放出型走査電子顕微鏡により観察される層厚方向に垂直な面内に存在する粒子の直径を計測し、10粒子の平均値が3〜8μmであり、頂点の角度が100〜140°である頂角を6個有する多角形状である。」
と定義する。
Also, the rake face and the rake face of the Zr-containing α-type the Al 2 O 3 layer and the comparative coated tools 1 to 15 of flank of the present invention coated tools 1 to 15, flank face and cutting edge of the Zr-containing α-type Al 2 O With respect to the three layers, the area ratio of large hexagonal flat hexagonal crystal grains existing in a plane perpendicular to the layer thickness direction was determined using a field emission scanning electron microscope. This value is shown in Tables 7-9.
In addition, the crystal grains of the “large hexagonal flat hexagonal shape” mentioned here are:
“The diameter of particles existing in a plane perpendicular to the layer thickness direction observed by a field emission scanning electron microscope is measured, the average value of 10 particles is 3 to 8 μm, and the vertex angle is 100 to 140 °. It is a polygonal shape with six apex angles. "
It is defined as

ついで、本発明被覆工具1〜15、比較被覆工具1〜15の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Next, the thickness of each constituent layer of the hard coating layer of the present invention coated tool 1-15, comparative coated tool 1-15 was measured using a scanning electron microscope (longitudinal cross section measurement), in either case, The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜15、比較被覆工具1〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUJ2(HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 3.5 mm、
送り: 0.17 mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での軸受鋼の湿式高速高切り込み断続切削試験(通常の重断続切削における切削速度及び切込みは、それぞれ、150m/min、2.5mm)、
被削材:JIS・SKD11(HRC58)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 300 m/min.、
切り込み: 3.5 mm、
送り: 0.17 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)での合金工具鋼の湿式高速高切り込み断続切削試験(通常の重断続切削における切削速度及び切込みは、それぞれ、200m/min、2.5mm)、
被削材:JIS・SK3(HRC61)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min.、
切り込み: 1.5 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)での炭素工具鋼の湿式高速高送り断続切削試験(通常の重断続切削における切削速度及び送りは、150m/min.、送りは0.25mm/rev.)、
を行い、いずれの切削試験でも逃げ面の硬質被覆層の摩耗量、剥離の有無を測定・観察した。
この測定結果を表10に示した。
Next, for the above-described inventive coated tools 1-15 and comparative coated tools 1-15, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUJ2 (HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.17 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-cut intermittent cutting test of bearing steel under the following conditions (referred to as cutting condition A) (cutting speed and cutting in normal heavy interrupted cutting are 150 m / min and 2.5 mm, respectively),
Work material: JIS · SKD11 (HRC58) lengthwise equidistant four round grooved round bars,
Cutting speed: 300 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.17 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-cut intermittent cutting test of alloy tool steel under the above conditions (referred to as cutting condition B) (cutting speed and cutting in normal heavy interrupted cutting are 200 m / min and 2.5 mm, respectively),
Work material: JIS · SK3 (HRC61) lengthwise equidistant four round grooved round bars,
Cutting speed: 250 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed high-feed interrupted cutting test of carbon tool steel under the following conditions (referred to as cutting condition C) (cutting speed and feed in normal heavy interrupted cutting is 150 m / min., Feed is 0.25 mm / rev.),
In each cutting test, the amount of wear of the hard coating layer on the flank and the presence or absence of peeling were measured and observed.
The measurement results are shown in Table 10.

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

Figure 0005440311
Figure 0005440311

表7〜10に示される結果から、本発明被覆工具1〜15は、すくい面、逃げ面の中間層として、(0001)面配向率が45%以上の高い比率を示すα型Al23層が形成され、さらに、この上にZr含有α型Al23層からなる上部層が構成され、該上部層が、平板多角形(平坦六角形)たて長形状の結晶粒の組織構造を有し、(0001)面配向率が60%以上の高い比率を示し、また、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が60%以上と高いことによって、Zr含有α型Al23層が一段とすぐれた高温強度と結晶粒内強度を有し、また、一段とすぐれた表面平坦性とを兼備し、その一方、切刃部についてはZr含有α型Al23層を除去し、α型Al23層を露出形成したことにより、高熱発生および断続的・衝撃的高負荷が切刃に作用する合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重断続切削加工で、逃げ面及びすくい面の硬質被覆層はすぐれた高温強度、耐摩耗性および耐チッピング性を発揮するとともに、切刃部の硬質被覆層の耐チッピング性、耐欠損性が一段と改善されることによって、長期の使用にわたってすぐれた切削性能を示し、使用寿命の一層の延命化を可能とするものである。
これに対して、切刃部、すくい面および逃げ面のいずれの面も同様な硬質被覆層が形成された比較被覆工具1〜15については、合金工具鋼や軸受鋼の焼入れ材などの高硬度鋼の高速重断続切削加工では、特に、切刃部の硬質被覆層のチッピング発生、欠損発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 10, the inventive coated tools 1 to 15 are α-type Al 2 O 3 showing a high ratio of (0001) plane orientation ratio of 45% or more as an intermediate layer of the rake face and flank face. A layer is formed, and an upper layer composed of a Zr-containing α-type Al 2 O 3 layer is formed thereon, and the upper layer is a structure of crystal grains of a flat plate polygon (flat hexagon) and a long shape And the (0001) plane orientation ratio is as high as 60% or higher, and the crystal grain area ratio in which at least one Σ3-compatible interface exists inside the crystal grains is as high as 60% or higher. Therefore, the Zr-containing α-type Al 2 O 3 layer has excellent high-temperature strength and in-grain strength, and also has excellent surface flatness, while the cutting edge portion has a Zr-containing α -type Al 2 a O 3 layer was removed, by the exposed form α-type Al 2 O 3 layer With high-speed heavy interrupted cutting of hardened steel such as alloy tool steel and hardened material of bearing steel where high heat generation and intermittent / impact high loads act on the cutting blade, the hard coating layer on the flank and rake face is excellent In addition to exhibiting high temperature strength, wear resistance and chipping resistance, the chipping resistance and chipping resistance of the hard coating layer of the cutting edge part has been further improved, showing excellent cutting performance over a long period of use, The service life can be further extended.
On the other hand, the comparative coated tools 1 to 15 in which the same hard coating layer is formed on any of the cutting edge portion, the rake face, and the flank face have high hardness such as a hardened material of alloy tool steel or bearing steel. In high-speed heavy interrupted cutting of steel, it is clear that the service life can be reached in a relatively short time, particularly due to chipping and chipping of the hard coating layer of the cutting edge.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、高熱発生および断続的・衝撃的高負荷を伴う高硬度鋼の高速重断続切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is capable of high-speed heavy interrupted cutting of high-hardness steel with high heat generation and intermittent / impact high loads as well as cutting of various steels and cast iron under normal conditions. However, it exhibits excellent wear resistance without chipping, and exhibits excellent cutting performance over a long period of time. It is possible to cope with the conversion sufficiently satisfactorily.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の逃げ面およびすくい面には、
下部層として、
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、2〜15μmの合計平均層厚を有するTi化合物層、
中間層として、
(b)1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
上部層として、
(c)2〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するZr含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層が蒸着形成され、
一方、上記工具基体の切刃部には、上記(a)のTi化合物層および上記(b)の酸化アルミニウム層が蒸着形成された表面被覆切削工具において、
(d)上記逃げ面、すくい面および切刃部の上記(b)の酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、2〜8度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜8度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、
(e)また、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布グラフを示し、を占める傾斜角度数分布グラフを示し、
(f)さらに、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するZr含有酸化アルミニウム層であり、
(g)さらに、上記逃げ面、すくい面に形成された上記(c)のZr含有酸化アルミニウム層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、逃げ面およびすくい面における上記(c)のZr含有酸化アルミニウム層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上のΣ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているZr含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
On the flank and rake face of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
As a lower layer,
(A) All are formed by chemical vapor deposition, consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, and 2 to 2 A Ti compound layer having a total average layer thickness of 15 μm,
As an intermediate layer,
(B) an aluminum oxide layer having an average layer thickness of 1 to 5 μm and having an α-type crystal structure in a chemical vapor deposited state;
As an upper layer,
(C) a Zr-containing aluminum oxide layer having an average layer thickness of 2 to 15 μm and having an α-type crystal structure in a chemical vapor deposited state;
A hard coating layer comprising the above (a) to (c) is formed by vapor deposition,
On the other hand, in the surface-coated cutting tool in which the Ti compound layer of (a) and the aluminum oxide layer of (b) are deposited on the cutting edge portion of the tool base,
(D) A hexagonal crystal existing in the measurement range of the surface polished surface of the tool base, using a field emission scanning electron microscope, with respect to the aluminum oxide layer (b) of the flank, rake face and cutting edge. By irradiating each crystal grain having a lattice with an electron beam, an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface, and the measurement is performed. The measured inclination angle within the range of 0 to 45 degrees of the inclination angles is divided for each pitch of 0.25 degrees, and the angle existing in each division is represented by an inclination angle number distribution graph. In this case, the highest peak exists in the inclination angle section within the range of 2 to 8 degrees, and the total of the frequencies existing within the range of 2 to 8 degrees is 45% or more of the entire degrees in the inclination angle frequency distribution graph. An inclination angle number distribution graph occupying a ratio is shown,
(E) Further, the Zr-containing aluminum oxide layer (c) formed on the flank and rake face is present within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Each crystal grain having a hexagonal crystal lattice is irradiated with an electron beam, and an inclination angle formed by a normal line of the (0001) plane which is a crystal plane of the crystal grain is measured with respect to a normal line of the surface polished surface. An inclination angle number distribution graph obtained by dividing the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles for each pitch of 0.25 degrees and totaling the frequencies existing in each division. When the maximum peak is present in the inclination angle section within the range of 0 to 10 degrees, the sum of the frequencies existing within the range of 0 to 10 degrees is 60 of the entire degrees in the inclination angle frequency distribution graph. % Of inclination angle that occupies more than% Shows a graph, shows the inclination angle frequency distribution graph occupy,
(F) Further, when the microstructure of the Zr-containing aluminum oxide layer (c) formed on the flank and rake face is observed with a field emission scanning electron microscope, a flat plate is formed in a plane perpendicular to the layer thickness direction. A Zr-containing aluminum oxide layer having a polygonal shape and a textured structure composed of crystal grains having a long shape in the layer thickness direction in a plane parallel to the layer thickness direction;
(G) Further, with respect to the Zr-containing aluminum oxide layer of (c) formed on the flank and rake face, using a field emission scanning electron microscope and an electron backscatter diffraction image device, within the measurement range of the surface polished surface Irradiate each individual crystal grain with an electron beam, and measure the angle at which each normal of the crystal lattice plane composed of hexagonal crystal lattice intersects with the normal of the substrate surface. The mutual crystal orientation relationship is calculated, and the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices is calculated. There are N lattice points that do not share constituent atoms between atomic shared lattice points (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency) 4, 8, (Even numbers of 4, 24 and 26 do not exist) When the constituent atomic shared lattice point form is represented by ΣN + 1, the crystal grains constituting the Zr-containing aluminum oxide layer of (c) above on the flank and rake face Among them, the inside of the crystal grains having an area ratio of 60% or more is a Zr-containing aluminum oxide layer divided by a crystal lattice interface composed of at least one constituent atom shared lattice point represented by Σ3.
A surface-coated cutting tool characterized by that.
逃げ面およびすくい面における上記(c)のZr含有酸化アルミニウム層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める請求項1に記載の表面被覆切削工具。   When the Zr-containing aluminum oxide layer of (c) above on the flank and rake face is observed with a field emission scanning electron microscope, it is a flat hexagonal shape in a plane perpendicular to the layer thickness direction and parallel to the layer thickness direction. 2. The surface-coated cutting tool according to claim 1, wherein the crystal grains having a long shape in the layer thickness direction in a plane occupy an area ratio of 35% or more in the plane perpendicular to the layer thickness direction. 切刃部における上記(b)の酸化アルミニウム層について、電界放出型走査電子顕微鏡を用い、上記工具基体の表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうちの0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで表わした場合、12〜18度の範囲内の傾斜角区分にピークが存在し、その範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の15%以上40%未満の割合を占める傾斜角度数分布グラフを示す請求項1または2に記載の表面被覆切削工具。  With respect to the aluminum oxide layer (b) in the cutting edge portion, an electron beam is applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface of the tool base using a field emission scanning electron microscope. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees, and is represented by an inclination angle number distribution graph obtained by summing up the frequencies existing in each division, it is within the range of 12 to 18 degrees. 2. An inclination angle frequency distribution graph in which a peak exists in the inclination angle section, and the total frequency existing in the range occupies a ratio of 15% or more and less than 40% of the entire frequency in the inclination angle frequency distribution graph. 2. Surface coated cutting machine according to 2 Ingredients.
JP2010069068A 2010-03-25 2010-03-25 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer Active JP5440311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069068A JP5440311B2 (en) 2010-03-25 2010-03-25 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069068A JP5440311B2 (en) 2010-03-25 2010-03-25 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Publications (2)

Publication Number Publication Date
JP2011200953A JP2011200953A (en) 2011-10-13
JP5440311B2 true JP5440311B2 (en) 2014-03-12

Family

ID=44878226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069068A Active JP5440311B2 (en) 2010-03-25 2010-03-25 Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer

Country Status (1)

Country Link
JP (1) JP5440311B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5854321B2 (en) * 2011-11-30 2016-02-09 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6198176B2 (en) 2013-02-26 2017-09-20 三菱マテリアル株式会社 Surface coated cutting tool
US9879350B2 (en) * 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9878373B2 (en) * 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9878374B2 (en) * 2015-07-13 2018-01-30 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP6604553B2 (en) * 2016-03-30 2019-11-13 三菱マテリアル株式会社 Surface coated cutting tool
CN108677119B (en) * 2018-06-29 2020-06-12 首钢京唐钢铁联合有限责任公司 Control method for steel piling at inlet area of continuous hot galvanizing production line

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512989B2 (en) * 2003-12-26 2010-07-28 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4832108B2 (en) * 2005-03-29 2011-12-07 京セラ株式会社 Surface coated cutting tool
JP2008006546A (en) * 2006-06-29 2008-01-17 Sumitomo Electric Hardmetal Corp Cutting edge changing type cutting tip
JP5187570B2 (en) * 2007-12-28 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5176659B2 (en) * 2008-04-03 2013-04-03 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5286891B2 (en) * 2008-04-03 2013-09-11 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5187571B2 (en) * 2008-06-20 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer

Also Published As

Publication number Publication date
JP2011200953A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
WO2010106811A1 (en) Surface-coated cutting tool
JP5440311B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5326707B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5594572B2 (en) Surface-coated cutting tool with excellent peel resistance, chipping resistance, and wear resistance with excellent hard coating layer
JP5739086B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440269B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594574B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5594571B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594570B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440270B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5594573B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440267B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150