JP5440268B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP5440268B2
JP5440268B2 JP2010049577A JP2010049577A JP5440268B2 JP 5440268 B2 JP5440268 B2 JP 5440268B2 JP 2010049577 A JP2010049577 A JP 2010049577A JP 2010049577 A JP2010049577 A JP 2010049577A JP 5440268 B2 JP5440268 B2 JP 5440268B2
Authority
JP
Japan
Prior art keywords
crystal
layer
plane
crystal grain
layer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010049577A
Other languages
Japanese (ja)
Other versions
JP2011183486A (en
Inventor
興平 冨田
誠 五十嵐
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010049577A priority Critical patent/JP5440268B2/en
Publication of JP2011183486A publication Critical patent/JP2011183486A/en
Application granted granted Critical
Publication of JP5440268B2 publication Critical patent/JP5440268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、各種の鋼や鋳鉄などの被削材の切削加工を、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削条件で行った場合でも、硬質被覆層がチッピングを発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a hard coating layer even when cutting of various materials such as steel and cast iron is performed under intermittent heavy cutting conditions in which intermittent and impactful high loads are repeatedly applied to the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of use without causing chipping.

従来、特許文献1に示すように、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、2〜20μmの平均層厚、および化学蒸着した状態でα型の結晶構造を有し、
電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示す改質Al23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具(以下、従来被覆工具1という)が知られており、硬質被覆層の改質Al23層がすぐれた結晶粒界面強度を有することから、高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮することが知られている。
Conventionally, as shown in Patent Document 1, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter collectively referred to as a tool) On the surface of the substrate)
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, all formed by chemical vapor deposition as the lower layer A Ti compound layer comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) As an upper layer, it has an average layer thickness of 2 to 20 μm, and an α-type crystal structure in the state of chemical vapor deposition,
Using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and each crystal plane of the crystal grain is The angle at which each of the normals intersects the normal of the substrate surface was measured, and from this measurement result, the (0001) plane and {10-10} plane, which are the constituent crystal planes of the crystal grains, were selected and further selected ( In the (0001) plane and {10-10} plane, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface between adjacent crystal grains (grain unit). When obtained, the angle at which the normals of the (0001) planes and the normals of the {10-10} planes intersect is 15 degrees or less, and the proportion of the crystal grain interface units is 45% or more of the total crystal grain interface units. Occupied grain interface Reforming the Al 2 O 3 layer showing a
A coated tool (hereinafter referred to as a conventional coated tool 1) formed by vapor-depositing a hard coating layer composed of (a) and (b) above is known, and a modified Al 2 O 3 layer of the hard coating layer is known. It is known that the hard coating layer exhibits excellent chipping resistance in high-speed cutting because it has excellent crystal grain interface strength.

また、特許文献2に示すように、工具基体の表面に、
(a)下部層が、3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有すると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にAlおよび酸素からなる構成原子がそれぞれ存在するコランダム型六方最密晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が60〜80%である構成原子共有格子点分布グラフを示すAl23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具(以下、従来被覆工具2という)が知られており、鋼や鋳鉄の高速断続切削加工ですぐれた耐チッピング性を発揮することが知られている。
Further, as shown in Patent Document 2, on the surface of the tool base,
(A) a Ti compound layer in which the lower layer has an overall average layer thickness of 3 to 20 μm,
(B) the upper layer has an average layer thickness of 1 to 15 μm and has an α-type crystal structure in a state of chemical vapor deposition;
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the above, are measured. In this case, the crystal grains are corundum type in which constituent atoms composed of Al and oxygen are present at lattice points. Based on the measured tilt angle obtained as a result of the hexagonal close-packed crystal structure, each of the constituent atoms forms one constituent atom between the crystal grains at the interface between adjacent crystal grains. The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is the crystal structure of the corundum hexagonal close-packed crystal) Even number of 2 or more, but distribution frequency When the upper limit of N from the point is 28, the even number of 4, 8, 14, 24, and 26 does not exist.) When the existing constituent atom shared lattice point form is expressed as ΣN + 1, each ΣN + 1 is included in the entire ΣN + 1 In the constituent atom shared lattice point distribution graph showing the distribution ratio, Al 2 shows a constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of Σ3 is 60 to 80%. O 3 layer,
A coated tool (hereinafter referred to as a conventional coated tool 2) formed by vapor-depositing a hard coating layer composed of (a) and (b) is known, and has excellent resistance to high-speed intermittent cutting of steel or cast iron. It is known to exhibit chipping properties.

特開2007−160497号公報JP 2007-160497 A 特開2006−198735号公報JP 2006-198735 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高能率化する傾向にあるが、上記の従来被覆工具1、2においては、これを低合金鋼や炭素鋼などの一般鋼、さらにねずみ鋳鉄などの普通鋳鉄の高速切削加工、高速断続切削加工に用いた場合には問題はないが、特にこれを断続重切削加工に用いた場合には、高温強度および表面性状が満足できるものではないため、切刃に対して繰り返し作用する断続的・衝撃的高負荷により、切刃部にチッピング(微少欠け)を発生しやすくなるばかりか、熱塑性変形、偏摩耗の発生により耐摩耗性も低下し、これらが原因となり、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to become more efficient. In the conventional coated tools 1 and 2, there is no problem when this is used for high-speed cutting and high-speed interrupted cutting of ordinary steel such as low alloy steel and carbon steel, and ordinary cast iron such as gray cast iron. When this is used for intermittent heavy cutting, the high-temperature strength and surface properties are not satisfactory, so chipping is applied to the cutting edge due to intermittent and impactful high loads that repeatedly act on the cutting edge. In addition, the wear resistance is lowered due to the occurrence of thermoplastic deformation and uneven wear, and these are the causes, and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、耐チッピング性の向上を図るとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する硬質被覆層について研究を行った結果、以下の知見を得た。   Therefore, the present inventors have studied the hard coating layer that exhibits excellent wear resistance over a long period of use while improving the chipping resistance from the above-mentioned viewpoints. Obtained knowledge.

(a) 上記従来被覆工具1における改質Al23層は、小角粒界比率を45%以上に高めることにより(特許文献1)、また、上記従来被覆工具2におけるAl23層は、Σ3比率を60%以上に高めることにより(特許文献2)、結晶粒界強度を向上させて耐チッピング性の向上を図っているが、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削のような厳しい切削加工条件下で用いたような場合には、上記Al23層では、十分に満足できる高温強度を有するとはいえず、そのため、チッピング発生の抑制効果が十分であるとは言えなかった。 (A) The modified Al 2 O 3 layer in the conventional coated tool 1 is obtained by increasing the small-angle grain boundary ratio to 45% or more (Patent Document 1), and the Al 2 O 3 layer in the conventional coated tool 2 is By increasing the Σ3 ratio to 60% or more (Patent Document 2), the grain boundary strength is improved and chipping resistance is improved, but intermittent and impactful high loads are applied to the cutting edge. When used under severe cutting conditions such as intermittent heavy cutting that repeatedly acts, the Al 2 O 3 layer does not have a sufficiently satisfactory high-temperature strength. It could not be said that the effect was sufficient.

(b)そこで、この発明では、上記従来被覆工具1のような条件で蒸着形成した改質α型Al23層を中間層として、その上に、上部層として、化学蒸着した状態でα型の結晶構造を有するB含有酸化アルミニウム層を更に蒸着形成し、硬質被覆層を構成したところ、工具基体表面に、Ti化合物層からなる下部層、改質α型Al23層からなる中間層およびB含有酸化アルミニウム層からなる上部層を硬質被覆層として蒸着形成した被覆工具は、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削条件下においても、一段とすぐれた高温強度と表面性状を有するため、すぐれた耐チッピング性および耐摩耗性を発揮することを見出した。 (B) Therefore, in the present invention, the modified α-type Al 2 O 3 layer formed by vapor deposition under the conditions of the above-mentioned conventional coated tool 1 is used as an intermediate layer, and as an upper layer on the α layer in the state of chemical vapor deposition. A B-containing aluminum oxide layer having a type crystal structure was further formed by vapor deposition to form a hard coating layer. On the surface of the tool base, a lower layer composed of a Ti compound layer and an intermediate composed of a modified α-type Al 2 O 3 layer The coated tool formed by vapor-depositing the upper layer consisting of the layer and the B-containing aluminum oxide layer as a hard coating layer is even better under intermittent heavy cutting conditions in which intermittent and impactful high loads act repeatedly on the cutting edge. It has been found that since it has high temperature strength and surface properties, it exhibits excellent chipping resistance and wear resistance.

(c) 上記B含有酸化アルミニウム層は、中間層である上記改質α型Al23層の上に、例えば、
まず、第1段階として、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
BCl: 0〜0.01 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で約30分間、第1段階の蒸着を行った後、
次に、第2段階として、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
BCl: 0.02〜0.2 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 960〜1010 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で蒸着を行うことにより、1〜15μmの平均層厚を有し、かつ、Al成分と酸素成分との合量に占めるB成分の含有割合(B/(Al+B+酸素))が0.001〜0.01(但し、原子比)を満足し、化学蒸着した状態でα型の結晶構造を有しB含有酸化アルミニウム層(以下、改質AlBO層という)を形成することができる。
(C) The B-containing aluminum oxide layer is formed on the modified α-type Al 2 O 3 layer, which is an intermediate layer, for example,
First, as the first step,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
BCl 4 : 0 to 0.01%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
After performing the first stage deposition for about 30 minutes under the conditions of
Next, as the second stage,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
BCl 4 : 0.02 to 0.2%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 960-1010 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When the deposition is performed under the conditions, an average layer thickness of 1 to 15 μm, and the content ratio of B component in the total amount of Al component and oxygen component (B / (Al + B + oxygen)) is 0.001. It is possible to form a B-containing aluminum oxide layer (hereinafter referred to as a modified AlBO layer) having an .alpha.-type crystal structure in a state where the chemical vapor deposition is satisfied.

(d)そして、上記改質AlBO層を、電界放出型走査電子顕微鏡で組織観察すると、図1(a)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平板多角形状であり、また、図1(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であり、層厚方向にたて長形状(以下、「平板多角形たて長形状」という)を有する結晶粒からなる組織構造を有する。
また、前記改質AlBO層の蒸着形成に際して、より限定した蒸着条件(例えば、第1段階における反応ガス中のHSを0.45〜0.6容量%、反応雰囲気温度を980〜1000℃とし、さらに、第2段階における反応ガス中のBClを0.1〜0.2容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、図1(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図1(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。
(D) Then, when the microstructure of the modified AlBO layer is observed with a field emission scanning electron microscope, as shown in FIG. 1 (a), large grains are observed when viewed in a plane perpendicular to the layer thickness direction. As shown in FIG. 1B, when viewed in a plane parallel to the layer thickness direction, the layer surface is almost flat and long in the layer thickness direction. It has a textured structure composed of crystal grains having a shape (hereinafter, referred to as “long flat plate polygonal shape”).
Further, in the vapor deposition formation of the modified AlBO layer, more limited vapor deposition conditions (for example, 0.45 to 0.6% by volume of H 2 S in the reaction gas in the first stage and a reaction atmosphere temperature of 980 to 1000 ° C. And BCl 4 in the reaction gas in the second stage is 0.1 to 0.2% by volume, H 2 S is 0.25 to 0.4% by volume, and the reaction atmosphere temperature is 960 to 980 ° C. 1), as shown in FIG. 1C, when viewed in a plane perpendicular to the layer thickness direction, it has a flat hexagonal shape with a large grain size and is parallel to the layer thickness direction. When viewed in-plane, as shown in FIG. 1B, the layer surface is substantially flat, and crystal grains having a long shape in the layer thickness direction are in-plane perpendicular to the layer thickness direction. In this case, a tissue structure occupying an area ratio of 35% or more of the whole is formed.

(e)さらに、上記改質AlBO層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、
図2に示されるように、改質AlBO層を構成する平板多角形たて長形状結晶粒の内、面積比率で60%以上の上記結晶粒の内部は、少なくとも一つ以上の、Σ3で表される構成原子共有格子点形態からなる結晶格子界面(以下、Σ3対応界面という)で分断されている組織を示すようになる。
さらに、上記改質AlBO層について、同じく、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求め、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(以下、交差角15度以下の結晶粒界面単位の割合という)を算出したところ、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位は、全結晶粒界面単位の35%以上の割合である結晶粒界面配列を示すことが観察された。
(E) Further, the modified AlBO layer is irradiated with an electron beam to each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Measure the angle at which each normal of the crystal lattice plane composed of crystal crystal lattice intersects the normal of the substrate surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) In the case where the upper limit of N is 28 from this point, even numbers of 4, 8, 14, 24 and 26 do not exist)
As shown in FIG. 2, at least one of the above-mentioned crystal grains having an area ratio of 60% or more among the flat plate-shaped long crystal grains constituting the modified AlBO layer is represented by Σ3. It shows a structure divided by a crystal lattice interface (hereinafter, referred to as a Σ3-corresponding interface) having a configuration of the constituent atomic shared lattice points.
Further, for the modified AlBO layer, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Irradiation is performed to measure the angle at which each normal line of each crystal plane of the crystal grain intersects the normal line of the substrate surface. From this measurement result, the (0001) plane and {10-10] which are the constituent crystal planes of the crystal grain } Planes, and in the selected (0001) plane and {10-10} plane, the normal lines of the (0001) plane at the interface between adjacent crystal grains (grain interface unit) and {10-10 } The angle at which the normals of the plane intersect is obtained, and the crystal grain interface unit in which the angle between the normals of the (0001) plane and the normals of the {10-10} plane intersects is 15 degrees or less. Occupy When the ratio (hereinafter referred to as the ratio of crystal grain interface units having an intersection angle of 15 degrees or less) was calculated, the angle at which the normal lines of the (0001) planes intersect with the normal lines of the {10-10} plane was 15 degrees or less. It has been observed that the crystal grain interface units exhibit a crystal grain interface arrangement that is a proportion of 35% or more of the total crystal grain interface units.

(f)上記(d)の第1段階および第2段階の化学蒸着条件(以下、本発明条件という)で蒸着形成された改質AlBO層からなる上部層は、その表面の結晶面が、該層の層厚方向に垂直な面内における結晶面(例えば、(0001))と同配向を有するため、(層厚方向に平行な面内で見た場合、)層表面はほぼ平坦な平板状に形成され、その表面性状の故にすぐれた耐チッピング性を示し、さらに、平板多角形たて長形状の結晶粒内部のΣ3対応界面の存在によって結晶粒内強度が高められるため、従来の(例えば、前記特許文献2に開示されたもの)酸化アルミニウム層に比して、一段とすぐれた高温硬さ、高温強度および耐チッピング性を備える。 (F) The upper layer composed of the modified AlBO layer formed by vapor deposition under the first and second chemical vapor deposition conditions (hereinafter referred to as the present invention conditions) of (d) above has a crystal plane on the surface, Since it has the same orientation as a crystal plane (for example, (0001)) in a plane perpendicular to the layer thickness direction, the layer surface is almost flat (when viewed in a plane parallel to the layer thickness direction). In addition, it exhibits excellent chipping resistance due to its surface properties, and furthermore, the presence of the Σ3 corresponding interface inside the plate-shaped polygonal long crystal grains enhances the intra-grain strength, so that the conventional (for example, (Disclosed in Patent Document 2) Compared to the aluminum oxide layer, it has excellent high-temperature hardness, high-temperature strength and chipping resistance.

したがって、硬質被覆層として、すぐれた結晶粒界面強度を有する改質α型Al23層を中間層として備え、更に、すぐれた高温硬さ、高温強度、表面性状を有する改質AlBO層を上部層として備えるこの発明の被覆工具は、従来被覆工具に比して、一段とすぐれた高温硬さ、耐熱性、高温強度を具備し、その結果として、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削加工においても、チッピング、欠損、剥離等を発生することもなく、すぐれた耐摩耗性を長期に亘って発揮する。
以上(a)〜(f)の研究結果を得たのである。
Therefore, a modified α-type Al 2 O 3 layer having excellent crystal grain interface strength is provided as an intermediate layer as a hard coating layer, and a modified AlBO layer having excellent high-temperature hardness, high-temperature strength, and surface properties is further provided. The coated tool of the present invention provided as the upper layer has higher high-temperature hardness, heat resistance, and high-temperature strength than conventional coated tools, and as a result, is intermittent and impactful to the cutting edge. Even in intermittent heavy cutting where high loads act repeatedly, excellent wear resistance is exhibited over a long period of time without causing chipping, chipping or peeling.
The research results (a) to (f) have been obtained.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する改質酸化アルミニウム層、
(c)上部層が、1〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するB含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示す改質酸化アルミニウム層であり、
上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するB含有酸化アルミニウム層であり、
さらに、上記上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、
上記上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているB含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
(2) 前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める前記(1)に記載の表面被覆切削工具。
(3) 前記(c)の上部層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列を示すB含有酸化アルミニウム層である前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) On the surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) a modified aluminum oxide layer having an average layer thickness of 1 to 5 μm and having an α-type crystal structure in the state of chemical vapor deposition;
(C) a B-containing aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in the state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
The intermediate layer (b) is a hexagonal crystal lattice formed by using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam. The angle at which each normal line of each crystal plane of the crystal grain has a normal line on the substrate surface is measured, and from this measurement result, the (0001) plane and {10-10} which are the constituent crystal planes of the crystal grain In addition, in the selected (0001) plane and {10-10} plane, the normal lines of the (0001) plane at the interface between adjacent crystal grains (grain interface unit) and {10-10} When the angle at which the surface normals intersect is determined, the crystal grain interface unit in which the angle between the normals of the (0001) surface and the normals of the {10-10} surface intersects each other is 15 degrees or less. Over 45% of interface units A modified aluminum oxide layer showing a crystal grain interface sequences occupying,
The upper layer of (c) has a flat plate shape in a plane perpendicular to the layer thickness direction and a layer thickness direction in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. It is a B-containing aluminum oxide layer having a structure composed of crystal grains having a vertically long shape,
Further, the upper layer has a hexagonal crystal lattice by irradiating individual crystal grains existing within the measurement range of the surface polished surface with a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Measure the angle at which each normal of each crystal plane of the crystal grain intersects the normal of the substrate surface, and from this measurement result, calculate the crystal orientation relationship between adjacent crystal lattices, and configure the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) the existing constituent atoms When representing the lattice points form in .SIGMA.N + 1,
Among the crystal grains constituting the upper layer, the interior of the crystal grains having an area ratio of 60% or more is divided by at least one crystal lattice interface composed of a constituent atomic shared lattice point represented by Σ3. B-containing aluminum oxide layer
A surface-coated cutting tool characterized by that.
(2) When the upper layer of (c) is observed with a field emission scanning electron microscope, a flat hexagonal shape in a plane perpendicular to the layer thickness direction and a layer thickness in a plane parallel to the layer thickness direction The surface-coated cutting tool according to (1), wherein the crystal grains having a long shape in the direction occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction.
(3) The upper layer of (c) is irradiated with an electron beam on each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The angle at which each normal line of each crystal face of the crystal grain having a crystal lattice intersects the normal line on the substrate surface is measured, and from this measurement result, the (0001) face and {10 -10} planes are selected, and in the selected (0001) planes and {10-10} planes, the normals of the (0001) planes at the interfaces between adjacent crystal grains (grain interface units) and {10 When the angle at which the normals of the −10} plane intersect is determined, the crystal grain interface unit in which the angle between the normals of the (0001) plane and the normals of the {10−10} plane intersects 15 degrees or less. 35% or more of all grain interface units The surface-coated cutting tool according to the above (1) or (2), which is a B-containing aluminum oxide layer showing a crystal grain interface arrangement that occupies the above proportion. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、より詳細に説明する。
(a)Ti化合物層(下部層)
Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層は、基本的には中間層である改質α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上にも寄与する作用を有するが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に断続的・衝撃的な高負荷が繰り返し作用する断続重切削条件では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
(A) Ti compound layer (lower layer)
Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer and carbonitriding The Ti compound layer consisting of one or more of the material layers (hereinafter referred to as TiCNO) is basically present as a lower layer of the modified α-type Al 2 O 3 layer, which is an intermediate layer. In addition to contributing to improving the high-temperature strength of the hard coating layer due to its excellent high-temperature strength, it firmly adheres to both the tool substrate and the modified α-type Al 2 O 3 layer, so that the hard coating layer adheres to the tool substrate. However, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it is particularly intermittent / impact. High load repeatedly In connection heavy cutting conditions easily cause thermal plastic deformation, which is because the cause of the uneven wear, defining a total average layer thickness thereof and 3 to 20 [mu] m.

(b)改質α型Al23層(中間層)
上記の通り、結晶粒界面配列において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める場合に、結晶粒界面強度が一段と向上するようになり、α型Al23自身のもつすぐれた高温硬さおよび耐熱性に加えて、一段とすぐれた高温強度を具備するようになるものである。
したがって、それぞれの法線同士の交わる角度が15度以下の結晶粒界面単位の占める割合が45%未満の場合には所望のすぐれた結晶粒界面強度を確保することはできない。
また、その平均層厚が1μm未満では、上記の特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が5μmを越えると、断続的・衝撃的な高負荷によりチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(B) Modified α-type Al 2 O 3 layer (intermediate layer)
As described above, in the crystal grain interface arrangement, the angle between the normal lines of the (0001) planes and the normal lines of the {10-10} planes at the interface between adjacent crystal grains (crystal grain interface unit) is 15 degrees. When the following crystal grain interface units occupy a ratio of 45% or more of the total crystal grain interface units, the crystal grain interface strength is further improved, and the excellent high-temperature hardness of α-type Al 2 O 3 itself and In addition to heat resistance, it has even higher temperature strength.
Therefore, when the ratio of the crystal grain interface units whose normals cross each other is less than 15 degrees is less than 45%, the desired excellent crystal grain interface strength cannot be ensured.
If the average layer thickness is less than 1 μm, the hard coating layer cannot be sufficiently provided with the above characteristics. On the other hand, if the average layer thickness exceeds 5 μm, chipping is caused by intermittent and impactful high loads. Therefore, the average layer thickness was determined to be 1 to 5 μm.

(c)改質AlBO層(上部層)
中間層の上に化学蒸着された改質AlBO層からなる上部層は、その構成成分であるAl成分が、層の高温硬さおよび耐熱性を向上させ、また、層中に微量(Alと酸素との合量に占める割合で、B/(Al+B+酸素)が0.001〜0.01(但し、原子比))含有されたB成分が、改質AlBO層の結晶粒界面強度を向上させ、高温強度の向上に寄与するが、B成分の含有割合が0.001未満では、上部層の結晶粒内をΣ3結晶格子界面で分断する割合が60%以上にならないばかりか、小角粒界比率も35%未満となり、一方、B成分の含有割合が0.01を超えた場合には、層中にB酸化物、B酸塩化物などの化合物が生成することによって上部層の結晶粒内をΣ3結晶格子界面で分断する割合が60%以上にならず、また、小角粒界比率も35%未満となるため、Al成分と酸素との合量に占めるB成分の含有割合(B/(Al+B+酸素)の比の値)は0.001〜0.01(但し、原子比)であることが望ましい。
(C) Modified AlBO layer (upper layer)
In the upper layer composed of the modified AlBO layer chemically vapor-deposited on the intermediate layer, the constituent Al component improves the high-temperature hardness and heat resistance of the layer, and a trace amount (Al and oxygen The B component containing 0.001 to 0.01 (provided that the atomic ratio) of B / (Al + B + oxygen) is a proportion of the total amount of the improved and improves the crystal grain interface strength of the modified AlBO layer, Although it contributes to the improvement of the high temperature strength, if the content ratio of the B component is less than 0.001, not only the ratio of dividing the crystal grains in the upper layer at the Σ3 crystal lattice interface will be 60% or more, but also the small angle grain boundary ratio On the other hand, when the content ratio of the B component exceeds 0.01, a compound such as B oxide or B acid chloride is formed in the layer, so that Σ3 The ratio of splitting at the crystal lattice interface does not exceed 60%, and Since the grain boundary ratio is also less than 35%, the content ratio of the B component in the total amount of the Al component and oxygen (the value of the ratio of B / (Al + B + oxygen)) is 0.001 to 0.01 (however, an atom Ratio).

上記改質AlBO層は、蒸着時の反応ガス組成、反応雰囲気温度および反応雰囲気圧力の各化学蒸着条件を、例えば、以下のとおり調整することによって蒸着形成することができる。
即ち、まず、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
BCl: 0〜0.01 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 920〜1000 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で第1段階の蒸着を約30分間行った後、
次に、
(イ)反応ガス組成(容量%):
AlCl: 6〜10 %、
BCl: 0.02〜0.2 %、
CO2: 4〜8 %、
HCl: 3〜5 %、
S: 0.25〜0.6 %、
2:残り、
(ロ)反応雰囲気温度; 960〜1010 ℃、
(ハ)反応雰囲気圧力; 6〜10 kPa、
の条件で第2段階の蒸着を行うことによって、1〜15μmの平均層厚の蒸着層を成膜すると、B/(Al+B+酸素)の比の値が原子比で0.001〜0.01である改質AlBO層を形成することができる。
The modified AlBO layer can be deposited by adjusting the chemical vapor deposition conditions of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during the vapor deposition, for example, as follows.
That is, first,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
BCl 4 : 0 to 0.01%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 920 to 1000 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
After performing the first stage deposition for about 30 minutes under the conditions of
next,
(B) Reaction gas composition (volume%):
AlCl 3 : 6 to 10%,
BCl 4 : 0.02 to 0.2%,
CO 2: 4~8%,
HCl: 3-5%,
H 2 S: 0.25~0.6%,
H 2 : Remaining
(B) Reaction atmosphere temperature; 960 to 1010 ° C.,
(C) Reaction atmosphere pressure; 6 to 10 kPa,
When the vapor deposition layer having an average layer thickness of 1 to 15 μm is formed by performing the second stage vapor deposition under the conditions, the ratio value of B / (Al + B + oxygen) is 0.001 to 0.01 in atomic ratio. A modified AlBO layer can be formed.

そして、上記改質AlBO層について、電界放出型走査電子顕微鏡で組織観察すると、図1(a)に示されるように、層厚方向に垂直な面内で見た場合に、結晶粒径の大きい平板多角形状であり、また、図1(b)に示されるように、層厚方向に平行な面内で見た場合に、層表面はほぼ平坦であって、しかも、層厚方向にたて長形状を有する結晶粒(平板多角形たて長形状結晶粒)からなる組織構造が形成され、耐チッピング性が一段と向上する。   When the microstructure of the modified AlBO layer is observed with a field emission scanning electron microscope, as shown in FIG. 1A, the crystal grain size is large when viewed in a plane perpendicular to the layer thickness direction. As shown in FIG. 1B, the surface of the layer is substantially flat when viewed in a plane parallel to the layer thickness direction, as shown in FIG. A texture structure composed of crystal grains having a long shape (flat plate-shaped long crystal grains) is formed, and chipping resistance is further improved.

また、前記改質AlBO層の蒸着において、より限定した条件(例えば、第1段階における反応ガス中のHSを0.45〜0.6容量%、反応雰囲気温度を980〜1000℃とし、さらに、第2段階における反応ガス中のBClを0.1〜0.2容量%、HSを0.25〜0.4容量%、反応雰囲気温度を960〜980℃とした条件)で蒸着を行うと、図1(c)に示されるように、層厚方向に垂直な面内で見た場合に、大粒径の平坦六角形状であり、かつ、層厚方向に平行な面内で見た場合に、図1(b)に示されるのと同様、層表面はほぼ平坦であり、層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める組織構造が形成される。 In the deposition of the modified AlBO layer, more limited conditions (for example, H 2 S in the reaction gas in the first stage is 0.45 to 0.6% by volume, the reaction atmosphere temperature is 980 to 1000 ° C., Furthermore, the BCl 4 in the reaction gas in the second stage is 0.1 to 0.2% by volume, H 2 S is 0.25 to 0.4% by volume, and the reaction atmosphere temperature is 960 to 980 ° C. When vapor deposition is performed, as shown in FIG. 1 (c), when viewed in a plane perpendicular to the layer thickness direction, it is a flat hexagonal shape with a large grain size and in a plane parallel to the layer thickness direction. As shown in FIG. 1B, the layer surface is substantially flat as shown in FIG. 1 (b), and the crystal grains having a long shape in the layer thickness direction are entirely within a plane perpendicular to the layer thickness direction. A tissue structure occupying an area ratio of 35% or more is formed.

さらに、改質AlBO層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子からなる結晶格子面のそれぞれの法線が前記表面研磨面の法線と交わる角度を測定し、
この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表すと、
図2に示すように、改質AlBO層を構成する上記平板多角形(平坦六角形を含む)たて長形状結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3対応界面で分断されていることがわかる。
そして、改質AlBO層の平板多角形(平坦六角形を含む)たて長形状結晶粒の内部に、上記のΣ3対応界面が存在することによって、結晶粒内強度の向上が図られ、その結果として、断続重切削加工時に改質AlBO層中にクラックが発生することが抑えられ、また、仮にクラックが発生したとしても、クラックの成長・伝播が妨げられ、耐チッピング性、耐欠損性、耐剥離性の向上が図られる。
Further, the modified AlBO layer was irradiated with an electron beam to each crystal grain existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, and from the hexagonal crystal lattice. Measuring the angle at which each normal of the crystal lattice plane intersects the normal of the surface polished surface,
From this measurement result, the crystal orientation relationship between adjacent crystal lattices is calculated, and each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices (constituent atom shared lattice point). ) And the number of lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the distribution frequency) When the upper limit of N is 28 from this point, the even number of 4, 8, 14, 24 and 26 does not exist.)
As shown in FIG. 2, at least one of the above-described flat plate polygons (including flat hexagonal) long crystal grains constituting the modified AlBO layer has an area ratio of 60% or more. It turns out that it is divided by the above Σ3 interface.
Further, the presence of the above-mentioned Σ3-corresponding interface inside the long polygonal crystal grains (including flat hexagonal) of the modified AlBO layer improves the strength within the grains, and as a result As described above, the generation of cracks in the modified AlBO layer during intermittent heavy cutting is suppressed, and even if cracks occur, the growth and propagation of cracks is hindered, and chipping resistance, chipping resistance, The peelability is improved.

さらに、上記改質AlBO層について、同じく、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求め、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(以下、交差角15度以下の結晶粒界面単位の割合という)を算出したところ、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位は、全結晶粒界面単位の35%以上の割合である結晶粒界面配列を示すことが観察されており、このような結晶粒界面配列によって、結晶粒界面強度の向上が図られる。   Further, for the modified AlBO layer, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Irradiation is performed to measure the angle at which each normal line of each crystal plane of the crystal grain intersects the normal line of the substrate surface. From this measurement result, the (0001) plane and {10-10] which are the constituent crystal planes of the crystal grain } Planes, and in the selected (0001) plane and {10-10} plane, the normal lines of the (0001) plane at the interface between adjacent crystal grains (grain interface unit) and {10-10 } The angle at which the normals of the plane intersect is obtained, and the crystal grain interface unit in which the angle between the normals of the (0001) plane and the normals of the {10-10} plane intersects is 15 degrees or less. Occupy When the ratio (hereinafter referred to as the ratio of crystal grain interface units having an intersection angle of 15 degrees or less) was calculated, the angle at which the normal lines of the (0001) planes intersect with the normal lines of the {10-10} plane was 15 degrees or less. It has been observed that the crystal grain interface unit exhibits a crystal grain interface arrangement that is a ratio of 35% or more of the total crystal grain interface unit, and this crystal grain interface arrangement improves the crystal grain interface strength. It is done.

したがって、平板多角形(平坦六角形を含む)たて長形状結晶粒の内部にΣ3対応界面が存在し、表面平坦な表面性状を備えた改質AlBO層からなる本発明の上部層は、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する各種鋼や鋳鉄等の断続重切削加工においても、チッピング、欠損、剥離等を発生することなく、すぐれた耐摩耗性を長期に亘って発揮する。
ただ、改質AlBO層からなる上部層の層厚が1μm未満では、上記上部層のすぐれた特性を十分に発揮することができず、一方、上部層の層厚が15μmを超えると偏摩耗の原因となる熱塑性変形が発生しやすくなり、また、チッピングも発生しやすくなることから、上部層の平均層厚を1〜15μmと定めた。
Therefore, the upper layer of the present invention comprising a modified AlBO layer having a Σ3 interface inside the flat polygonal (including flat hexagonal) long crystal grains and having a surface flat surface property is Excellent wear resistance over a long period of time without any chipping, chipping or peeling even in intermittent heavy cutting of various steels and cast iron, where intermittent and impactful high loads act repeatedly on the blade To demonstrate.
However, if the thickness of the upper layer composed of the modified AlBO layer is less than 1 μm, the superior characteristics of the upper layer cannot be fully exhibited, while if the thickness of the upper layer exceeds 15 μm, uneven wear is not achieved. The causative thermoplastic deformation is likely to occur and chipping is also likely to occur. Therefore, the average layer thickness of the upper layer is set to 1 to 15 μm.

上記のとおり、この発明の被覆工具は、すぐれた高温硬さ、耐熱性に加えて、すぐれた高温強度を有する改質α型Al23層を中間層とするとともに、上部層を構成する改質AlBO層を、表面平坦性を備えた平板多角形(平坦六角形を含む)たて長形状の結晶粒からなる組織構造とし、さらに、上記結晶粒の内部にΣ3対応界面を形成し、結晶粒内強度を強化したことにより、一段とすぐれた高温強度と一段とすぐれた耐摩耗性を兼備し、その結果、各種の鋼や鋳鉄などを、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削条件下で切削加工した場合にも、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性とすぐれた耐摩耗性を発揮し、使用寿命の一層の延命化が可能となる。 As described above, the coated tool of the present invention uses the modified α-type Al 2 O 3 layer having excellent high-temperature strength in addition to excellent high-temperature hardness and heat resistance as an intermediate layer and constitutes an upper layer. The modified AlBO layer has a textured structure composed of long and flat crystal grains (including flat hexagons) with surface flatness, and further, a Σ3-compatible interface is formed inside the crystal grains, By strengthening the intra-grain strength, it has both excellent high temperature strength and excellent wear resistance. As a result, various types of steel and cast iron can be subjected to intermittent and shocking high loads on the cutting edge. Even when machined under intermittent heavy cutting conditions, the hard coating layer exhibits excellent chipping resistance, chipping resistance, peeling resistance and excellent wear resistance, further extending the service life Can be realized.

(a)は、本発明被覆工具1の改質AlBO層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平板多角形状の結晶粒組織構造を示す模式図であり、(b)は、同じく、層厚方向に平行な面内での電界放出型走査電子顕微鏡による観察で得られた、層表面がほぼ平坦であり、層厚方向にたて長形状を有する結晶粒組織構造を示す模式図であり、(c)は、本発明被覆工具11の改質AlBO層からなる上部層について、層厚方向に垂直な面内での電界放出型走査電子顕微鏡による観察で得られた、平坦六角形状の結晶粒組織構造を示す模式図である。(A) is a plate polygonal crystal grain obtained by observing the upper layer made of the modified AlBO layer of the coated tool 1 of the present invention with a field emission scanning electron microscope in a plane perpendicular to the layer thickness direction. It is a schematic diagram which shows a structure | tissue structure, (b) is a layer surface obtained by observation with the field emission type | mold scanning electron microscope in the plane parallel to a layer thickness direction similarly, and the layer thickness direction is substantially flat. It is a schematic diagram which shows the crystal grain structure which has a long shape, and (c) shows the electric field in the plane perpendicular to the layer thickness direction of the upper layer made of the modified AlBO layer of the coated tool 11 of the present invention. It is a schematic diagram showing a flat hexagonal crystal grain structure obtained by observation with an emission type scanning electron microscope. 本発明被覆工具1の改質AlBO層からなる上部層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて測定した、層厚方向に垂直な面における粒界解析図であり、実線は、電界放出型走査電子顕微鏡で観察される平板多角形状の結晶粒界を示し、破線は、電子後方散乱回折像装置により測定されたΣ3対応界面を示す。It is a grain boundary analysis diagram in a plane perpendicular to the layer thickness direction, measured using a field emission scanning electron microscope and an electron backscatter diffraction image device for the upper layer composed of the modified AlBO layer of the coated tool 1 of the present invention, A solid line shows a flat-plate polygonal crystal grain boundary observed with a field emission scanning electron microscope, and a broken line shows a Σ3 corresponding interface measured by an electron backscatter diffraction image apparatus.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408MAに規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Eをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to E made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408MA were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120408MAのチップ形状をもったTiCN基サーメット製の工具基体a〜eを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to e made of TiCN base cermet having a standard / CNMG120408MA chip shape were formed.

ついで、これらの工具基体A〜Eおよび工具基体a〜eのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、表4に示される条件にて、表6に示される目標層厚の改質α型Al23層を硬質被覆層の中間層として蒸着形成し、
(c)次に、表5に示される蒸着条件により、同じく表6に示される目標層厚の改質AlBO層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜15をそれぞれ製造した。
Then, each of these tool bases A to E and tool bases a to e is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 6), the Ti compound layer having the target layer thickness shown in Table 6 is deposited as the lower layer of the hard coating layer,
(B) Next, under the conditions shown in Table 4, the modified α-type Al 2 O 3 layer having the target layer thickness shown in Table 6 is vapor-deposited as an intermediate layer of the hard coating layer,
(C) Next, according to the vapor deposition conditions shown in Table 5, the coated tools 1 to 15 of the present invention are formed by vapor-depositing the modified AlBO layer having the target layer thickness shown in Table 6 as the upper layer of the hard coating layer. Each was manufactured.

また、比較の目的で、上記本発明被覆工具1〜10において、上部層としての改質AlBO層を蒸着形成せず、硬質被覆層が下部層と中間層(改質α型Al23層)のみからなる表7に示される比較被覆工具1〜10(特許文献1に記載の従来被覆工具に相当する)をそれぞれ製造した。 Further, for comparison purposes, in the above-described coated tools 1 to 10 of the present invention, the modified AlBO layer as the upper layer was not formed by vapor deposition, but the hard coating layer was formed as the lower layer and the intermediate layer (modified α-type Al 2 O 3 layer). The comparative coated tools 1 to 10 (corresponding to the conventional coated tool described in Patent Document 1) shown in Table 7 are produced.

さらに、参考のために、上記本発明被覆工具11〜15において、硬質被覆層の上部層として、前記特許文献2に開示されたAl23層を蒸着形成した表7に示される比較被覆工具11〜15(特許文献2に記載の従来被覆工具に相当する)をそれぞれ製造した。 Further, for reference, in the above-described coated tools 11 to 15 of the present invention, the comparative coated tool shown in Table 7 in which the Al 2 O 3 layer disclosed in Patent Document 2 is formed by vapor deposition as the upper layer of the hard coated layer. 11 to 15 (corresponding to the conventional coated tool described in Patent Document 2) were produced.

ついで、上記の本発明被覆工具1〜15、比較被覆工具1〜10の硬質被覆層の改質α型Al23層について、電界放出型走査電子顕微鏡および電子後方散乱回折像装置を用いて、結晶粒界面配列を調査した。
すなわち、改質α型Al23層について、まず、それぞれの表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求め、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(以下、交差角15度以下の結晶粒界面単位の割合という)を算出した。
なお、ここでいう“表面”とは、基体表面に平行な面ばかりでなく、基体表面に対して傾斜する面、例えば、層の切断面、をも含む。
本発明被覆工具1〜15、比較被覆工具1〜10のいずれについても、改質α型Al23層は、いずれも交差角15度以下の結晶粒界面単位の割合が45%以上の結晶粒界面配列を示すことを確認した。
Next, the modified α-type Al 2 O 3 layer of the hard coating layer of the present invention-coated tools 1 to 15 and comparative coated tools 1 to 10 using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. The grain interface arrangement was investigated.
That is, the modified α-type Al 2 O 3 layer is first set in a lens barrel of a field emission scanning electron microscope in a state where each surface is a polished surface, and an incident angle of 70 degrees to the surface polished surface. An electron backscatter diffraction image apparatus is used to irradiate an electron beam with an acceleration voltage of 15 kV with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of each surface polished surface. , The angle at which each normal of each crystal plane of the crystal grain intersects the normal of the substrate surface is measured in a 30 × 50 μm region at an interval of 0.1 μm / step. The (0001) plane and {10-10} plane which are crystal planes are selected, and further, in the selected (0001) plane and {10-10} plane, at the interface between adjacent crystal grains (crystal grain interface unit), respectively. (0 The angle at which the normal lines of the (001) plane and the normal lines of the {10-10} plane intersect is obtained, and the angle at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect is 15 degrees. The ratio of the following crystal grain interface units to the total crystal grain interface units (hereinafter referred to as the ratio of crystal grain interface units having an intersection angle of 15 degrees or less) was calculated.
Here, the “surface” includes not only a surface parallel to the substrate surface but also a surface inclined with respect to the substrate surface, for example, a cut surface of a layer.
In any of the inventive coated tools 1 to 15 and the comparative coated tools 1 to 10, the modified α-type Al 2 O 3 layer is a crystal in which the ratio of crystal grain interface units with an intersection angle of 15 degrees or less is 45% or more. It was confirmed to show a grain interface arrangement.

ついで、上記の本発明被覆工具1〜15の硬質被覆層の上部層を構成する改質AlBO層および比較被覆工具11〜15の硬質被覆層のAl23層について、電界放出型走査電子顕微鏡、電子後方散乱回折像装置を用いて、結晶粒組織構造および構成原子共有格子点形態を調査した。
すなわち、まず、上記の本発明被覆工具1〜15の改質AlBO層および比較被覆工具11〜15のAl23層について、電界放出型走査電子顕微鏡を用いて観察したところ、本発明被覆工具1〜15、比較被覆工具11〜15のいずれについても、図1(a)、(b)で代表的に示される平板多角形(平坦六角形を含む)状かつたて長形状の大きな粒径の結晶粒組織構造が観察された(なお、図1(a)は、層厚方向に垂直な面内で見た本発明被覆工具1の組織構造模式図、また、図1(c)は、層厚方向に垂直な面内で見た本発明被覆工具11の、平坦六角形状かつたて長形状の大きな粒径の結晶粒からなる組織構造模式図)。
Next, a field emission scanning electron microscope is used for the modified AlBO layer constituting the upper layer of the hard coating layer of the above-described inventive coated tools 1 to 15 and the Al 2 O 3 layer of the hard coating layer of the comparative coated tools 11 to 15. Using an electron backscatter diffraction image apparatus, the grain structure and the constituent atomic shared lattice point morphology were investigated.
That is, first, the modified AlBO layer of the above-described coated tools 1 to 15 and the Al 2 O 3 layer of the comparative coated tools 11 to 15 were observed using a field emission scanning electron microscope. 1 to 15 and the comparative coated tools 11 to 15 have a large particle size of a flat plate polygon (including a flat hexagon) and a long and long shape typically shown in FIGS. 1 (a) and 1 (b). (Note that FIG. 1A is a schematic diagram of the structure of the coated tool 1 of the present invention viewed in a plane perpendicular to the layer thickness direction, and FIG. The structure structure schematic diagram which consists of a crystal grain of the flat hexagonal shape and long shape large grain size of this invention coated tool 11 seen in the surface perpendicular | vertical to a layer thickness direction).

つぎに、上記の本発明被覆工具1〜15の改質AlBO層、比較被覆工具11〜15のAl23層について、それぞれの層を構成する結晶粒の内部にΣ3対応界面が存在する結晶粒の面積割合を測定した。
まず、上記の本発明被覆工具1〜15の改質AlBO層について、その表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記表面研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記結晶粒の各結晶格子面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、改質AlBO層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を表6に示した。
次に、比較被覆工具11〜15のAl23層についても、本発明被覆工具の場合と同様な方法により、Al23層の測定範囲内に存在する全結晶粒のうちで、結晶粒の内部に、少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率を求め、その値を表7に示した。
Next, with respect to the modified AlBO layer of the above-described inventive coated tools 1 to 15 and the Al 2 O 3 layer of the comparative coated tools 11 to 15, crystals having a Σ3-compatible interface inside the crystal grains constituting the respective layers. The area ratio of the grains was measured.
First, the modified AlBO layers of the above-mentioned coated tools 1 to 15 of the present invention were set in a lens barrel of a field emission scanning electron microscope with the surface thereof being a polished surface, Electron backscattering is performed by irradiating an electron beam with an electron beam with an acceleration voltage of 15 kV at an incident angle with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of each surface polished surface. Using a diffractive image apparatus, a 30 × 50 μm region is measured at an interval of 0.1 μm / step, and the angle at which each normal line of each crystal lattice plane of the crystal grain intersects the normal line on the substrate surface is measured. From the crystal orientation relationship between adjacent crystal lattices, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms constituting the crystal lattice interface shares one constituent atom between the crystal lattices is calculated. Calculate the previous N lattice points that do not share constituent atoms between constituent atomic shared lattice points (however, N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency) In this case, the even number of 4, 8, 14, 24, and 26 does not exist.) When the constituent atomic shared lattice point form represented is represented by ΣN + 1, all crystal grains existing within the measurement range of the modified AlBO layer Among these, the area ratio of the crystal grains in which at least one Σ3-corresponding interface exists inside the crystal grains was determined, and the values are shown in Table 6.
Next, with respect to the Al 2 O 3 layers of the comparative coated tools 11 to 15, the same method as in the case of the coated tool of the present invention, among all the crystal grains existing in the measurement range of the Al 2 O 3 layer, Table 7 shows the area ratio of crystal grains in which at least one Σ3-corresponding interface is present inside the grains.

表6、表7に示される通り、本発明被覆工具1〜15の改質AlBO層及び比較被覆工具11〜15のAl23層にいずれにおいても、Σ3対応界面が存在する結晶粒の面積比率は、60%以上であることがわかる。 As shown in Tables 6 and 7, the area of crystal grains in which the Σ3-compatible interface exists in both the modified AlBO layer of the present coated tools 1-15 and the Al 2 O 3 layer of the comparative coated tools 11-15. It can be seen that the ratio is 60% or more.

また、本発明被覆工具11〜15の改質AlBO層および比較被覆工具11〜15のAl23層について、電界放出型走査電子顕微鏡を用いて、層厚方向に垂直な面内に存在する、大粒径の平坦六角形状の結晶粒の面積割合を求めた。この値を表6、表7に示す。
なお、ここで言う「大粒径の平坦六角形状」の結晶粒とは、
「電界放出型走査電子顕微鏡により観察される層厚方向に垂直な面内に存在する粒子の直径を計測し、10粒子の平均値が3〜8μmであり、頂点の角度が100〜140°である頂角を6個有する多角形状である。」
と定義する。
Further, the modified AlBO layer of the present coated tools 11 to 15 and the Al 2 O 3 layer of the comparative coated tools 11 to 15 are present in a plane perpendicular to the layer thickness direction using a field emission scanning electron microscope. The area ratio of large hexagonal crystal grains having a large particle diameter was determined. These values are shown in Tables 6 and 7.
In addition, the crystal grains of the “large hexagonal flat hexagonal shape” mentioned here are:
“The diameter of particles existing in a plane perpendicular to the layer thickness direction observed by a field emission scanning electron microscope is measured, the average value of 10 particles is 3 to 8 μm, and the vertex angle is 100 to 140 °. It is a polygonal shape with six apex angles. "
It is defined as

さらに、本発明被覆工具11〜15の改質AlBO層および比較被覆工具11〜15のAl23層について、中間層(改質α型Al23層)について測定したのと同様な方法で、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求め、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位に占める割合(以下、交差角15度以下の結晶粒界面単位の割合という)を算出した。
この値を表6、表7に示す。
Furthermore, the same method as that measured for the intermediate layer (modified α-type Al 2 O 3 layer) of the modified AlBO layer of the coated tools 11 to 15 of the present invention and the Al 2 O 3 layer of the comparative coated tools 11 to 15. Then, the angles at which the normal lines of the (0001) plane and the normal lines of the {10-10} plane intersect each other at the interface between adjacent crystal grains (grain interface unit) are obtained, and the normal line of the (0001) plane is obtained. The ratio of the crystal grain interface unit whose angle between the normal lines of each other and the {10-10} planes is 15 degrees or less to the total crystal grain interface unit (hereinafter referred to as the ratio of the crystal grain interface unit whose crossing angle is 15 degrees or less) Was calculated.
These values are shown in Tables 6 and 7.

本発明被覆工具1〜15、比較被覆工具1〜10および比較被覆工具11〜15の硬質被覆層の各構成層の厚さは、走査型電子顕微鏡を用いて測定(縦断面測定)したが、いずれもの場合も、目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Although the thickness of each constituent layer of the hard coating layer of the present invention coated tool 1-15, comparative coated tool 1-10, and comparative coated tool 11-15 was measured using a scanning electron microscope (longitudinal section measurement), In any case, the average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

つぎに、上記の本発明被覆工具1〜15、比較被覆工具1〜10および比較被覆工具11〜15について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・S30Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 4.0 mm、
送り: 0.6 mm/rev.、
切削時間: 10 分、
の条件(切削条件Aという)での炭素鋼の乾式断続重切削試験(通常の切削速度、送り量および切込み量は、それぞれ、200m/min.,0.4mm/rev.,3mm)、
被削材:JIS・SNCM439の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 220 m/min.、
切り込み: 3 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件Bという)でのニッケルクロムモリブデン合金鋼の乾式断続重切削試験(通常の切削速度、送り量および切込み量は、それぞれ、200m/min.,0.3mm/rev.,2mm)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 200 m/min.、
切り込み: 2 mm、
送り: 0.45 mm/rev.、
切削時間: 5 分、
の条件(切削条件Cという)でのダクタイル鋳鉄の湿式断続重切削試験(通常の切削速度、送り量および切込み量は、それぞれ、120m/min.,0.25mm/rev.,2mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the above-described inventive coated tools 1-15, comparative coated tools 1-10 and comparative coated tools 11-15, all are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / S30C lengthwise equal length 4 round bar with round groove,
Cutting speed: 220 m / min. ,
Cutting depth: 4.0 mm,
Feed: 0.6 mm / rev. ,
Cutting time: 10 minutes,
Of carbon steel under the following conditions (referred to as cutting condition A) (normal cutting speed, feed amount and cutting amount are 200 m / min., 0.4 mm / rev., 3 mm, respectively),
Work material: JIS / SNCM439 round direction bar with 4 equal intervals in the length direction,
Cutting speed: 220 m / min. ,
Cutting depth: 3 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
Dry-intermittent heavy cutting test of nickel chromium molybdenum alloy steel under the following conditions (referred to as cutting condition B) (normal cutting speed, feed amount and cutting amount are 200 m / min, 0.3 mm / rev., 2 mm, respectively) ,
Work material: JIS / FCD450 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 200 m / min. ,
Incision: 2 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 5 minutes,
Wet intermittent heavy cutting test of ductile cast iron under the following conditions (referred to as cutting condition C) (normal cutting speed, feed amount and cutting amount are 120 m / min., 0.25 mm / rev., 2 mm, respectively),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 8.

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

Figure 0005440268
Figure 0005440268

表6〜8に示される結果から、本発明被覆工具1〜15は、いずれも硬質被覆層の中間層である改質α型Al23層が交差角15度以下の結晶粒界面単位の割合が45%以上の結晶粒界面配列を示し、すぐれた結晶粒界面強度、すぐれた高温強度を有するとともに、上部層を構成する改質AlBO層が、平板多角形(平坦六角形)たて長形状の結晶粒の組織構造を有し、さらに、結晶粒の内部に少なくとも一つ以上のΣ3対応界面が存在する結晶粒の面積比率が高いことにより、一段とすぐれた表面平坦性と一段とすぐれた高温強度を兼備し、あるいは、更に、改質AlBO層がよりすぐれた結晶粒界面強度を有し、その結果、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削条件で各種の鋼、鋳鉄などの切削加工を行った場合でも、硬質被覆層が一段とすぐれた耐チッピング性を発揮し、長期の使用にわたってすぐれた耐摩耗性を示し、使用寿命の一層の延命化を可能とするものである。
これに対して、硬質被覆層の上部層として改質AlBO層が形成されていない比較被覆工具1〜15のいずれにおいても、チッピング発生、摩耗促進によって、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 8, all of the coated tools 1 to 15 of the present invention have crystal grain interface units in which the modified α-type Al 2 O 3 layer, which is an intermediate layer of the hard coating layer, has an intersection angle of 15 degrees or less. The crystal grain interface arrangement with a ratio of 45% or more shows excellent crystal grain interface strength and excellent high-temperature strength, and the modified AlBO layer constituting the upper layer has a long plate polygon (flat hexagonal shape). It has a crystal grain structure and a high area ratio of crystal grains that have at least one Σ3-compatible interface inside the crystal grains, resulting in a much higher surface flatness and a much higher temperature. Combined with strength, or, in addition, the modified AlBO layer has better crystal grain interface strength, and as a result, under intermittent heavy cutting conditions in which intermittent and impactful high loads act repeatedly on the cutting edge. Cutting various steel and cast iron Even if exhibits chipping resistance of the hard coating layer is more excellent, shows excellent wear resistance for a long period of use, and makes it possible to further extend the life of the service life.
On the other hand, in any of the comparative coated tools 1 to 15 in which the modified AlBO layer is not formed as the upper layer of the hard coating layer, the service life can be reached in a relatively short time due to the occurrence of chipping and accelerated wear. it is obvious.

上述のように、この発明の被覆工具は、各種の鋼や鋳鉄などの通常条件の切削加工は勿論のこと、切刃に対して断続的・衝撃的な高負荷が繰り返し作用する断続重切削加工でも、チッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for cutting under normal conditions such as various types of steel and cast iron, but also for intermittent heavy cutting in which intermittent and impactful high loads act repeatedly on the cutting edge. However, it exhibits excellent wear resistance without chipping, and exhibits excellent cutting performance over a long period of time. It is possible to cope with the conversion sufficiently satisfactorily.

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの合計平均層厚を有するTi化合物層、
(b)中間層が、1〜5μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有する改質酸化アルミニウム層、
(c)上部層が、1〜15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するB含有酸化アルミニウム層、
上記(a)〜(c)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記(b)の中間層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の45%以上の割合を占める結晶粒界面配列を示す改質酸化アルミニウム層であり、
上記(c)の上部層は、電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平板多角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒からなる組織構造を有するB含有酸化アルミニウム層であり、
さらに、上記上部層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、隣接する結晶格子相互の結晶方位関係を算出し、結晶格子界面を構成する構成原子のそれぞれが前記結晶格子相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(但し、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表した場合に、
上記上部層を構成する結晶粒の内、面積比率で60%以上の結晶粒の内部は、少なくとも一つ以上の、Σ3で表される構成原子共有格子点形態からなる結晶格子界面により分断されているB含有酸化アルミニウム層である、
ことを特徴とする表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is formed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, all formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) a modified aluminum oxide layer having an average layer thickness of 1 to 5 μm and having an α-type crystal structure in the state of chemical vapor deposition;
(C) a B-containing aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in the state of chemical vapor deposition;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) to (c) is formed by vapor deposition,
The intermediate layer (b) is a hexagonal crystal lattice formed by using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam. The angle at which each normal line of each crystal plane of the crystal grain has a normal line on the substrate surface is measured, and from this measurement result, the (0001) plane and {10-10} which are the constituent crystal planes of the crystal grain In addition, in the selected (0001) plane and {10-10} plane, the normal lines of the (0001) plane at the interface between adjacent crystal grains (grain interface unit) and {10-10} When the angle at which the surface normals intersect is determined, the crystal grain interface unit in which the angle between the normals of the (0001) surface and the normals of the {10-10} surface intersects each other is 15 degrees or less. Over 45% of interface units A modified aluminum oxide layer showing a crystal grain interface sequences occupying,
The upper layer of (c) has a flat plate shape in a plane perpendicular to the layer thickness direction and a layer thickness direction in a plane parallel to the layer thickness direction when the structure is observed with a field emission scanning electron microscope. It is a B-containing aluminum oxide layer having a structure composed of crystal grains having a vertically long shape,
Further, the upper layer has a hexagonal crystal lattice by irradiating individual crystal grains existing within the measurement range of the surface polished surface with a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. Measure the angle at which each normal of each crystal plane of the crystal grain intersects the normal of the substrate surface, and from this measurement result, calculate the crystal orientation relationship between adjacent crystal lattices, and configure the crystal lattice interface The distribution of lattice points (constituent atom shared lattice points) in which each atom shares one constituent atom between the crystal lattices is calculated, and N lattice points that do not share constituent atoms between the constituent atom shared lattice points are calculated. (However, N is an even number of 2 or more due to the crystal structure of the corundum hexagonal close-packed crystal. However, when the upper limit of N is 28 from the point of distribution frequency, even numbers of 4, 8, 14, 24 and 26 exist. Without) the existing constituent atoms When representing the lattice points form in .SIGMA.N + 1,
Among the crystal grains constituting the upper layer, the interior of the crystal grains having an area ratio of 60% or more is divided by at least one crystal lattice interface composed of a constituent atomic shared lattice point represented by Σ3. B-containing aluminum oxide layer
A surface-coated cutting tool characterized by that.
前記(c)の上部層を電界放出型走査電子顕微鏡で組織観察した場合に、層厚方向に垂直な面内で平坦六角形状、また、層厚方向に平行な面内で層厚方向にたて長形状を有する結晶粒が、層厚方向に垂直な面内において全体の35%以上の面積割合を占める請求項1に記載の表面被覆切削工具。   When the upper layer of (c) was observed with a field emission scanning electron microscope, it was flat hexagonal in a plane perpendicular to the layer thickness direction, and in the layer thickness direction in a plane parallel to the layer thickness direction. The surface-coated cutting tool according to claim 1, wherein the crystal grains having a long shape occupy an area ratio of 35% or more of the whole in a plane perpendicular to the layer thickness direction. 前記(c)の上部層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、表面研磨面の測定範囲内に存在する結晶粒個々に電子線を照射して、六方晶結晶格子を有する前記結晶粒の各結晶面のそれぞれの法線が基体表面の法線と交わる角度を測定し、この測定結果から、結晶粒の構成結晶面である(0001)面および{10−10}面を選び出し、さらに、選び出した(0001)面および{10−10}面において、それぞれ隣接する結晶粒相互の界面(結晶粒界面単位)における(0001)面の法線同士および{10−10}面の法線同士の交わる角度を求めた場合に、前記(0001)面の法線同士および{10−10}面の法線同士の交わる角度が15度以下の結晶粒界面単位が全結晶粒界面単位の35%以上の割合を占める結晶粒界面配列を示すB含有酸化アルミニウム層である請求項1または2に記載の表面被覆切削工具。   The upper layer of (c) uses a field emission scanning electron microscope and an electron backscatter diffraction image apparatus to irradiate each crystal grain existing within the measurement range of the surface polished surface with an electron beam, thereby forming a hexagonal crystal lattice. The angle at which each normal line of each crystal plane of the crystal grain has a normal line on the substrate surface is measured, and from this measurement result, the (0001) plane and {10-10} which are the constituent crystal planes of the crystal grain In addition, in the selected (0001) plane and {10-10} plane, the normal lines of the (0001) plane at the interface between adjacent crystal grains (grain interface unit) and {10-10} When the angle at which the surface normals intersect is determined, the crystal grain interface unit in which the angle between the normals of the (0001) surface and the normals of the {10-10} surface intersects each other is 15 degrees or less. Over 35% of interface units The surface-coated cutting tool according to claim 1 or 2 which is a B-containing aluminum oxide layer showing a crystal grain interface sequences occupying.
JP2010049577A 2010-03-05 2010-03-05 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Expired - Fee Related JP5440268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049577A JP5440268B2 (en) 2010-03-05 2010-03-05 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049577A JP5440268B2 (en) 2010-03-05 2010-03-05 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2011183486A JP2011183486A (en) 2011-09-22
JP5440268B2 true JP5440268B2 (en) 2014-03-12

Family

ID=44790377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049577A Expired - Fee Related JP5440268B2 (en) 2010-03-05 2010-03-05 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP5440268B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052747B2 (en) * 2019-01-28 2022-04-12 株式会社デンソー Exhaust sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569861B2 (en) * 2004-03-02 2010-10-27 三菱マテリアル株式会社 Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4518260B2 (en) * 2005-01-21 2010-08-04 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5023654B2 (en) * 2005-11-18 2012-09-12 三菱マテリアル株式会社 Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP5077648B2 (en) * 2006-05-25 2012-11-21 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP5286891B2 (en) * 2008-04-03 2013-09-11 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5176659B2 (en) * 2008-04-03 2013-04-03 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting

Also Published As

Publication number Publication date
JP2011183486A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
WO2010106811A1 (en) Surface-coated cutting tool
JP5440311B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP5187571B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5326707B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009066742A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP5739086B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440269B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP2008178954A (en) Surface coated cutting tool with its hard coating layer exerting excellent resistance against chipping
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440267B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370919B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5370920B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees