JP3678945B2 - Titanium carbonitride coated tool - Google Patents

Titanium carbonitride coated tool Download PDF

Info

Publication number
JP3678945B2
JP3678945B2 JP20118899A JP20118899A JP3678945B2 JP 3678945 B2 JP3678945 B2 JP 3678945B2 JP 20118899 A JP20118899 A JP 20118899A JP 20118899 A JP20118899 A JP 20118899A JP 3678945 B2 JP3678945 B2 JP 3678945B2
Authority
JP
Japan
Prior art keywords
titanium carbonitride
layer
film
carbonitride oxide
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20118899A
Other languages
Japanese (ja)
Other versions
JP2001025905A (en
Inventor
敏夫 石井
正幸 権田
史郎 岡山
広志 植田
順彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP20118899A priority Critical patent/JP3678945B2/en
Publication of JP2001025905A publication Critical patent/JP2001025905A/en
Application granted granted Critical
Publication of JP3678945B2 publication Critical patent/JP3678945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は炭窒酸化チタン被覆工具に関するものである。
【0002】
【従来の技術】
一般に、被覆工具は超硬質合金、高速度鋼、特殊鋼からなる基体表面に硬質皮膜を化学蒸着法や、物理蒸着法により成膜して作製される。
このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。特に、高硬度材を高速で切削する場合、切削工具の刃先温度は1000℃前後まで上がり、被削材との接触による摩耗や断続切削等の機械的衝撃に耐える必要がある。このため、耐摩耗性と強靭性とを兼ね備えた被覆工具が重宝されている。
【0003】
上記の硬質皮膜には、耐摩耗性と靭性とに優れる、周期律表IVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物からなる膜と、耐酸化性に優れる酸化アルミニウム膜が単層あるいは多層膜として用いられている。
【0004】
上記の周期律表IVa、Va、VIa族金属にはチタンが主に用いられている。このため、煩雑を避けるため、以降は、周期律表IVa、Va、VIa族金属の代表としてチタンを用いて具体的に詳述する。
【0005】
炭窒酸化チタン膜は靭性と耐摩耗性の特徴をバランス良く有しており、耐酸化性や耐溶着性、あるいは膜自体の応力が低く膜の密着性が優れる特長を有している可能性がある。
この炭窒酸化チタン膜に関しては、特開平8−257808で(111)面、(220)面、(200)面からのX線回折ピーク強度IがI(111)>I(220)>I(200)であるチタンの炭窒酸化物層が被覆された切削工具が提案され、特開平8−269719ではI(220)>I(111)>I(200)であるチタンの炭窒酸化物層が被覆された切削工具が提案されている。また、X線回折で(220)面に最強ピークが現れるTiの炭窒化膜を提案した先述の特開昭56−156767に対して、特許第2535866号では、X線回折で(220)面に最強ピークが現れるTiの炭窒酸化物の単層、またTiの炭窒酸化物とTiの炭化物および炭窒化物のうちの1種もしくは2種の複層からなる内層を被覆した切削工具が提案されている。また、特開平8−47999では、TiC(但し0.7≦x+y+z≦1.3、0.2<y<0.8)からなる第2層上に、TiC1−x(但し0≦x≦1)からなる第3層を被覆した被覆超硬質焼結合金物品が提案されている。
【0006】
なお、炭窒酸化チタン膜と同様に靭性と耐摩耗性とをバランス良く有しており、既に広く実用化されている工具用被覆膜として炭窒化チタン膜がある。炭窒化チタン膜に関しては、(220)面にX線回折最強ピークが現れるチタンの炭窒化膜を提案する特開昭56−156767や、(422)面のX線回折ピーク強度が最強である炭窒化膜を提案する特開平6−158325や特開平7−62542、あるいは、(311)面のX線回折ピーク強度が最強である炭窒化膜を提案する特開平5−269606がある。しかし、これらは柱状晶形態の炭窒化膜のみを検討しており、炭窒酸化膜に関しては検討していない。例えば、特開平6−158325では(422)面にX線回折最強ピーク強度を示す炭窒化チタン膜を提案しているが、同時に成膜されている炭窒酸化膜は炭窒化チタン膜とは別個の膜として扱っており、炭窒酸化膜のX線回折最強ピーク強度は検討していない。
【0007】
上記のように、従来の提案は炭窒酸化チタン膜(層)のX線回折強度等に着目したものであり、炭窒酸化チタン層の粒界の強度や上層との膜密着性が高くなるミクロ組織は検討されていない。また、炭窒酸化チタン層は、成膜時の酸素量が多いと酸化が進みすぎ、膜自体がもろくなり機械強度が低下するとともに、上層との密着性が低下する欠点があった。また、逆に酸素量が少ないと特性が炭窒化チタン層に近づき、耐酸化性や耐溶着性、あるいは膜自体の応力が低くなり膜の密着性が優れる炭窒酸化チタン層の特長が出せなくなる欠点があった。
【0008】
【発明が解決しようとする課題】
上記従来の炭窒酸化チタン層の欠点を踏まえて、本発明が解決しようとする課題は炭窒酸化チタン層の粒界の強度を高めるとともに、上層膜との膜密着性を高められるミクロ組識、結晶配向、膜中酸素量、膜中塩素量を具備することにより、従来に比して格段に切削耐久特性が優れた炭窒酸化チタン被覆工具を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意研究してきた結果、周期律表IVa、Va、VIa族金属の炭窒酸化層、特にチタン等の炭窒酸化層に、双晶構造を持った結晶粒を含有させ、かつ、前記炭窒酸化チタン膜中の酸素量を0.05〜3質量%にすることにより、これらの皮膜を被覆した工具の切削耐久特性が優れることを見出し、本発明に想到した。
【0010】
すなわち本発明は、基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有し、その少なくとも一層が炭窒酸化チタン層からなる炭窒酸化チタン被覆工具において、前記炭窒酸化チタン層が双晶構造を持った結晶粒を含有し、かつ、前記炭窒酸化チタン膜中の酸素量が0.05〜3質量%であることを特徴とする炭窒酸化チタン被覆工具である。本発明の被覆工具は、炭窒酸化チタン層中の酸素量が0.05〜3質量%であり双晶構造を持っており、かつ後述の図1、図2からもわかるように双晶を形成する結晶粒が相互に接触しておりかつ相互にエピタキシャルに成長しているため、結晶粒界の強度が高くなり、良好な切削耐久特性が実現されていると判断される。
【0011】
本発明の被覆工具は、炭窒酸化チタン層の上に双晶構造を持った結晶粒を含有する層が形成されていることが好ましい。上層が双晶構造を持った結晶粒を含有することにより、上層内の粒界強度が高くなり、更に優れた切削耐久特性が実現される。
【0012】
また、本発明の被覆工具は、炭窒酸化チタン層の上に形成された層の双晶境界部が前記炭窒酸化チタン層の双晶境界部から連続していることが好ましい。双晶境界部が連続していることにより、炭窒酸化チタン層とその上に形成されている層との間が結晶格子面レベルでも連続的に成膜されている可能性が高く両層間に高い密着性が実現可能であるとともに、両層が双晶構造を有しているため各層内における結晶粒界の強度が高められ、更に優れた切削耐久特性が得られるものと判断される。
【0013】
また、本発明の被覆工具は、前記双晶構造を構成する双晶境界部(双晶面)が{111}面から成っていることが好ましい。
前記双晶構造を構成する双晶境界部が{111}面から成っていることにより、双晶境界部が緻密に形成され、双晶境界部を境にして接する結晶粒間の粒界強度が高められ、更に優れた切削耐久特性が得られるものと判断される。
【0014】
また、本発明の被覆工具は、炭窒酸化チタン層の上に形成された層が、炭窒酸化チタン層の上にエピタキシャルに成長していることが好ましい。炭窒酸化チタン層の上に形成された層がエピタキシャルに成長していることにより両層間に優れた密着性が得られ、更に優れた切削耐久特性が得られる。
【0015】
また、本発明の被覆工具は、炭窒酸化チタン層の等価X線回折強度比が最強である結晶面が(422)面または(311)面であることが好ましい。後述の通り、等価X線回折強度比が最強である結晶面が(422)面または(311)面であれば炭窒酸化チタン層が双晶構造を持った結晶粒を含有するものとなり、優れた切削耐久特性が得られると判断される。
【0016】
また、本発明の炭窒酸化チタン被覆工具は、前記炭窒酸化チタン層中の酸素量が0.05〜3質量%である。酸素量が0.05〜3質量%の時に炭窒酸化チタン層が双晶構造を持つものになり、かつ(422)面または(311)面に配向し易くなり、優れた切削耐久特性が実現される。酸素量が0.05質量%未満では酸素の含有効果が現れず、3質量%を超えると炭窒酸化チタン層自体の機械強度が低下し脆くなる欠点が生じる。より優れた切削耐久特性が実現される酸素量が0.3〜2質量%の場合がより好ましい。
【0017】
また、本発明の炭窒酸化チタン被覆工具は、前記炭窒酸化チタン膜中の塩素量が0.01〜2質量%であることが好ましい。塩素量が0.01〜2質量%であることにより、炭窒酸化チタン膜が双晶構造を持つものになり、(422)面または(311)面に配向するとともに、膜自身の硬度低下が抑えられ、優れた切削耐久特性が実現される。塩素量が0.01質量%未満では(422)面または(311)面への配向が弱くなり、塩素量が2質量%を超えると炭窒酸化チタン膜の硬度が低下し、工具の耐摩耗性が低下する。
【0018】
また、本発明において、周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物のうちの少なくとも一種以上とFe、Ni、Co、W、Mo、Crのうちの少なくとも一種以上とからなる超硬質合金を基体とすることが実用性に富んでいる。
【0019】
【発明の実施の形態】
本発明の被覆工具において、炭窒酸化チタン(以下、TiCNOと記す)層近傍のミクロ組織は、後述の実施例に示すように、膜断面を透過型電子顕微鏡により5万倍〜400万倍で観察して評価した。膜中に含まれる酸素量と塩素量とは、研磨した膜断面中の5点を、電子プローブマイクロアナライザー(EPMA、日本電子(株)製JXA−8900R)を用い、加速電圧15KV、試料電流0.2μAで分析し、その平均値より求めた。
【0020】
また、TiCNO層のX線回折ピークの同定は、JCPDSファイル(Powder Diffraction File Published by JCPDS International Center for Diffraction Data)に記載がないため、TiC(JCPDSファイルNo.32−1383)とTiN(JCPDSファイルNo.38−1420)のX線回折データおよび本発明品を実測して得たX線回折パターンから求めた表1の数値を用いて行った。
標準X線回折強度I0(hkl)は等方的に配向している粉末粒子のX線回折強度を表している。表2、3はJCPDSファイルに記載されているTiCとTiNの面間距離dと標準X線回折強度I0とをまとめて示したものである。表1〜3から、TiCNOの面間距離dはTiNよりも若干TiCに近いことがわかる。このため、TiCNOの標準X線回折強度I0は表2に示したTiCの標準X線回折強度I0と同一と仮定した。
【0021】
【表1】

Figure 0003678945
【0022】
【表2】
Figure 0003678945
【0023】
【表3】
Figure 0003678945
【0024】
等価X線回折強度比PR(hkl)は、TiCNO層の(hkl)結晶面からのX線回折ピーク強度を定量的に評価するために下記の(1)式により定義した。PR(hkl)は、表1に記載された標準X線回折ピーク強度I0(hkl)に対する、実測された皮膜のX線回折ピーク強度I(hkl)の相対強度を示している。PR(hkl)は皮膜の配向の強さを示しており、例えば、PR(422)の値が大きい程、(422)面からのX線回折ピーク強度比が強く、皮膜の(422)面が測定基板表面の接線方向に強く配向していることを示すものである。
Figure 0003678945
但し、(hkl)=(111)、(200)、(220)、
(311)、(222)、(420)、
(422)、(511)
【0025】
本発明の被覆工具において、チタンは周期律表のIVa、Va、VIa族金属の代表として表記したものであり、他の同族金属、例えばZr、Hf、V、Nb、Ta、Cr、Mo、Wのいずれかであっても略同様の効果が得られる。
また、炭窒酸化チタン層はCHCNとTiClと酸化ガス(例えば、COあるいはCOの単独ガス、または、COとCOの混合ガス)を反応させて成膜する膜に限るものではなく、CH、N、TiClと酸化ガスとを反応させて成膜するTiCNO膜でもよい。
また、炭窒酸化チタン層はTiCNOに限るものではない。例えばTiCNOにCr、Zr、Ta、Mg、Y、Si、Bの一種または二種以上を0.3〜10質量%添加した膜でも良い。0.3質量%未満ではこれらを添加する効果が現れず、10質量%を超えるとTiCNO膜の耐摩耗、高靭性の効果が低くなる欠点が現れる。
また、本発明の被覆工具において、炭窒酸化チタン層の上に成膜する膜はTiC膜、TiCO膜またはTiCNO膜に限るものではない。例えばTiN膜、TiCN膜あるいは原料ガスに他のガスを用いて成膜した他のTiCNO膜でもよい。また、例えば前記膜の成分にCr、Zr、Ta、Mg、Y、Si、Bの一種または二種以上を0.3〜10質量%添加したものでもよい。また、炭窒酸化チタン層の上に、直接、酸化アルミニウムを主とする下記の酸化膜を成膜するのも有効である。
また、下地膜はTiNに限るものではなく、例えば下地膜としてTiC膜またはTiCN膜を成膜した場合も本発明に包含される。
【0026】
本発明の被覆工具に有用な酸化アルミニウム膜として、κ型酸化アルミニウム単相またはα型酸化アルミニウム単相の膜が例示される。また、κ型酸化アルミニウムとα型酸化アルミニウムとの混合膜でもよい。また、κ型酸化アルミニウムおよび/またはα型酸化アルミニウムと、γ型酸化アルミニウム、θ型酸化アルミニウム、δ型酸化アルミニウム、χ型酸化アルミニウムの少なくとも一種以上とからなる混合膜でもよい。また、酸化アルミニウムと酸化ジルコニウム等に代表される他の酸化物との混合膜でもよい。
【0027】
本発明の被覆工具を構成可能な炭窒酸化チタン層、炭化チタン層、炭窒化チタン層、炭酸化チタン層、炭窒酸化チタン層または酸化アルミニウム膜は必ずしも最外層である必要はない。例えばさらにその上に少なくとも一層のチタン化合物(例えばTiNまたはTiCN層、あるいはこれらを組み合わせた多層膜等)を被覆してもよい。
【0028】
また、上記膜には本発明の被覆工具の切削耐久特性を劣化させない範囲で不可避の添加物、不純物を例えば数質量%程度まで含むことが許容される。
【0029】
本発明の被覆工具の製作は既知の成膜方法を採用できる。例えば、通常の化学蒸着法(熱CVD)、プラズマを付加した化学蒸着法(PACVD)、イオンプレーティング法等を用いることができる。用途は切削工具に限るものではなく、周期律表のIVa、Va、VIa族金属(特に、チタン)の一種または二種以上の炭窒化物を主とする層を含む単層あるいは多層の硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。
【0030】
次に、本発明の被覆工具を実施例により具体的に説明するが、それら実施例により本発明が限定されるものではない。なお、下記で単に%と記しているのは質量%を意味している。
【0031】
【実施例】
WC72%,TiC8%,(Ta,Nb)C11%,Co9%の組成よりなる切削工具用超硬質合金製基板をCVD炉内にセットし、その表面に、化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用いて0.3μm厚さのTiNを900℃でまず形成した。続いて、TiCl4ガスを0.5〜2.5vol%、CH3CNガスを0.5〜2.5vol%、N2ガスを25〜45vol%、CO2とCOの混合ガスを0.5〜10vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し、成膜温度750〜980℃、成膜圧力20〜100Toorの条件で6μm厚さのTiCNO膜を成膜した。その後、CH4/TiCl4ガスの容積比を4〜10としたTiCl4ガスとCH4ガスとH2キャリヤーガスで構成された原料ガス2,200ml/分を5〜30分間流し、そのまま連続して本構成の原料ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間流すことにより、成膜温度950〜1020℃で、チタンの炭化物とチタンの炭酸化物からなる層(結合層)を作製した。続いてAl金属小片を詰め350℃に保温した小筒中にH2ガス310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2ガス100ml/分とをCVD炉内に流し、1010〜1020℃で反応させることにより所定の厚さの酸化アルミニウム膜を成膜することにより本発明と比較例の被覆工具を得た。
【0032】
図1は実施例の条件で作製した本発明の代表的な被覆工具のミクロ組織の一例を示しており、図2は図1に対応した模式図である。
図1は、炭窒酸化チタン層(図2の11a、11b、11cを含む層)、チタンの炭化物と炭酸化物からなる結合層(図2の12a、12b、12cを含む層)、酸化アルミニウム層(図2の13a、13b、13cを含む層)近傍の断面のミクロ組織を(株)日立製作所製の透過型電子顕微鏡(H−9000NA、200kV)により5万倍で撮影した写真である。
図1、図2より、本発明品は、炭窒酸化チタン層の結晶粒(図2の11a、11bはその一部)上にチタンの炭化物および炭酸化物からなる層(結合層、図2の12a、12bはその一部)が形成されており、さらにその上に酸化アルミニウムを主とする酸化膜(図2の13はその一部)が形成されていることがわかる。後述のように、図1、図2中の11cと12cとはそれぞれ炭窒酸化チタン層と結合層内の双晶境界線を示しており、両者の双晶境界線がほぼ一直線に連続していることがわかる。
【0033】
図3は図1、2の11c近傍の格子像写真を高分解能TEM装置(日立製作所製(H−9000UHR、300kV)により400万倍で撮影した写真、図4はその模式図である。図3、4において、格子縞の乱れ等による局部的な非対称性は見られるものの、全体として、11cを境界線にして11a部と11b部の格子像がほぼ鏡面対称(例えば、11alの格子縞と11blの格子縞とが共に、11cに対して約70.5°の角度にありほぼ対称である)であることから、11a部と11b部とが双晶関係にあることがわかる。即ち、本発明品の炭窒酸化チタン層が双晶構造を持った結晶粒を含有していることがわかる。
また、図3の格子像写真より、11al、11bl、11cはいずれも面間隔が2.477nmの{111}格子縞であり、双晶境界線11cが{111}格子面から成っていることがわかる。また、双晶境界面の左右に介在物を介することなく、直接、格子縞が接していることから、{111}格子縞からなる双晶境界面が緻密に形成されており、境界での密着性が高いことがわかる。
【0034】
図5は図1、2中12cの先端部近傍の格子像写真を500万倍で撮影したもの、図6はその模式図である。図5、6には結合層中に形成されている垂直板状突起形状の結晶粒部の格子像が撮影されており、結合層12a、12bの両側にα-Al2O313が形成されている。図5、6より、TiCNOの上層に形成されている結合層においても、12cを境界線にして12a部と12b部の格子像がほぼ鏡面対称であり(例えば、格子縞12alと12blおよび格子縞12acと12bcとがほぼ対称である)、12a部と12b部とが双晶関係にあること、即ち、本発明品の炭窒酸化チタン層の上に成膜された層が双晶構造を持った結晶粒を含有していることがわかる。図5に撮影されている12al、12bl、12c、12ac、12bcはいずれも{111}格子縞であり、双晶境界線12cが{111}格子面から成っていることがわかる。また、双晶境界面の左右に介在物を介することなく、直接、格子縞が接していることから、{111}格子縞からなる双晶境界面が緻密に形成されており、境界での密着性が高いことがわかる。
【0035】
各結晶粒の双晶関係は(株)日立製作所製の透過電子顕微鏡H−9000NAにより照射径25nmで電子線回折像を撮影することによっても評価できた。例えば、図1、2に示される11a、11b部、あるいは12a、12b部の電子線回折像を上記透過電子顕微鏡により照射径25nmで観察した結果、両者はfcc結晶構造を持つとともに(110)面が同一面内(図1の写真面)にあることがわかった。また、11aと11bとの電子線回折像が11cを境界にして鏡面対称であり、両者が双晶関係にあることが確認された。
また、その上に成膜されているチタンの炭化物および炭酸化物からなる結合層中の12a、12bの電子線回折像もfcc結晶構造の(110)面が同一面内(図1の写真面)にあり、12aと12bの電子線回折像が12cを境にして鏡面対称であり、両者が双晶関係にあることが確認された。
【0036】
また、11a、11bと12a、12bのいずれの(110)面も図1の写真面内にあり、両者の(110)面が平行であることから、11の結晶粒上に12の結晶粒がエピタキシャルに成長していることがわかる。また、両者がエピタキシャルに成長していることは、図3の格子像写真と図5の格子像写真の間にある二層間の界面において格子縞がほぼ連続していることからも確認された。
【0037】
ここで、図1の透過型電子顕微鏡写真は成膜面の断面を厚さ20μm以下に研磨した後、更にイオンミリングにより厚さを極端に薄くした膜断面に、電子線を透過させて撮影したものである。このため、炭窒酸化チタン層やその上に成膜されている層に含有されている双晶部分が実際に観察される確率は低いと考えられる。したがって、図1のように双晶部分が観測されるということはかなりの頻度で炭窒酸化チタン層やその上層に双晶部分が存在していると判定される。
【0038】
また、観察試料の膜厚が厚い等、試料の条件が悪い時には、電子線回折像では双晶関係が確認されないことがある。この場合も格子像を観察することにより、双晶関係が確認されることがあるので注意を要する。
【0039】
図7は実施例の条件で作製した本発明品の代表的な皮膜部分を試料面にして理学電気(株)製のX線回折装置(RU−200BH)を用いて2θ−θ走査法により2θ=20〜140度の範囲で測定したX線回折パターンである。X線源にはCuKα1線(λ=0.15405nm)を用い、ノイズ(バックグランド)は装置に内蔵されたソフトにより除去した。
図7のX線回折パターンから、各ピークの2θ値は表1の2θ値とよい符合を示すことがわかる。なお、図7等のX線回折パターンから実測される2θ値は表1に記載した2θ値の前後で微妙に異なる。測定されたX線回折パターンにおけるTiCNOのピークの同定は、2θ値とともに、その前後にあるWC(JCPDSファイルNo.25−1047)のピーク、TiCのピーク、TiNのピーク、κ-Al2O3(JCPDSファイルNo.4−0878)のピーク、α-Al2O3(JCPDSファイルNo.10−173)のピーク等との位置関係も考慮して決定した。
図7のX線回折パターン測定結果より求めた炭窒酸化チタン層のX線回折強度I(hkl)と等価X線回折強度比PR(hkl)を表4にまとめる。表4より、I(hkl)とPR(hkl)とはともに、(422)面が最も強く、次いで(311)面が強いことがわかる。図7中で、炭窒酸化チタン(TiCNO)層以外で強いピーク強度を示しているのはα型酸化アルミニウム(α-Al2O3)である。
【0040】
【表4】
Figure 0003678945
【0041】
次に、本発明品の膜断面を研摩し、炭窒酸化チタン膜断面の5点の組成を電子プローブマイクロアナライザー(EPMA、日本電子(株)製JXA−8900R)を用いて、加速電圧15KV、試料電流0.2μAで分析した。炭窒酸化チタン膜からはTi、C、N、O、Clが検出され、5点平均で、酸素量が0.62質量%、塩素量が0.58質量%であった。
【0042】
表5は、同様にして測定した、実施例で作製した代表的な本発明品(試料No.2〜6、8〜13、15〜17)と比較例品(試料No.1、7、14)の炭窒酸化チタン膜の等価X線回折強度比が最強である面の方位、膜厚、膜中酸素量(質量%)、膜中塩素量(質量%)および後述の連続切削時の工具寿命と断続切削可能回数とをまとめて示したものである。表5より、本発明品の炭窒酸化チタン膜の等価X線回折強度比が最強である面の方位は(311)面または(422)面であることがわかる。また、表5の比較例試料No.7と本発明試料No.8あるいは本発明試料No.13と比較例試料No.14との比較より、炭窒酸化チタン膜中の酸素量が0.05〜3質量%の場合や、塩素量が0.01〜2質量%の範囲にある時に切削耐久特性が更に優れることがわかる。
【0043】
【表5】
Figure 0003678945
【0044】
表5において、連続切削寿命は、実施例の条件で製作した切削工具5個を用いて、以下の条件で連続切削し、平均逃げ面摩耗量が0.4mm、クレーター摩耗が0.1mmのどちらかに達した時間を連続切削寿命と判断し求めた。
被削材 S53C(HS35)
工具形状 CNMG433―V
切削速度 200m/分
送り 0.3mm/rev
切り込み 2.0mm
水溶性切削油使用
【0045】
表5より、本発明品は、炭窒酸化チタンの膜厚がμmの時、連続切削寿命が0分と長く、膜厚増加に比例して工具寿命も伸びており、切削工具として連続切削時の耐久性が優れていることがわかる。また、本発明品はいずれもクレーター摩耗が進展して工具寿命に達しており、炭窒酸化チタン層やアルミナ膜の異常な剥離が見られず切削工具として耐久性に優れていることが判明した。
【0046】
また、本実施例の条件で製作した切削工具5個を以下の条件で断続切削し求めた、欠損に至るまでの断続切削回数を表5に示す。刃先先端の欠け状況は倍率50倍の実体顕微鏡で観察した。
被削材S53C溝入材(HS38)
工具形状CNMG433―V
切削条件220m/分
送り0.2mm/rev
切り込み2.0mm
切削液使用せず(乾式切削)
本発明品は、000回迄断続切削後も刃先が健全で欠損不良は認められず、切削工具として断続切削時の耐久性が優れていることがわかる。
【0047】
表5より、本発明品は、いずれも、連続切削寿命が0分以上であり、断続切削も1000回以上と、切削耐久特性が優れていることがわかる。また、No.10、11の断続切削回数をNo.9、12の断続切削回数と比較することにより、炭窒酸化チタン膜中の酸素含有量が0.3〜2質量%の時、切削耐久特性が特に優れていることがわかる。また、No.1と1の断続切削回数を比較することにより、炭窒酸化チタン膜中の塩素量が0.01〜2質量%の時、切削耐久特性が特に優れていることがわかる。
【0048】
(従来例)
炭窒酸化チタン層のミクロ組織と切削特性との相関を明確にするために行った従来例を以下に説明する。
実施例と同様に組成がWC72%、TiC8%、(Ta、Nb)C11%、Co9%の切削工具用超硬基板の表面に化学蒸着法によりH2キャリヤーガスとTiCl4ガスとN2ガスとを原料ガスに用い0.3μm厚さのTiNを900℃でまず形成した。次に、990℃でTiCl4ガスを1〜2vol%、CHガスを3〜6vol%、Nガスを32vol%、COとCOの混合ガスを12vol%、残H2キャリヤーガスで構成された原料ガスを毎分5500mlだけCVD炉内に流し成膜圧力75Toorの条件で反応させることにより6μm厚さのTiCNO膜を成膜した。その後、950〜1020℃でCH4/TiCl4ガスの容積比が4〜10のTiCl4ガスとCH4ガスとH2キャリヤーガスとをトータル2,200ml/分で5〜30分間流してまず成膜し、そのまま連続して本構成ガスにさらに2.2〜110ml/分のCO2ガスを追加して5〜30分間成膜することによりチタンの炭化物および炭酸化物からなる層(結合層)を作製した。
続いてAl金属小片を詰め350℃に保温した小筒中にH2ガスを310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2ガス100ml/分とをCVD炉内に流し1010〜1020℃で反応させることにより所定の厚さの酸化アルミニウム膜を成膜し従来の炭窒酸化チタン被覆工具を得た。
【0049】
この従来の炭窒酸化チタン被覆工具において、炭窒酸化チタン層近傍を実施例の場合と同様にして透過型電子顕微鏡で観察したが、炭窒酸化チタン層に双晶構造部は見られなかった。
【0050】
次に、従来例の条件で作製した切削工具5個を用いて実施例と同一の条件で連続切削試験を行った結果、これら従来例品はいずれも10分間連続切削後に炭窒酸化チタン層や酸化アルミニウム膜の剥離が見られた。
また、従来例の条件で作製した切削工具5個を実施例と同一条件で断続切削し、900回衝撃切削後の刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察した。その結果、いずれにも大きな欠けが発生しており切削工具として劣っていることが判明した。
上記の連続切削試験および断続切削試験で剥離や欠けを発生した部分をミクロ観察したところ、剥離や欠けのほとんどが粒界部から発生していた。
【0051】
このように、双晶構造を有し、かつ、膜中の酸素量が0.05〜3質量%であるチタンの炭窒酸化物を主とする層を被覆した本発明の被覆工具は従来に比して格段に切削耐久特性を改善するものである。
【0052】
【発明の効果】
上述のように、本発明によれば、チタンの炭窒酸化物を主とする膜自体の機械強度および上層膜との密着性がよく、切削耐久特性に優れた有用な炭窒酸化チタン被覆工具を実現することができる。
【図面の簡単な説明】
【図1】本発明の炭窒酸化チタン被覆工具のセラミック材料の組織写真の一例である。
【図2】図1に対応した模式図である。
【図3】本発明の炭窒酸化チタン被覆工具のセラミック材料の組織写真の一例である。
【図4】図3に対応した模式図である。
【図5】本発明の炭窒酸化チタン被覆工具のセラミック材料の組織写真の一例である。
【図6】図5に対応した模式図である。
【図7】本発明の炭窒酸化チタン被覆工具のX線回折パターンの一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium carbonitride coated tool.
[0002]
[Prior art]
In general, a coated tool is produced by forming a hard film on the surface of a substrate made of super hard alloy, high speed steel, or special steel by chemical vapor deposition or physical vapor deposition.
Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. In particular, when cutting a hard material at high speed, the cutting edge temperature of the cutting tool rises to around 1000 ° C., and it is necessary to withstand mechanical impacts such as wear due to contact with the work material and intermittent cutting. For this reason, a coated tool having both wear resistance and toughness is useful.
[0003]
The hard film is a film composed of carbides, nitrides, carbonitrides, carbonates, nitrides and carbonitrides of the periodic table IVa, Va and VIa group metals, which are excellent in wear resistance and toughness. In addition, an aluminum oxide film having excellent oxidation resistance is used as a single layer or a multilayer film.
[0004]
Titanium is mainly used for the periodic table IVa, Va and VIa group metals. For this reason, in order to avoid complication, the following will be specifically described using titanium as a representative of the periodic table IVa, Va, and VIa group metals.
[0005]
Titanium carbonitride oxide film has a good balance between toughness and wear resistance, and may have the characteristics of oxidation resistance, welding resistance, or low film stress and excellent film adhesion. There is.
Regarding this titanium carbonitride oxide film, the X-ray diffraction peak intensity I from the (111) plane, the (220) plane, and the (200) plane in JP-A-8-257808 is I (111)> I (220)> I ( 200), a cutting tool coated with a titanium oxycarbonitride layer is proposed. In JP-A-8-269719, a titanium oxycarbonitride layer satisfying I (220)> I (111)> I (200) is proposed. A cutting tool coated with is proposed. In contrast to the above-mentioned JP-A-56-156767, which proposed a Ti carbonitride film in which the strongest peak appears in the (220) plane by X-ray diffraction, in Japanese Patent No. 2535866, in the (220) plane by X-ray diffraction. Proposed cutting tools with a single layer of Ti carbonitride oxide that shows the strongest peak, and an inner layer of one or two layers of Ti carbonitride and Ti carbide and carbonitride Has been. In JP-A-8-47999, TiC x O y N z (Wherein 0.7 ≦ x + y + z ≦ 1.3, 0.2 <y <0.8) x N 1-x There has been proposed a coated ultra-hard sintered alloy article coated with a third layer (where 0 ≦ x ≦ 1).
[0006]
Similar to the titanium carbonitride oxide film, it has a good balance between toughness and wear resistance, and a titanium carbonitride film is already widely used as a coating film for tools. Regarding the titanium carbonitride film, Japanese Patent Application Laid-Open No. Sho 56-156767 which proposes a titanium carbonitride film in which the X-ray diffraction strongest peak appears on the (220) plane, and the carbon having the strongest X-ray diffraction peak intensity on the (422) plane. There are JP-A-6-158325 and JP-A-7-62542 which propose a nitride film, or JP-A-5-269606 which proposes a carbonitride film having the strongest X-ray diffraction peak intensity on the (311) plane. However, only the columnar crystal carbonitride film is examined, and the carbonitride oxide film is not examined. For example, Japanese Patent Laid-Open No. 6-158325 proposes a titanium carbonitride film exhibiting the strongest peak intensity of X-ray diffraction on the (422) plane, but the carbonitridous oxide film formed simultaneously is different from the titanium carbonitride film. The X-ray diffraction strongest peak intensity of the carbonitride oxide film has not been studied.
[0007]
As described above, the conventional proposal pays attention to the X-ray diffraction intensity of the titanium carbonitride oxide film (layer), and the grain boundary strength of the titanium carbonitride oxide layer and the film adhesion to the upper layer are enhanced. The microstructure has not been studied. In addition, the titanium carbonitride oxide layer has a drawback that if the amount of oxygen at the time of film formation is large, the oxidation proceeds excessively, the film itself becomes brittle, the mechanical strength is lowered, and the adhesion with the upper layer is lowered. On the other hand, if the amount of oxygen is small, the characteristics approach that of a titanium carbonitride layer, and the characteristics of the titanium carbonitride oxide layer, in which the resistance to oxidation and welding, or the film itself has low stress and excellent film adhesion, cannot be obtained. There were drawbacks.
[0008]
[Problems to be solved by the invention]
In light of the above-mentioned drawbacks of the conventional titanium carbonitride oxide layer, the problem to be solved by the present invention is to increase the grain boundary strength of the titanium carbonitride oxide layer and to improve the film adhesion with the upper layer film. It is intended to provide a titanium carbonitride oxide-coated tool that has a crystal orientation, an oxygen amount in a film, and a chlorine amount in a film, and has excellent cutting durability characteristics as compared with conventional ones.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have a twin structure in the carbonitriding layer of the periodic table IVa, Va, VIa group metal, particularly the carbonitriding layer of titanium or the like. Contain crystal grains And the amount of oxygen in the titanium carbonitride oxide film is 0.05-3 mass%. As a result, it was found that the cutting durability characteristics of the tool coated with these films were excellent, and the present invention was conceived.
[0010]
That is, according to the present invention, any one of IVa, Va, and VIa group metal carbides, nitrides, carbonitrides, carbonates, nitrides, carbonitrides, and aluminum oxides of the periodic table is provided on the substrate surface. In a titanium carbonitride oxide-coated tool having a layer coating or two or more types of multilayer coatings, at least one layer of which is a titanium carbonitride oxide layer, the titanium carbonitride oxide layer contains crystal grains having a twin structure And the amount of oxygen in the titanium carbonitride oxide film is 0.05 to 3% by mass. This is a titanium carbonitride oxide-coated tool. The coated tool of the present invention comprises a titanium carbonitride oxide layer. The amount of oxygen in it is 0.05-3 mass% As shown in FIGS. 1 and 2 to be described later, the crystal grains forming the twins are in contact with each other and grow epitaxially with each other. It is judged that the strength is increased and good cutting durability characteristics are realized.
[0011]
In the coated tool of the present invention, a layer containing crystal grains having a twin structure is preferably formed on the titanium carbonitride oxide layer. When the upper layer contains crystal grains having a twin structure, the grain boundary strength in the upper layer is increased, and further excellent cutting durability characteristics are realized.
[0012]
In the coated tool of the present invention, it is preferable that the twin boundary portion of the layer formed on the titanium carbonitride oxide layer is continuous from the twin boundary portion of the titanium carbonitride oxide layer. Due to the continuous twin boundaries, there is a high possibility that the titanium carbonitride oxide layer and the layer formed on it are continuously formed even at the crystal lattice plane level. It is judged that high adhesion can be realized and that both layers have a twin structure, so that the strength of the crystal grain boundaries in each layer is increased, and further excellent cutting durability characteristics can be obtained.
[0013]
In the coated tool of the present invention, it is preferable that the twin boundary portion (twin plane) constituting the twin structure is composed of {111} planes.
Since the twin boundary part constituting the twin structure is formed of {111} planes, the twin boundary part is densely formed, and the grain boundary strength between crystal grains in contact with the twin boundary part as a boundary is increased. It is judged that a higher cutting durability characteristic can be obtained.
[0014]
In the coated tool of the present invention, the layer formed on the titanium carbonitride oxide layer is preferably grown epitaxially on the titanium carbonitride oxide layer. Since the layer formed on the titanium carbonitride oxide layer is grown epitaxially, excellent adhesion between the two layers can be obtained, and further excellent cutting durability characteristics can be obtained.
[0015]
In the coated tool of the present invention, it is preferable that the crystal plane having the strongest equivalent X-ray diffraction intensity ratio of the titanium carbonitride oxide layer is the (422) plane or the (311) plane. As will be described later, if the crystal plane having the strongest equivalent X-ray diffraction intensity ratio is the (422) plane or the (311) plane, the titanium carbonitride oxide layer contains crystal grains having a twinned structure, which is excellent. It is judged that the cutting durability characteristics can be obtained.
[0016]
In the titanium carbonitride oxide-coated tool of the present invention, the amount of oxygen in the titanium carbonitride oxide layer is 0.05 to 3% by mass. When the amount of oxygen is 0.05 to 3% by mass, the titanium carbonitride layer has a twin structure and is easily oriented in the (422) or (311) plane, realizing excellent cutting durability characteristics. Is done. If the amount of oxygen is less than 0.05% by mass, the effect of containing oxygen does not appear. It is more preferable that the amount of oxygen at which superior cutting durability characteristics are realized is 0.3 to 2% by mass.
[0017]
Moreover, it is preferable that the amount of chlorine in the said titanium carbonitride oxide film | membrane of this invention is 0.01-2 mass%. When the amount of chlorine is 0.01 to 2% by mass, the titanium carbonitride oxide film has a twin structure, and is oriented in the (422) plane or the (311) plane, and the hardness of the film itself is reduced. Suppressed and excellent cutting durability characteristics are realized. When the amount of chlorine is less than 0.01% by mass, the orientation to the (422) plane or the (311) plane becomes weak, and when the amount of chlorine exceeds 2% by mass, the hardness of the titanium carbonitride oxide film decreases, and the wear resistance of the tool Sex is reduced.
[0018]
In the present invention, at least one or more of carbides, nitrides and carbonitrides of group IVa, Va and VIa metals of the periodic table and at least one or more of Fe, Ni, Co, W, Mo and Cr are used. It is highly practical to use a superhard alloy consisting of
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the coated tool of the present invention, the microstructure near the titanium carbonitride oxide (hereinafter referred to as TiCNO) layer is 50,000 times to 4 million times in cross section of the film by a transmission electron microscope, as shown in the examples described later. Observed and evaluated. The amount of oxygen and the amount of chlorine contained in the film were determined by using an electron probe microanalyzer (EPMA, JXA-8900R manufactured by JEOL Ltd.) at 5 points in the polished film cross section, an acceleration voltage of 15 KV, and a sample current of 0. Analyzed at 2 μA and determined from the average value.
[0020]
In addition, the identification of the X-ray diffraction peak of the TiCNO layer is not described in the JCPDS file (Powder Diffraction File Published by JCPDS International Data for Diffraction Data), so the TiC (JCPDS file No. 32-1383CP) DS and the NCP file (No. 32-138J) .38-1420) and the numerical values in Table 1 obtained from the X-ray diffraction pattern obtained by actually measuring the product of the present invention.
Standard X-ray diffraction intensity I 0 (Hkl) represents the X-ray diffraction intensity of isotropically oriented powder particles. Tables 2 and 3 show the inter-plane distance d and standard X-ray diffraction intensity I of TiC and TiN described in the JCPDS file. 0 Are collectively shown. From Tables 1 to 3, it can be seen that the inter-surface distance d of TiCNO is slightly closer to TiC than TiN. For this reason, the standard X-ray diffraction intensity I of TiCNO 0 Is the standard X-ray diffraction intensity I of TiC shown in Table 2. 0 Is assumed to be the same.
[0021]
[Table 1]
Figure 0003678945
[0022]
[Table 2]
Figure 0003678945
[0023]
[Table 3]
Figure 0003678945
[0024]
The equivalent X-ray diffraction intensity ratio PR (hkl) was defined by the following equation (1) in order to quantitatively evaluate the X-ray diffraction peak intensity from the (hkl) crystal plane of the TiCNO layer. PR (hkl) is the standard X-ray diffraction peak intensity I described in Table 1. 0 The relative intensity of the measured X-ray diffraction peak intensity I (hkl) of the film with respect to (hkl) is shown. PR (hkl) indicates the strength of orientation of the film. For example, as the value of PR (422) is larger, the X-ray diffraction peak intensity ratio from the (422) plane is stronger, and the (422) plane of the film is This indicates that the substrate is strongly oriented in the tangential direction of the measurement substrate surface.
Figure 0003678945
However, (hkl) = (111), (200), (220),
(311), (222), (420),
(422), (511)
[0025]
In the coated tool of the present invention, titanium is represented as a representative of group IVa, Va and VIa metals of the periodic table, and other group metals such as Zr, Hf, V, Nb, Ta, Cr, Mo, W, W In either case, substantially the same effect can be obtained.
The titanium carbonitride layer is CH 3 CN and TiCl 4 And oxidizing gas (for example, CO 2 Or CO single gas or CO 2 Is not limited to a film formed by reacting a mixed gas of CO and CO). 4 , N 2 TiCl 4 A TiCNO film may be formed by reacting a gas with an oxidizing gas.
Moreover, the titanium carbonitride oxide layer is not limited to TiCNO. For example, a film obtained by adding 0.3 to 10% by mass of one or more of Cr, Zr, Ta, Mg, Y, Si, and B to TiCNO may be used. If the amount is less than 0.3% by mass, the effect of adding these does not appear. If the amount exceeds 10% by mass, the effect of wear resistance and high toughness of the TiCNO film is reduced.
In the coated tool of the present invention, the film formed on the titanium carbonitride oxide layer is not limited to a TiC film, a TiCO film, or a TiCNO film. For example, a TiN film, a TiCN film, or another TiCNO film formed using another gas as the source gas may be used. In addition, for example, one or two or more of Cr, Zr, Ta, Mg, Y, Si, and B may be added to the film component in an amount of 0.3 to 10% by mass. It is also effective to directly form the following oxide film mainly composed of aluminum oxide on the titanium carbonitride oxide layer.
Further, the base film is not limited to TiN, and for example, a case where a TiC film or a TiCN film is formed as the base film is also included in the present invention.
[0026]
Examples of the aluminum oxide film useful for the coated tool of the present invention include a κ-type aluminum oxide single phase film and an α-type aluminum oxide single phase film. Alternatively, a mixed film of κ-type aluminum oxide and α-type aluminum oxide may be used. Alternatively, a mixed film made of κ-type aluminum oxide and / or α-type aluminum oxide and at least one of γ-type aluminum oxide, θ-type aluminum oxide, δ-type aluminum oxide, and χ-type aluminum oxide may be used. Alternatively, a mixed film of aluminum oxide and another oxide typified by zirconium oxide or the like may be used.
[0027]
The titanium carbonitride oxide layer, titanium carbide layer, titanium carbonitride layer, titanium carbonitride layer, titanium carbonitride oxide layer or aluminum oxide film that can constitute the coated tool of the present invention is not necessarily the outermost layer. For example, at least one titanium compound (for example, a TiN or TiCN layer, or a multilayer film combining these) may be further coated thereon.
[0028]
The film is allowed to contain, for example, several mass% of inevitable additives and impurities as long as the cutting durability characteristics of the coated tool of the present invention are not deteriorated.
[0029]
For the production of the coated tool of the present invention, a known film forming method can be adopted. For example, a normal chemical vapor deposition method (thermal CVD), a chemical vapor deposition method with plasma (PACVD), an ion plating method, or the like can be used. The application is not limited to cutting tools, but a single-layer or multilayer hard coating containing a layer mainly composed of one or more carbon nitrides of group IVa, Va and VIa metals (particularly titanium) in the periodic table Wear-resistant materials, molds, molten metal parts, etc. coated with
[0030]
Next, although the coated tool of this invention is demonstrated concretely by an Example, this invention is not limited by these Examples. In the following description, “%” simply means “% by mass”.
[0031]
【Example】
A substrate made of a super hard alloy for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, and Co 9% is set in a CVD furnace, and H2 carrier gas and TiCl4 gas are formed on the surface by chemical vapor deposition. TiN having a thickness of 0.3 μm was first formed at 900 ° C. using N 2 and N 2 gas as source gases. Subsequently, TiCl4 gas is 0.5 to 2.5 vol%, CH3CN gas is 0.5 to 2.5 vol%, N2 gas is 25 to 45 vol%, a mixed gas of CO2 and CO is 0.5 to 10 vol%, and the remaining A source gas composed of H2 carrier gas was flowed into the CVD furnace at a rate of 5500 ml per minute, and a 6 μm thick TiCNO film was formed under conditions of a film formation temperature of 750 to 980 ° C. and a film formation pressure of 20 to 100 Toor. Thereafter, a raw material gas of 2,200 ml / min composed of TiCl4 gas, CH4 gas and H2 carrier gas with a volume ratio of CH4 / TiCl4 gas of 4 to 10 was flowed for 5 to 30 minutes, and the raw material of this constitution was continuously applied as it was. By further adding 2.2 to 110 ml / min of CO2 gas to the gas and flowing for 5 to 30 minutes, a layer (bonding layer) made of titanium carbide and titanium carbonate at a film forming temperature of 950 to 1020 ° C. Produced. Subsequently, AlCl3 gas, H2 gas 2 l / min and CO2 gas 100 ml / min generated by flowing 310 ml / min of H2 gas and 130 ml / min of HCl gas into a small tube filled with Al metal pieces and kept at 350 ° C. By flowing in a CVD furnace and reacting at 1010 to 1020 ° C., an aluminum oxide film having a predetermined thickness is formed to form the present invention. And comparative examples A coated tool was obtained.
[0032]
FIG. 1 shows an example of the microstructure of a typical coated tool of the present invention produced under the conditions of the example, and FIG. 2 is a schematic diagram corresponding to FIG.
FIG. 1 shows a titanium carbonitride oxide layer (a layer including 11a, 11b, and 11c in FIG. 2), a bonding layer (a layer including 12a, 12b, and 12c in FIG. 2) and an aluminum oxide layer. It is the photograph which image | photographed the micro structure of the cross section of the vicinity (layer containing 13a, 13b, 13c of FIG. 2) with a transmission electron microscope (H-9000NA, 200 kV) by Hitachi, Ltd. at 50,000 times.
1 and 2, the product of the present invention is a layer (bonding layer, FIG. 2) composed of titanium carbide and carbonate on the crystal grains of the titanium carbonitride oxide layer (11a and 11b in FIG. 2 are part thereof). 12a and 12b are partly formed), and an oxide film mainly composed of aluminum oxide (a part of 13 in FIG. 2) is further formed thereon. As will be described later, reference numerals 11c and 12c in FIGS. 1 and 2 indicate twin boundaries in the titanium carbonitride oxide layer and the bonding layer, respectively. I understand that.
[0033]
3 is a photograph of the lattice image near 11c in FIGS. 1 and 2 taken at a magnification of 4 million with a high-resolution TEM device (Hitachi (H-9000UHR, 300 kV)), and FIG. 4, although local asymmetry due to lattice fringe disturbance or the like is observed, as a whole, the lattice images of the portions 11a and 11b are substantially mirror-symmetric with respect to 11c (for example, 11al and 11bl lattice fringes). 11a and 11b are approximately symmetrical with respect to 11c, and it is understood that the 11a part and the 11b part are in a twinning relationship. It can be seen that the titanium layer contains crystal grains having a twin structure.
Further, from the lattice image photograph of FIG. 3, 11al, 11bl, and 11c are all {111} lattice fringes having a surface interval of 2.477 nm, and the twin boundary line 11c is composed of {111} lattice planes. . In addition, since the lattice stripes are in direct contact with the left and right sides of the twin boundary surface without inclusions, the twin boundary surface composed of {111} lattice stripes is densely formed, and adhesion at the boundary is improved. I understand that it is expensive.
[0034]
FIG. 5 is a photograph of a lattice image near the tip of 12c in FIGS. 1 and 2 taken at 5 million times, and FIG. 5 and 6 show lattice images of vertical plate-like projection-shaped crystal grains formed in the bonding layer, and α-Al is formed on both sides of the bonding layers 12a and 12b. 2 O Three 13 is formed. 5 and 6, also in the coupling layer formed on the upper layer of TiCNO, the lattice images of the 12a portion and the 12b portion are substantially mirror-symmetric with respect to 12c (for example, the lattice fringes 12al and 12bl and the lattice fringes 12ac). 12bc is almost symmetrical), and 12a and 12b are in a twinning relationship, that is, the layer formed on the titanium carbonitride layer of the present invention has a twin structure. It can be seen that it contains grains. It can be seen that all of 12al, 12bl, 12c, 12ac, and 12bc photographed in FIG. 5 are {111} lattice stripes, and the twin boundary line 12c is composed of {111} lattice planes. In addition, since the lattice stripes are in direct contact with the left and right sides of the twin boundary surface without inclusions, the twin boundary surface composed of {111} lattice stripes is densely formed, and adhesion at the boundary is improved. I understand that it is expensive.
[0035]
The twin relationship of each crystal grain could also be evaluated by photographing an electron diffraction image with an irradiation diameter of 25 nm using a transmission electron microscope H-9000NA manufactured by Hitachi, Ltd. For example, as a result of observing the electron beam diffraction images of 11a, 11b, or 12a, 12b shown in FIGS. 1 and 2 with the transmission electron microscope at an irradiation diameter of 25 nm, both have an fcc crystal structure and a (110) plane. Are in the same plane (photograph in FIG. 1). Moreover, it was confirmed that the electron beam diffraction image of 11a and 11b is mirror-symmetrical about 11c, and both have a twin relation.
Further, the electron beam diffraction images of 12a and 12b in the bonding layer made of titanium carbide and carbonate formed on the same also have the (110) plane of the fcc crystal structure in the same plane (photograph of FIG. 1). Thus, it was confirmed that the electron diffraction images of 12a and 12b were mirror-symmetric with respect to 12c, and the two were in a twinning relationship.
[0036]
In addition, since the (110) planes of 11a, 11b and 12a, 12b are both in the photographic plane of FIG. 1 and both (110) planes are parallel, 12 crystal grains are present on 11 crystal grains. It can be seen that it grows epitaxially. Further, it was confirmed that both of them grew epitaxially because lattice fringes were almost continuous at the interface between two layers between the lattice image photograph of FIG. 3 and the lattice image photograph of FIG.
[0037]
Here, the transmission electron micrograph of FIG. 1 was taken by passing an electron beam through a film cross section whose thickness was extremely reduced by ion milling after the cross section of the film formation surface was polished to a thickness of 20 μm or less. Is. For this reason, it is thought that the probability that the twin part contained in the titanium carbonitride oxide layer or the layer formed thereon is actually observed is low. Accordingly, the fact that twin portions are observed as shown in FIG. 1 is determined that the twin portions are present in the titanium carbonitride oxide layer and the upper layer thereof with considerable frequency.
[0038]
In addition, when the sample condition is poor, such as when the film thickness of the observation sample is large, the twinning relationship may not be confirmed in the electron diffraction pattern. In this case, attention should be paid because the twin relation may be confirmed by observing the lattice image.
[0039]
FIG. 7 shows a 2θ-θ scanning method using an X-ray diffractometer (RU-200BH) manufactured by Rigaku Corporation with a representative film portion of the product of the present invention produced under the conditions of the example as a sample surface. = X-ray diffraction pattern measured in the range of 20 to 140 degrees. CuKα1 ray (λ = 0.15405 nm) was used as an X-ray source, and noise (background) was removed by software built in the apparatus.
From the X-ray diffraction pattern of FIG. 7, it can be seen that the 2θ value of each peak shows a good agreement with the 2θ value of Table 1. Note that the 2θ value actually measured from the X-ray diffraction pattern in FIG. 7 and the like is slightly different before and after the 2θ value described in Table 1. The identification of the TiCNO peak in the measured X-ray diffraction pattern is performed with 2θ values, WC (JCPDS file No. 25-1047) peaks before and after, 2 Ti values, TiC peaks, TiN peaks, κ-Al 2 O Three (JCPDS file No. 4-0878) peak, α-Al 2 O Three (JCPDS file No. 10-173) was determined in consideration of the positional relationship with the peak and the like.
Table 4 summarizes the X-ray diffraction intensity I (hkl) and the equivalent X-ray diffraction intensity ratio PR (hkl) of the titanium carbonitride oxide layer obtained from the X-ray diffraction pattern measurement results of FIG. From Table 4, it can be seen that both I (hkl) and PR (hkl) have the strongest (422) plane and the strongest (311) plane. In FIG. 7, it is α-type aluminum oxide (α-Al) that shows a strong peak intensity other than the titanium carbonitride oxide (TiCNO) layer. 2 O Three ).
[0040]
[Table 4]
Figure 0003678945
[0041]
Next, the film cross section of the product of the present invention is polished, and the composition of five points on the titanium carbonitride oxide film cross section is measured using an electron probe microanalyzer (EPMA, JXA-8900R manufactured by JEOL Ltd.) with an acceleration voltage of 15 KV, Analysis was performed at a sample current of 0.2 μA. From the titanium carbonitride oxide film, Ti, C, N, O, and Cl were detected, and the oxygen content was 0.62 mass% and the chlorine content was 0.58 mass% on an average of five points.
[0042]
Table 5 shows representative invention products produced in Examples, measured in the same manner. (Sample Nos. 2-6, 8-13, 15-17) and Comparative Example Products (Sample Nos. 1, 7, 14) Orientation, film thickness, oxygen content in film (mass%), chlorine content in film (mass%), and tool life during continuous cutting described later And the number of possible intermittent cuttings are collectively shown. From Table 5, it can be seen that the orientation of the surface having the strongest equivalent X-ray diffraction intensity ratio of the titanium carbonitride oxide film of the present invention is the (311) plane or the (422) plane. Also, in Table 5 Comparative example Sample No. 7 and Sample of the present invention No. 8 or Sample of the present invention No. 13 and Comparative sample No. 14 shows that the cutting durability characteristics are further improved when the oxygen content in the titanium carbonitride oxide film is 0.05 to 3% by mass or when the chlorine content is in the range of 0.01 to 2% by mass. Understand.
[0043]
[Table 5]
Figure 0003678945
[0044]
In Table 5, the continuous cutting life is determined by the continuous cutting under the following conditions using five cutting tools manufactured under the conditions of the example, and the average flank wear amount is 0.4 mm and the crater wear is 0.1 mm. The time reached was determined as the continuous cutting life.
Work Material S53C (HS35)
Tool shape CNMG433-V
Cutting speed 200m / min
Feed 0.3mm / rev
Notch 2.0mm
Uses water-soluble cutting oil
[0045]
From Table 5, the product of the present invention has a titanium carbonitride oxide film thickness of 4 Continuous cutting life when μm 3 It is as long as 0 minutes, and the tool life is also increased in proportion to the increase in film thickness. It can be seen that the durability during continuous cutting is excellent as a cutting tool. In addition, it was found that all of the products of the present invention have excellent tool durability because crater wear has progressed and the tool life has been reached, and there is no abnormal peeling of the titanium carbonitride oxide layer or alumina film. .
[0046]
In addition, Table 5 shows the number of intermittent cuttings until the chipping occurred, which was obtained by intermittently cutting five cutting tools manufactured under the conditions of this example under the following conditions. The chipping state of the blade tip was observed with a stereomicroscope with a magnification of 50 times.
Work material : S53C grooved material (HS38)
Tool shape : CNMG433-V
Cutting conditions : 220m / min
Feed : 0.2mm / rev
Notch : 2.0mm
Cutting fluid : Not used (dry cutting)
The product of the present invention 1 It can be seen that even after intermittent cutting up to 000 times, the cutting edge is sound and no defect is found, and the durability of intermittent cutting as a cutting tool is excellent.
[0047]
From Table 5, all the products of the present invention have a continuous cutting life. 3 It is 0 minutes or more, and the intermittent cutting is 1000 times or more. No. No. 10 and 11 for the number of intermittent cuttings. By comparing with the number of intermittent cuttings of 9 and 12, it can be seen that the cutting durability characteristics are particularly excellent when the oxygen content in the titanium carbonitride oxide film is 0.3 to 2% by mass. No. 1 6 And 1 7 By comparing the number of intermittent cuttings, it can be seen that the cutting durability characteristics are particularly excellent when the amount of chlorine in the titanium carbonitride oxide film is 0.01 to 2% by mass.
[0048]
(Conventional example)
A conventional example performed for clarifying the correlation between the microstructure of the titanium carbonitride oxide layer and the cutting characteristics will be described below.
Similar to the example, H is formed by chemical vapor deposition on the surface of a carbide substrate for a cutting tool having a composition of WC 72%, TiC 8%, (Ta, Nb) C 11%, Co 9%. 2 Carrier gas and TiCl Four Gas and N 2 First, TiN having a thickness of 0.3 μm was formed at 900 ° C. using a gas as a raw material gas. Next, TiCl at 990 ° C. Four 1-2 vol% of gas, CH 4 3-6 vol% of gas, N 2 32 vol% gas, CO 2 And 12% by volume of mixed gas of CO and CO, remaining H 2 A source gas composed of a carrier gas was allowed to flow in a CVD furnace at a rate of 5500 ml per minute and reacted under the condition of a film forming pressure of 75 Torr to form a 6 μm thick TiCNO film. Then, CH at 950-1020 ° C Four / TiCl Four TiCl with gas volume ratio of 4-10 Four Gas and CH Four Gas and H 2 First, a film is formed by flowing a carrier gas at a total flow rate of 2,200 ml / min for 5 to 30 minutes, and then continuously added to the constituent gases as CO 2 to 110 ml / min. 2 A layer (bonding layer) made of titanium carbide and carbonate was formed by adding a gas and forming a film for 5 to 30 minutes.
Subsequently, H was put in a small tube packed with Al metal pieces and kept at 350 ° C. 2 AlCl generated by flowing 310 ml / min of gas and 130 ml / min of HCl gas Three Gas and H 2 Gas 2l / min and CO 2 An aluminum oxide film having a predetermined thickness was formed by flowing a gas of 100 ml / min into a CVD furnace and reacting at 1010 to 1020 ° C. to obtain a conventional titanium carbonitride oxide-coated tool.
[0049]
In this conventional titanium carbonitride oxide coated tool, the vicinity of the titanium carbonitride oxide layer was observed with a transmission electron microscope in the same manner as in the example, but no twin structure was found in the titanium carbonitride oxide layer. .
[0050]
Next, as a result of performing a continuous cutting test under the same conditions as in the Examples using five cutting tools manufactured under the conditions of the conventional example, all of these conventional products were continuously cut for 10 minutes, Peeling of the aluminum oxide film was observed.
Further, five cutting tools produced under the conditions of the conventional example were intermittently cut under the same conditions as in the example, and the chipping state of the tip of the blade after 900 impact cutting was observed with a stereomicroscope with a magnification of 50 times. As a result, it was found that large chipping occurred in all of them and the cutting tool was inferior.
When the portion where peeling or chipping occurred in the above continuous cutting test and intermittent cutting test was observed microscopically, most of the peeling or chipping occurred from the grain boundary portion.
[0051]
Thus, it has a twin structure And the amount of oxygen in the film is 0.05 to 3% by mass The coated tool of the present invention in which a layer mainly composed of titanium carbonitride is coated has a significantly improved cutting durability as compared with the conventional tool.
[0052]
【The invention's effect】
As described above, according to the present invention, a useful titanium carbonitride oxide-coated tool having excellent mechanical durability of the film itself mainly composed of titanium carbonitride oxide and good adhesion to the upper layer film and excellent cutting durability characteristics. Can be realized.
[Brief description of the drawings]
FIG. 1 is an example of a structural photograph of a ceramic material of a titanium carbonitride oxide coated tool of the present invention.
FIG. 2 is a schematic diagram corresponding to FIG. 1;
FIG. 3 is an example of a structural photograph of the ceramic material of the titanium carbonitride oxide coated tool of the present invention.
FIG. 4 is a schematic diagram corresponding to FIG. 3;
FIG. 5 is an example of a structure photograph of a ceramic material of a titanium carbonitride oxide coated tool of the present invention.
6 is a schematic diagram corresponding to FIG. 5. FIG.
FIG. 7 is a diagram showing an example of an X-ray diffraction pattern of a titanium carbonitride oxide-coated tool according to the present invention.

Claims (8)

基体表面に周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物、並びに酸化アルミニウムのいずれか一種の単層皮膜または二種以上の多層皮膜を有し、その少なくとも一層が炭窒酸化チタン層からなる炭窒酸化チタン被覆工具において、前記炭窒酸化チタン層が双晶構造を持った結晶粒を含有し、かつ、前記炭窒酸化チタン膜中の酸素量が0.05〜3質量%であることを特徴とする炭窒酸化チタン被覆工具。Single-layer film or two kinds of carbide, nitride, carbonitride, carbonate, nitride oxide, carbonitride oxide, and aluminum oxide of group IVa, Va, and VIa metals of the periodic table on the substrate surface In the titanium carbonitride oxide-coated tool comprising the above multilayer coating, at least one layer of which is a titanium carbonitride oxide layer, the titanium carbonitride oxide layer contains crystal grains having a twinned structure , and the carbon titanium oxycarbonitride coating tool oxygen content of oxynitride titanium film is characterized 0.05-3% by mass Rukoto. 前記炭窒酸化チタン層の上に双晶構造を持った結晶粒を含有する層が形成されている請求項1に記載の炭窒酸化チタン被覆工具。  The titanium carbonitride oxide-coated tool according to claim 1, wherein a layer containing crystal grains having a twin structure is formed on the titanium carbonitride oxide layer. 前記炭窒酸化チタン層の上に形成された層の双晶境界部が前記炭窒酸化チタン層の双晶境界部から連続している請求項2に記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to claim 2, wherein a twin boundary portion of a layer formed on the titanium carbonitride oxide layer is continuous from a twin boundary portion of the titanium carbonitride oxide layer. 前記双晶構造を構成する双晶境界部が{111}面から成っている請求項1乃至3のいずれかに記載の炭窒化チタン被覆工具。  The titanium carbonitride-coated tool according to any one of claims 1 to 3, wherein a twin boundary part constituting the twin structure is composed of {111} faces. 前記炭窒酸化チタン層の上に形成された層が、前記炭窒酸化チタン層の上にエピタキシャルに成長している請求項1乃至4のいずれかに記載の炭窒酸化チタン被覆工具。  The titanium carbonitride oxide-coated tool according to any one of claims 1 to 4, wherein a layer formed on the titanium carbonitride oxide layer is epitaxially grown on the titanium carbonitride oxide layer. 前記炭窒酸化チタン層の等価X線回折強度比が最強である結晶面が(422)面または(311)面である請求項1乃至5のいずれかに記載の炭窒酸化チタン被覆工具。  The titanium carbonitride oxide-coated tool according to any one of claims 1 to 5, wherein a crystal plane having the highest equivalent X-ray diffraction intensity ratio of the titanium carbonitride oxide layer is a (422) plane or a (311) plane. 前記炭窒酸化チタン膜中の塩素量が0.01〜2質量%である請求項1乃至のいずれかに記載の炭窒酸化チタン被覆工具。The titanium carbonitride oxide-coated tool according to any one of claims 1 to 6 , wherein the amount of chlorine in the titanium carbonitride oxide film is 0.01 to 2% by mass. 周期律表のIVa、Va、VIa族金属の炭化物、窒化物、炭窒化物のうちの少なくとも一種以上とFe、Ni、Co、W、Mo、Crのうちの少なくとも一種以上とからなる超硬質合金を基体とする請求項1乃至のいずれかに記載の炭窒酸化チタン被覆工具。A super-hard alloy comprising at least one of carbides, nitrides, and carbonitrides of group IVa, Va, and VIa metals of the periodic table and at least one of Fe, Ni, Co, W, Mo, and Cr The titanium carbonitride oxide-coated tool according to any one of claims 1 to 7 , wherein the tool is a base.
JP20118899A 1999-07-15 1999-07-15 Titanium carbonitride coated tool Expired - Fee Related JP3678945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20118899A JP3678945B2 (en) 1999-07-15 1999-07-15 Titanium carbonitride coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20118899A JP3678945B2 (en) 1999-07-15 1999-07-15 Titanium carbonitride coated tool

Publications (2)

Publication Number Publication Date
JP2001025905A JP2001025905A (en) 2001-01-30
JP3678945B2 true JP3678945B2 (en) 2005-08-03

Family

ID=16436818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20118899A Expired - Fee Related JP3678945B2 (en) 1999-07-15 1999-07-15 Titanium carbonitride coated tool

Country Status (1)

Country Link
JP (1) JP3678945B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009018362A (en) * 2007-07-11 2009-01-29 Mitsubishi Materials Corp Surface coated cutting tool
JP5263572B2 (en) * 2008-02-05 2013-08-14 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5286931B2 (en) * 2008-05-21 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP5286930B2 (en) * 2008-05-21 2013-09-11 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5257178B2 (en) * 2009-03-18 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5257184B2 (en) * 2009-03-25 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool
JP6727553B2 (en) * 2017-09-14 2020-07-22 株式会社タンガロイ Coated cutting tools

Also Published As

Publication number Publication date
JP2001025905A (en) 2001-01-30

Similar Documents

Publication Publication Date Title
JP3678924B2 (en) Aluminum oxide coated tool
JP3418066B2 (en) Alumina-coated tool and manufacturing method thereof
KR101739088B1 (en) Coated bodies made of metal, hard metal, cermet or ceramic material and method for coating such bodies
JP4004133B2 (en) Titanium carbonitride coated tool
US20040144302A1 (en) Oxide coated cutting tool
JP3560303B2 (en) Aluminum oxide coated tool and method of manufacturing the same
JP3808648B2 (en) Titanium carbonitride film coating tool
JP3768136B2 (en) Coated tool
JP3678945B2 (en) Titanium carbonitride coated tool
US9149871B2 (en) Alumina layer with multitexture components
JP3962300B2 (en) Aluminum oxide coated tool
JP3901477B2 (en) Aluminum oxide coated tool
JP3910881B2 (en) Oxide coating tool
JPH11335870A (en) Titanium carbonitride-aluminum oxide-coated tool
JP2004291162A (en) Surface coated cutting tool
JPH11114704A (en) Titanium-carbide-covered tool
JP2005264194A (en) alpha-TYPE ALUMINUM OXIDE COATED MEMBER
JP3818961B2 (en) Aluminum oxide coated tools
JP4480090B2 (en) Coated tool
JP3544450B2 (en) Aluminum oxide coated tool
JP2004148503A (en) Aluminum oxide coated tool
JP3347031B2 (en) Titanium carbide coated tool
JP3781006B2 (en) Aluminum oxide coated tools
JP2974285B2 (en) Manufacturing method of coated carbide tool
CN113151804B (en) Titanium carbonitride coating and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees