JP4480090B2 - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
JP4480090B2
JP4480090B2 JP2006073167A JP2006073167A JP4480090B2 JP 4480090 B2 JP4480090 B2 JP 4480090B2 JP 2006073167 A JP2006073167 A JP 2006073167A JP 2006073167 A JP2006073167 A JP 2006073167A JP 4480090 B2 JP4480090 B2 JP 4480090B2
Authority
JP
Japan
Prior art keywords
film
titanium
zirconium
layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006073167A
Other languages
Japanese (ja)
Other versions
JP2006175596A (en
Inventor
敏夫 石井
有三 福永
広志 植田
公一 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006073167A priority Critical patent/JP4480090B2/en
Publication of JP2006175596A publication Critical patent/JP2006175596A/en
Application granted granted Critical
Publication of JP4480090B2 publication Critical patent/JP4480090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は被覆工具に関し、特にジルコニウムを含有する皮膜を被覆した工具に関する。   The present invention relates to a coated tool, and more particularly to a tool coated with a coating containing zirconium.

一般に、被覆工具は超硬質合金、高速度鋼、特殊鋼からなる基体表面に硬質皮膜を化学蒸着法や、物理蒸着法により成膜して作製される。このような被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備えており、広く実用に供されている。一般に、切削液を用いることなく(以下、乾式切削と呼ぶ。)高硬度材を高速で切削する場合、切削工具の刃先温度は1000℃前後にまで上がる。切削工具は、このような高温環境下において被削材との接触による摩耗や断続切削等による機械的衝撃に耐える必要があり、耐摩耗性と強靭性とを兼ね備えた被覆工具が重宝されている。上記の硬質皮膜には、耐摩耗性と靭性とが優れる周期律表4、5、6族金属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物からなる膜と、耐酸化性に優れる酸化アルミニウム膜が単層あるいは多層膜として被覆された被覆工具が一般に用いられている。また、上記の周期律表4、5、6族金属にはチタン、特にその炭化物(TiC)、窒化物(TiN)、炭窒化物(TiCN)が主に用いられている。このため、以降は、煩雑を避けるため周期律表4、5、6族金属の代表としてチタンを用いて具体的に詳述する。   In general, a coated tool is produced by forming a hard film on the surface of a substrate made of super hard alloy, high speed steel, or special steel by chemical vapor deposition or physical vapor deposition. Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put into practical use. Generally, when cutting a hard material at high speed without using a cutting fluid (hereinafter referred to as dry cutting), the cutting edge temperature of the cutting tool rises to around 1000 ° C. Cutting tools need to withstand mechanical impacts caused by wear and intermittent cutting due to contact with the work material in such a high temperature environment, and coated tools that have both wear resistance and toughness are useful. . The hard film includes a film made of carbide, nitride, carbonitride, carbonate, nitride oxide, carbonitride oxide of periodic table 4, 5, and 6 metal having excellent wear resistance and toughness. A coated tool in which an aluminum oxide film excellent in oxidation resistance is coated as a single layer or a multilayer film is generally used. Moreover, titanium, especially its carbide (TiC), nitride (TiN), and carbonitride (TiCN) are mainly used for said periodic table 4, 5, 6 metal. For this reason, hereinafter, in order to avoid complications, titanium will be specifically described in detail as a representative of Group 4, 5, and 6 metals of the periodic table.

これらTiC、TiN、TiCN膜は、常温でのビッカース硬度Hvが約3200、2100、2700と非常に硬く、常温での耐摩耗性は優れている。しかし、これらの膜の硬度は温度が上昇するにつれて急激に低下するため、刃先の温度が1000℃前後に達するような乾式切削では、耐摩耗性が急激に低下するという問題がある。これら硬質膜の耐摩耗性を改善するために、炭窒化チタンジルコニウム等の膜を工具基体上に被覆する方法(特表平11−510856号公報)が提案されている。この方法は、少なくとも2種の金属元素を含む炭窒化物膜を、CN化合物ガスを用いてCVD法で被覆する方法であるが、本発明者等が該公報記載の技術に従い再現検討した結果では、得られた炭窒化チタンジルコニウム膜は結晶粒径が大きく、工具としての耐摩耗性や耐チッピング性が必ずしも満足できるものではなかった。   These TiC, TiN, and TiCN films have very high Vickers hardness Hv of about 3200, 2100, and 2700 at room temperature, and are excellent in wear resistance at room temperature. However, since the hardness of these films rapidly decreases as the temperature rises, there is a problem that the wear resistance is drastically reduced in dry cutting in which the temperature of the cutting edge reaches around 1000 ° C. In order to improve the wear resistance of these hard films, there has been proposed a method (Japanese Patent Publication No. 11-510856) for coating a tool substrate with a film such as titanium zirconium carbonitride. This method is a method in which a carbonitride film containing at least two kinds of metal elements is coated by a CVD method using a CN compound gas. The resulting titanium zirconium nitride carbonitride film had a large crystal grain size and was not necessarily satisfactory in terms of wear resistance and chipping resistance as a tool.

特開2001−9604号公報 本発明者らは、上記従来技術における被覆工具の欠点を解決するために、鋭意研究した結果、金属成分としてジルコニウムとチタン等を含有する硬質膜、例えば(Ti、Zr)CN膜や(Ti、Zr)CNO膜等において、特定の条件を満たした場合には、高温においても膜硬度が急激に低下せず、膜の密着性と耐摩耗性が優れた膜を実現できることを見いだし、先に特開2001−11632号や特開2001−170804号、特願2000−394137号、特願2000−396568号、特願2001−3044号、特願2001−3060号、特願2001−23821号として出願し、当該技術を開示した。尚、ジルコニウムとチタンの両者を含有する硬質皮膜を被覆した工具として、粒状結晶組織を有する炭窒化チタン結晶粒と炭窒化ジルコニウム結晶粒の混合層を被覆した切削工具(特許文献1)が最近提案されているが、上記混合層ではTiCNとZrCNとが個別に結晶粒を形成しておりTi、Zr、C、Nが一体となった結晶粒からは形成されていない。このためTiCN結晶粒の高温での膜硬度低下とZrCN結晶粒の常温での膜硬度不足の欠点が解決していないあるいはこれら結晶粒間の結合力が充分でないためか、切削工具として使用時に得られる耐摩耗性や耐チッピング性が必ずしも満足できるものではなかった。As a result of diligent research to solve the drawbacks of the above-described prior art coated tools, the present inventors have determined that hard films containing zirconium and titanium as metal components, such as (Ti, Zr) ) When a specific condition is satisfied in a CN film or (Ti, Zr) CNO film, etc., a film with excellent film adhesion and wear resistance is realized without a sharp decrease in film hardness even at high temperatures. We found out what can be done, and first, Japanese Patent Application No. 2001-11632, Japanese Patent Application No. 2001-170804, Japanese Patent Application No. 2000-394137, Japanese Patent Application No. 2000-396568, Japanese Patent Application No. 2001-3044, Japanese Patent Application No. 2001-3060, Japanese Patent Application This application was disclosed as 2001-23821. As a tool coated with a hard film containing both zirconium and titanium, a cutting tool (Patent Document 1) recently coated with a mixed layer of titanium carbonitride crystal grains having a granular crystal structure and zirconium carbonitride crystal grains has been proposed. However, in the mixed layer, TiCN and ZrCN individually form crystal grains, and Ti, Zr, C, and N are not formed from the integrated crystal grains. For this reason, it is not possible to solve the drawbacks of the film hardness reduction of TiCN crystal grains at high temperatures and the lack of film hardness of ZrCN crystal grains at room temperature, or because the bonding force between these crystal grains is not sufficient. The wear resistance and chipping resistance obtained are not always satisfactory.

本発明は、本願発明者らが先に提案した上記の発明、すなわち、金属成分としてジルコニウムおよびチタン等を含有する硬質膜に係る発明を更に発展させ、ジルコニウムおよびチタンを含有する皮膜内の結晶粒界の強度(双晶)と上層Zr(CN)膜との膜密着性(双晶が連続)を高めることにより、従来に比して格段に切削耐久特性が優れる被覆工具を提供することである。 The present invention further develops the above-described invention previously proposed by the inventors of the present application, that is, an invention related to a hard film containing zirconium and titanium as metal components, and crystal grains in a film containing zirconium and titanium. It is to provide a coated tool that has excellent cutting durability characteristics as compared with the prior art by enhancing the strength of the field (twinning) and the film adhesion between the upper Zr (CN) film (continuous twinning). .

すなわち本発明は、基体表面に周期律表の4、5、6族並びにアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物のいずれか一種の単層皮膜または二種以上の多層皮膜を有し、前記皮膜の少なくとも一層がジルコニウムおよびチタンを含有し、該ジルコニウムおよびチタンを含有する皮膜は、下層にチタンの炭窒化膜、上層にZr(CN)膜が被覆され、該ジルコニウムおよびチタンを含有する皮膜、該Zr(CN)膜が双晶構造を持った結晶粒を含有し、該Zr(CN)膜の双晶境界部が該ジルコニウムおよびチタンを含有する皮膜の双晶境界部から連続していることを特徴とする被覆工具である。本発明の被覆工具は、ジルコニウムおよびチタンを含有する皮膜が双晶構造を持っているため結晶粒界の強度が高く、良好な切削耐久特性が実現されている。 That is, the present invention provides the substrate surface with any one of the groups 4, 5, and 6 of the periodic table and aluminum carbide, nitride, oxide, carbonitride, carbonate, nitride oxide and carbonitride oxide. It has a layer coating or two or more types of multilayer coatings, and at least one of the coatings contains zirconium and titanium. The coating containing zirconium and titanium is composed of a titanium carbonitride film in the lower layer and Zr (CN) in the upper layer. A film is coated , the film containing zirconium and titanium, the Zr (CN) film contains crystal grains having a twin crystal structure , and the twin boundary portion of the Zr (CN) film contains the zirconium and titanium. It is a coated tool characterized by being continuous from the twin boundaries of the coating film it contains . In the coated tool of the present invention, since the coating containing zirconium and titanium has a twin structure, the strength of the grain boundary is high, and good cutting durability characteristics are realized.

上述のように、本発明を適用することにより、ジルコニウム含有膜の結晶粒界の強度や上層膜との密着性が優れ、優れた切削耐久特性を持つ有用なジルコニウム含有膜被覆工具を実現することができる。   As described above, by applying the present invention, it is possible to realize a useful zirconium-containing film-coated tool having excellent cutting durability characteristics and excellent crystal grain boundary strength and adhesion to the upper layer film of the zirconium-containing film. Can do.

本発明の被覆工具は、ジルコニウムおよびチタンを含有する皮膜上層Zr(CN)膜に双晶構造を持った結晶粒を含有する層が形成されていることが好ましい。上層Zr(CN)が双晶構造を持った結晶粒を含有することにより上層内の粒界強度が高くなり、更に優れた切削耐久特性が実現される。また、本発明の被覆工具は、上層Zr(CN)層の双晶境界部が前記ジルコニウムおよびチタンを含有する皮膜の双晶境界部から連続していることが好ましい。双晶境界部が連続していることにより、ジルコニウムおよびチタンを含有する皮膜とその上に形成されているZr(CN)層との間が結晶格子面レベルで連続的に成膜されており両層間に高い密着性が実現されるとともに、両層が双晶構造を有しているため各層自身の結晶粒界の強度も高く、更に優れた切削耐久特性が実現される。この効果は特に、二層以上のジルコニウ含有膜が多層膜状で形成されているときに強く現れる。
本発明の被覆工具は、前記双晶構造を構成する双晶境界部(双晶面)が{111}面から成っていることが好ましい。前記双晶構造を構成する双晶境界部が格子点の多い{111}面から成っていることにより、双晶境界部が緻密に形成され、双晶境界部を境にして接する結晶粒間の粒界強度が更に高められ、更に優れた切削耐久特性が得られるものと判断される。
In the coated tool of the present invention, it is preferable that a layer containing crystal grains having a twin crystal structure is formed on the upper Zr (CN) film containing zirconium and titanium . When the upper layer Zr (CN) contains crystal grains having a twin crystal structure, the grain boundary strength in the upper layer is increased, and further excellent cutting durability characteristics are realized. In the coated tool of the present invention, it is preferable that the twin boundary portion of the upper Zr (CN) layer is continuous from the twin boundary portion of the coating containing zirconium and titanium . Since the twin boundaries are continuous, the film containing zirconium and titanium and the Zr (CN) layer formed thereon are continuously formed at the crystal lattice plane level. High adhesion between the layers is realized, and since both layers have a twin crystal structure, the strength of the crystal grain boundary of each layer itself is high, and further excellent cutting durability characteristics are realized. This effect is particularly pronounced when two or more zirconia-containing films are formed as a multilayer film.
In the coated tool of the present invention, it is preferable that a twin boundary portion (twin plane) constituting the twin structure is composed of {111} planes. The twin boundaries constituting the twin structure are composed of {111} planes having many lattice points, so that the twin boundaries are densely formed and between the crystal grains in contact with the twin boundaries as a boundary. It is judged that the grain boundary strength is further increased and further excellent cutting durability characteristics can be obtained.

また、本発明の被覆工具は、Zr(CN)膜がジルコニウムおよびチタンを含有する皮膜からエピタキシャルに成長していることが好ましい。こうすることにより両層間に優れた密着性が得られ、更に優れた切削耐久特性が得られる。本発明の被覆工具において、チタンは周期律表の4、5、6族金属の代表として表記したものであり、他の同族金属、例えばZr、Hf、V、Nb、Ta、Cr、Mo、Wのいずれかであっても略同様の効果が得られる。また、ジルコニウムおよびチタンを含有する皮膜はTiZrCNやTiZrCNO膜に限るものではなくTiZrC、TiZrCO、TiZrN、TiZrNO膜でも良い。また、TiZrCN膜やTiZrCNO膜はCHCNとTiCl或いはCHCNとTiClと酸化ガス(例えば、COあるいはCOの単独ガス、または、COとCOの混合ガス)を反応させて成膜するものに限るものではなく、CH、N、TiClやCH、N、TiClと酸化ガスとを反応させて成膜するTiZrCN膜やTiZrCNO膜でもよい。また、ジルコニウムおよびチタンを含有する皮膜は上記の膜に限るものではなく、上記の膜に例えばCr、Hf、Ta、Nb、Mg、Y、Si、B、W、Mo、Sの一種または二種以上を0.3〜10質量%添加した膜でも良い。0.3質量%未満ではこれらを添加する効果が現れず、10質量%を超えると上記膜の耐摩耗や高靭性の効果が低くなる欠点が現れる。 In the coated tool of the present invention, the Zr (CN) film is preferably grown epitaxially from a film containing zirconium and titanium . By doing so, excellent adhesion between both layers can be obtained, and further excellent cutting durability characteristics can be obtained. In the coated tool of the present invention, titanium is represented as a representative of Group 4, 5, and 6 metals of the periodic table, and other similar metals such as Zr, Hf, V, Nb, Ta, Cr, Mo, W In either case, substantially the same effect can be obtained. The film containing zirconium and titanium is not limited to a TiZrCN or TiZrCNO film, but may be a TiZrC, TiZrCO, TiZrN, or TiZrNO film. A TiZrCN film or a TiZrCNO film is formed by reacting CH 3 CN and TiCl 4 or CH 3 CN and TiCl 4 with an oxidizing gas (for example, CO 2 or CO alone gas or CO 2 and CO mixed gas). The film is not limited to a film, but may be a TiZrCN film or a TiZrCNO film formed by reacting CH 4 , N 2 , TiCl 4 , CH 4 , N 2 , TiCl 4 and an oxidizing gas. Further, the film containing zirconium and titanium is not limited to the above film, and for example, one or two of Cr, Hf, Ta, Nb, Mg, Y, Si, B, W, Mo, S may be added to the above film. A film added with 0.3 to 10% by mass of the above may also be used. If the amount is less than 0.3% by mass, the effect of adding these does not appear. If the amount exceeds 10% by mass, the effect of wear resistance and high toughness of the film becomes low.

本発明の被覆工具を構成可能なジルコニウムおよびチタンを含有する皮膜や、炭化チタン層、炭窒化チタン層、炭酸化チタン層、酸化アルミニウム膜は必ずしも最外層である必要はない。例えばさらにその上に少なくとも一層のチタンやジルコニウム、ハフニウムの化合物(例えばTiN、ZrN、HfN、TiCN層、ZrCN、HfCNあるいはこれらを組み合わせた多層膜等)を被覆してもよい。また、上記膜には本発明の被覆工具の切削耐久特性を劣化させない範囲で不可避の添加物、不純物を例えば数質量%程度まで含むことが許容される。本発明の被覆工具の製作は既知の成膜方法を採用できる。例えば、通常の化学蒸着法(熱CVD)、プラズマを付加した化学蒸着法(PACVD)、イオンプレーティング法等を用いることができる。用途は切削工具に限るものではなく、硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等でもよい。次に、本発明の被覆工具を実施例により具体的に説明するが、それら実施例により本発明が限定されるものではない。 The coating containing zirconium and titanium , the titanium carbide layer, the titanium carbonitride layer, the titanium carbonate layer, and the aluminum oxide film that can constitute the coated tool of the present invention are not necessarily the outermost layer. For example, at least one layer of titanium, zirconium, or hafnium compound (for example, TiN, ZrN, HfN, TiCN layer, ZrCN, HfCN, or a multilayer film combining these) may be further coated thereon. The film is allowed to contain, for example, several mass% of inevitable additives and impurities as long as the cutting durability characteristics of the coated tool of the present invention are not deteriorated. For the production of the coated tool of the present invention, a known film forming method can be adopted. For example, a normal chemical vapor deposition method (thermal CVD), a chemical vapor deposition method with plasma (PACVD), an ion plating method, or the like can be used. The application is not limited to cutting tools, but may be wear-resistant materials, molds, molten metal parts, etc. coated with a hard film. Next, although the coated tool of this invention is demonstrated concretely by an Example, this invention is not limited by these Examples.

(実施例1)
WC:80質量%、TiC:5質量%、(Ta、Nb)C:6質量%、Co:9質量%の組成よりなる超硬合金製スローアウェイチップ上に、熱CVD法により成膜温度900℃で厚さ0.4μmの窒化チタン膜をまず形成した。続いて、成膜温度850℃、原料ガスをTiCl4ガス:1.5vol%、CH3CNガス:1.0vol%、N2ガス:45vol%、残りH2キャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力:5.0kPaで厚さ1μmの炭窒化チタン膜を成膜した。次に、TiCl4ガス1.5vol%、ZrCl4ガス1.5vol%、CH3CNガス1vol%、COガスを1vol%、N2ガス45vol%、残H2キャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力5kPa、成膜温度850℃で反応させることによりTiとZr、C、N、Oからなる炭窒酸化チタンジルコニウム膜を成膜した。続いて、ZrCl4ガス:1.5vol%、CH3CNガス:1.0vol%、N2ガス:45vol%、残りH2キャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、上記と同じ成膜温度850℃、成膜圧力5kPaで炭窒化ジルコニウム層を成膜した。この炭窒酸化チタンジルコニウム層と炭窒化ジルコニウム層とを一組とする複層構造を単位層として、16組の複層構造単位層を積層することにより炭窒酸化チタンジルコニウム層と炭窒化ジルコニウム層とからなる全厚が9μmの多層膜を成膜した。
Example 1
A film formation temperature of 900 by a thermal CVD method on a cemented carbide throwaway chip having a composition of WC: 80% by mass, TiC: 5% by mass, (Ta, Nb) C: 6% by mass, and Co: 9% by mass. First, a titanium nitride film having a thickness of 0.4 μm was formed at a temperature of 0 ° C. Subsequently, CVD is performed with a source gas composed of 850 ° C., TiCl 4 gas: 1.5 vol%, CH 3 CN gas: 1.0 vol%, N 2 gas: 45 vol%, and the remaining H 2 carrier gas per minute. A titanium carbonitride film having a thickness of 1 μm was deposited at a deposition pressure of 5.0 kPa. Next, only 6000 ml / min of a raw material gas composed of Tivol4 gas 1.5 vol%, ZrCl4 gas 1.5 vol%, CH3CN gas 1 vol%, CO gas 1 vol%, N2 gas 45 vol%, and remaining H2 carrier gas per minute Then, a titanium zirconium oxynitride film made of Ti and Zr, C, N, and O was formed by reacting at a film forming pressure of 5 kPa and a film forming temperature of 850 ° C. Subsequently, a source gas composed of ZrCl4 gas: 1.5 vol%, CH3CN gas: 1.0 vol%, N2 gas: 45 vol%, and the remaining H2 carrier gas was allowed to flow in the CVD furnace at a rate of 6000 ml / min. A zirconium carbonitride layer was formed at a film temperature of 850 ° C. and a film formation pressure of 5 kPa. A multi-layer structure including the titanium oxycarbonitride / zirconium oxide layer and the zirconium carbonitride layer as a set is used as a unit layer, and 16 sets of multi-layer structure unit layers are stacked to form a carbonitride / titanium zirconium oxide layer and a zirconium carbonitride layer. A multilayer film having a total thickness of 9 μm was formed.

このようにして作製した本発明例1の多層膜の断面を透過型電子顕微鏡(TEM、日立製作所製、H−800、200kV)により撮影した写真を図1に示す。図2は、図1中の中央右上部近傍の暗STEM像である。これは透過した散乱電子を像化したもので、原子番号効果が強調され通常のSEM像と同様の像が撮影されている。即ち、明るい縞模様に撮影されている層がZrCN膜、その上下で暗く撮影されている縞模様層がTiZrCNO膜である。図3は図2近傍の領域に於けるTiの分布、図4はZrの分布を分析したものである。この元素マップはTEM装置に内蔵したエネルギー分散形X線分析装置(EDX、NORAN社製)により分析した。図1〜4より、TiZrCNO膜とZrCN膜とが多層膜状に高密度に成膜されていることがわかる。各膜間や結晶粒間に空孔は観察されていない。また、例えば図2の右下から左上にかけてのように、多数の結晶粒界が一直線に多層膜間を貫通していることがわかる。尚、図1において、特に暗く撮影されている部分が数箇所存在するが、これは、この部分の結晶の格子面が電子線の入射に整合しブラッグ反射のため電子線が回折されたため、入射電子線の透過能が低くなったためである。膜中にクラックや空孔があるためではない。   The photograph which image | photographed the cross section of the multilayer film of this invention example 1 produced in this way with the transmission electron microscope (TEM, the Hitachi make, H-800, 200 kV) is shown in FIG. FIG. 2 is a dark STEM image near the upper right portion of the center in FIG. This is an image of transmitted scattered electrons, and the atomic number effect is emphasized, and an image similar to a normal SEM image is taken. That is, the layer photographed in a bright stripe pattern is a ZrCN film, and the stripe pattern layer photographed darkly above and below it is a TiZrCNO film. FIG. 3 shows an analysis of Ti distribution in a region near FIG. 2, and FIG. 4 shows an analysis of Zr distribution. This elemental map was analyzed by an energy dispersive X-ray analyzer (EDX, manufactured by NORAN) incorporated in the TEM apparatus. 1 to 4, it can be seen that the TiZrCNO film and the ZrCN film are formed in a multilayer film with high density. No voids are observed between the films or between the crystal grains. Further, it can be seen that a large number of crystal grain boundaries penetrate between the multilayer films in a straight line, for example, from the lower right to the upper left in FIG. In FIG. 1, there are several portions that are particularly darkly photographed. This is because the lattice plane of the crystal in this portion matches the incidence of the electron beam and the electron beam is diffracted due to Bragg reflection. This is because the electron beam transmission ability is lowered. This is not because there are cracks or holes in the film.

図5は図2中央部の高分解能像(日立製作所製HF−2100、200kVを使用)である。図5上半分にZrCN膜、下半分にTiZrCNO膜が撮影され、右下から左上にかけて結晶粒界a−bが撮影されている。図5より、結晶粒界a−bと平行にTiZrCNO膜とZrCN膜の両格子縞が一直線に連続して形成されており、しかも結晶粒界a−bを境界にして左右に対称であることがわかる。すなわち、TiZrCNO膜とZrCN膜の両者が双晶構造を有しており結晶粒界a−bが双晶面であること、しかもこの双晶面がTiZrCNO膜からZrCN膜まで一直線に連続していることがわかる。図5の格子像をフーリエ変換した結果、ZrCN膜とTiZrCNO膜とはともに結晶格子が面心立方晶であり、格子縞a−bは{111}面であることが判明した。また、図5において、TiZrCNO膜とZrCN膜の格子縞が界面(図5中央部付近にある)を越えて一直線に連続していることから両者がエピタキシャルに成長していることがわかる。   FIG. 5 is a high-resolution image (using HF-2100, 200 kV manufactured by Hitachi, Ltd.) in the center of FIG. A ZrCN film is photographed in the upper half of FIG. 5, a TiZrCNO film is photographed in the lower half, and a crystal grain boundary ab is photographed from the lower right to the upper left. From FIG. 5, it can be seen that both the lattice stripes of the TiZrCNO film and the ZrCN film are formed in a straight line in parallel with the crystal grain boundary ab, and are symmetrical to the left and right with respect to the crystal grain boundary ab. Recognize. That is, both the TiZrCNO film and the ZrCN film have a twin structure, and the crystal grain boundaries ab are twin planes, and this twin plane is continuous in a straight line from the TiZrCNO film to the ZrCN film. I understand that. As a result of Fourier transform of the lattice image of FIG. 5, it was found that the crystal lattice of both the ZrCN film and the TiZrCNO film is a face-centered cubic crystal, and the lattice fringes ab are {111} planes. In FIG. 5, the lattice stripes of the TiZrCNO film and the ZrCN film continue in a straight line beyond the interface (near the center of FIG. 5), and it can be seen that both grow epitaxially.

尚、図1〜5の透過型電子顕微鏡写真は成膜面の断面を厚さ20μm以下に研磨した後、更にイオンミリングにより厚さを薄くした膜断面の微少領域に、電子線を透過させて撮影したものである。このため、ジルコニウムおよびチタンを含有する皮膜やその上に成膜されている層に含有されている双晶部分が実際に観察される確率は低いと考えられる。したがって、図5のように、微少領域のTEN写真中に双晶部分が観測されるということはかなりの頻度でジルコニウムおよびチタンを含有する皮膜やその上層膜中に双晶部分が存在していると判断できる。また、観察試料の膜厚が厚い等、試料の条件が悪い時には、電子線回折像では双晶関係が確認されないことがある。この場合も試料を再加工し格子像を観察することにより、上記のような双晶関係が確認されることがあるので注意を要する。 In the transmission electron micrographs of FIGS. 1 to 5, after the cross section of the film formation surface is polished to a thickness of 20 μm or less, the electron beam is transmitted through a very small area of the film cross section whose thickness is reduced by ion milling. It was taken. For this reason, it is thought that the probability that the twin part contained in the film containing zirconium and titanium and the layer formed thereon is actually observed is low. Therefore, as shown in FIG. 5, the fact that a twin portion is observed in a microscopic TEN photograph has a twin portion in a coating containing zirconium and titanium and its upper layer with a considerable frequency. It can be judged. In addition, when the sample condition is poor, such as when the film thickness of the observation sample is large, the twinning relationship may not be confirmed in the electron diffraction pattern. Also in this case, attention should be paid because the twin relation as described above may be confirmed by reworking the sample and observing the lattice image.

本発明例1の条件で製作した切削工具5個を以下の条件で断続切削し、刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察し、刃先にチッピングや膜剥離が生じるまでの断続切削回数を求めた。
被削材:SCM435材(四つ溝入)
工具形状:CNMG433
切削条件:200m/分
送り:0.3mm/rev
切り込み:1.5mm
切削液:使用せず(乾式切削)
その結果、本発明品は8000回迄断続切削後も刃先が健全でチッピングや剥離が見られず、膜の結晶粒界強度と膜間の密着性が優れており、切削工具として断続切削時の耐久性が優れていることがわかった。
Five cutting tools manufactured under the conditions of Example 1 of the present invention were intermittently cut under the following conditions, and the chipping condition at the tip of the cutting edge was observed with a stereomicroscope at a magnification of 50 times, and intermittent cutting until chipping and film peeling occurred at the cutting edge. The number of times was calculated.
Work material: SCM435 material (with four grooves)
Tool shape: CNMG433
Cutting conditions: 200 m / min Feed: 0.3 mm / rev
Cutting depth: 1.5mm
Cutting fluid: Not used (dry cutting)
As a result, the product of the present invention has a sound cutting edge even after intermittent cutting up to 8000 times, no chipping or peeling, excellent film grain boundary strength and adhesion between films, and as a cutting tool during intermittent cutting. It was found that the durability was excellent.

(実施例2)
比較例2として、ジルコニウムおよびチタンを含有する皮膜に双晶構造が存在する場合としない場合の切削特性への影響を明確にするために、以下の比較例2を作製した。実施例1と同様の組成を持つ超硬合金製基板の表面に実施例1と同様の方法によりTiNとTiCNO膜とを成膜した後、次に、TiClガス1.5vol%、ZrClガス1vol%、CHCNガス0.5vol%、COガス1vol%、Nガス45vol%、残Hキャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力10kPa、成膜温度750℃でTiとZr、C、N、Oからなる炭窒酸化チタンジルコニウム膜を成膜した。続いて、原料ガスをZrClガス:1.5vol%、CHCNガス:0.5vol%、Nガス:45vol%、残りHキャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜温度950℃、成膜圧力10kPaで炭窒化ジルコニウム層を成膜した。この炭窒酸化チタンジルコニウム層と炭窒化ジルコニウム層とを一組とする複層構造を単位層として、16組の複層構造単位層を積層することにより炭窒酸化チタンジルコニウム層と炭窒化ジルコニウム層とからなる全厚が9μmの多層膜を成膜することにより、比較例2を作製した。
(Example 2)
As Comparative Example 2, the following Comparative Example 2 was prepared in order to clarify the influence on the cutting characteristics in the case where the twin crystal structure is present and not present in the film containing zirconium and titanium . After a TiN and TiCNO film was formed on the surface of a cemented carbide substrate having the same composition as in Example 1 by the same method as in Example 1, then TiCl 4 gas 1.5 vol%, ZrCl 4 gas A source gas composed of 1 vol%, CH 3 CN gas 0.5 vol%, CO 2 gas 1 vol%, N 2 gas 45 vol%, and remaining H 2 carrier gas was allowed to flow in the CVD furnace at a rate of 6000 ml / min. Then, a titanium zirconium oxynitride film made of Ti and Zr, C, N, and O was formed at a film forming temperature of 750 ° C. Subsequently, the source gas is ZrCl 4 gas: 1.5 vol%, CH 3 CN gas: 0.5 vol%, N 2 gas: 45 vol%, and the source gas composed of the remaining H 2 carrier gas is 6000 ml / min. The zirconium carbonitride layer was deposited at a deposition temperature of 950 ° C. and a deposition pressure of 10 kPa. A multi-layer structure including the titanium oxycarbonitride / zirconium oxide layer and the zirconium carbonitride layer as a set is used as a unit layer, and 16 sets of multi-layer structure unit layers are stacked to form a carbonitride / titanium zirconium oxide layer and a zirconium carbonitride layer. Comparative Example 2 was produced by forming a multilayer film consisting of

この比較例2のジルコニウムおよびチタンを含有する皮膜近傍を実施例1と同様にして透過型電子顕微鏡で観察したが、ジルコニウムおよびチタンを含有する皮膜に双晶構造部は見られなかった。次に、比較例2の条件で作製した切削工具5個を用いて実施例1と同一の条件で断続切削試験を行い、刃先先端の欠け状況を倍率50倍の実体顕微鏡で観察した結果、5000回衝撃切削後にいずれにも刃先にチッピングが発生し切削工具として劣っていることが判明した。また、この断続切削試験で膜剥離や欠けを発生した部分をミクロ観察したところ、膜剥離がジルコニウムおよびチタンを含有する皮膜から発生しており、これが原因でチッピングが発生していることがわかった。 The vicinity of the film containing zirconium and titanium of Comparative Example 2 was observed with a transmission electron microscope in the same manner as in Example 1. No twin structure portion was found in the film containing zirconium and titanium . Next, an intermittent cutting test was performed under the same conditions as in Example 1 using five cutting tools manufactured under the conditions of Comparative Example 2, and the chipping state of the blade tip was observed with a stereomicroscope with a magnification of 50 times. It was found that chipping occurred at the blade edge after both round impact cuttings and was inferior as a cutting tool. Further, when microscopic observation was performed on the part where film peeling or chipping occurred in this intermittent cutting test, it was found that film peeling occurred from a film containing zirconium and titanium, and this caused chipping. .

(実施例3)
本発明例3として、WC:80質量%、TiC:5質量%、(Ta、Nb)C:6質量%、Co:9質量%の組成よりなる超硬合金製スローアウェイチップ上に、実施例1と同じ条件で厚さ0.4μmの窒化チタン膜と厚さ1μmの炭窒化チタン膜を成膜した。次に、TiCl4ガス1.5vol%、ZrCl4ガス1.5vol%、CH3CNガス2.0vol%、N2ガス45vol%、残H2キャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力5kPa、成膜温度850℃で反応させることによりTiとZr、C、Nからなる炭窒化チタンジルコニウム膜を成膜した。続いて、ZrCl4ガス1.5vol%、CH3CNガス1.0vol%、N2ガス45vol%、残H2キャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、上記と同じ成膜温度850℃、成膜圧力:5kPaで炭窒化ジルコニウム層を成膜した。この炭窒化チタンジルコニウム層と炭窒化ジルコニウム層とを一組とする複層構造を単位層として、12組の複層構造単位層を積層することにより炭窒化チタンジルコニウム層と炭窒化ジルコニウム層とからなる全厚が7μmの多層膜を成膜した。その後、TiCl4ガスとCH4ガスとH2キャリヤーガスで構成された原料ガス2、200ml/分を30分間流し、そのまま連続して本構成の原料ガスにさらに20ml/分のCO2ガスを追加して30分間流すことにより、成膜温度950℃で、チタンの炭化物とチタンの炭酸化物からなる層(結合膜)を作製した。続いてAl金属小片を詰め350℃に保温した小筒中にH2ガス310ml/分とHClガス130ml/分とを流すことにより発生させたAlCl3ガスとH2ガス2l/分とCO2ガス100ml/分とをCVD炉内に流し、1010℃で反応させることにより2μm厚さのα型酸化アルミニウム膜を成膜した後、更に成膜温度1010℃で厚さ0.8μmの窒化チタン膜することにより本発明例3の被覆工具を得た。
(Example 3)
As Example 3 of the present invention, on a throwaway tip made of cemented carbide having a composition of WC: 80% by mass, TiC: 5% by mass, (Ta, Nb) C: 6% by mass, and Co: 9% by mass. 1 and a titanium nitride film having a thickness of 0.4 μm and a titanium carbonitride film having a thickness of 1 μm were formed. Next, a source gas composed of 1.5 vol% of TiCl4 gas, 1.5 vol% of ZrCl4 gas, 2.0 vol% of CH3CN gas, 45 vol% of N2 gas, and the remaining H2 carrier gas is allowed to flow into the CVD furnace by 6000 ml per minute. By reacting at a film forming pressure of 5 kPa and a film forming temperature of 850 ° C., a titanium zirconium nitride film made of Ti, Zr, C, and N was formed. Subsequently, a source gas composed of 1.5 vol% ZrCl 4 gas, 1.0 vol% CH 3 CN gas, 45 vol% N 2 gas, and the remaining H 2 carrier gas was allowed to flow through the CVD furnace at a rate of 850 ml per minute. A zirconium carbonitride layer was formed at a temperature of ° C and a film forming pressure of 5 kPa. By stacking 12 sets of multi-layer structure unit layers, the multi-layer structure including the titanium carbonitride-zirconium layer and the zirconium carbonitride layer as a set is used as a unit layer. A multilayer film having a total thickness of 7 μm was formed. Thereafter, a source gas 2 composed of TiCl4 gas, CH4 gas, and H2 carrier gas, 200 ml / min is allowed to flow for 30 minutes, and another 20 ml / min of CO2 gas is continuously added to the source gas of this configuration for 30 minutes. By flowing, a layer (bonding film) made of titanium carbide and titanium carbonate at a film forming temperature of 950 ° C. was produced. Subsequently, AlCl3 gas, H2 gas 2 l / min and CO2 gas 100 ml / min generated by flowing H2 gas 310 ml / min and HCl gas 130 ml / min into a small tube filled with Al metal pieces and kept at 350 ° C. An α-type aluminum oxide film having a thickness of 2 μm is formed by flowing in a CVD furnace and reacting at 1010 ° C., and then a titanium nitride film having a thickness of 0.8 μm is formed at a film forming temperature of 1010 ° C. 3 coated tools were obtained.

本発明例3を理学電気(株)製のX線回折装置(RU−200BH)でX線源にCuKα1線(λ=0.15405nm)を用いて2θ−θ走査法によりX線回折図形を測定した後、実施例1と同様に、本発明品の多層膜の断面を透過型電子顕微鏡(TEM、日立製作所製、H−800、200kV)とエネルギー分散形X線分析装置(EDX、NORAN社製)によりミクロ解析した結果、超硬合金製基体の表面にTiNとTiCN膜を経てTiZrCNとZrCNとから成る多層膜が高密度に成膜されており、その上に結合膜を経てα型酸化アルミニウムとTiN膜が成膜されていることが確認された。そして、多層膜部分にはTiZrCN結晶粒とZrCN結晶粒の両者が双晶構造を有しており、しかも両結晶粒間で双晶面が直線的に連続していることが確認された。   An X-ray diffraction pattern was measured by the 2θ-θ scanning method using Example 3 of the present invention with an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. After that, in the same manner as in Example 1, the cross section of the multilayer film of the present invention was analyzed with a transmission electron microscope (TEM, manufactured by Hitachi, H-800, 200 kV) and an energy dispersive X-ray analyzer (EDX, manufactured by NORAN). As a result of microanalysis, a multilayer film composed of TiZrCN and ZrCN is formed on the surface of the cemented carbide substrate through a TiN and TiCN film at a high density, and an α-type aluminum oxide is formed thereon via a bonding film. It was confirmed that a TiN film was formed. It was confirmed that both the TiZrCN crystal grains and the ZrCN crystal grains have a twin structure in the multilayer film portion, and that the twin planes are linearly continuous between the two crystal grains.

上記のようにして得られた本発明の被覆工具を用いて、以下の条件で断続切削を行い、刃先の損傷状況を倍率50倍の工具顕微鏡で観察した。
被削材:SCM435(四つ溝入り)
工具形状:CNMG433
切削速度:220m/分
送り:0.20mm/rev
切り込み:1.5mm
切削液:使用せず(乾式切削)
この切削テストの結果、本発明品は、いずれも、断続切削回数が7000回迄断続切削後も刃先にジルコニウムおよびチタンを含有する皮膜やアルミナ膜にチッピングや剥離が見られず、本発明例3の膜の結晶粒界強度と膜間の密着性が優れており、工具寿命が長いことが判明した。
Using the coated tool of the present invention obtained as described above, intermittent cutting was performed under the following conditions, and the damage state of the cutting edge was observed with a tool microscope with a magnification of 50 times.
Work material: SCM435 (with four grooves)
Tool shape: CNMG433
Cutting speed: 220 m / min Feed: 0.20 mm / rev
Cutting depth: 1.5mm
Cutting fluid: Not used (dry cutting)
As a result of this cutting test, none of the products of the present invention showed chipping or peeling on the coating or alumina film containing zirconium and titanium at the cutting edge even after intermittent cutting up to 7000 intermittent cuttings. It was found that the grain boundary strength and the adhesion between the films were excellent, and the tool life was long.

(実施例4)
比較例4として、ジルコニウムおよびチタンを含有する皮膜が双晶構造を有する場合と有しない場合との差を明確にするために以下の比較例4を作製した。実施例3と同様の組成を持つ超硬合金製基板の表面に実施例3と同様の方法によりTiNとTiCN膜とを成膜した後、次に、TiClガス1.5vol%、ZrClガス0.5vol%、CHCNガス0.5vol%、Nガス45vol%、残Hキャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力15kPa、成膜温度750℃でTiとZr、C、N、からなる炭窒化チタンジルコニウム膜を成膜した。続いて、成膜温度950℃、原料ガスをZrClガス:1.5vol%、CHCNガス:0.5vol%、Nガス:45vol%、残りHキャリヤーガスで構成された原料ガスを毎分6000mlだけCVD炉内に流し、成膜圧力:15kPaで炭窒化ジルコニウム層を成膜した。この炭窒化チタンジルコニウム層と炭窒化ジルコニウム層とを一組とする複層構造を単位層として、12組の複層構造単位層を積層することにより炭窒化チタンジルコニウム層と炭窒化ジルコニウム層とからなる全厚が7μmの多層膜を成膜した。そして更に、実施例2と同じ条件でチタンの炭化物とチタンの炭酸化物からなる層(結合膜)を作製し、更に厚さ2μmのα型酸化アルミニウム膜と厚さ0.8μmの窒化チタン膜を成膜することにより比較例4の被覆工具を作製した。
Example 4
As Comparative Example 4, the following Comparative Example 4 was prepared in order to clarify the difference between the case where the film containing zirconium and titanium had a twin crystal structure and the case where the film did not have a twin structure. A TiN and TiCN film was formed on the surface of a cemented carbide substrate having the same composition as in Example 3 by the same method as in Example 3, then TiCl 4 gas 1.5 vol%, ZrCl 4 gas A source gas composed of 0.5 vol%, CH 3 CN gas 0.5 vol%, N 2 gas 45 vol%, and the remaining H 2 carrier gas is allowed to flow through the CVD furnace at a rate of 6000 ml / min. A titanium zirconium carbonitride film composed of Ti and Zr, C, N was formed at 750 ° C. Subsequently, a source gas composed of a film forming temperature of 950 ° C., a source gas of ZrCl 4 gas: 1.5 vol%, CH 3 CN gas: 0.5 vol%, N 2 gas: 45 vol%, and the remaining H 2 carrier gas is used. A flow rate of 6000 ml per minute was passed through the CVD furnace, and a zirconium carbonitride layer was deposited at a deposition pressure of 15 kPa. By stacking 12 sets of multi-layer structure unit layers, the multi-layer structure including the titanium carbonitride-zirconium layer and the zirconium carbonitride layer as a set is used as a unit layer. A multilayer film having a total thickness of 7 μm was formed. Further, a layer (bonding film) made of titanium carbide and titanium carbonate was produced under the same conditions as in Example 2, and an α-type aluminum oxide film having a thickness of 2 μm and a titanium nitride film having a thickness of 0.8 μm were further formed. The coated tool of Comparative Example 4 was produced by forming a film.

比較例4のジルコニウムおよびチタンを含有する皮膜近傍を実施例3と同様にして透過型電子顕微鏡で観察したが、ジルコニウムおよびチタンを含有する皮膜に双晶構造部は見られなかった。次に、比較例4の条件で作製した切削工具5個を用いて実施例3と同じ条件で断続切削試験を行い、刃先先端のチッピング発生状況を倍率50倍の実体顕微鏡で観察した結果、4500回衝撃切削後にいずれにもチッピングや膜剥離が発生しており切削工具として劣っていることが判明した。また、この断続切削試験で膜剥離や欠けを発生した部分をミクロ観察したところ、チッピングや膜剥離がジルコニウムおよびチタンを含有する皮膜中で発生しており、これが原因で欠けが発生していると考えられることがわかった。 The vicinity of the coating containing zirconium and titanium in Comparative Example 4 was observed with a transmission electron microscope in the same manner as in Example 3. No twin structure was found in the coating containing zirconium and titanium . Next, an intermittent cutting test was performed under the same conditions as in Example 3 using five cutting tools manufactured under the conditions of Comparative Example 4, and the chipping occurrence state at the tip of the cutting edge was observed with a stereomicroscope at a magnification of 50. It was found that chipping and film peeling occurred after the round impact cutting and that the cutting tool was inferior. In addition, when microscopic observation was performed on the part where film peeling or chipping occurred in this intermittent cutting test, chipping or film peeling occurred in the film containing zirconium and titanium, and this caused chipping. I understood that it was possible.

図1は、本発明例の被覆工具の多層膜の断面を透過型電子顕微鏡で観察した組織写真を示す。FIG. 1 shows a structure photograph of a cross section of a multilayer film of a coated tool according to an example of the present invention, observed with a transmission electron microscope. 図2は、図1中の中央右上部近傍の暗STEM像を示す。FIG. 2 shows a dark STEM image near the upper right portion of the center in FIG. 図3は、図2近傍の領域に於けるTiの分布を示す。FIG. 3 shows the Ti distribution in the region near FIG. 図4は、図2近傍の領域におけるZrの分布を示す。FIG. 4 shows the Zr distribution in the region near FIG. 図5は、図2の中央部の高分解能像で、図5上半分にZrCN膜、下半分にTiZrCNO膜が撮影され、右下から左上にかけて結晶粒界a−bを撮影したSTEM像を示す。FIG. 5 is a high-resolution image of the central portion of FIG. 2, showing a STEM image in which a ZrCN film is photographed in the upper half of FIG. 5, a TiZrCNO film is photographed in the lower half, and a grain boundary ab is photographed from the lower right to the upper left. .

Claims (7)

基体表面に周期律表の4、5、6族並びにアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物のいずれか一種の単層皮膜または二種以上の多層皮膜を有し、前記皮膜の少なくとも一層がジルコニウムおよびチタンを含有し、該ジルコニウムおよびチタンを含有する皮膜は、下層にチタンの炭窒化膜、上層にZr(CN)膜が被覆され、該ジルコニウムおよびチタンを含有する皮膜、該Zr(CN)膜が双晶構造を持った結晶粒を含有し、該Zr(CN)膜の双晶境界部が該ジルコニウムおよびチタンを含有する皮膜の双晶境界部から連続していることを特徴とする被覆工具。 Single-layer film or two kinds of any of carbides, nitrides, oxides, carbonitrides, carbonates, nitrides and carbonitrides of the periodic table on the substrate surface It has the above multilayer coating, and at least one layer of the coating contains zirconium and titanium, the coating containing zirconium and titanium is coated with a titanium carbonitride film as a lower layer and a Zr (CN) film as an upper layer , The zirconium and titanium-containing coating , the Zr (CN) film contains crystal grains having a twin crystal structure , and the twin boundaries of the Zr (CN) film are twins of the zirconium and titanium-containing coating. A coated tool characterized by being continuous from a crystal boundary . 請求項1記載の被覆工具において、該ジルコニウムおよびチタンを含有する皮膜と該Zr(CN)膜とを1組の単位層として積層したことを特徴とする被覆工具。2. The coated tool according to claim 1, wherein the zirconium and titanium-containing film and the Zr (CN) film are laminated as a unit layer. 請求項2記載の被覆工具において、該ジルコニウムおよびチタンを含有する皮膜と該Zr(CN)膜の積層は、12組〜16組であることを特徴とする被覆工具。The coated tool according to claim 2, wherein the zirconium and titanium-containing film and the Zr (CN) film are laminated in a number of 12 to 16 sets. 請求項1乃至3何れかに記載の被覆工具において、双晶構造を構成する双晶境界部が{111}面から成っていることを特徴とする被覆工具。 In coated tool according to any one of claims 1 to 3, coated tool twin boundary portion constituting the twin structure is characterized in that it consists of {111} plane. 請求項1乃至4何れかに記載の被覆工具において、該Zr(CN)膜が、ジルコニウムおよびチタンを含有する皮膜の上にエピタキシャルに成長していることを特徴とする被覆工具。 In coated tool according to any one of claims 1 to 4, coated tool in which the Zr (CN) film, characterized in that it is grown epitaxially on the film containing the zirconium and titanium. 請求項1乃至5何れかに記載の被覆工具において、ジルコニウムおよびチタンを含有する皮膜がTi、Zr、C、Nから成ることを特徴とする被覆工具。 6. The coated tool according to claim 1, wherein the coating containing zirconium and titanium is made of Ti, Zr, C, and N. 請求項1乃至6何れかに記載の被覆工具において、ジルコニウムおよびチタンを含有する皮膜がTi、Zr、C、N、Oから成ることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 6, wherein the coating containing zirconium and titanium comprises Ti, Zr, C, N, and O.
JP2006073167A 2006-03-16 2006-03-16 Coated tool Expired - Fee Related JP4480090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073167A JP4480090B2 (en) 2006-03-16 2006-03-16 Coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073167A JP4480090B2 (en) 2006-03-16 2006-03-16 Coated tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001230891A Division JP2003039207A (en) 2001-07-31 2001-07-31 Clad tool

Publications (2)

Publication Number Publication Date
JP2006175596A JP2006175596A (en) 2006-07-06
JP4480090B2 true JP4480090B2 (en) 2010-06-16

Family

ID=36730166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073167A Expired - Fee Related JP4480090B2 (en) 2006-03-16 2006-03-16 Coated tool

Country Status (1)

Country Link
JP (1) JP4480090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152660B2 (en) * 2008-08-21 2013-02-27 住友電工ハードメタル株式会社 Cutting tool and manufacturing method thereof
CN116162918B (en) * 2023-04-26 2023-07-14 赣州澳克泰工具技术有限公司 High-hardness high-toughness cutter coating and preparation method thereof

Also Published As

Publication number Publication date
JP2006175596A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP5641124B2 (en) Method for producing hard coating member
JP4711714B2 (en) Surface coated cutting tool
JP7101691B2 (en) A hard material coating body made of metal, cemented carbide, cermet, or ceramics, and a method for manufacturing the object.
JP4832108B2 (en) Surface coated cutting tool
JP6045010B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP6344601B2 (en) Hard coating, cutting tool, and manufacturing method of hard coating
JP6344602B2 (en) Hard coating, cutting tool, and manufacturing method of hard coating
JP6044861B1 (en) Surface-coated cutting tool and manufacturing method thereof
JP2007229821A (en) Surface-coated cutting tool
JP3768136B2 (en) Coated tool
JP6349581B2 (en) Hard coating, cutting tool, and manufacturing method of hard coating
JP7035296B2 (en) Surface coating cutting tool and its manufacturing method
JP3962300B2 (en) Aluminum oxide coated tool
JP2012144766A (en) Coated member
WO2014103507A1 (en) Surface coated member, and manufacturing method for same
JP4480090B2 (en) Coated tool
JP6996064B2 (en) Surface coating cutting tool and its manufacturing method
JP2003039207A (en) Clad tool
JP3678945B2 (en) Titanium carbonitride coated tool
JP5109202B2 (en) Surface coated cutting tool
CN114173972A (en) Cutting tool
JP5177535B2 (en) Surface coated cutting tool
JP2002205204A (en) Multilayer covering tool
JP2004306246A (en) Tool for cutting surface covering
JP5061392B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4480090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees