JP2003039207A - Clad tool - Google Patents
Clad toolInfo
- Publication number
- JP2003039207A JP2003039207A JP2001230891A JP2001230891A JP2003039207A JP 2003039207 A JP2003039207 A JP 2003039207A JP 2001230891 A JP2001230891 A JP 2001230891A JP 2001230891 A JP2001230891 A JP 2001230891A JP 2003039207 A JP2003039207 A JP 2003039207A
- Authority
- JP
- Japan
- Prior art keywords
- film
- zirconium
- layer
- gas
- coated tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は被覆工具に関し、特
にジルコニウムを含有する皮膜を被覆した工具に関す
る。TECHNICAL FIELD The present invention relates to a coated tool, and more particularly to a tool coated with a film containing zirconium.
【0002】[0002]
【従来の技術】一般に、被覆工具は超硬質合金、高速度
鋼、特殊鋼からなる基体表面に硬質皮膜を化学蒸着法
や、物理蒸着法により成膜して作製される。このような
被覆工具は皮膜の耐摩耗性と基体の強靭性とを兼ね備え
ており、広く実用に供されている。一般に、切削液を用
いることなく(以下、乾式切削と呼ぶ。)高硬度材を高
速で切削する場合、切削工具の刃先温度は1000℃前
後にまで上がる。切削工具は、このような高温環境下に
おいて被削材との接触による摩耗や断続切削等による機
械的衝撃に耐える必要があり、耐摩耗性と強靭性とを兼
ね備えた被覆工具が重宝されている。上記の硬質皮膜に
は、耐摩耗性と靭性とが優れる周期律表4、5、6族金
属の炭化物、窒化物、炭窒化物、炭酸化物、窒酸化物、
炭窒酸化物からなる膜と、耐酸化性に優れる酸化アルミ
ニウム膜が単層あるいは多層膜として被覆された被覆工
具が一般に用いられている。また、上記の周期律表4、
5、6族金属にはチタン、特にその炭化物(TiC)、
窒化物(TiN)、炭窒化物(TiCN)が主に用いら
れている。このため、以降は、煩雑を避けるため周期律
表4、5、6族金属の代表としてチタンを用いて具体的
に詳述する。2. Description of the Related Art Generally, a coated tool is produced by forming a hard coating on the surface of a substrate made of superhard alloy, high speed steel or special steel by chemical vapor deposition or physical vapor deposition. Such a coated tool has both the wear resistance of the coating and the toughness of the substrate, and is widely put to practical use. Generally, when a high hardness material is cut at high speed without using a cutting fluid (hereinafter referred to as dry cutting), the cutting edge temperature of the cutting tool rises to around 1000 ° C. Cutting tools must withstand wear due to contact with the work material under such a high temperature environment and mechanical shock due to intermittent cutting, etc., and coated tools having both wear resistance and toughness are useful. . The above hard coating includes carbides, nitrides, carbonitrides, carbonates, and nitrites of metals of Groups 4, 5 and 6 of the Periodic Table, which have excellent wear resistance and toughness.
A coated tool in which a film made of oxycarbonitride and an aluminum oxide film having excellent oxidation resistance are coated as a single layer or a multi-layer film is generally used. Also, the above Periodic Table 4,
Group 5 and 6 metals include titanium, especially its carbide (TiC),
Nitride (TiN) and carbonitride (TiCN) are mainly used. Therefore, in order to avoid complication, titanium will be specifically described below as a representative of metals of Groups 4, 5, and 6 of the Periodic Table.
【0003】これらTiC、TiN、TiCN膜は、常
温でのビッカース硬度Hvが約3200、2100、2
700と非常に硬く、常温での耐摩耗性は優れている。
しかし、これらの膜の硬度は温度が上昇するにつれて急
激に低下するため、刃先の温度が1000℃前後に達す
るような乾式切削では、耐摩耗性が急激に低下するとい
う問題がある。これら硬質膜の耐摩耗性を改善するため
に、炭窒化チタンジルコニウム等の膜を工具基体上に被
覆する方法(特表平11−510856号公報)が提案
されている。この方法は、少なくとも2種の金属元素を
含む炭窒化物膜を、CN化合物ガスを用いてCVD法で
被覆する方法であるが、本発明者等が該公報記載の技術
に従い再現検討した結果では、得られた炭窒化チタンジ
ルコニウム膜は結晶粒径が大きく、工具としての耐摩耗
性や耐チッピング性が必ずしも満足できるものではなか
った。These TiC, TiN and TiCN films have a Vickers hardness Hv of about 3200, 2100, 2 at room temperature.
It is extremely hard at 700 and has excellent wear resistance at room temperature.
However, the hardness of these films sharply decreases as the temperature rises, so there is a problem that the wear resistance sharply decreases in dry cutting in which the temperature of the cutting edge reaches around 1000 ° C. In order to improve the wear resistance of these hard films, a method has been proposed in which a film of titanium zirconium carbonitride or the like is coated on a tool substrate (Japanese Patent Publication No. 11-510856). This method is a method in which a carbonitride film containing at least two kinds of metal elements is coated by a CVD method using a CN compound gas. The obtained titanium zirconium carbonitride film had a large crystal grain size and was not always satisfactory in wear resistance and chipping resistance as a tool.
【0004】本発明者らは、上記従来技術における被覆
工具の欠点を解決するために、鋭意研究した結果、金属
成分としてジルコニウムとチタン等を含有する硬質膜、
例えば(Ti、Zr)CN膜や(Ti、Zr)CNO膜
等において、特定の条件を満たした場合には、高温にお
いても膜硬度が急激に低下せず、膜の密着性と耐摩耗性
が優れた膜を実現できることを見いだし、先に特開20
01−11632号や特開2001−170804号、
特願2000−394137号、特願2000−396
568号、特願2001−3044号、特願2001−
3060号、特願2001−23821号として出願
し、当該技術を開示した。尚、ジルコニウムとチタンの
両者を含有する硬質皮膜を被覆した工具として、粒状結
晶組織を有する炭窒化チタン結晶粒と炭窒化ジルコニウ
ム結晶粒の混合層を被覆した切削工具(特開2001−
9604)が最近提案されているが、上記混合層ではT
iCNとZrCNとが個別に結晶粒を形成しておりT
i、Zr、C、Nが一体となった結晶粒からは形成され
ていない。このためTiCN結晶粒の高温での膜硬度低
下とZrCN結晶粒の常温での膜硬度不足の欠点が解決
していないあるいはこれら結晶粒間の結合力が充分でな
いためか、切削工具として使用時に得られる耐摩耗性や
耐チッピング性が必ずしも満足できるものではなかっ
た。The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned drawbacks of the coated tool, and as a result, a hard film containing zirconium and titanium as metal components,
For example, in a (Ti, Zr) CN film, a (Ti, Zr) CNO film, etc., when the specific conditions are satisfied, the film hardness does not drop sharply even at high temperature, and the film adhesion and wear resistance are It has been found that an excellent film can be realized, and the method described in JP 20
01-11632 and JP 2001-170804 A,
Japanese Patent Application No. 2000-394137, Japanese Patent Application 2000-396
568, Japanese Patent Application No. 2001-3044, Japanese Patent Application No. 2001-
No. 3060 and Japanese Patent Application No. 2001-23821 were filed to disclose the technique. As a tool coated with a hard coating containing both zirconium and titanium, a cutting tool coated with a mixed layer of titanium carbonitride crystal grains having a granular crystal structure and zirconium carbonitride crystal grains (Japanese Patent Laid-Open No. 2001-2001).
9604) has recently been proposed, but in the above mixed layer, T
iCN and ZrCN individually form crystal grains, and T
It is not formed from crystal grains in which i, Zr, C, and N are integrated. For this reason, the disadvantages such as the decrease in film hardness of TiCN crystal grains at high temperature and the insufficiency of film hardness of ZrCN crystal grains at room temperature have not been solved, or the bonding force between these crystal grains is not sufficient. The abrasion resistance and chipping resistance obtained are not always satisfactory.
【0005】[0005]
【発明が解決しようとする課題】本発明は、本願発明者
らが先に提案した上記の発明、すなわち、金属成分とし
てジルコニウムおよびチタン等を含有する硬質膜に係る
発明を更に発展させ、ジルコニウム含有膜内の結晶粒界
の強度(双晶)と上層膜との膜密着性(双晶が連続)を
高めることにより、従来に比して格段に切削耐久特性が
優れる被覆工具を提供することである。The present invention further develops the above-mentioned invention previously proposed by the present inventors, that is, an invention relating to a hard film containing zirconium, titanium or the like as a metal component, and containing zirconium. By increasing the strength of the crystal grain boundaries in the film (twin crystals) and the film adhesion to the upper layer film (continuous twins), it is possible to provide a coated tool with significantly superior cutting durability characteristics compared to conventional products. is there.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究してきた結果、ジルコニウム含
有膜を構成する少なくとも一部の結晶粒に双晶構造を持
たせることによりジルコニウム含有膜内の結晶粒界の強
度が高まるとともに、上層膜にも双晶構造を持たせ、両
者の双晶境界部を連続して形成させることにより上層膜
自身の粒界強度と膜密着性が高まり、更に優れた切削耐
久特性を有する工具が得られることを見出し、本発明に
到達した。すなわち本発明は、基体表面に周期律表の
4、5、6族並びにアルミニウムの炭化物、窒化物、酸
化物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物のい
ずれか一種の単層皮膜または二種以上の多層皮膜を有
し、前記皮膜の少なくとも一層がジルコニウムを含有
し、且つ、該ジルコニウム含有膜が双晶構造を持った結
晶粒を含有することを特徴とする被覆工具である。本発
明の被覆工具は、ジルコニウム含有膜が双晶構造を持っ
ているため結晶粒界の強度が高く、良好な切削耐久特性
が実現されている。The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems. As a result, at least a part of the crystal grains constituting the zirconium-containing film has a twin crystal structure. As the strength of the crystal grain boundaries in the film increases, the upper layer film also has a twin crystal structure, and the twin boundary between the two is formed continuously, increasing the grain boundary strength and film adhesion of the upper layer film itself. Further, they have found that a tool having further excellent cutting durability characteristics can be obtained, and have reached the present invention. That is, the present invention provides a substrate surface on which any one of carbides, nitrides, oxides, carbonitrides, carbonates, nitriding oxides, and carbonitriding oxides of Groups 4, 5 and 6 of the Periodic Table. A coated tool having a layer coating or a multi-layer coating of two or more types, at least one layer of said coating containing zirconium, and said zirconium-containing coating containing crystal grains having a twin structure. is there. In the coated tool of the present invention, since the zirconium-containing film has a twin structure, the grain boundary strength is high and good cutting durability characteristics are realized.
【0007】[0007]
【発明の実施の形態】本発明の被覆工具は、ジルコニウ
ム含有膜の上に双晶構造を持った結晶粒を含有する層が
形成されていることが好ましい。上層が双晶構造を持っ
た結晶粒を含有することにより上層内の粒界強度が高く
なり、更に優れた切削耐久特性が実現される。また、本
発明の被覆工具は、ジルコニウム含有膜の上に形成され
た層の双晶境界部が前記ジルコニウム含有膜の双晶境界
部から連続していることが好ましい。双晶境界部が連続
していることにより、ジルコニウム含有膜とその上に形
成されている層との間が結晶格子面レベルで連続的に成
膜されており両層間に高い密着性が実現されるととも
に、両層が双晶構造を有しているため各層自身の結晶粒
界の強度も高く、更に優れた切削耐久特性が実現され
る。この効果は特に、二層以上のジルコニウ含有膜が多
層膜状で形成されているときに強く現れる。また、本発
明の被覆工具は、前記双晶構造を構成する双晶境界部
(双晶面)が{111}面から成っていることが好まし
い。前記双晶構造を構成する双晶境界部が格子点の多い
{111}面から成っていることにより、双晶境界部が
緻密に形成され、双晶境界部を境にして接する結晶粒間
の粒界強度が更に高められ、更に優れた切削耐久特性が
得られるものと判断される。BEST MODE FOR CARRYING OUT THE INVENTION In the coated tool of the present invention, it is preferable that a layer containing crystal grains having a twin structure is formed on the zirconium-containing film. Since the upper layer contains crystal grains having a twin structure, the grain boundary strength in the upper layer is increased, and more excellent cutting durability characteristics are realized. Further, in the coated tool of the present invention, it is preferable that the twin boundary portion of the layer formed on the zirconium-containing film is continuous from the twin boundary portion of the zirconium-containing film. Since the twin boundaries are continuous, the film between the zirconium-containing film and the layer formed on it is continuously formed at the crystal lattice plane level, and high adhesion is achieved between both layers. In addition, since both layers have a twin structure, the strength of the crystal grain boundary of each layer is high, and further excellent cutting durability characteristics are realized. This effect is particularly strong when two or more zirconium-containing films are formed in a multi-layered film form. Further, in the coated tool of the present invention, it is preferable that the twin boundary portion (twin plane) constituting the twin structure is composed of {111} planes. Since the twin boundary portion forming the twin structure is composed of {111} planes having many lattice points, the twin boundary portion is densely formed, and the twin crystal boundary portions are bounded by crystal grains that are in contact with each other. It is judged that the grain boundary strength is further increased and further excellent cutting durability characteristics are obtained.
【0008】また、本発明の被覆工具は、ジルコニウム
含有膜の上に形成された膜がジルコニウム含有膜からエ
ピタキシャルに成長していることが好ましい。こうする
ことにより両層間に優れた密着性が得られ、更に優れた
切削耐久特性が得られる。本発明の被覆工具において、
チタンは周期律表の4、5、6族金属の代表として表記
したものであり、他の同族金属、例えばZr、Hf、
V、Nb、Ta、Cr、Mo、Wのいずれかであっても
略同様の効果が得られる。また、ジルコニウム含有膜は
TiZrCNやTiZrCNO膜に限るものではなくT
iZrC、TiZrCO、TiZrN、TiZrNO膜
でも良い。また、TiZrCN膜やTiZrCNO膜は
CH3CNとTiCl4或いはCH3CNとTiCl4
と酸化ガス(例えば、CO2あるいはCOの単独ガス、
または、CO2とCOの混合ガス)を反応させて成膜す
るものに限るものではなく、CH4、N2、TiCl4
やCH 4、N2、TiCl4と酸化ガスとを反応させて
成膜するTiZrCN膜やTiZrCNO膜でもよい。
また、ジルコニウム含有膜は上記の膜に限るものではな
く、上記の膜に例えばCr、Hf、Ta、Nb、Mg、
Y、Si、B、W、Mo、Sの一種または二種以上を
0.3〜10質量%添加した膜でも良い。0.3質量%
未満ではこれらを添加する効果が現れず、10質量%を
超えると上記膜の耐摩耗や高靭性の効果が低くなる欠点
が現れる。Further, the coated tool of the present invention is zirconium.
A film formed on the inclusion film is a zirconium-containing film.
It is preferably grown in the axial direction. do this
As a result, excellent adhesion was obtained between both layers,
Cutting durability characteristics can be obtained. In the coated tool of the present invention,
Titanium is shown as a representative of Group 4, 5 and 6 metals in the periodic table
Other homologous metals such as Zr, Hf,
Whether it is V, Nb, Ta, Cr, Mo, or W
A substantially similar effect can be obtained. In addition, the zirconium-containing film
Not limited to TiZrCN and TiZrCNO films, but T
iZrC, TiZrCO, TiZrN, TiZrNO film
But good. In addition, the TiZrCN film and the TiZrCNO film are
CHThreeCN and TiClFourOr CHThreeCN and TiClFour
And oxidizing gas (eg COTwoOr CO alone gas,
Or COTwoAnd mixed gas of CO) react to form a film
CH is not limited toFour, NTwo, TiClFour
And CH Four, NTwo, TiClFourReact with the oxidizing gas
It may be a TiZrCN film or a TiZrCNO film to be formed.
The zirconium-containing film is not limited to the above films.
In addition, for example, Cr, Hf, Ta, Nb, Mg,
One or more of Y, Si, B, W, Mo, S
A film containing 0.3 to 10% by mass may be used. 0.3 mass%
If it is less than 10% by weight, the effect of adding these does not appear,
If it exceeds the above, the effects of abrasion resistance and high toughness of the above-mentioned film will be reduced
Appears.
【0009】本発明の被覆工具を構成可能なジルコニウ
ム含有膜や、炭化チタン層、炭窒化チタン層、炭酸化チ
タン層、酸化アルミニウム膜は必ずしも最外層である必
要はない。例えばさらにその上に少なくとも一層のチタ
ンやジルコニウム、ハフニウムの化合物(例えばTi
N、ZrN、HfN、TiCN層、ZrCN、HfCN
あるいはこれらを組み合わせた多層膜等)を被覆しても
よい。また、上記膜には本発明の被覆工具の切削耐久特
性を劣化させない範囲で不可避の添加物、不純物を例え
ば数質量%程度まで含むことが許容される。本発明の被
覆工具の製作は既知の成膜方法を採用できる。例えば、
通常の化学蒸着法(熱CVD)、プラズマを付加した化
学蒸着法(PACVD)、イオンプレーティング法等を
用いることができる。用途は切削工具に限るものではな
く、硬質皮膜を被覆した耐摩耗材や金型、溶湯部品等で
もよい。次に、本発明の被覆工具を実施例により具体的
に説明するが、それら実施例により本発明が限定される
ものではない。The zirconium-containing film, the titanium carbide layer, the titanium carbonitride layer, the titanium carbonate layer, and the aluminum oxide film that can form the coated tool of the present invention are not necessarily the outermost layers. For example, a compound of at least one layer of titanium, zirconium or hafnium (eg Ti
N, ZrN, HfN, TiCN layer, ZrCN, HfCN
Alternatively, a multi-layer film or the like in which these are combined may be coated. Further, the above film is allowed to contain inevitable additives and impurities, for example, up to about several mass% within a range not deteriorating the cutting durability characteristics of the coated tool of the present invention. The coated tool of the present invention can be manufactured by a known film forming method. For example,
A normal chemical vapor deposition method (thermal CVD), a chemical vapor deposition method with plasma added (PACVD), an ion plating method, or the like can be used. The application is not limited to the cutting tool, and may be a wear-resistant material coated with a hard coating, a mold, a molten metal component, or the like. Next, the coated tool of the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
【0010】(実施例1)WC:80質量%、TiC:
5質量%、(Ta、Nb)C:6質量%、Co:9質量
%の組成よりなる超硬合金製スローアウェイチップ上
に、熱CVD法により成膜温度900℃で厚さ0.4μ
mの窒化チタン膜をまず形成した。続いて、成膜温度8
50℃、原料ガスをTiCl4ガス:1.5vol%、
CH3CNガス:1.0vol%、N2ガス:45vo
l%、残りH2キャリヤーガスで構成された原料ガスを
毎分6000mlだけCVD炉内に流し、成膜圧力:
5.0kPaで厚さ1μmの炭窒化チタン膜を成膜し
た。次に、TiCl4ガス1.5vol%、ZrCl4
ガス1.5vol%、CH3CNガス1vol%、CO
ガスを1vol%、N2ガス45vol%、残H2キャ
リヤーガスで構成された原料ガスを毎分6000mlだ
けCVD炉内に流し、成膜圧力5kPa、成膜温度85
0℃で反応させることによりTiとZr、C、N、Oか
らなる炭窒酸化チタンジルコニウム膜を成膜した。続い
て、ZrCl4ガス:1.5vol%、CH3CNガ
ス:1.0vol%、N2ガス:45vol%、残りH
2キャリヤーガスで構成された原料ガスを毎分6000
mlだけCVD炉内に流し、上記と同じ成膜温度850
℃、成膜圧力5kPaで炭窒化ジルコニウム層を成膜し
た。この炭窒酸化チタンジルコニウム層と炭窒化ジルコ
ニウム層とを一組とする複層構造を単位層として、16
組の複層構造単位層を積層することにより炭窒酸化チタ
ンジルコニウム層と炭窒化ジルコニウム層とからなる全
厚が9μmの多層膜を成膜した。(Example 1) WC: 80% by mass, TiC:
On a throw-away chip made of cemented carbide having a composition of 5% by mass, (Ta, Nb) C: 6% by mass, and Co: 9% by mass, a film thickness of 0.4 μ was formed at a film forming temperature of 900 ° C. by a thermal CVD method.
First, a titanium nitride film of m was formed. Subsequently, the film forming temperature 8
50 ° C., the raw material gas is TiCl 4 gas: 1.5 vol%,
CH 3 CN gas: 1.0 vol%, N 2 gas: 45 vo
A raw material gas composed of 1% and the remaining H2 carrier gas was flowed into the CVD furnace at a flow rate of 6000 ml per minute to form a film at a deposition pressure of:
A titanium carbonitride film having a thickness of 1 μm was formed at 5.0 kPa. Next, TiCl 4 gas 1.5 vol%, ZrCl 4
Gas 1.5 vol%, CH 3 CN gas 1 vol%, CO
Gas of 1 vol%, N 2 gas of 45 vol%, and a raw material gas composed of the remaining H 2 carrier gas was flowed into the CVD furnace at a rate of 6000 ml per minute, a film forming pressure of 5 kPa and a film forming temperature of 85.
By reacting at 0 ° C., a titanium zirconium oxycarbonitride film composed of Ti and Zr, C, N and O was formed. Subsequently, ZrCl 4 gas: 1.5 vol%, CH 3 CN gas: 1.0 vol%, N 2 gas: 45 vol%, and the remaining H
Raw material gas composed of 2 carrier gases 6000 min.
Flowing only ml into the CVD furnace, the same film forming temperature as above 850
A zirconium carbonitride layer was formed at a temperature of 5 ° C. and a film forming pressure of 5 kPa. A multi-layered structure including a set of the zirconium carbonitride oxide layer and the zirconium carbonitride layer as a unit layer
By laminating a set of multi-layer structure unit layers, a multilayer film having a total thickness of 9 μm composed of a titanium zirconium oxycarbonitride layer and a zirconium carbonitride layer was formed.
【0011】このようにして作製した本発明例1の多層
膜の断面を透過型電子顕微鏡(TEM、日立製作所製、
H−800、200kV)により撮影した写真を図1に
示す。図2は、図1中の中央右上部近傍の暗STEM像
である。これは透過した散乱電子を像化したもので、原
子番号効果が強調され通常のSEM像と同様の像が撮影
されている。即ち、明るい縞模様に撮影されている層が
ZrCN膜、その上下で暗く撮影されている縞模様層が
TiZrCNO膜である。図3は図2近傍の領域に於け
るTiの分布、図4はZrの分布を分析したものであ
る。この元素マップはTEM装置に内蔵したエネルギー
分散形X線分析装置(EDX、NORAN社製)により
分析した。図1〜4より、TiZrCNO膜とZrCN
膜とが多層膜状に高密度に成膜されていることがわか
る。各膜間や結晶粒間に空孔は観察されていない。ま
た、例えば図2の右下から左上にかけてのように、多数
の結晶粒界が一直線に多層膜間を貫通していることがわ
かる。尚、図1において、特に暗く撮影されている部分
が数箇所存在するが、これは、この部分の結晶の格子面
が電子線の入射に整合しブラッグ反射のため電子線が回
折されたため、入射電子線の透過能が低くなったためで
ある。膜中にクラックや空孔があるためではない。The cross section of the thus-prepared multilayer film of Example 1 of the present invention was taken with a transmission electron microscope (TEM, manufactured by Hitachi,
A photograph taken by H-800, 200 kV) is shown in FIG. FIG. 2 is a dark STEM image near the center upper right portion in FIG. This is an image of transmitted scattered electrons, and the atomic number effect is emphasized, and an image similar to a normal SEM image is taken. That is, the layer photographed in a bright striped pattern is the ZrCN film, and the striped layer photographed darkly above and below it is the TiZrCNO film. FIG. 3 shows the distribution of Ti in the region near FIG. 2, and FIG. 4 shows the analysis of the distribution of Zr. This element map was analyzed by an energy dispersive X-ray analyzer (EDX, manufactured by NORAN) incorporated in the TEM device. From FIGS. 1 to 4, TiZrCNO film and ZrCN
It can be seen that the film and the film are formed in a multi-layered film with high density. No vacancies were observed between the films or between the crystal grains. Further, it can be seen that, for example, from the lower right to the upper left of FIG. 2, a large number of crystal grain boundaries linearly penetrate between the multilayer films. In addition, in FIG. 1, there are several portions that are particularly darkly photographed. This is because the crystal plane of this portion matches the incident electron beam and the electron beam is diffracted due to Bragg reflection. This is because the electron beam transmittance is low. This is not because of cracks or holes in the film.
【0012】図5は図2中央部の高分解能像(日立製作
所製HF−2100、200kVを使用)である。図5
上半分にZrCN膜、下半分にTiZrCNO膜が撮影
され、右下から左上にかけて結晶粒界a−bが撮影され
ている。図5より、結晶粒界a−bと平行にTiZrC
NO膜とZrCN膜の両格子縞が一直線に連続して形成
されており、しかも結晶粒界a−bを境界にして左右に
対称であることがわかる。すなわち、TiZrCNO膜
とZrCN膜の両者が双晶構造を有しており結晶粒界a
−bが双晶面であること、しかもこの双晶面がTiZr
CNO膜からZrCN膜まで一直線に連続していること
がわかる。図5の格子像をフーリエ変換した結果、Zr
CN膜とTiZrCNO膜とはともに結晶格子が面心立
方晶であり、格子縞a−bは{111}面であることが
判明した。また、図5において、TiZrCNO膜とZ
rCN膜の格子縞が界面(図5中央部付近にある)を越
えて一直線に連続していることから両者がエピタキシャ
ルに成長していることがわかる。FIG. 5 is a high-resolution image (using Hitachi's HF-2100, 200 kV) in the center of FIG. Figure 5
The ZrCN film is photographed in the upper half, the TiZrCNO film is photographed in the lower half, and the grain boundaries ab are photographed from the lower right to the upper left. As shown in FIG. 5, TiZrC is parallel to the grain boundaries ab.
It can be seen that both the lattice fringes of the NO film and the ZrCN film are continuously formed in a straight line and are symmetrical to each other with the grain boundary ab as a boundary. That is, both the TiZrCNO film and the ZrCN film have a twin structure, and the grain boundary a
-B is a twin plane, and this twin plane is TiZr
It can be seen that the CNO film and the ZrCN film are continuous in a straight line. As a result of Fourier transform of the lattice image of FIG. 5, Zr
It was found that the crystal lattices of both the CN film and the TiZrCNO film are face-centered cubic crystals, and the lattice fringes ab are {111} planes. Further, in FIG. 5, the TiZrCNO film and the Z
Since the lattice stripes of the rCN film are continuous in a straight line across the interface (in the vicinity of the center of FIG. 5), it can be seen that both are epitaxially grown.
【0013】尚、図1〜5の透過型電子顕微鏡写真は成
膜面の断面を厚さ20μm以下に研磨した後、更にイオ
ンミリングにより厚さを薄くした膜断面の微少領域に、
電子線を透過させて撮影したものである。このため、ジ
ルコニウム含有膜やその上に成膜されている層に含有さ
れている双晶部分が実際に観察される確率は低いと考え
られる。したがって、図5のように、微少領域のTEN
写真中に双晶部分が観測されるということはかなりの頻
度でジルコニウム含有膜やその上層膜中に双晶部分が存
在していると判断できる。また、観察試料の膜厚が厚い
等、試料の条件が悪い時には、電子線回折像では双晶関
係が確認されないことがある。この場合も試料を再加工
し格子像を観察することにより、上記のような双晶関係
が確認されることがあるので注意を要する。The transmission electron micrographs of FIGS. 1 to 5 show that the cross section of the film-forming surface was polished to a thickness of 20 μm or less, and then further thinned by ion milling to form a microscopic area of the film cross section.
The image was taken through an electron beam. Therefore, it is considered that the probability of actually observing the twinned portion contained in the zirconium-containing film or the layer formed thereon is low. Therefore, as shown in FIG.
The fact that the twinned portion is observed in the photograph can be judged that the twinned portion is present in the zirconium-containing film and the upper layer film quite frequently. In addition, when the conditions of the observation sample are bad such as the observation sample is thick, the twinning relation may not be confirmed in the electron diffraction image. Also in this case, it should be noted that the above twinning relationship may be confirmed by reworking the sample and observing the lattice image.
【0014】本発明例1の条件で製作した切削工具5個
を以下の条件で断続切削し、刃先先端の欠け状況を倍率
50倍の実体顕微鏡で観察し、刃先にチッピングや膜剥
離が生じるまでの断続切削回数を求めた。
被削材:SCM435材(四つ溝入)
工具形状:CNMG433
切削条件:200m/分
送り:0.3mm/rev
切り込み:1.5mm
切削液:使用せず(乾式切削)
その結果、本発明品は8000回迄断続切削後も刃先が
健全でチッピングや剥離が見られず、膜の結晶粒界強度
と膜間の密着性が優れており、切削工具として断続切削
時の耐久性が優れていることがわかった。Five cutting tools manufactured under the conditions of Example 1 of the present invention were intermittently cut under the following conditions, and the state of chipping of the tip of the cutting edge was observed with a stereoscopic microscope at a magnification of 50, until chipping or film peeling occurred on the cutting edge. The number of intermittent cuttings was calculated. Work Material: SCM435 Material (Four Grooves) Tool Shape: CNMG433 Cutting Conditions: 200m / min Feed: 0.3mm / rev Cutting Depth: 1.5mm Cutting Fluid: Not Used (Dry Cutting) As a result, the present invention product The cutting edge is sound even after interrupted cutting up to 8000 times, chipping and peeling are not seen, the grain boundary strength of the film and the adhesion between films are excellent, and the durability as an interrupting tool is excellent as a cutting tool. I understood it.
【0015】(実施例2)比較例2として、ジルコニウ
ム含有膜に双晶構造が存在する場合としない場合の切削
特性への影響を明確にするために、以下の比較例2を作
製した。実施例1と同様の組成を持つ超硬合金製基板の
表面に実施例1と同様の方法によりTiNとTiCNO
膜とを成膜した後、次に、TiCl4ガス1.5vol
%、ZrCl 4ガス1vol%、CH3CNガス0.5
vol%、CO2ガス1vol%、N 2ガス45vol
%、残H2キャリヤーガスで構成された原料ガスを毎分
6000mlだけCVD炉内に流し、成膜圧力10kP
a、成膜温度750℃でTiとZr、C、N、Oからな
る炭窒酸化チタンジルコニウム膜を成膜した。続いて、
原料ガスをZrCl4ガス:1.5vol%、CH3C
Nガス:0.5vol%、N2ガス:45vol%、残
りH2キャリヤーガスで構成された原料ガスを毎分60
00mlだけCVD炉内に流し、成膜温度950℃、成
膜圧力10kPaで炭窒化ジルコニウム層を成膜した。
この炭窒酸化チタンジルコニウム層と炭窒化ジルコニウ
ム層とを一組とする複層構造を単位層として、16組の
複層構造単位層を積層することにより炭窒酸化チタンジ
ルコニウム層と炭窒化ジルコニウム層とからなる全厚が
9μmの多層膜を成膜することにより、比較例2を作製
した。Example 2 As Comparative Example 2, zirconium
Cutting with and without twin crystal structure
In order to clarify the effect on the characteristics, the following Comparative Example 2 was created.
Made Of a cemented carbide substrate having the same composition as in Example 1
TiN and TiCNO were applied to the surface in the same manner as in Example 1.
After forming the film, next, TiClFourGas 1.5vol
%, ZrCl FourGas 1 vol%, CHThreeCN gas 0.5
vol%, COTwoGas 1 vol%, N TwoGas 45vol
%, Remaining HTwoSource gas composed of carrier gas is supplied every minute
Flowing only 6000 ml into the CVD furnace, film forming pressure 10 kP
a, at a film forming temperature of 750 ° C., consisting of Ti, Zr, C, N and O
A titanium zirconium oxycarbonitride film was formed. continue,
Source gas is ZrClFourGas: 1.5vol%, CHThreeC
N gas: 0.5 vol%, NTwoGas: 45 vol%, balance
Ri HTwo60 minutes per minute of raw material gas composed of carrier gas
Only 00 ml was flown into the CVD furnace and the film formation temperature was 950 ° C.
A zirconium carbonitride layer was formed at a film pressure of 10 kPa.
This zirconium carbonitride oxide layer and zirconium carbonitride
16 layers of multi-layered structure with one layer as a unit layer
By stacking multi-layer structural unit layers, titanium oxycarbonitride
The total thickness of the ruconium layer and the zirconium carbonitride layer is
Comparative Example 2 is prepared by forming a 9 μm multilayer film.
did.
【0016】この比較例2のジルコニウム含有膜近傍を
実施例1と同様にして透過型電子顕微鏡で観察したが、
ジルコニウム含有膜に双晶構造部は見られなかった。次
に、比較例2の条件で作製した切削工具5個を用いて実
施例1と同一の条件で断続切削試験を行い、刃先先端の
欠け状況を倍率50倍の実体顕微鏡で観察した結果、5
000回衝撃切削後にいずれにも刃先にチッピングが発
生し切削工具として劣っていることが判明した。また、
この断続切削試験で膜剥離や欠けを発生した部分をミク
ロ観察したところ、膜剥離がジルコニウム含有膜から発
生しており、これが原因でチッピングが発生しているこ
とがわかった。The vicinity of the zirconium-containing film of Comparative Example 2 was observed with a transmission electron microscope in the same manner as in Example 1.
No twin structure was found in the zirconium-containing film. Next, an intermittent cutting test was performed under the same conditions as in Example 1 using 5 cutting tools manufactured under the conditions of Comparative Example 2, and the chipped state of the cutting edge was observed with a stereoscopic microscope at a magnification of 50.
It was revealed that chipping occurred on the cutting edge after any of the 000 times of impact cutting and that the cutting tool was inferior. Also,
Microscopic observation of the part where film peeling or chipping occurred in this intermittent cutting test revealed that film peeling occurred from the zirconium-containing film, and this caused chipping.
【0017】(実施例3)本発明例3として、WC:8
0質量%、TiC:5質量%、(Ta、Nb)C:6質
量%、Co:9質量%の組成よりなる超硬合金製スロー
アウェイチップ上に、実施例1と同じ条件で厚さ0.4
μmの窒化チタン膜と厚さ1μmの炭窒化チタン膜を成
膜した。次に、TiCl4ガス1.5vol%、ZrC
l4ガス1.5vol%、CH3CNガス2.0vol
%、N2ガス45vol%、残H2キャリヤーガスで構
成された原料ガスを毎分6000mlだけCVD炉内に
流し、成膜圧力5kPa、成膜温度850℃で反応させ
ることによりTiとZr、C、Nからなる炭窒化チタン
ジルコニウム膜を成膜した。続いて、ZrCl4ガス
1.5vol%、CH3CNガス1.0vol%、N2
ガス45vol%、残H2キャリヤーガスで構成された
原料ガスを毎分6000mlだけCVD炉内に流し、上
記と同じ成膜温度850℃、成膜圧力:5kPaで炭窒
化ジルコニウム層を成膜した。この炭窒化チタンジルコ
ニウム層と炭窒化ジルコニウム層とを一組とする複層構
造を単位層として、12組の複層構造単位層を積層する
ことにより炭窒化チタンジルコニウム層と炭窒化ジルコ
ニウム層とからなる全厚が7μmの多層膜を成膜した。
その後、TiCl4ガスとCH4ガスとH2キャリヤー
ガスで構成された原料ガス2、200ml/分を30分
間流し、そのまま連続して本構成の原料ガスにさらに2
0ml/分のCO2ガスを追加して30分間流すことに
より、成膜温度950℃で、チタンの炭化物とチタンの
炭酸化物からなる層(結合膜)を作製した。続いてAl
金属小片を詰め350℃に保温した小筒中にH2ガス3
10ml/分とHClガス130ml/分とを流すこと
により発生させたAlCl3ガスとH2ガス2l/分と
CO2ガス100ml/分とをCVD炉内に流し、10
10℃で反応させることにより2μm厚さのα型酸化ア
ルミニウム膜を成膜した後、更に成膜温度1010℃で
厚さ0.8μmの窒化チタン膜することにより本発明例
3の被覆工具を得た。Example 3 As Example 3 of the present invention, WC: 8
0% by mass, TiC: 5% by mass, (Ta, Nb) C: 6% by mass, Co: 9% by mass on a throw-away tip made of cemented carbide under the same conditions as in Example 1 .4
A titanium nitride film having a thickness of 1 μm and a titanium carbonitride film having a thickness of 1 μm were formed. Next, TiCl 4 gas 1.5 vol%, ZrC
l 4 gas 1.5 vol%, CH 3 CN gas 2.0 vol
%, N 2 gas 45 vol%, and a raw material gas composed of the residual H 2 carrier gas at a flow rate of 6000 ml / min in the CVD furnace, and the reaction is performed at a film forming pressure of 5 kPa and a film forming temperature of 850 ° C. , N was formed into a titanium zirconium carbonitride film. Subsequently, ZrCl 4 gas 1.5 vol%, CH 3 CN gas 1.0 vol%, N 2
A raw material gas composed of 45 vol% of gas and the residual H 2 carrier gas was flowed into the CVD furnace at 6000 ml per minute, and a zirconium carbonitride layer was formed at the same film forming temperature of 850 ° C. and a film forming pressure of 5 kPa. The titanium zirconium carbonitride layer and the zirconium carbonitride layer are used as a unit layer, and 12 sets of multilayer structure unit layers are laminated to form a titanium zirconium carbonitride layer and a zirconium carbonitride layer. A multilayer film having a total thickness of 7 μm was formed.
After that, 200 ml / min of a raw material gas 2 composed of TiCl 4 gas, CH 4 gas, and H 2 carrier gas was flowed for 30 minutes, and the raw material gas of the present composition was further added with 2 more times.
By adding 0 ml / min of CO 2 gas for 30 minutes, a layer (bonding film) made of titanium carbide and titanium carbonate was formed at a film forming temperature of 950 ° C. Then Al
H 2 gas 3 in a small tube filled with small metal pieces and kept at 350 ℃
AlCl 3 gas generated by flowing 10 ml / min and 130 ml / min of HCl gas, 2 l / min of H 2 gas and 100 ml / min of CO 2 gas were caused to flow in the CVD furnace, and 10
After a 2 μm thick α-type aluminum oxide film was formed by reacting at 10 ° C., a 0.8 μm thick titanium nitride film was further formed at a film forming temperature of 1010 ° C. to obtain a coated tool of Inventive Example 3. It was
【0018】本発明例3を理学電気(株)製のX線回折
装置(RU−200BH)でX線源にCuKα1線(λ
=0.15405nm)を用いて2θ−θ走査法により
X線回折図形を測定した後、実施例1と同様に、本発明
品の多層膜の断面を透過型電子顕微鏡(TEM、日立製
作所製、H−800、200kV)とエネルギー分散形
X線分析装置(EDX、NORAN社製)によりミクロ
解析した結果、超硬合金製基体の表面にTiNとTiC
N膜を経てTiZrCNとZrCNとから成る多層膜が
高密度に成膜されており、その上に結合膜を経てα型酸
化アルミニウムとTiN膜が成膜されていることが確認
された。そして、多層膜部分にはTiZrCN結晶粒と
ZrCN結晶粒の両者が双晶構造を有しており、しかも
両結晶粒間で双晶面が直線的に連続していることが確認
された。In Example 3 of the present invention, an X-ray diffractometer (RU-200BH) manufactured by Rigaku Denki Co., Ltd. was used as an X-ray source for CuKα1 rays (λ
= 0.15405 nm), the X-ray diffraction pattern was measured by the 2θ-θ scanning method, and then the cross section of the multilayer film of the present invention was examined by a transmission electron microscope (TEM, manufactured by Hitachi Ltd.) in the same manner as in Example 1. H-800, 200 kV) and an energy dispersive X-ray analyzer (EDX, manufactured by NORAN) as a result of microanalysis. As a result, TiN and TiC were formed on the surface of the cemented carbide substrate.
It was confirmed that a multilayer film composed of TiZrCN and ZrCN was formed at a high density via the N film, and an α-type aluminum oxide and a TiN film were formed thereon via a coupling film. Then, it was confirmed that both the TiZrCN crystal grains and the ZrCN crystal grains had a twin crystal structure in the multilayer film portion, and the twin planes were linearly continuous between both crystal grains.
【0019】上記のようにして得られた本発明の被覆工
具を用いて、以下の条件で断続切削を行い、刃先の損傷
状況を倍率50倍の工具顕微鏡で観察した。
被削材:SCM435(四つ溝入り)
工具形状:CNMG433
切削速度:220m/分
送り:0.20mm/rev
切り込み:1.5mm
切削液:使用せず(乾式切削)
この切削テストの結果、本発明品は、いずれも、断続切
削回数が7000回迄断続切削後も刃先にジルコニウム
含有膜やアルミナ膜にチッピングや剥離が見られず、本
発明例3の膜の結晶粒界強度と膜間の密着性が優れてお
り、工具寿命が長いことが判明した。Using the coated tool of the present invention obtained as described above, intermittent cutting was performed under the following conditions, and the damage state of the cutting edge was observed with a tool microscope at a magnification of 50 times. Work material: SCM435 (with four grooves) Tool shape: CNMG433 Cutting speed: 220 m / min Feed: 0.20 mm / rev Cutting depth: 1.5 mm Cutting fluid: Not used (dry cutting) As a result of this cutting test, In each of the invention products, no chipping or peeling was observed in the zirconium-containing film or the alumina film at the cutting edge after the intermittent cutting up to 7,000 times of the intermittent cutting, and the crystal grain boundary strength of the film of Inventive Example 3 and the inter-film It was found that the adhesion was excellent and the tool life was long.
【0020】(実施例4)比較例4として、ジルコニウ
ム含有膜が双晶構造を有する場合と有しない場合との差
を明確にするために以下の比較例4を作製した。実施例
3と同様の組成を持つ超硬合金製基板の表面に実施例3
と同様の方法によりTiNとTiCN膜とを成膜した
後、次に、TiCl4ガス1.5vol%、ZrCl4
ガス0.5vol%、CH3CNガス0.5vol%、
N2ガス45vol%、残H2キャリヤーガスで構成さ
れた原料ガスを毎分6000mlだけCVD炉内に流
し、成膜圧力15kPa、成膜温度750℃でTiとZ
r、C、N、からなる炭窒化チタンジルコニウム膜を成
膜した。続いて、成膜温度950℃、原料ガスをZrC
l4ガス:1.5vol%、CH3CNガス:0.5v
ol%、N2ガス:45vol%、残りH2キャリヤー
ガスで構成された原料ガスを毎分6000mlだけCV
D炉内に流し、成膜圧力:15kPaで炭窒化ジルコニ
ウム層を成膜した。この炭窒化チタンジルコニウム層と
炭窒化ジルコニウム層とを一組とする複層構造を単位層
として、12組の複層構造単位層を積層することにより
炭窒化チタンジルコニウム層と炭窒化ジルコニウム層と
からなる全厚が7μmの多層膜を成膜した。そして更
に、実施例2と同じ条件でチタンの炭化物とチタンの炭
酸化物からなる層(結合膜)を作製し、更に厚さ2μm
のα型酸化アルミニウム膜と厚さ0.8μmの窒化チタ
ン膜を成膜することにより比較例4の被覆工具を作製し
た。Example 4 As Comparative Example 4, the following Comparative Example 4 was prepared in order to clarify the difference between the case where the zirconium-containing film has the twin structure and the case where it does not have the twin structure. Example 3 was formed on the surface of a cemented carbide substrate having the same composition as in Example 3.
After forming a TiN film and a TiCN film by the same method as described above, next, TiCl 4 gas 1.5 vol%, ZrCl 4
Gas 0.5 vol%, CH 3 CN gas 0.5 vol%,
A raw material gas composed of 45% by volume of N 2 gas and the residual H 2 carrier gas was flowed into the CVD furnace at a rate of 6000 ml / min to form Ti and Z at a film forming pressure of 15 kPa and a film forming temperature of 750 ° C.
A titanium zirconium carbonitride film composed of r, C and N was formed. Subsequently, the film forming temperature is 950 ° C., the source gas is ZrC.
l 4 Gas: 1.5vol%, CH 3 CN gas: 0.5 v
CV of raw material gas composed of ol%, N 2 gas: 45 vol% and the remaining H 2 carrier gas at 6000 ml / min
The zirconium carbonitride layer was formed at a film forming pressure of 15 kPa. The titanium zirconium carbonitride layer and the zirconium carbonitride layer are used as a unit layer, and 12 sets of multilayer structure unit layers are laminated to form a titanium zirconium carbonitride layer and a zirconium carbonitride layer. A multilayer film having a total thickness of 7 μm was formed. Further, a layer (bonding film) made of a titanium carbide and a titanium carbonate was prepared under the same conditions as in Example 2, and the thickness was 2 μm.
A coated tool of Comparative Example 4 was prepared by depositing the α-type aluminum oxide film and the titanium nitride film having a thickness of 0.8 μm.
【0021】比較例4のジルコニウム含有膜近傍を実施
例3と同様にして透過型電子顕微鏡で観察したが、ジル
コニウム含有膜に双晶構造部は見られなかった。次に、
比較例4の条件で作製した切削工具5個を用いて実施例
3と同じ条件で断続切削試験を行い、刃先先端のチッピ
ング発生状況を倍率50倍の実体顕微鏡で観察した結
果、4500回衝撃切削後にいずれにもチッピングや膜
剥離が発生しており切削工具として劣っていることが判
明した。また、この断続切削試験で膜剥離や欠けを発生
した部分をミクロ観察したところ、チッピングや膜剥離
がジルコニウム含有膜中で発生しており、これが原因で
欠けが発生していると考えられることがわかった。The vicinity of the zirconium-containing film of Comparative Example 4 was observed with a transmission electron microscope in the same manner as in Example 3, but no twin structure portion was found in the zirconium-containing film. next,
An interrupted cutting test was conducted under the same conditions as in Example 3 using 5 cutting tools produced under the conditions of Comparative Example 4, and the chipping occurrence state at the tip of the cutting edge was observed with a stereoscopic microscope at a magnification of 50. As a result, impact cutting was performed 4500 times. Later, it was found that chipping and film peeling occurred in all of them and it was inferior as a cutting tool. In addition, microscopic observation of the part where film peeling or chipping occurred in this intermittent cutting test revealed that chipping or film peeling had occurred in the zirconium-containing film, and this is considered to be the cause of chipping. all right.
【0022】[0022]
【発明の効果】上述のように、本発明を適用することに
より、ジルコニウム含有膜の結晶粒界の強度や上層膜と
の密着性が優れ、優れた切削耐久特性を持つ有用なジル
コニウム含有膜被覆工具を実現することができる。INDUSTRIAL APPLICABILITY As described above, by applying the present invention, a useful zirconium-containing film coating excellent in the strength of the crystal grain boundary of the zirconium-containing film and the adhesion to the upper layer film and having excellent cutting durability characteristics. A tool can be realized.
【図1】図1は、本発明例の被覆工具の多層膜の断面を
透過型電子顕微鏡で観察した組織写真を示す。FIG. 1 is a microstructure photograph of a cross section of a multilayer film of a coated tool of the present invention, observed by a transmission electron microscope.
【図2】図2は、図1中の中央右上部近傍の暗STEM
像を示す。FIG. 2 is a dark STEM near the upper right part of the center of FIG.
Show the image.
【図3】図3は、図2近傍の領域に於けるTiの分布を
示す。FIG. 3 shows the distribution of Ti in the region near FIG.
【図4】図4は、図2近傍の領域におけるZrの分布を
示す。FIG. 4 shows a distribution of Zr in a region near FIG.
【図5】図5は、図2の中央部の高分解能像で、図5上
半分にZrCN膜、下半分にTiZrCNO膜が撮影さ
れ、右下から左上にかけて結晶粒界a−bを撮影したS
TEM像を示す。5 is a high-resolution image of the central portion of FIG. 2, in which the ZrCN film is photographed in the upper half of FIG. 5 and the TiZrCNO film is photographed in the lower half, and grain boundaries ab are photographed from the lower right to the upper left. S
A TEM image is shown.
フロントページの続き (72)発明者 澤野 公一 千葉県成田市新泉13番地の2 日立ツール 株式会社成田工場内 Fターム(参考) 3C046 FF02 FF11 FF17 4K029 BA41 BA44 BA54 BA55 BA58 BB02 BB07 BC00 BD05 4K030 BA02 BA22 BA35 BA36 BA38 BA41 BB01 BB12 LA01 LA22Continued front page (72) Inventor Koichi Sawano 2 Hitachi Tool, 13 Shinizumi, Narita City, Chiba Prefecture Narita Factory Co., Ltd. F-term (reference) 3C046 FF02 FF11 FF17 4K029 BA41 BA44 BA54 BA55 BA58 BB02 BB07 BC00 BD05 4K030 BA02 BA22 BA35 BA36 BA38 BA41 BB01 BB12 LA01 LA22
Claims (7)
アルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭
酸化物、窒酸化物、炭窒酸化物のいずれか一種の単層皮
膜または二種以上の多層皮膜を有し、前記皮膜の少なく
とも一層がジルコニウムを含有し、且つ、該ジルコニウ
ム含有膜が双晶構造を持った結晶粒を含有することを特
徴とする被覆工具。1. A single surface selected from the group consisting of carbides, nitrides, oxides, carbonitrides, carbooxides, nitric oxides and carbonitride oxides of groups 4, 5 and 6 of the periodic table and aluminum on the surface of a substrate. A coated tool having a layer coating or a multi-layer coating of two or more types, at least one layer of the coating containing zirconium, and the zirconium-containing coating containing crystal grains having a twin structure.
ジルコニウム含有膜の上に双晶構造を持った結晶粒を含
有する膜が形成されていることを特徴とする被覆工具。2. The coated tool according to claim 1, wherein a film containing crystal grains having a twin structure is formed on the zirconium-containing film.
ルコニウム含有膜の上に形成された膜の双晶境界部が前
記ジルコニウム含有膜の双晶境界部から連続しているこ
とを特徴とする被覆工具。3. The coated tool according to claim 2, wherein the twin boundary portion of the film formed on the zirconium-containing film is continuous from the twin boundary portion of the zirconium-containing film. Coated tool.
前記双晶構造を構成する双晶境界部が{111}面から
成っていることを特徴とする被覆工具。4. A coated tool according to claim 1, wherein:
A coated tool characterized in that a twin boundary portion constituting the twin structure is composed of a {111} plane.
前記ジルコニウム含有膜の上に形成された層が、前記ジ
ルコニウム含有膜の上にエピタキシャルに成長している
ことを特徴とする被覆工具。5. A coated tool according to claim 1, wherein:
A coated tool, wherein a layer formed on the zirconium-containing film is epitaxially grown on the zirconium-containing film.
前記ジルコニウム含有膜がTi、Zr、C、Nから成る
ことを特徴とする被覆工具。6. The coated tool according to claim 1, wherein:
A coated tool, wherein the zirconium-containing film is composed of Ti, Zr, C and N.
前記ジルコニウム含有膜がTi、Zr、C、N、Oから
成ることを特徴とする被覆工具。7. A coated tool according to claim 1, wherein:
A coated tool, wherein the zirconium-containing film is composed of Ti, Zr, C, N, and O.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001230891A JP2003039207A (en) | 2001-07-31 | 2001-07-31 | Clad tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001230891A JP2003039207A (en) | 2001-07-31 | 2001-07-31 | Clad tool |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006073167A Division JP4480090B2 (en) | 2006-03-16 | 2006-03-16 | Coated tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003039207A true JP2003039207A (en) | 2003-02-12 |
Family
ID=19063023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001230891A Pending JP2003039207A (en) | 2001-07-31 | 2001-07-31 | Clad tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003039207A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4950276B2 (en) * | 2007-02-22 | 2012-06-13 | 三菱重工業株式会社 | Surface coating member, manufacturing method thereof, cutting tool and machine tool |
US9181621B2 (en) | 2013-03-21 | 2015-11-10 | Kennametal Inc. | Coatings for cutting tools |
US9181620B2 (en) | 2013-03-21 | 2015-11-10 | Kennametal Inc. | Coatings for cutting tools |
US9371580B2 (en) | 2013-03-21 | 2016-06-21 | Kennametal Inc. | Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same |
US9650714B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Nanocomposite refractory coatings and applications thereof |
US9650712B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Inter-anchored multilayer refractory coatings |
US9719175B2 (en) | 2014-09-30 | 2017-08-01 | Kennametal Inc. | Multilayer structured coatings for cutting tools |
-
2001
- 2001-07-31 JP JP2001230891A patent/JP2003039207A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4950276B2 (en) * | 2007-02-22 | 2012-06-13 | 三菱重工業株式会社 | Surface coating member, manufacturing method thereof, cutting tool and machine tool |
US8288019B2 (en) | 2007-02-22 | 2012-10-16 | Mitsubishi Heavy Industries, Ltd. | Surface coating film, method of manufacturing thereof, cutting tool and machine tool |
US9181621B2 (en) | 2013-03-21 | 2015-11-10 | Kennametal Inc. | Coatings for cutting tools |
US9181620B2 (en) | 2013-03-21 | 2015-11-10 | Kennametal Inc. | Coatings for cutting tools |
US9371580B2 (en) | 2013-03-21 | 2016-06-21 | Kennametal Inc. | Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same |
US9903018B2 (en) | 2013-03-21 | 2018-02-27 | Kennametal Inc. | Coated body wherein the coating scheme includes a coating layer of TiAl2O3 and method of making the same |
US9719175B2 (en) | 2014-09-30 | 2017-08-01 | Kennametal Inc. | Multilayer structured coatings for cutting tools |
US9650714B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Nanocomposite refractory coatings and applications thereof |
US9650712B2 (en) | 2014-12-08 | 2017-05-16 | Kennametal Inc. | Inter-anchored multilayer refractory coatings |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101739088B1 (en) | Coated bodies made of metal, hard metal, cermet or ceramic material and method for coating such bodies | |
EP0816531B1 (en) | Alumina coated tool and production method thereof | |
EP0653499B1 (en) | Coated cutting tool and method for producing the same | |
US8999532B2 (en) | Coating layer for cutting tools | |
EP1722009A1 (en) | Thin wear resistant coating | |
KR101005435B1 (en) | TiBN coating | |
EP1103635B1 (en) | Coated cutting insert for milling and turning applications | |
KR20140023336A (en) | Member coated with hard film, process for producing same, and bit-exchangeable rotary tool equipped therewith | |
JP4004133B2 (en) | Titanium carbonitride coated tool | |
KR20070092945A (en) | Surface-coated cutting tool | |
KR102312226B1 (en) | Surface-coated cutting tool and method of producing the same | |
JP3768136B2 (en) | Coated tool | |
US9149871B2 (en) | Alumina layer with multitexture components | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
JP2003039207A (en) | Clad tool | |
JP2019171546A (en) | Surface-coated cutting tool and method of manufacturing the same | |
US20040081824A1 (en) | Oxide coated cutting tool | |
JP4480090B2 (en) | Coated tool | |
JP5240607B2 (en) | Surface coated cutting tool | |
US11167355B2 (en) | Cutting tool | |
EP3868501A1 (en) | Cutting tool | |
JP2002273607A (en) | Multilayer coat tool | |
KR102695334B1 (en) | Cutting tool | |
JP3818961B2 (en) | Aluminum oxide coated tools | |
US11103930B2 (en) | Cutting tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040122 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060317 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060821 |