JP2005131730A - Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance - Google Patents

Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance Download PDF

Info

Publication number
JP2005131730A
JP2005131730A JP2003369801A JP2003369801A JP2005131730A JP 2005131730 A JP2005131730 A JP 2005131730A JP 2003369801 A JP2003369801 A JP 2003369801A JP 2003369801 A JP2003369801 A JP 2003369801A JP 2005131730 A JP2005131730 A JP 2005131730A
Authority
JP
Japan
Prior art keywords
layer
type
crystal structure
hard coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369801A
Other languages
Japanese (ja)
Inventor
Takuya Hayatoi
拓也 早樋
Fumio Tsushima
文雄 対馬
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003369801A priority Critical patent/JP2005131730A/en
Priority to CNB2004100898247A priority patent/CN100439017C/en
Publication of JP2005131730A publication Critical patent/JP2005131730A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cermet cutting tool with a hard coating layer having superior heat-impact resistance. <P>SOLUTION: This hard coating layer is composed of the following (a) and (b) : (a) a Ti compound layer having the total average layer thickness of 3 to 20 μm which are formed by chemical deposition as a lower layer on a surface of a tool base body composed of WC group cemented carbide or TiCN group cermet, and (b) a heating transformation α type Al<SB>2</SB>O<SB>3</SB>layer whose clear diffraction peak appearing on a (006) surface and a (018) surface by X-ray diffraction measurement, and which is formed by transforming a crystal structure of the Al<SB>2</SB>O<SB>3</SB>layer having a crystal structure of a κ type or a θ type into an α type crystal structure, by applying heat treatment in a state of dispersing and distributing oxide particulates having the composition formula : TiO<SB>X</SB>Ti formed by chemical deposition as a transformation generating crack starting point material, on a surface of the Al<SB>2</SB>O<SB>3</SB>layer having the crystal structure of the κ type or the θ type in a state of being formed by chemical deposition as an upper layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される機械的熱的衝撃に対して硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   This invention is made of a surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer against mechanical thermal shock that is repeatedly applied to the cutting edge portion at a very short pitch, especially during high-speed intermittent cutting of steel and cast iron. The present invention relates to a cutting tool (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有Ti化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Al23で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, A Ti compound layer having a total average layer thickness of 3 to 20 μm, comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer. ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl23 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer or the Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool has a granular crystal structure, and the TiCN layer constituting the Ti compound layer is further improved in the strength of the layer itself. For the purpose of improvement, it is formed by chemical vapor deposition in a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to have a vertically elongated crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的熱的衝撃が付加される高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高強度を有し、すぐれた耐衝撃性を示すものの、同上部層を構成する蒸着α型Al23層は、硬質で耐熱性にすぐれるものの、機械的熱的衝撃に対してきわめて脆いものであるために、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. The Ti compound layer, which is the lower layer of the hard coating layer, has high strength and excellent impact resistance when used for high-speed intermittent cutting in which mechanical thermal shock is repeatedly applied at a very short pitch. The deposited α-type Al 2 O 3 layer that forms the upper layer is hard and has excellent heat resistance, but it is extremely brittle to mechanical thermal shocks. ( As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成するAl23層の耐チッピング性向上をはかるべく研究を行った結果、
工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、蒸着形成した状態でκ型またはθ型の結晶構造を有するAl23層を形成し、ついで、前記Al23層の表面を、同じく化学蒸着装置にて、
反応ガス組成:体積%で、TiCl:0.2〜3%、CO:0.2〜10%、Ar:5〜50%、H:残り、
反応雰囲気温度:900〜1020℃、
反応雰囲気圧力:7〜30kPa、
時間:1〜10分、
の条件で処理すると、前記Al2 3 層の表面には、
組成式:TiO
で表わした場合、同じくオージェ分光分析装置で測定して、X値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物微粒が分散分布するようになり、この状態で、加熱処理、望ましくは圧力:7〜50kPaのAr雰囲気中、温度:1000〜1200℃に10〜120分保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造のAl23層をα型結晶構造のAl23層に変態させると、この結果の加熱変態α型Al23層においては、前記変態前のAl2 3 層の表面に一様に分散分布したTi酸化物微粒が前記κ型またはθ型の結晶構造からα型結晶構造へ変態する際に発生する割れ(クラック)の起点となることから、変態発生割れはきわめて微細化し、かつ一様に分散分布した状態となると共に、層厚に関係なく、すなわち層厚に変化があっても、X線回折測定で(006)面および(018)面に一様な強さで明確な回折ピークが現れるX線回折チャートを示すようになり、この結果としてすぐれた耐チッピング性を具備するようになり、したがって硬質被覆層の上部層が前記加熱変態α型Al23層、下部層が上記Ti化合物層(このTi化合物層には上記の条件での加熱処理では何らの変化も起らない)で構成された被覆サーメット工具においては、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも前記加熱変態α型Al23層が、高強度を有する前記Ti化合物層の共存と相俟って、すぐれた耐チッピング性を発揮することから、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになるという研究結果を得たのである。
Therefore, as a result of conducting research to improve the chipping resistance of the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool from the above viewpoint,
After forming the Ti compound layer under the normal conditions as a lower layer on the surface of the tool base with a normal chemical vapor deposition device, the crystal structure of κ type or θ type is also formed under the same normal conditions. forming a the Al 2 O 3 layer having, then the surface of the the Al 2 O 3 layer at same chemical vapor deposition apparatus,
Reaction gas composition: by volume%, TiCl 4: 0.2~3%, CO 2: 0.2~10%, Ar: 5~50%, H 2: remainder,
Reaction atmosphere temperature: 900-1020 ° C.
Reaction atmosphere pressure: 7-30 kPa,
Time: 1-10 minutes
When the treatment is performed under the conditions, the surface of the Al 2 O 3 layer is
Composition formula: TiO x ,
In this state, Ti oxide fine particles satisfying an X value of 1.2 to 1.9 in terms of atomic ratio with respect to Ti are dispersed and distributed, as measured by an Auger spectroscopic analyzer. Heat treatment, preferably heat treatment is performed in an Ar atmosphere at a pressure of 7 to 50 kPa at a temperature of 1000 to 1200 ° C. for 10 to 120 minutes to obtain Al 2 O 3 having the κ-type or θ-type crystal structure. When the layer was transformed into an Al 2 O 3 layer having an α-type crystal structure, the resulting heat-transformed α-type Al 2 O 3 layer was uniformly distributed on the surface of the Al 2 O 3 layer before the transformation. Since the Ti oxide fine particles become the starting point of cracks that occur when the κ-type or θ-type crystal structure is transformed into the α-type crystal structure, the transformation-generated cracks are extremely fine and uniformly dispersed. It becomes a distributed state, regardless of the layer thickness That is, even when the layer thickness is changed, an X-ray diffraction chart in which a clear diffraction peak appears at a uniform intensity on the (006) plane and the (018) plane in the X-ray diffraction measurement. Therefore, the upper layer of the hard coating layer is the heat-transformed α-type Al 2 O 3 layer and the lower layer is the Ti compound layer (this Ti compound layer is subjected to the above conditions). In the coated cermet tool constituted by the above heat treatment, the heat-transformed α-type Al 2 O 3 layer is formed even in high-speed intermittent cutting with a severe mechanical thermal shock. Combined with the coexistence of the Ti compound layer having high strength, it exhibits excellent chipping resistance, so that chipping in the hard coating layer is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time. Nina Than it was to obtain the results of a study that.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有するAl23層の表面に、
変態発生割れ起点材として、化学蒸着形成され、かつ、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、X値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物微粒を分散分布させた状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有するAl23層の結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型Al23層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐チッピング性を有する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) As an upper layer, on the surface of an Al 2 O 3 layer having a κ-type or θ-type crystal structure in a state of chemical vapor deposition,
As a transformation initiation crack starting material, chemical vapor deposition is formed, and
Composition formula: TiO x ,
In the state where Ti oxide fine particles satisfying an X value of 1.2 to 1.9 in terms of atomic ratio with respect to Ti are dispersed and distributed as measured by an Auger spectroscopic analyzer, heat treatment is performed. The crystal structure of the Al 2 O 3 layer having the κ-type or θ-type crystal structure is transformed into an α-type crystal structure, and is clearly diffracted in the (006) plane and the (018) plane by X-ray diffraction measurement. A heat transformed α-type Al 2 O 3 layer showing an X-ray diffraction chart in which a peak appears and having an average layer thickness of 1 to 15 μm;
The present invention is characterized by a coated cermet tool having the chipping resistance with excellent hard coating layer formed by forming the hard coating layer constituted by (a) and (b) above.

つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)下部層(Ti化合物層)の平均層厚
Ti化合物層は、自体が高強度を有し、これの存在によって硬質被覆層が高強度を具備するようになるほか、工具基体と上部層である加熱変態α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
(b)Ti酸化物微粒の組成(X値)
Ti酸化物微粒は、上記の通り蒸着α型Al2 3 層の加熱変態α型Al2 3 層への加熱変態時に発生する割れの起点となることから、加熱変態α型Al2 3 層における変態発生割れは、微細化し、かつ一様に分散分布したものとなり、この結果前記加熱変態α型Al2 3 層はすぐれた耐チッピング性を具備するようになるほか、X線回折測定で(006)面および(018)面に層厚に関係なく、一様の強さの明確な回折ピークが現れるX線回折チャートを示すようになる、すなわち前記Ti酸化物微粒の分散形成なくして前記X線回折チャートを示す加熱変態α型Al23層の形成は困難であるが、そのX値がTiに対する原子比で1.2未満でも、また同1.9を越えても変態発生割れ微細化効果を十分に発揮させることができず、かつ(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示す加熱変態α型Al2 3 層の形成は困難となることから、そのX値をTiに対する原子比で1.2〜1.9と定めた。
(c)上部層(加熱変態α型Al23層)の平均層厚
加熱変態α型Al23層は、Al23自体のもつ高硬度とすぐれた耐熱性によって硬質被覆層の耐摩耗性を向上させると共に、上記の通り自身の具備するすぐれた耐チッピング性によって、硬質被覆層にチッピングが発生するのを著しく抑制する作用を有するが、その平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Average layer thickness of lower layer (Ti compound layer) The Ti compound layer itself has high strength, and the presence of the Ti compound layer makes the hard coating layer have high strength, and the tool base and upper layer. Is firmly adhered to any of the heat-transformed α-type Al 2 O 3 layers, and thus has an effect of improving the adhesion of the hard coating layer to the tool substrate. However, when the total average layer thickness is less than 3 μm, If the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation, especially during high-speed intermittent cutting with high heat generation, which causes uneven wear. Therefore, the total average layer thickness was determined to be 3 to 20 μm.
(B) Composition of Ti oxide fine particles (X value)
Ti oxide fine, since it becomes a starting point of cracking which occurs upon heating transformation to heat transformation α type the Al 2 O 3 layer of the street deposited α-type the Al 2 O 3 layer described above, the heating transformation α-type Al 2 O 3 Transformation cracks in the layer are refined and uniformly distributed. As a result, the heat-transformed α-type Al 2 O 3 layer has excellent chipping resistance and X-ray diffraction measurement. In the (006) plane and (018) plane, regardless of the layer thickness, an X-ray diffraction chart in which a clear diffraction peak with uniform intensity appears is shown, that is, without the formation of dispersion of the Ti oxide fine particles. Although it is difficult to form a heat-transformed α-type Al 2 O 3 layer showing the X-ray diffraction chart, transformation occurs even when the X value is less than 1.2 or more than 1.9 in terms of atomic ratio to Ti. The crack refinement effect cannot be fully exhibited, One (006) plane and (018) from the formation of the heating transformation α type the Al 2 O 3 layer shows an X-ray diffraction chart appearing clear diffraction peaks can be difficult to face, the atomic ratio thereof X values for Ti in It was determined to be 1.2 to 1.9.
(C) Average layer thickness of the upper layer (heat-transformed α-type Al 2 O 3 layer) The heat-transformed α-type Al 2 O 3 layer is composed of a hard coating layer due to the high hardness and excellent heat resistance of Al 2 O 3 itself. While improving wear resistance, it has the effect of remarkably suppressing the occurrence of chipping in the hard coating layer due to its excellent chipping resistance as described above, but when the average layer thickness is less than 1 μm, On the other hand, when the average layer thickness exceeds 15 μm, the chipping tends to occur when the average layer thickness is too large. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al23層がすぐれた耐チッピング性を発揮することから、長期に亘ってすぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention has an excellent heat-transformed α-type Al 2 O 3 layer that forms the upper layer of the hard coating layer even in high-speed intermittent cutting of steel with extremely high mechanical and thermal shock and high heat generation. Since it exhibits excellent chipping resistance, it exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、硬質被覆層の下部層としてTi化合物層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、結晶構造がκ型またはθ型のAl23層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで前記κ型またはθ型のAl23層の表面に、Ti酸化物微粒を同じく表4に示される条件で表5に示される組み合わせで蒸着形成した状態で、これに30kPaのAr雰囲気中、温度:1100℃に20〜100分の範囲内の所定の時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造のAl23層をα型結晶構造のAl23層に変態させてなる加熱変態α型Al23層を硬質被覆層の上部層として形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, an ordinary chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). Ti compound as a lower layer of the hard coating layer under the conditions shown in (1) shows the conditions for forming a TiCN layer having a vertically grown crystal structure, and (2) shows conditions for forming a normal granular crystal structure. The layers are formed by vapor deposition in the combinations shown in Table 5 and with the target layer thickness. Then, under the conditions shown in Table 3, Al 2 O 3 layers having a crystal structure of κ type or θ type are also shown in Table 5. The combinations shown in Table 5 were formed by vapor deposition with the target layer thickness and the target layer thickness, and then Ti oxide fine particles on the surface of the κ-type or θ-type Al 2 O 3 layer under the same conditions as shown in Table 4. In the state formed by vapor deposition, During r atmosphere temperature: 1100 ° C. and subjected to heat treatment at a predetermined time holding conditions in the range of 20 to 100 minutes, the the Al 2 O 3 layer of the κ-type or θ-type crystal structure α-type crystal structure the present invention coated cermet tools 1 to 13 were prepared respectively by forming was transformed into the the Al 2 O 3 layer heated transformed α-type the Al 2 O 3 layer formed by the upper layer of the hard coating layer.

なお、上記本発明被覆サーメット工具1〜13の製造に際しては、それぞれ別途試験片を用意し、この試験片を同じく化学蒸着装置に装入し、前記試験片の表面にTi酸化物微粒が形成された時点で装置から取りだし、前記Ti酸化物微粒の組成(X値)をオージェ分光分析装置で測定した。   In the production of the cermet tools 1 to 13 according to the present invention, a test piece is prepared separately, and the test piece is loaded into the chemical vapor deposition apparatus, and Ti oxide fine particles are formed on the surface of the test piece. At that time, it was taken out from the apparatus, and the composition (X value) of the Ti oxide fine particles was measured with an Auger spectroscopic analyzer.

また、比較の目的で、表6に示される通り、硬質被覆層の上部層として同じく表3に示される条件で、同じく表6に示される目標層厚の蒸着α型Al23層を形成し、かつ上記のTi酸化物微粒の形成および上記条件での加熱処理を行わない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For comparison purposes, as shown in Table 6, an evaporated α-type Al 2 O 3 layer having the target layer thickness shown in Table 6 is also formed as the upper layer of the hard coating layer under the same conditions as shown in Table 3. And conventionally the coated cermet tools 1-13 were each manufactured on the same conditions except not performing formation of said Ti oxide fine particle, and heat processing on the said conditions.

この結果得られた上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型Al23層と蒸着α型Al23層の相違を観察する目的でX線回折を測定した。 For the purpose of observing the difference between the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned present invention coated cermet tool and the conventional coated cermet tool obtained as a result, X Line diffraction was measured.

まず、X線回折測定用試料として、X線回折チャート上で(001)面および(002)面にのみ回折ピークが現れる単結晶WCを基体試料として用い、この基体試料の表面に、本発明被覆サーメット工具3、9、および12の目標層厚が15μm、10μm、および5μmの加熱変態α型Al23層、並びに従来被覆サーメット工具3、9、および12の同じく目標層厚が15μm、10μm、および5μmの蒸着α型Al23層の形成条件と同一の条件で、それぞれ目標層厚が15μm、10μm、および5μmの加熱変態α型Al23層および蒸着α型Al23層を直接形成して本発明被覆試料A〜Cおよび従来被覆試料a〜cをそれぞれ調製した。 First, as a sample for X-ray diffraction measurement, a single crystal WC in which diffraction peaks appear only on the (001) plane and the (002) plane on the X-ray diffraction chart is used as a substrate sample, and the surface of the substrate sample is coated with the present invention. The target layer thicknesses of the cermet tools 3, 9, and 12 are 15 μm, 10 μm, and 5 μm in the heat-transformed α-type Al 2 O 3 layer, and the conventional coated cermet tools 3, 9, and 12 have the same target layer thicknesses of 15 μm, 10 μm. , And 5 μm of vapor-deposited α-type Al 2 O 3 layer under the same conditions as those for forming a heat-transformed α-type Al 2 O 3 layer and vapor-deposited α-type Al 2 O 3 with a target layer thickness of 15 μm, 10 μm, and 5 μm, respectively. Layers were formed directly to prepare inventive coated samples AC and conventional coated samples ac.

ついで、これら被覆試料の前記加熱変態α型Al23層および蒸着α型Al23層のX線回折測定を、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧:40kV、電流:350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を前記被覆試料表面に照射し、前記被覆試料から散乱したX線のうち、被覆試料表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行なった。この測定結果を図1〜6に示した。 Next, X-ray diffraction measurement of the above-mentioned heat-transformed α-type Al 2 O 3 layer and vapor-deposited α-type Al 2 O 3 layer of these coated samples was performed using a normal X-ray diffractometer and Cu placed in the X-ray tube. By irradiating the anode (target) with thermionic electrons generated from the metal W filament under the conditions of voltage: 40 kV and current: 350 mA, the characteristic X-ray having a wavelength of 0.154 nm from the Cu anode surface A certain Cu-Kα ray is generated, the characteristic X-ray is irradiated onto the surface of the coated sample, and the X-ray diffracted at an angle equal to the X-ray incident angle θ with respect to the coated sample surface among the X-rays scattered from the coated sample. Was measured by measuring with an X-ray detector. The measurement results are shown in FIGS.

本発明被覆試料A〜Cの加熱変態α型Al23層のX線回折チャートを示す図1〜3と、従来被覆試料a〜cの蒸着α型Al23層のX線回折チャートを示す図4〜6の比較から、前記加熱変態α型Al23層には、いずれの層厚でも(006)面および(018)面に一様の強さで明確な回折ピークが現れているのに対して、前記蒸着α型Al23層ではこれら(006)面および(018)面に回折ピークは存在しないことが明かである。 1 to 3 showing X-ray diffraction charts of the heat-transformed α-type Al 2 O 3 layers of the present coated samples A to C, and X-ray diffraction charts of the deposited α-type Al 2 O 3 layers of the conventional coated samples a to c 4 to 6 showing a clear diffraction peak with uniform intensity on the (006) plane and the (018) plane at any thickness in the heat-transformed α-type Al 2 O 3 layer. On the other hand, it is clear that there are no diffraction peaks in the (006) plane and the (018) plane in the deposited α-type Al 2 O 3 layer.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層をオージェ分光分析装置で測定(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と加熱変態α型Al23層からなり、かつ表面部に加熱処理前に蒸着されたTi酸化物微粒も上記の測定で目標組成と実質的に同じ組成を示すものであった。一方後者では、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物と蒸着α型Al23層からなることが確認された。さらに、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 In addition, for the coated cermet tools 1 to 13 of the present invention and the conventional coated cermet tools 1 to 13 obtained as a result, the constituent layers of the hard coating layer were measured with an Auger spectrometer (observation of the longitudinal section of the layer). In the former case, the Ti oxide fine particles each comprising a Ti compound layer having substantially the same composition as the target composition and a heat-transformed α-type Al 2 O 3 layer and deposited on the surface before the heat treatment are also measured as described above. And showed substantially the same composition as the target composition. On the other hand, it was confirmed that the latter consisted of a Ti compound having the same composition as the target composition and a vapor-deposited α-type Al 2 O 3 layer. Furthermore, when the thicknesses of the constituent layers of the hard coating layer of these coated cermet tools were measured using a scanning electron microscope (same longitudinal section measurement), all of them had an average layer thickness substantially equal to the target layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.6mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:1.0mm、
送り:0.20mm/rev、
切削時間:5分、
の条件での鋳鉄の乾式高速断続切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 400 m / min,
Cutting depth: 1.6mm,
Feed: 0.25mm / rev,
Cutting time: 3 minutes
Dry high-speed intermittent cutting test of alloy steel under the conditions (normal cutting speed is 200 m / min),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 420 m / min,
Incision: 1.5mm,
Feed: 0.25mm / rev,
Cutting time: 3 minutes
Dry high-speed intermittent cutting test of carbon steel under the conditions (normal cutting speed is 200 m / min),
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 450 m / min,
Cutting depth: 1.0 mm,
Feed: 0.20mm / rev,
Cutting time: 5 minutes
The dry high speed intermittent cutting test (normal cutting speed is 250 m / min) was performed on cast iron under the above conditions, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 2005131730
Figure 2005131730

Figure 2005131730
Figure 2005131730

Figure 2005131730
Figure 2005131730

Figure 2005131730
Figure 2005131730

Figure 2005131730
Figure 2005131730

Figure 2005131730
Figure 2005131730

Figure 2005131730
表5〜7に示される結果から、本発明被覆サーメット工具1〜13は、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al23層がすぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が蒸着α型Al23層からなる従来被覆サーメット工具1〜13においては、高速断続切削では前記蒸着α型Al23層が激しい機械的熱的に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
Figure 2005131730
From the results shown in Tables 5 to 7, the coated cermet tools 1 to 13 of the present invention have an extremely high mechanical thermal shock and the upper part of the hard coating layer even in high-speed intermittent cutting of steel or cast iron with high heat generation. The heat-transformed α-type Al 2 O 3 layer that forms the layer exhibits excellent chipping resistance, so that chipping at the cutting edge is remarkably suppressed and excellent wear resistance is exhibited, while hard coating In the conventional coated cermet tools 1 to 13 in which the upper layer of the layer is a vapor-deposited α-type Al 2 O 3 layer, the vapor-deposited α-type Al 2 O 3 layer cannot withstand severe mechanical and thermal in high-speed intermittent cutting. It is clear that chipping occurs at the blade and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しい高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention has extremely high mechanical thermal shock and high heat generation as well as continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron. Because it exhibits excellent chipping resistance even in high-speed intermittent cutting with the most severe cutting conditions, and exhibits excellent cutting performance over a long period of time, it is possible to improve the performance of the cutting equipment and save labor and energy in cutting. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

本発明被覆サーメット工具3の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:15μm)のX線回折チャートを示す図である。The present invention coated cermet heating transformation α type the Al 2 O 3 layer constituting the hard coating layer of the tool 3 (target layer thickness: 15 [mu] m) is a diagram showing an X-ray diffraction chart of. 本発明被覆サーメット工具9の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:10μm)のX線回折チャートを示す図である。The present invention heat transformed α-type the Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 9 (target layer thickness: 10 [mu] m) is a diagram showing an X-ray diffraction chart of. 本発明被覆サーメット工具12の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:5μm)のX線回折チャートを示す図である。The present invention coated heat transformed α-type the Al 2 O 3 layer constituting the hard layer of the cermet tool 12 (target layer thickness: 5 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具3の硬質被覆層を構成する蒸着α型Al23層(目標層厚:15μm)のX線回折チャートを示す図である。Conventional coated cermet tool 3 of the hard coating layer deposited α-type the Al 2 O 3 layer constituting the (target layer thickness: 15 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具9の硬質被覆層を構成する蒸着α型Al23層(目標層厚:10μm)のX線回折チャートを示す図である。Conventional coated cermet hard layer deposition α type the Al 2 O 3 layer constituting the tool 9 (target layer thickness: 10 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具12の硬質被覆層を構成する蒸着α型Al23層(目標層厚:5μm)のX線回折チャートを示す図である。Conventional coated cermet tool 12 hard layer deposition α type the Al 2 O 3 layer constituting the (target layer thickness: 5 [mu] m) is a diagram showing an X-ray diffraction chart of.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウム層の表面に、変態発生割れ起点材として、化学蒸着形成され、
組成式:TiO
で表わした場合、オージェ分光分析装置で測定して、X値がTiに対する原子比で1.2〜1.9、を満足するTi酸化物微粒を分散分布させた状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有する酸化アルミニウム層の結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, each consists of one or two or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, chemical vapor deposition is formed on the surface of an aluminum oxide layer having a κ-type or θ-type crystal structure in the state of chemical vapor deposition,
Composition formula: TiO x ,
In the state where Ti oxide fine particles satisfying an X value of 1.2 to 1.9 in terms of atomic ratio with respect to Ti are dispersed and distributed as measured by an Auger spectroscopic analyzer, heat treatment is performed. The crystal structure of the aluminum oxide layer having the κ-type or θ-type crystal structure is transformed into an α-type crystal structure, and clear diffraction peaks are observed on the (006) plane and the (018) plane by X-ray diffraction measurement. A heat-transformed α-type aluminum oxide layer showing an X-ray diffraction chart appearing and having an average layer thickness of 1 to 15 μm;
A surface-coated cermet cutting tool having excellent chipping resistance due to the hard coating layer formed by the hard coating layer constituted of (a) and (b) above.
JP2003369801A 2003-10-30 2003-10-30 Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance Pending JP2005131730A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003369801A JP2005131730A (en) 2003-10-30 2003-10-30 Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
CNB2004100898247A CN100439017C (en) 2003-10-30 2004-11-01 Hard coated layer with good anti-tipping property surface coated with metal ceramic made cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369801A JP2005131730A (en) 2003-10-30 2003-10-30 Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance

Publications (1)

Publication Number Publication Date
JP2005131730A true JP2005131730A (en) 2005-05-26

Family

ID=34647006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369801A Pending JP2005131730A (en) 2003-10-30 2003-10-30 Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance

Country Status (2)

Country Link
JP (1) JP2005131730A (en)
CN (1) CN100439017C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125658A (en) * 2005-11-04 2007-05-24 Mitsubishi Materials Corp Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298665C (en) * 2005-07-08 2007-02-07 清华大学 Nano Co-Al2O3 composite ceramic cutting tool and its preparation method
CN1966264B (en) * 2005-11-18 2012-07-04 三菱麻铁里亚尔株式会社 Surface coated cutting tool made of cermet
JP5246518B2 (en) * 2010-09-15 2013-07-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent toughness and chipping resistance due to hard coating layer
JP5582409B2 (en) * 2011-01-11 2014-09-03 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5818159B2 (en) * 2011-02-03 2015-11-18 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5257535B2 (en) * 2011-08-31 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool
EP3075475A4 (en) * 2013-11-29 2017-06-21 Kyocera Corporation Cutting tool
JP6620482B2 (en) * 2014-09-30 2019-12-18 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance
CN107427930B (en) * 2015-01-28 2019-11-22 京瓷株式会社 Coated tool
CN104925855B (en) * 2015-06-01 2017-02-01 攀钢集团攀枝花钢铁研究院有限公司 Preparation method of TiCxOy
JP6831448B2 (en) * 2017-02-28 2021-02-17 住友電工ハードメタル株式会社 Surface coating cutting tool and its manufacturing method
JP6727553B2 (en) * 2017-09-14 2020-07-22 株式会社タンガロイ Coated cutting tools
CN108559957B (en) * 2018-04-23 2019-09-20 广东工业大学 A kind of titanium alloy cutting cutter material and preparation method thereof with PVD coating
CN110331380B (en) * 2019-08-06 2020-05-15 株洲华锐精密工具股份有限公司 Coating on blade substrate and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291775B2 (en) * 1992-07-10 2002-06-10 三菱マテリアル株式会社 Surface coated cutting tool
SE514181C2 (en) * 1995-04-05 2001-01-15 Sandvik Ab Coated carbide inserts for milling cast iron
US6733874B2 (en) * 2001-08-31 2004-05-11 Mitsubishi Materials Corporation Surface-coated carbide alloy cutting tool
SE526604C2 (en) * 2002-03-22 2005-10-18 Seco Tools Ab Coated cutting tool for turning in steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125658A (en) * 2005-11-04 2007-05-24 Mitsubishi Materials Corp Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting

Also Published As

Publication number Publication date
CN1616169A (en) 2005-05-18
CN100439017C (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4466841B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP2005279912A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4210930B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP3948010B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP4936211B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4591752B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4210931B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2005205547A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed continuous cutting
JP4569742B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2005313243A (en) Surface coated cermet cutting tool with hard coating layer having excellent chipping resistance
JP2005313242A (en) Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance
JP2005246596A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP4210932B2 (en) Surface-coated throw-away tip that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP4936212B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4692065B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060331

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Effective date: 20080717

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081107