JP2004299021A - Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance - Google Patents

Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance Download PDF

Info

Publication number
JP2004299021A
JP2004299021A JP2003097516A JP2003097516A JP2004299021A JP 2004299021 A JP2004299021 A JP 2004299021A JP 2003097516 A JP2003097516 A JP 2003097516A JP 2003097516 A JP2003097516 A JP 2003097516A JP 2004299021 A JP2004299021 A JP 2004299021A
Authority
JP
Japan
Prior art keywords
layer
type
crystal structure
hard coating
cutting tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097516A
Other languages
Japanese (ja)
Inventor
Toshiaki Ueda
稔晃 植田
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003097516A priority Critical patent/JP2004299021A/en
Publication of JP2004299021A publication Critical patent/JP2004299021A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool having a hard coated layer exhibiting superior heat and impact resistance. <P>SOLUTION: This cutting tool is so formed that (a) a Ti compound layer as a lower layer and (b) the hard coated layer as the upper layer are formed on the surface of a tool base body comprising WC-group cemented carbide or TiCN-group cermet. The Ti compound layer comprises a single layer or more layers out of TiC layer, TiN layer, TiCN layer, TiCO layer or TiCNO layer, which are formed by chemical vapor deposition, and has the mean total layer thickness of 3-20 μm. The hard coated layer is so formed that aluminium oxide having κ or θ crystal structure in a state formed by the chemical vapor deposition is heated to transform its crystal structure into α crystal structure, shows an X-ray diffraction chart with a clear diffraction peak on (006) surface and (018) surface in an X-ray diffractometry, and comprises an Al<SB>2</SB>O<SB>3</SB>layer transformed to α phase by heating and having the mean thickness of 1-15 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、特に鋼や鋳鉄などの高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される熱衝撃に対して硬質被覆層がすぐれた耐チッピング性を発揮する、すなわち硬質被覆層がすぐれた耐熱衝撃性を有する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有Ti化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている(例えば、特許文献1参照)。
【0003】
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCHCNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開平6−31503号公報
【特許文献2】
特開平6−8010号公報
【0005】
【発明が解決しようとする課題】
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し熱衝撃が付加される高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高強度を有し、すぐれた耐衝撃性を示すものの、同上部層を構成する蒸着α型Al層は、硬質で耐熱性にすぐれるものの、熱衝撃に対してきわめて脆いものであるために、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成するAl層の耐熱衝撃性向上をはかるべく研究を行った結果、
工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、蒸着形成した状態でκ型またはθ型の結晶構造を有するAl層を形成し、この状態でAr雰囲気中、温度:900〜960℃、保持時間:12〜24時間の条件で加熱処理を施すと、前記Ti化合物層は現状を保持したままで、前記κ型またはθ型の結晶構造のAl層がα型結晶構造のAl層に変態し、この結果の加熱変態α型Al層は、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示すようになると共に、すぐれた耐熱衝撃性を具備するようになり、したがって硬質被覆層の上部層が前記加熱変態α型Al層、下部層が上記Ti化合物層で構成された被覆サーメット工具においては、特に激しい熱衝撃を伴なう高速断続切削加工でも前記加熱変態α型Al層が、高強度を有する前記Ti化合物層の共存と相俟って、すぐれた耐熱衝撃性を発揮することから、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになるという研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有するAlに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型Al層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐熱衝撃性を有する被覆サーメット工具に特徴を有するものである。
【0008】
なお、この発明の被覆サーメット工具の硬質被覆層の構成層の平均層厚を上記の通りに限定したのは以下に示す理由によるものである。
(a)下部層(Ti化合物層)
Ti化合物層は、自体が高強度を有し、これの存在によって硬質被覆層が高強度を具備するようになるほか、工具基体と上部層である加熱変態α型Al層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
【0009】
(b)上部層(加熱変態α型Al層)
加熱変態α型Al層は、Al自体のもつ高硬度とすぐれた耐熱性によって硬質被覆層の耐摩耗性を向上させると共に、上記の通り自身の具備するすぐれた耐熱衝撃性によって、硬質被覆層にチッピングが発生するのを著しく抑制する作用を有するが、その平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0010】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
【0011】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
【0012】
ついで、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで同じく表3に示される条件で結晶構造がκ型またはθ型のAl層を蒸着形成し、これにAr雰囲気中、温度:940℃に12〜24時間の範囲内の所定時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造のAl層をα型結晶構造のAl層に変態させてなる加熱変態α型Al層を同じく表4に示される目標層厚で硬質被覆層の上部層として形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
また、比較の目的で、表5に示される通り、硬質被覆層の上部層を同じく表5に示される平均層厚の蒸着α型Al層とする以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
【0013】
この結果得られた上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型Al層と蒸着α型Al層の相違を観察する目的でX線回折を測定した。
まず、X線回折測定用試料として、X線回折チャート上で(001)面および(002)面にのみ回折ピークが現れる単結晶WCを基体試料として用い、この基体試料の表面に、本発明被覆サーメット工具3、9、および12の目標層厚が15μm、10μm、および5μmの加熱変態α型Al層、並びに従来被覆サーメット工具3、9、および12の同じく目標層厚が15μm、10μm、および5μmの蒸着α型Al層の形成条件と同一の条件で、それぞれ目標層厚が15μm、10μm、および5μmの加熱変態α型Al層および蒸着α型Al層を直接形成して本発明被覆試料A〜Cおよび従来被覆試料a〜cをそれぞれ調製した。
【0014】
ついで、これら被覆試料の前記加熱変態α型Al層および蒸着α型Al層のX線回折測定を、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧:40kV、電流:350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を前記被覆試料表面に照射し、前記被覆試料から散乱したX線のうち、被覆試料表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行なった。この測定結果を図1〜6に示した。
本発明被覆試料A〜Cの加熱変態α型Al層のX線回折チャートを示す図1〜3と、従来被覆試料a〜cの蒸着α型Al層のX線回折チャートを示す図4〜6の比較から、前記加熱変態α型Al層では(006)面および(018)面に明確な回折ピークが現れているのに対して、前記蒸着α型Al層ではこれら(006)面および(018)面に回折ピークは存在しないことが明かである。
【0015】
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を走査型電子顕微鏡を用いて観察(層の縦断面を観察)したところ、前者ではいずれもTi化合物層および加熱変態α型Al層からなり、後者では、いずれもTi化合物と蒸着α型Al層からなることが確認された。さらに、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、同じく走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0016】
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜7および従来被覆サーメット工具1〜13については、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:400m/min、
切り込み:1.6mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での合金鋼の乾式高速断続切削試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1.5mm、
送り:0.25mm/rev、
切削時間:3分、
の条件での炭素鋼の乾式高速断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
【0017】
【表1】

Figure 2004299021
【0018】
【表2】
Figure 2004299021
【0019】
【表3】
Figure 2004299021
【0020】
【表4】
Figure 2004299021
【0021】
【表5】
Figure 2004299021
【0022】
【表6】
Figure 2004299021
【0023】
【発明の効果】
表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、熱衝撃がきわめて高く、かつ高い発熱を伴なう鋼の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al層がすぐれた耐熱衝撃性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が蒸着α型Al層からなる従来被覆サーメット工具1〜13においては、高速断続切削では前記蒸着α型Al層が激しい熱衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に熱衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しい高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】本発明被覆サーメット工具3の硬質被覆層を構成する加熱変態α型Al層(目標層厚:15μm)のX線回折チャートを示す図である。
【図2】本発明被覆サーメット工具9の硬質被覆層を構成する加熱変態α型Al層(目標層厚:10μm)のX線回折チャートを示す図である。
【図3】本発明被覆サーメット工具12の硬質被覆層を構成する加熱変態α型Al層(目標層厚:5μm)のX線回折チャートを示す図である。
【図4】従来被覆サーメット工具3の硬質被覆層を構成する蒸着α型Al層(目標層厚:15μm)のX線回折チャートを示す図である。
【図5】従来被覆サーメット工具9の硬質被覆層を構成する蒸着α型Al層(目標層厚:10μm)のX線回折チャートを示す図である。
【図6】従来被覆サーメット工具12の硬質被覆層を構成する蒸着α型Al層(目標層厚:5μm)のX線回折チャートを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer that exhibits excellent chipping resistance against thermal shock repeatedly applied at a very short pitch to a cutting edge, particularly during high-speed intermittent cutting of steel or cast iron, that is, the hard coating layer is excellent. The present invention relates to a surface-coated cermet cutting tool having thermal shock resistance (hereinafter referred to as a coated cermet tool).
[0002]
[Prior art]
2. Description of the Related Art Conventionally, generally, a substrate (hereinafter, these are collectively referred to as a tool substrate) formed of a tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium cermet (hereinafter, referred to as TiCN) -based cermet is generally provided on a surface of the substrate. ,
(A) As a lower layer, a Ti carbide (hereinafter, referred to as TiC) layer, a nitride (hereinafter, also referred to as TiN) layer, a carbonitride (hereinafter, referred to as TiCN) layer, all formed by chemical vapor deposition, A Ti compound layer comprising one or more of a carbonate (hereinafter, referred to as TiCO) layer and a carbonitride (hereinafter, referred to as TiCNO) layer, and having a total average layer thickness of 3 to 20 μm. ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
A coated cermet tool formed by forming a hard coating layer composed of the above (a) and (b) is known, and this coated cermet tool is used for continuous cutting or intermittent cutting of, for example, various kinds of steel or cast iron. It is also known that this is performed (for example, see Patent Document 1).
[0003]
In general, the Ti compound layer and the Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool have a granular crystal structure, and further, the TiCN layer constituting the Ti compound layer is provided with the strength of the layer itself. For the purpose of improvement, by using a mixed gas containing an organic carbonitride, for example, CH 3 CN, as a reaction gas in a normal chemical vapor deposition apparatus, the mixture is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. It is also known to have a vertically elongated crystal structure (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-6-31503 [Patent Document 2]
JP-A-6-8010 [0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, but on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction for cutting work.Accordingly, cutting work has tended to be further accelerated. In the case of coated cermet tools, there is no problem if this is used for continuous cutting or interrupted cutting under ordinary conditions such as steel or cast iron. When used for high-speed interrupted cutting, in which thermal shock is repeatedly applied at a very short pitch, the Ti compound layer, which is the lower layer of the hard coating layer, has high strength and excellent impact resistance, but the upper layer depositing α-type the Al 2 O 3 layer constituting the, although excellent in heat resistance in hard, because is extremely fragile against thermal shock, which is chipping in the hard coating layer because (small chipping) Easily without, for reach this result relatively short time service life at present.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have conducted research to improve the thermal shock resistance of the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the coated cermet tool from the above-described viewpoint.
After the Ti compound layer is formed on the surface of the tool base as a lower layer under a normal condition using a normal chemical vapor deposition apparatus, the κ-type or θ-type crystal structure is formed under the same normal conditions. forming a the Al 2 O 3 layer having, in an Ar atmosphere in this state, temperature: nine hundred to nine hundred and sixty ° C., retention time: When subjected to heat treatment under conditions of 12 to 24 hours, the Ti compound layer holding the current situation while, the Al 2 O 3 layer of the κ-type or θ-type crystal structure is transformed into the Al 2 O 3 layer of α-type crystal structure, the heating transformation α type the Al 2 O 3 layer of this result, X-rays diffraction The measurement shows an X-ray diffraction chart in which clear diffraction peaks appear on the (006) plane and the (018) plane, and has excellent thermal shock resistance. Therefore, the upper layer of the hard coating layer is heating transformation α type the Al 2 O 3 layer, the lower In There coated cermet tool composed by the Ti compound layer, in particular the heating transformation α type the Al 2 O 3 layer in accompanying high speed intermittent cutting work with severe thermal shock, the coexistence of the Ti compound layer having a high strength In combination with the above, since the steel exhibits excellent thermal shock resistance, the occurrence of chipping in the hard coating layer is remarkably suppressed, and a study result showing that excellent wear resistance is exhibited over a long period of time was obtained. .
[0007]
The present invention has been made on the basis of the above research results, and has a tool base formed of a WC-based cemented carbide or a TiCN-based cermet,
(A) The lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer all formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) As an upper layer, Al 2 O 3 having a κ-type or θ-type crystal structure is subjected to heat treatment in a state of being formed by chemical vapor deposition to transform the crystal structure into an α-type crystal structure, and X-ray diffraction. FIG. 4 shows an X-ray diffraction chart in which clear diffraction peaks appear on the (006) and (018) planes by measurement, and has a heat-transformed α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm;
The present invention is characterized in that the hard coating layer formed of the above (a) and (b) is formed, and the hard coating layer has excellent thermal shock resistance.
[0008]
The reason why the average layer thickness of the constituent layers of the hard coating layer of the coated cermet tool of the present invention is limited as described above is as follows.
(A) Lower layer (Ti compound layer)
The Ti compound layer itself has a high strength, and the presence of the Ti compound layer makes the hard coating layer have a high strength. In addition, the Ti compound layer can be used for any of the tool substrate and the heat-transformed α-type Al 2 O 3 layer which is the upper layer. Has a function of contributing to the improvement of the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. If the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed interrupted cutting accompanied by high heat generation, and this causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm. .
[0009]
(B) Upper layer (heat-transformed α-type Al 2 O 3 layer)
The heat-transformed α-type Al 2 O 3 layer improves the wear resistance of the hard coating layer due to the high hardness and excellent heat resistance of Al 2 O 3 itself, and also has the excellent thermal shock resistance of itself as described above. Has an effect of remarkably suppressing the occurrence of chipping in the hard coating layer. However, if the average layer thickness is less than 1 μm, the above effect cannot be sufficiently exerted, while the average layer thickness exceeds 15 μm. If the thickness is too large, chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 15 μm.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder both having an average particle size of 1 to 3 [mu] m, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, prepared TaN powder and Co powder, Then, these raw material powders were blended into the blending composition shown in Table 1, further added with wax, ball-milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Then, this green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is honed with R: 0.07 mm. By processing, tool bases A to F made of a WC-based cemented carbide having a throw-away tip shape specified in ISO-CNMG120408 were manufactured, respectively.
[0011]
Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and pressed into a green compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.07 mm to obtain an ISO. Tool bases a to f made of TiCN-based cermet having a tip shape of standard CNMG120412 were formed.
[0012]
Then, on the surfaces of the tool bases A to F and the tool bases a to f, a conventional chemical vapor deposition apparatus was used, and Table 3 (l-TiCN in Table 3 is a vertically long sheet described in JP-A-6-8010). It shows the conditions for forming a TiCN layer having a growing crystal structure, and the other conditions show the conditions for forming a normal granular crystal structure.) A compound layer was formed by vapor deposition as a lower layer of the hard coating layer, and then a κ-type or θ-type Al 2 O 3 layer was formed by vapor deposition under the same conditions as shown in Table 3, and the layer was formed in an Ar atmosphere at a temperature of: A heat treatment is performed at 940 ° C. for a predetermined time within a range of 12 to 24 hours to convert the κ-type or θ-type Al 2 O 3 layer into an α-type Al 2 O 3 layer. similarly Table heated transformation α type the Al 2 O 3 layer composed by transformation The present invention coated cermet tools 1 to 13 by forming a top layer of the hard coating layer at the target layer thickness shown in prepared respectively.
For the purpose of comparison, as shown in Table 5, the conventional coating cermet was formed under the same conditions except that the upper layer of the hard coating layer was an evaporated α-type Al 2 O 3 layer having an average layer thickness also shown in Table 5. Tools 1 to 13 were manufactured respectively.
[0013]
For the purpose of observing the difference between the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool of the present invention and the conventional coated cermet tool obtained as described above, X was used. Line diffraction was measured.
First, as a sample for X-ray diffraction measurement, a single crystal WC having a diffraction peak only on the (001) plane and the (002) plane on the X-ray diffraction chart was used as a substrate sample. The target layer thickness of the cermet tools 3, 9, and 12 is 15 μm, 10 μm, and 5 μm, and the heat-transformed α-type Al 2 O 3 layer, and the target layer thickness of the conventional coated cermet tools 3, 9, and 12 are also 15 μm, 10 μm. , and under the same conditions as the conditions for forming the deposited α-type Al 2 O 3 layer of 5 [mu] m, the target layer thickness each 15 [mu] m, 10 [mu] m, and 5 [mu] m heating transformation α-type Al of 2 O 3 layer and deposition α-type Al 2 O 3 Layers were formed directly to prepare coating samples A to C of the present invention and conventional coating samples a to c.
[0014]
Next, the X-ray diffraction measurement of the above-mentioned heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer of these coated samples was carried out by using a usual X-ray diffractometer, and Cu was placed in an X-ray tube. By irradiating the anode (target) with thermoelectrons generated from the metal W filament under the conditions of voltage: 40 kV and current: 350 mA, characteristic X-rays having a wavelength of 0.154 nm from the Cu anode surface are obtained. X-rays that generate a certain Cu-Kα ray, irradiate the characteristic X-ray to the surface of the coated sample, and diffract at an angle equal to the X-ray incident angle θ with respect to the coated sample surface among the X-rays scattered from the coated sample Was measured with an X-ray detector. The measurement results are shown in FIGS.
FIGS. 1 to 3 show X-ray diffraction charts of the heat-transformed α-type Al 2 O 3 layers of coating samples A to C of the present invention, and X-ray diffraction charts of vapor-deposited α-type Al 2 O 3 layers of conventional coating samples a to c. 4 to 6, the heating-transformed α-type Al 2 O 3 layer shows clear diffraction peaks on the (006) plane and the (018) plane, whereas the vapor-deposited α-type Al 2 the O 3 layer is clear that these (006) plane and (018) diffraction peak at a surface are not present.
[0015]
Further, with respect to the coated cermet tools 1 to 13 of the present invention and the conventional coated cermet tools 1 to 13 obtained as a result, the constituent layers of the hard coating layer were observed using a scanning electron microscope (observing the longitudinal section of the layers). As a result, it was confirmed that both of the former consisted of a Ti compound layer and a heat-transformed α-type Al 2 O 3 layer, and that of the latter consisted of both a Ti compound and a vapor-deposited α-type Al 2 O 3 layer. Furthermore, the thickness of the constituent layers of the hard coating layer of these coated cermet tools was also measured using a scanning electron microscope (similarly, vertical section measurement), and the average layer thickness was substantially the same as the target layer thickness. (Average value of five-point measurements).
[0016]
Next, the above coated cermet tools 1 to 7 of the present invention and conventional coated cermet tools 1 to 13 in a state where all of the above various coated cermet tools were screwed to the tip of a tool steel tool with a fixing jig. ,
Work material: JIS SCM440 4 rods with longitudinal grooves at regular intervals in the longitudinal direction,
Cutting speed: 400m / min,
Notch: 1.6 mm,
Feed: 0.25 mm / rev,
Cutting time: 3 minutes,
Dry high-speed interrupted cutting test of alloy steel under the conditions of
Work material: JIS S45C lengthwise round bar with four equally spaced longitudinal grooves,
Cutting speed: 420m / min,
Cut: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 3 minutes,
A dry high-speed intermittent cutting test was performed on carbon steel under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 6 shows the measurement results.
[0017]
[Table 1]
Figure 2004299021
[0018]
[Table 2]
Figure 2004299021
[0019]
[Table 3]
Figure 2004299021
[0020]
[Table 4]
Figure 2004299021
[0021]
[Table 5]
Figure 2004299021
[0022]
[Table 6]
Figure 2004299021
[0023]
【The invention's effect】
From the results shown in Tables 4 to 6, the coated cermet tools 1 to 13 of the present invention have a very high thermal shock, and the high-temperature intermittent cutting of steel accompanied by high heat generation has the effect of forming the heating layer constituting the upper layer of the hard coating layer. Since the transformed α-type Al 2 O 3 layer exhibits excellent thermal shock resistance, the occurrence of chipping at the cutting edge is remarkably suppressed and excellent wear resistance is exhibited, whereas the upper layer of the hard coating layer has excellent wear resistance. In the conventional coated cermet tools 1 to 13 including the vapor-deposited α-type Al 2 O 3 layer, the high-speed intermittent cutting does not allow the vapor-deposited α-type Al 2 O 3 layer to withstand severe thermal shock, and chipping occurs at the cutting edge. It is clear that the service life can be reached in a relatively short time.
As described above, the coated cermet tool of the present invention can be used not only for continuous cutting or interrupted cutting under ordinary conditions such as various types of steel and cast iron, but also for cutting conditions involving extremely high thermal shock and high heat generation. It shows excellent chipping resistance even in the most severe high-speed interrupted cutting, and exhibits excellent cutting performance over a long period of time. It can respond satisfactorily to the conversion.
[Brief description of the drawings]
FIG. 1 is a view showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 15 μm) constituting a hard coating layer of the coated cermet tool 3 of the present invention.
FIG. 2 is an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 10 μm) constituting a hard coating layer of the coated cermet tool 9 of the present invention.
FIG. 3 is a diagram showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer (target layer thickness: 5 μm) constituting a hard coating layer of the coated cermet tool 12 of the present invention.
FIG. 4 is an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 15 μm) constituting a hard coating layer of the conventional coated cermet tool 3.
FIG. 5 is an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 10 μm) constituting a hard coating layer of the conventional coated cermet tool 9.
6 is a diagram showing an X-ray diffraction chart of a vapor-deposited α-type Al 2 O 3 layer (target layer thickness: 5 μm) constituting a hard coating layer of the conventional coated cermet tool 12. FIG.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウムに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐熱衝撃性を有する表面被覆サーメット製切削工具。
On the surface of a tool substrate composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) the lower layer is composed of one or more of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer of Ti, all of which are formed by chemical vapor deposition; And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, aluminum oxide having a κ-type or θ-type crystal structure is subjected to heat treatment in a state of being formed by chemical vapor deposition to transform the crystal structure into an α-type crystal structure, and X-ray diffraction measurement is performed. 9 shows an X-ray diffraction chart in which clear diffraction peaks appear on the (006) plane and the (018) plane, and has a heat-transformed α-type aluminum oxide layer having an average layer thickness of 1 to 15 μm;
A cutting tool made of a surface-coated cermet, wherein the hard coating layer formed by forming the hard coating layer constituted by (a) and (b) has excellent thermal shock resistance.
JP2003097516A 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance Pending JP2004299021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097516A JP2004299021A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097516A JP2004299021A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Publications (1)

Publication Number Publication Date
JP2004299021A true JP2004299021A (en) 2004-10-28

Family

ID=33409278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097516A Pending JP2004299021A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Country Status (1)

Country Link
JP (1) JP2004299021A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923101B2 (en) * 2007-02-01 2011-04-12 Seco Tools Ab Texture-hardened alpha-alumina coated tool
US7985471B2 (en) * 2007-07-13 2011-07-26 Seco Tools Ab Coated cutting tool
US7993742B2 (en) * 2005-09-27 2011-08-09 Seco Tools Ab Alumina layer with enhanced texture
US8187698B2 (en) * 2007-02-01 2012-05-29 Seco Tools Ab Coated cutting tool for fine to medium-rough turning of stainless steels
US8211555B2 (en) * 2007-02-01 2012-07-03 Seco Tools Ab Coated cutting tool for medium-rough to rough turning of stainless steels and superalloys
WO2015111752A1 (en) 2014-01-27 2015-07-30 株式会社タンガロイ Coated cutting tool
WO2017141797A1 (en) 2016-02-18 2017-08-24 株式会社タンガロイ Coated cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150364A (en) * 1989-06-16 1991-06-26 Sandvik Ab Coated article and coating thereof
JPH07112306A (en) * 1993-10-14 1995-05-02 Mitsubishi Materials Corp Surface coating cutting tool
JPH08277181A (en) * 1995-02-17 1996-10-22 Seco Tools Ab Insert of alumina-clad cemented carbide and its preparation
JPH10140353A (en) * 1996-11-14 1998-05-26 Mitsubishi Materials Corp Cutting, tool made of surface coated cemented carbide in which hard coating layer has excellent wear resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150364A (en) * 1989-06-16 1991-06-26 Sandvik Ab Coated article and coating thereof
JPH07112306A (en) * 1993-10-14 1995-05-02 Mitsubishi Materials Corp Surface coating cutting tool
JPH08277181A (en) * 1995-02-17 1996-10-22 Seco Tools Ab Insert of alumina-clad cemented carbide and its preparation
JPH10140353A (en) * 1996-11-14 1998-05-26 Mitsubishi Materials Corp Cutting, tool made of surface coated cemented carbide in which hard coating layer has excellent wear resistance

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993742B2 (en) * 2005-09-27 2011-08-09 Seco Tools Ab Alumina layer with enhanced texture
US7923101B2 (en) * 2007-02-01 2011-04-12 Seco Tools Ab Texture-hardened alpha-alumina coated tool
US8187698B2 (en) * 2007-02-01 2012-05-29 Seco Tools Ab Coated cutting tool for fine to medium-rough turning of stainless steels
US8211555B2 (en) * 2007-02-01 2012-07-03 Seco Tools Ab Coated cutting tool for medium-rough to rough turning of stainless steels and superalloys
US7985471B2 (en) * 2007-07-13 2011-07-26 Seco Tools Ab Coated cutting tool
KR20160099698A (en) 2014-01-27 2016-08-22 가부시키가이샤 탕가로이 Coated Cutting Tool
WO2015111752A1 (en) 2014-01-27 2015-07-30 株式会社タンガロイ Coated cutting tool
CN105916617A (en) * 2014-01-27 2016-08-31 株式会社钨钛合金 Coated cutting tool
JPWO2015111752A1 (en) * 2014-01-27 2017-03-23 株式会社タンガロイ Coated cutting tool
KR101843453B1 (en) 2014-01-27 2018-03-29 가부시키가이샤 탕가로이 Coated Cutting Tool
US9969007B2 (en) 2014-01-27 2018-05-15 Tungaloy Corporation Coated cutting tool
WO2017141797A1 (en) 2016-02-18 2017-08-24 株式会社タンガロイ Coated cutting tool
US10639724B2 (en) 2016-02-18 2020-05-05 Tungaloy Corporation Coated cutting tool

Similar Documents

Publication Publication Date Title
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP2009083008A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004188500A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2006289586A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004188575A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004188502A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2004181554A (en) Surface-coated cermet cutting tool with hard coating layer excellent in thermal shock resistance
JP2004181614A (en) Surface-coated cermet cutting tool with hard coating layer of excellent thermal shock resistance
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2004188577A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2005246596A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2004299022A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2005313242A (en) Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance
JP2004188576A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication performance
JP2005246598A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2004017218A (en) Surface-covered cermet made cutting tool with hard covering layer having excellent thermal impact resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080623