JP2005246596A - Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance - Google Patents
Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance Download PDFInfo
- Publication number
- JP2005246596A JP2005246596A JP2004180464A JP2004180464A JP2005246596A JP 2005246596 A JP2005246596 A JP 2005246596A JP 2004180464 A JP2004180464 A JP 2004180464A JP 2004180464 A JP2004180464 A JP 2004180464A JP 2005246596 A JP2005246596 A JP 2005246596A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- hard coating
- crystal structure
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、特に鋼や鋳鉄などの高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される機械的熱的衝撃に対して硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 This invention is made of a surface-coated cermet that exhibits excellent chipping resistance with a hard coating layer against mechanical thermal shock that is repeatedly applied to the cutting edge portion at a very short pitch, especially during high-speed intermittent cutting of steel and cast iron. The present invention relates to a cutting tool (hereinafter referred to as a coated cermet tool).
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Al2O3で示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) As a lower layer, a Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition, Ti compound layer comprising one or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm ,
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl2 O3 層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し機械的熱的衝撃が付加される高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高強度を有し、すぐれた耐衝撃性を示すものの、同上部層を構成する蒸着α型Al2O3層は、高温硬さおよび耐熱性にすぐれるものの、機械的熱的衝撃に対してきわめて脆いものであるために、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated cermet tools, there is no problem when this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. The Ti compound layer, which is the lower layer of the hard coating layer, has high strength and excellent impact resistance when used for high-speed intermittent cutting in which mechanical thermal shock is repeatedly applied at a very short pitch. The vapor deposited α-type Al 2 O 3 layer that constitutes the upper layer is excellent in high temperature hardness and heat resistance, but is extremely brittle against mechanical thermal shock. Is Ping (small chipping) is likely to occur, and as a result, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成するAl2O3層の耐チッピング性向上をはかるべく研究を行った結果、
(a)上記の通り、硬質被覆層としての蒸着α型Al2O3層は、高温硬さおよび耐熱性にすぐれるものの、高温強度が十分でなく、満足な耐チッピング性を発揮することは困難であり、一方蒸着形成した状態でκ型またはθ型の結晶構造を有するAl2O3層は、前記蒸着α型Al2O3層に比して、相対的に高い高温強度を有し、すぐれた耐チッピング性を発揮するものの、高温硬さおよび耐熱性の点で劣る性質があること。
Therefore, as a result of conducting research to improve the chipping resistance of the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool from the above viewpoint,
(A) As described above, the vapor-deposited α-type Al 2 O 3 layer as the hard coating layer is excellent in high-temperature hardness and heat resistance, but does not have sufficient high-temperature strength and exhibits satisfactory chipping resistance. On the other hand, an Al 2 O 3 layer having a κ-type or θ-type crystal structure in a vapor-deposited state has a relatively high high-temperature strength compared to the vapor-deposited α-type Al 2 O 3 layer. Although it exhibits excellent chipping resistance, it has inferior properties in terms of high temperature hardness and heat resistance.
(b)工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後、同じく通常の条件で、蒸着形成した状態でκ型またはθ型の結晶構造を有するAl2O3層を形成し、ついで、これに加熱処理、望ましくは圧力:7〜50kPaのAr雰囲気中、温度:1000〜1200℃に5〜80分保持の条件で加熱処理を施すと、前記Ti化合物層に結晶構造上変化は起らないが、前記κ型またはθ型の結晶構造を有するAl2O3層はα型結晶構造のAl2O3層に変態し、この変態に際して、体積収縮による割れ(クラック)が発生し、この変態割れは変態後のα型Al2O3層に大きな割れとして存在し、切削加工時のチッピング発生の原因となること。 (B) After forming the Ti compound layer as a lower layer under normal conditions on the surface of the tool base with a normal chemical vapor deposition apparatus, the κ-type or θ-type is formed under the same normal conditions. An Al 2 O 3 layer having the following crystal structure is formed, followed by heat treatment, desirably heat treatment in an Ar atmosphere at a pressure of 7 to 50 kPa, and a temperature of 1000 to 1200 ° C. for 5 to 80 minutes. However, the Ti compound layer does not change in the crystal structure, but the Al 2 O 3 layer having the κ-type or θ-type crystal structure is transformed into an α-type crystal structure Al 2 O 3 layer, During this transformation, a crack due to volume shrinkage occurs, and this transformation crack exists as a large crack in the α-type Al 2 O 3 layer after transformation, which causes chipping during cutting.
(c)上記(b)のTi化合物層の表面に蒸着形成した状態でκ型またはθ型の結晶構造を有するAl2O3層に、上記条件での加熱処理を施さずに、引き続いて、同じく化学蒸着装置にて、
反応ガス組成:体積%で、CrCl3:0.5〜3%、HCl:0.5〜3%、CO2:2〜10%、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:7〜40kPa、
の条件で処理して、前記蒸着κ型またはθ型Al2O3層の表面に、酸化クロム(以下、Cr3O2で示す)層を1.5〜5μmの平均層厚で形成し、この状態で、上記(b)の条件での加熱処理を施して、前記κ型またはθ型の結晶構造のAl2O3層をα型結晶構造のAl2O3層に変態させると、前記変態前のAl2O3層の表面に形成したCr3O2層が、前記Al2O3層のκ型またはθ型の結晶構造からα型結晶構造への変態による体積収縮に伴なって発生する割れの進展を著しく抑制すると共に、前記変態がAl2O3層の表面全面に亘って同時的に開始するように作用し、経時的にAl2O3層の表面部から内部に進行する変態形態をとるようになることから、変態時に発生する割れは、きわめて微細に、かつ層全体に亘って一様に分散分布した状態となるほか、変態後のAl2O3層における結晶配向も変態前のκ型またはθ型Al2O3層のもつ結晶配向と同等、あるいは結晶配向に変化があってもきわめて小さなものとなり、この結果形成された加熱変態α型Al2O3層は、α型結晶構造のもつすぐれた高温硬さと耐熱性と共に、加熱変態前の蒸着κ型またはθ型Al2O3層のもつ高温強度と同等のすぐれた高温強度を具備するようになり、したがって、硬質被覆層の上部層が前記加熱変態α型Al2O3層とCr3O2層、下部層が上記Ti化合物層で構成された被覆サーメット工具においては、特に激しい機械的熱的衝撃を伴なう高速断続切削加工でも前記加熱変態α型Al2O3層が、すぐれた高温硬さと耐熱性に加えて、すぐれた耐チッピング性を発揮することから、高い高温強度を有する前記Ti化合物層との共存と相俟って、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになること。
(C) Without subjecting the Al 2 O 3 layer having a κ-type or θ-type crystal structure to the surface of the Ti compound layer of (b) above, without performing heat treatment under the above conditions, In the same chemical vapor deposition system,
Reaction gas composition: by volume%, CrCl 3: 0.5~3%, HCl: 0.5~3%, CO 2: 2~10%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 7 to 40 kPa,
To form a chromium oxide (hereinafter referred to as Cr 3 O 2 ) layer with an average layer thickness of 1.5 to 5 μm on the surface of the vapor-deposited κ-type or θ-type Al 2 O 3 layer, in this state, subjected to heat treatment under the conditions of the above (b), when the transforming the the Al 2 O 3 layer of the κ-type or θ-type crystal structure in the Al 2 O 3 layer of α-type crystal structure, wherein The Cr 3 O 2 layer formed on the surface of the Al 2 O 3 layer before transformation is accompanied by volume shrinkage due to transformation from the κ-type or θ-type crystal structure of the Al 2 O 3 layer to the α-type crystal structure. while significantly suppressed the development of cracks generated, the transformation acts to simultaneously start over the entire surface of the Al 2 O 3 layer, proceeds from the surface to the inside portion of the over time the Al 2 O 3 layer Therefore, the cracks that occur during transformation are extremely fine and distributed uniformly throughout the layer. In addition to the fabric state, very small even if the crystal orientation also changes the crystal orientation and equal to or crystal orientation having the κ-type or θ-type the Al 2 O 3 layer prior to transformation in the Al 2 O 3 layer after metamorphosis As a result, the heat-transformed α-type Al 2 O 3 layer formed has a high-temperature hardness and heat resistance with an α-type crystal structure, as well as a vaporized κ-type or θ-type Al 2 O 3 layer before the heat-transformation. Accordingly, the upper layer of the hard coating layer is the heat-transformed α-type Al 2 O 3 layer and the Cr 3 O 2 layer, and the lower layer is the Ti compound layer. In addition to the excellent high-temperature hardness and heat resistance, the heat-transformed α-type Al 2 O 3 layer is excellent even in high-speed interrupted cutting with severe mechanical and thermal shock. Because of its excellent chipping resistance, What coexistence coupled with the said Ti compound layer having a high temperature strength have, chipping in the hard coating layer is markedly suppressed, it exhibits a superior wear resistance over a long period.
(d)上記の従来蒸着α型Al2O3層および上記(c)の加熱変態α型Al2O3層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来の蒸着α型Al2O3層は、図3に例示される通り、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱変態α型Al2O3層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、Cr3O2層の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置および高さが変わること。
(D) About the above-mentioned conventional vapor deposition α-type Al 2 O 3 layer and the heat-transformed α-type Al 2 O 3 layer of (c) above,
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams in FIGS. 1A and 1B, an electron beam is individually applied to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface. Irradiation is performed to measure the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain with respect to the normal line of the surface-polished surface. When the measured inclination angle within the range is divided for each pitch of 0.25 degrees and the inclination angle number distribution graph is created by summing up the frequencies existing in each division, the conventional vapor deposition α-type Al 2 As illustrated in FIG. 3, the O 3 layer exhibits an unbiased inclination angle number distribution graph in the range of the measured inclination angle of the (0001) plane within the range of 0 to 45 degrees, whereas the heating transformation the α-type the Al 2 O 3 layer, sharp street, in a specific position of the tilt angle segment illustrated in FIG. 2 Appears high peak, the sharp highest peak, the position and height appear on the tilt angle sections of the graph the horizontal axis is changed by the changing the average layer thickness of Cr 3 O 2 layer.
(e)試験結果によれば、上記Cr3O2層を、上記の通り1.5〜5μmの平均層厚にすると、上記シャープな最高ピークが傾斜角区分の2〜12度の範囲内に現れると共に、前記2〜12度の範囲内に存在する度数の合計(この度数合計と前記最高ピークの高さは比例関係にある)が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すようになり、この結果の傾斜角度数分布グラフで2〜12度の範囲内の傾斜角度数の割合が45%以上を占め、かつ前記2〜12度の範囲内に傾斜角区分の最高ピークが現れる加熱変態α型Al2O3層を硬質被覆層の上部層として、下部層のTi化合物層と共存した状態で蒸着形成してなる被覆サーメット工具は、上記の従来被覆サーメット工具に比して、特に高速断続切削で切刃部にチッピングの発生なく、一段とすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) According to the test results, when the Cr 3 O 2 layer has an average layer thickness of 1.5 to 5 μm as described above, the sharp maximum peak is within the range of 2 to 12 degrees of the tilt angle section. A ratio of 45% or more of the total frequency in the gradient angle distribution graph that appears and the total frequency within the range of 2 to 12 degrees (the total frequency and the height of the highest peak are in a proportional relationship) An inclination angle number distribution graph occupying an angle of 2 is obtained. In the resulting inclination angle number distribution graph, the ratio of the inclination angle number within the range of 2 to 12 degrees occupies 45% or more, and the range of 2 to 12 degrees. The coated cermet tool formed by vapor deposition in the state of coexisting with the Ti compound layer of the lower layer, with the heat-transformed α-type Al 2 O 3 layer in which the highest peak of the inclination angle section appears as the upper layer of the hard coating layer, Compared to conventional coated cermet tools No particular chipping occurs cutting edge at high speed interrupted cutting, to become to exert more excellent wear resistance.
The research results shown in (a) to (e) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成した状態でκ型またはθ型の結晶構造および1〜15μmの平均層厚を有するAl2O3層の表面に、Cr3O2層を1.5〜5μmの平均層厚で化学蒸着形成した状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有するAl2O3層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す加熱変態α型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐チッピング性を有する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) The lower layer is composed of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 3 to 20 μm. A Ti compound layer having
(B) On the surface of the Al 2 O 3 layer having a kappa-type or θ-type crystal structure and an average layer thickness of 1 to 15 μm in a state where the upper layer is formed by chemical vapor deposition, a Cr 3 O 2 layer is added to the surface of 1.5 to In a state where chemical vapor deposition is formed with an average layer thickness of 5 μm, heat treatment is performed to transform the crystal structure of the Al 2 O 3 layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are classified for each pitch of 0.25 degrees. In addition, in the slope angle distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the slope angle section within the range of 2 to 12 degrees and also exists within the range of 2 to 12 degrees. A heat-transformed α-type Al 2 O 3 layer showing an inclination angle distribution graph in which the total frequency is 45% or more of the entire frequency in the inclination angle distribution graph,
The present invention is characterized by a coated cermet tool having the chipping resistance with excellent hard coating layer formed by forming the hard coating layer constituted by (a) and (b) above.
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)Ti化合物層(下部層)の平均層厚
Ti化合物層は、自体がα型Al2O3層に比して、相対的に高い高温強度を有し、これの存在によって硬質被覆層がすぐれた高温強度を具備するようになるほか、工具基体と上部層である加熱変態α型Al2O3層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Average thickness of the Ti compound layer (lower layer) The Ti compound layer itself has a relatively high high-temperature strength as compared with the α-type Al 2 O 3 layer, and the hard coating layer due to its presence. In addition to having excellent high-temperature strength, it firmly adheres to both the tool base and the heat-transformed α-type Al 2 O 3 layer, which is the upper layer, thereby improving the adhesion of the hard coating layer to the tool base. Although it has a contributing effect, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it is particularly high-speed intermittent with high heat generation. Since it becomes easy to cause thermoplastic deformation by cutting and this causes uneven wear, the total average layer thickness was determined to be 3 to 20 μm.
(b)Cr3O2層の平均層厚
Cr3O2層には、上記の通り蒸着κ型またはθ型Al2O3層の加熱変態α型Al2O3層への加熱変態に際して、体積収縮に伴なって発生する割れの進展を著しく抑制すると共に、前記変態をAl2O3層表面全面に亘って同時的に開始させ、経時的にAl2O3層の表面部から内部に進行する変態形態をとるようにする作用があるので、加熱変態時に発生する割れが層全体に亘って微細化および均一化する作用があり、さらに、前記Cr3O2層には、平均層厚を1.5〜5μmにすると、試験結果によれば、これに対応して、傾斜角度数分布グラフにおける2〜12度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ前記2〜12度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%以上となる傾斜角度数分布グラフを示す作用があり、したがって、前記平均層厚が1.5未満では、前記加熱変態α型Al2O3層の傾斜角度数分布グラフの2〜12度の範囲内に現れるピーク高さが不十分、すなわち、前記2〜12度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、この場合上記の通り、前記加熱変態α型Al2O3層に所望のすぐれた高温強度を確保することができず、この結果耐チッピング性に所望の向上効果が得られず、一方その平均層厚が5μmを越えると、最高ピークの現れる傾斜角区分が2〜12度の範囲から外れてしまい、この場合も前記加熱変態α型Al2O3層に所望のすぐれた高温強度を確保することができないことから、その平均層厚を1.5〜5μmと定めた。
The average layer thickness Cr 3 O 2 layers of (b) Cr 3 O 2 layer, on heating transformation to heat transformation α type the Al 2 O 3 layer of the street deposition κ type or θ-type the Al 2 O 3 layer, while significantly suppressed the development of cracks generated is accompanied by volume contraction, the transformation simultaneously to start over the Al 2 O 3 layer on the whole surface and from the surface to the inside portion of the over time the Al 2 O 3 layer Since there is an action to take the transformation form to proceed, there is an action that the cracks generated during the heat transformation are refined and uniform over the entire layer, and the Cr 3 O 2 layer has an average layer thickness. Is 1.5 to 5 μm, according to the test results, the highest peak of the measured inclination angle appears in the inclination angle range of 2 to 12 degrees in the inclination angle number distribution graph, and the 2 The total ratio of the frequencies existing in the inclination angle section of -12 degrees is the inclination angle number distribution group. Has the effect of showing the inclination angle frequency distribution graph as a more than 45% of the total power at off, therefore, in the less than average layer thickness of 1.5, the inclination angle frequency distribution graph of the heating transformation α type the Al 2 O 3 layer The peak height appearing in the range of 2 to 12 degrees is insufficient, that is, the total ratio of the frequencies existing in the range of 2 to 12 degrees is less than 45% of the total degrees in the inclination angle frequency distribution graph. In this case, as described above, the heat-transformed α-type Al 2 O 3 layer cannot secure a desired excellent high-temperature strength, and as a result, a desired improvement effect in chipping resistance cannot be obtained. When the average layer thickness exceeds 5 μm, the inclination angle section where the highest peak appears is out of the range of 2 to 12 degrees. In this case, the heat transformed α-type Al 2 O 3 layer also has a desired excellent high temperature strength. Cannot be secured From, it determined the average layer thickness and 1.5~5Myuemu.
(c)蒸着κ型またはθ型Al2O3層(上部層)の平均層厚
蒸着κ型またはθ型Al2O3層は、上記の通り加熱変態後にすぐれた高温硬さと耐熱性、さらに傾斜角区分:2〜12度の範囲内に最高ピークが現れる傾斜角度数分布グラフを示し、すぐれた高温強度を具備する加熱変態α型Al2O3層となり、高速断続切削加工でもチッピングの発生なく、すぐれた耐摩耗性を発揮するが、その平均層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Average layer thickness of vapor-deposited κ-type or θ-type Al 2 O 3 layer (upper layer) The vapor-deposited κ-type or θ-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance after heat transformation as described above. Inclination angle classification: Shows an inclination angle distribution graph in which the highest peak appears in the range of 2 to 12 degrees, and becomes a heat-transformed α-type Al 2 O 3 layer with excellent high-temperature strength, and chipping occurs even in high-speed intermittent cutting Excellent wear resistance, but if the average layer thickness is less than 1 μm, the desired wear resistance cannot be ensured, while if the average layer thickness exceeds 15 μm, the chipping will occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if it is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.
この発明被覆サーメット工具は、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al2O3層が、すぐれた高温硬さおよび耐熱性に加えて、すぐれた耐チッピング性を発揮することから、長期に亘ってすぐれた耐摩耗性を示すものである。 The coated cermet tool of the present invention has a mechanically high thermal shock, and the high temperature intermittent cutting of steel accompanied by high heat generation includes a heat-transformed α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. In addition to excellent high temperature hardness and heat resistance, it exhibits excellent chipping resistance, and therefore exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.
つぎに、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、硬質被覆層の下部層としてTi化合物層を、表4に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、結晶構造がκ型またはθ型のAl2O3層を同じく表4に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで前記蒸着κ型またはθ型のAl2O3層の表面に、Cr3O2層を同じく表3に示される条件で表4に示される組み合わせで、かつ目標層厚で蒸着形成した状態で、これに30kPaのAr雰囲気中、温度:1100℃に10〜60分の範囲内の所定の時間保持の条件で加熱処理を施して、前記蒸着κ型またはθ型の結晶構造のAl2O3層をα型結晶構造のAl2O3層に変態させて加熱変態α型Al2O3層としてなる上部層を形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。 Next, an ordinary chemical vapor deposition apparatus is used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is described in JP-A-6-8010). Ti compound as a lower layer of the hard coating layer under the conditions shown in (1) shows the conditions for forming a TiCN layer having a vertically grown crystal structure, and (2) shows conditions for forming a normal granular crystal structure. The layers are formed by vapor deposition in the combinations shown in Table 4 and with the target layer thickness. Then, under the conditions shown in Table 3, Al 2 O 3 layers having a crystal structure of κ type or θ type are also shown in Table 4. Vapor deposition is performed in the combination shown and with the target layer thickness, and then the Cr 3 O 2 layer is formed on the surface of the vapor-deposited κ-type or θ-type Al 2 O 3 layer under the same conditions as shown in Table 3. In a state of vapor deposition with a target layer thickness In an Ar atmosphere at 30kPa Les, temperature: 1100 ° C. and subjected to heat treatment at a predetermined time holding conditions in the range of 10 to 60 minutes, Al 2 O 3 layer of the deposition κ-type or θ-type crystal structure Were transformed into an Al 2 O 3 layer having an α-type crystal structure to form an upper layer as a heat-transformed α-type Al 2 O 3 layer, thereby producing the coated cermet tools 1 to 13 of the present invention.
また、比較の目的で、表5に示される通り、硬質被覆層の上部層として同じく表3に示される条件で、同じく表5に示される目標層厚の蒸着α型Al2O3層を形成し、かつ上記のCr3O2層の形成および上記条件での加熱処理を行わない以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。 For the purpose of comparison, as shown in Table 5, an evaporated α-type Al 2 O 3 layer having the target layer thickness shown in Table 5 is also formed as the upper layer of the hard coating layer under the same conditions as shown in Table 3. In addition, conventionally coated cermet tools 1 to 13 were produced under the same conditions except that the formation of the Cr 3 O 2 layer and the heat treatment under the above conditions were not performed.
ついで、上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型Al2O3層と蒸着α型Al2O3層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の加熱変態α型Al2O3層および蒸着α型Al2O3層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, with respect to the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the conventional coated cermet tool, using a field emission scanning electron microscope The inclination angle number distribution graph was created respectively.
That is, the inclination angle number distribution graph shows the inside of the column of the field emission scanning electron microscope in a state where the surfaces of the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer are polished surfaces. And irradiating the polished surface with an electron beam having an acceleration voltage of 15 kV at an incident angle of 70 degrees with an irradiation current of 1 nA on each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface. Then, using an electron backscatter diffraction image apparatus, a region of 30 × 50 μm at a spacing of 0.1 μm / step is a (0001) plane which is the crystal plane of the crystal grain with respect to the normal line of the polished surface The inclination angle formed by the normal line is measured, and based on the measurement result, among the measurement inclination angles, the measurement inclination angle within the range of 0 to 45 degrees is divided for each pitch of 0.25 degrees, Created by counting the frequencies that exist in each category .
この結果得られた各種の加熱変態α型Al2O3層および蒸着α型Al2O3層の傾斜角度数分布グラフにおいて、(0001)面が最高ピークを示す傾斜角区分、並びに2〜12度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表4,5にそれぞれ示した。 In the inclination angle number distribution graphs of the various heat-transformed α-type Al 2 O 3 layers and vapor-deposited α-type Al 2 O 3 layers obtained as a result, the inclination angle division in which the (0001) plane shows the highest peak, and 2 to 12 Tables 4 and 5 show the ratio of the number of inclination angles existing in the inclination angle section within the range of degrees to the whole inclination angle distribution graph in the inclination angle number graph, respectively.
上記の各種の傾斜角度数分布グラフにおいて、表4,5にそれぞれ示される通り、本発明被覆サーメット工具の加熱変態α型Al2O3層は、いずれも(0001)面の測定傾斜角の分布が2〜12度の範囲内の傾斜角区分に最高ピークが現れ、かつ2〜12度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45%以上である傾斜角度数分布グラフを示すのに対して、従来被覆サーメット工具の蒸着α型Al2O3層は、いずれも(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、2〜12度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も25%以下である傾斜角度数分布グラフを示すものであった。
なお、図2は、本発明被覆サーメット工具2の加熱変態α型Al2O3層の傾斜角度数分布グラフ、図3は、従来被覆サーメット工具2の蒸着α型Al2O3層の傾斜角度数分布グラフをそれぞれ示すものである。
In the above-mentioned various inclination angle number distribution graphs, as shown in Tables 4 and 5, each of the heat-transformed α-type Al 2 O 3 layers of the coated cermet tool of the present invention has a distribution of measured inclination angles on the (0001) plane. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 2 to 12 degrees, and the ratio of the inclination angle numbers existing in the inclination angle section within the range of 2 to 12 degrees is 45% or more. In contrast, the vapor deposition α-type Al 2 O 3 layer of the conventional coated cermet tool is unbiased in the range of the measured inclination angle of the (0001) plane in the range of 0 to 45 degrees, and the highest peak is The inclination angle number distribution graph in which the ratio of the inclination angle number which does not exist and exists in the inclination angle section within the range of 2 to 12 degrees is also 25% or less was shown.
2 is an inclination angle distribution graph of the heat-transformed α-type Al 2 O 3 layer of the coated cermet tool 2 of the present invention, and FIG. 3 is an inclination angle of the vapor-deposited α-type Al 2 O 3 layer of the conventional coated cermet tool 2. Number distribution graphs are respectively shown.
また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層をオージェ分光分析装置で測定(層の縦断面を観察)したところ、前者ではいずれも目標組成と実質的に同じ組成を有するTi化合物層と加熱変態α型Al2O3層、さらにCr3O2層からなることが確認された。一方後者でも、いずれも同じく目標組成と実質的に同じ組成を有するTi化合物と蒸着α型Al2O3層からなることが確認された。
さらに、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
In addition, for the coated cermet tools 1 to 13 of the present invention and the conventional coated cermet tools 1 to 13 obtained as a result, the constituent layers of the hard coating layer were measured with an Auger spectrometer (observation of the longitudinal section of the layer). In the former, it was confirmed that each of the layers consisted of a Ti compound layer having a composition substantially the same as the target composition, a heat-transformed α-type Al 2 O 3 layer, and a Cr 3 O 2 layer. On the other hand, it was confirmed that both of the latter consisted of a Ti compound having substantially the same composition as the target composition and a deposited α-type Al 2 O 3 layer.
Furthermore, when the thicknesses of the constituent layers of the hard coating layer of these coated cermet tools were measured using a scanning electron microscope (same longitudinal section measurement), all of them had an average layer thickness substantially equal to the target layer thickness (5 The average value of point measurement) was shown.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件A)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:10分、
の条件(切削条件B)での炭素鋼の乾式高速断続切削試験(通常の切削速度は250m/min)、
被削材:JIS・FCD600の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:2.5mm、
送り:0.2mm/rev、
切削時間:10分、
の条件(切削条件C)でのダクタイル鋳鉄の乾式高速断続切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, in the state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 are as follows.
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 300 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (cutting condition A),
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 350 m / min,
Cutting depth: 2mm,
Feed: 0.3mm / rev,
Cutting time: 10 minutes,
Dry high-speed intermittent cutting test of carbon steel under the conditions (cutting condition B) (normal cutting speed is 250 m / min),
Work material: JIS / FCD600 lengthwise equal 4 round bars with longitudinal grooves,
Cutting speed: 350 m / min,
Incision: 2.5mm,
Feed: 0.2mm / rev,
Cutting time: 10 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of ductile cast iron under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.
表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が、(0001)面の傾斜角が2〜12度の範囲内の傾斜角区分で最高ピークを示すと共に、前記2〜12度の傾斜角区分範囲内に存在する度数の合計割合が45%以上を占める傾斜角度数分布グラフを示す加熱変態α型Al2O3層で構成され、機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう鋼や鋳鉄の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al2O3層が、すぐれた高温硬さおよび耐熱性に加えて、すぐれた耐チッピング性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が、(0001)面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α型Al2O3層で構成された従来被覆サーメット工具1〜13においては、いずれも高速断続切削では前記蒸着α型Al2O3層が激しい機械的熱的衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, in the coated cermet tools 1 to 13 of the present invention, the upper layer of the hard coating layer is an inclination angle section within the range of the inclination angle of the (0001) plane of 2 to 12 degrees. It is composed of a heated transformation α-type Al 2 O 3 layer showing the highest peak and showing an inclination angle number distribution graph in which the total ratio of the frequencies existing in the inclination angle division range of 2 to 12 degrees occupies 45% or more, The heat-transformed α-type Al 2 O 3 layer that forms the upper layer of the hard coating layer has excellent high-temperature hardness even in high-speed intermittent cutting of steel and cast iron with extremely high mechanical and thermal shock and high heat generation. In addition to exhibiting excellent chipping resistance in addition to heat resistance, the occurrence of chipping at the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited, whereas the upper layer of the hard coating layer is ( The distribution of the measured inclination angle of the (0001) plane is 0 to 45 degrees. Unbiased manner and in囲内, in the conventional coated cermet tools 1 to 13, which is composed of vapor-deposited α-type the Al 2 O 3 layer showing the inclination angle frequency distribution graph in which the highest peak does not exist, the deposition α type with both high-speed intermittent cutting It is apparent that the Al 2 O 3 layer cannot withstand severe mechanical thermal shock, chipping occurs at the cutting edge, and the service life is reached in a relatively short time.
上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に機械的熱的衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しい高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cermet tool of the present invention has extremely high mechanical thermal shock and high heat generation as well as continuous cutting and interrupted cutting under normal conditions such as various steels and cast iron. Because it exhibits excellent chipping resistance even in high-speed intermittent cutting with the most severe cutting conditions, and exhibits excellent cutting performance over a long period of time, it is possible to improve the performance of the cutting equipment and save labor and energy in cutting. Furthermore, it can cope with cost reduction sufficiently satisfactorily.
Claims (1)
(a)下部層が、いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成した状態でκ型またはθ型の結晶構造および1〜15μmの平均層厚を有する酸化アルミニウム層の表面に、酸化クロム層を1.5〜5μmの平均層厚で化学蒸着形成した状態で、加熱処理を施して、前記κ型またはθ型の結晶構造を有する酸化アルミニウム層の結晶構造をα型結晶構造に変態してなると共に、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記2〜12度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示す加熱変態α型酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer formed by chemical vapor deposition, And a Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) The upper layer is formed by chemical vapor deposition, and the chromium oxide layer is an average layer of 1.5 to 5 μm on the surface of an aluminum oxide layer having a κ-type or θ-type crystal structure and an average layer thickness of 1 to 15 μm. In a state where chemical vapor deposition is formed with a thickness, heat treatment is performed to transform the crystal structure of the aluminum oxide layer having the κ-type or θ-type crystal structure into an α-type crystal structure,
Using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polishing surface is irradiated with an electron beam, and the crystal grain is compared with the normal line of the surface polishing surface. The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane, is measured, and among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees. In addition, in the slope angle distribution graph obtained by counting the frequencies existing in each section, the highest peak exists in the slope angle section within the range of 2 to 12 degrees and also exists within the range of 2 to 12 degrees. A heat-transformed α-type aluminum oxide layer showing a tilt angle frequency distribution graph in which the total frequency to be measured occupies a ratio of 45% or more of the total frequency in the tilt angle frequency distribution graph,
A surface-coated cermet cutting tool having excellent chipping resistance due to the hard coating layer formed by the hard coating layer constituted of (a) and (b) above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004180464A JP2005246596A (en) | 2004-02-05 | 2004-06-18 | Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004028810 | 2004-02-05 | ||
JP2004180464A JP2005246596A (en) | 2004-02-05 | 2004-06-18 | Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005246596A true JP2005246596A (en) | 2005-09-15 |
Family
ID=35027566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004180464A Withdrawn JP2005246596A (en) | 2004-02-05 | 2004-06-18 | Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005246596A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098544A (en) * | 2005-10-07 | 2007-04-19 | Mitsubishi Materials Corp | Surface-covered cutting tool made of thermet whose hard covering layer exerts excellent anti-chipping performance in high-speed machining process of hard-to-cut material |
JP2007105807A (en) * | 2005-10-11 | 2007-04-26 | Mitsubishi Materials Corp | Surface-coated cermet cutting tool having hard-coating layer exhibiting excellent chipping resistance in high-speed cutting of difficult-to-machine material |
JP2007111785A (en) * | 2005-10-18 | 2007-05-10 | Mitsubishi Materials Corp | Cutting tool of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work to hard-to-cut material |
JP2022546824A (en) * | 2019-09-06 | 2022-11-09 | アプライド マテリアルズ インコーポレイテッド | Method for forming a protective coating comprising crystallized aluminum oxide |
-
2004
- 2004-06-18 JP JP2004180464A patent/JP2005246596A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007098544A (en) * | 2005-10-07 | 2007-04-19 | Mitsubishi Materials Corp | Surface-covered cutting tool made of thermet whose hard covering layer exerts excellent anti-chipping performance in high-speed machining process of hard-to-cut material |
JP2007105807A (en) * | 2005-10-11 | 2007-04-26 | Mitsubishi Materials Corp | Surface-coated cermet cutting tool having hard-coating layer exhibiting excellent chipping resistance in high-speed cutting of difficult-to-machine material |
JP2007111785A (en) * | 2005-10-18 | 2007-05-10 | Mitsubishi Materials Corp | Cutting tool of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work to hard-to-cut material |
JP2022546824A (en) * | 2019-09-06 | 2022-11-09 | アプライド マテリアルズ インコーポレイテッド | Method for forming a protective coating comprising crystallized aluminum oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006015426A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP2006231433A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP2005205586A (en) | Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer | |
JP2006334750A (en) | SURFACE COATED CERMET CUTTING TOOL WHOSE THICK alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS HIGH CHIPPING RESISTANCE | |
JP4730522B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4793750B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer | |
JP4569743B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4466848B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP2005246597A (en) | Surface coated cubic boron nitride sintered material-made cutting tool having excellent chipping resistance in hard coated layer | |
JP2006289586A (en) | Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP4530141B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP2005246596A (en) | Surface-coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP4591752B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4569862B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP2006000970A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4747386B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting | |
JP4747387B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP2005279915A (en) | Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer | |
JP4569861B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4569742B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP2005279914A (en) | Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP2006231423A (en) | Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP4483510B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4816904B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20070904 |