JP2005313242A - Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance - Google Patents

Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance Download PDF

Info

Publication number
JP2005313242A
JP2005313242A JP2004130667A JP2004130667A JP2005313242A JP 2005313242 A JP2005313242 A JP 2005313242A JP 2004130667 A JP2004130667 A JP 2004130667A JP 2004130667 A JP2004130667 A JP 2004130667A JP 2005313242 A JP2005313242 A JP 2005313242A
Authority
JP
Japan
Prior art keywords
layer
type
hard coating
crystal structure
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004130667A
Other languages
Japanese (ja)
Inventor
Hiroshi Hara
央 原
Yusuke Tanaka
裕介 田中
Toshiaki Ueda
稔晃 植田
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004130667A priority Critical patent/JP2005313242A/en
Publication of JP2005313242A publication Critical patent/JP2005313242A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool with a hard coating layer having excellent thermal shock resistance. <P>SOLUTION: This cutting tool has the hard coating layer formed on a surface of a tool base body constituted of WC base cemented carbide alloy or TiCN base cermet. The hard coating layer is constituted of the following (a) to (c) layers: (a) a Ti compound layer as a lower layer composed of one or more layers of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer formed by chemical deposition with a total average layer thickness of 3 to 20 μm, (b) a heat transformed α type Al<SB>2</SB>O<SB>3</SB>layer as an upper layer having a crystal structure transformed into an α type crystal structure by applying heat treatment to aluminum oxide having a κ type or θ type crystal structure in a chemically depositioned state, showing an X-ray diffraction chart with clear diffraction peak appearing on a (006) surface and a (018) surface by an X-ray diffraction measurement and having an average layer thickness of 1 to 15 μm, and (c) a CrN layer formed by chemical deposition as a surface layer and having an average layer thickness of 0.5 to 3 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特に鋼や鋳鉄などの高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される熱衝撃に対して硬質被覆層がすぐれた耐チッピング性を発揮する、すなわち硬質被覆層がすぐれた耐熱衝撃性を有する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。   The present invention exhibits excellent chipping resistance with respect to thermal shock that is repeatedly applied to the cutting edge portion at a very short pitch particularly during high-speed intermittent cutting of steel or cast iron, that is, the hard coating layer is excellent. The present invention relates to a surface-coated cermet cutting tool having a thermal shock resistance (hereinafter referred to as a coated cermet tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層として、いずれも蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有Ti化合物層、
(b)上部層として、化学蒸着形成した状態でα型の結晶構造を有し、かつ1〜15μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Al23で示す)層、
(c)表面層として、蒸着形成され、かつ0.5〜3μmの平均層厚を有する窒化クロム(以下、CrNで示す)層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet. ,
(A) As a lower layer, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonic acid layer formed by vapor deposition A compound layer (hereinafter referred to as TiCO) and a carbonitride oxide (hereinafter referred to as TiCNO) layer, or a Ti compound layer having a total average layer thickness of 3 to 20 μm.
(B) a vapor-deposited α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an α-type crystal structure in the state of chemical vapor deposition and having an average layer thickness of 1 to 15 μm as an upper layer;
(C) As a surface layer, a chromium nitride (hereinafter referred to as CrN) layer formed by vapor deposition and having an average layer thickness of 0.5 to 3 μm,
A coated cermet tool formed by forming a hard coating layer composed of (a) to (c) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層やAl23 層、さらにCrN層が粒状結晶組織を有し、また、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCH3CNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開2003−266212 特開平6−8010号公報
In general, the Ti compound layer and the Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated cermet tool, and further the CrN layer has a granular crystal structure, and the TiCN layer constituting the Ti compound layer, For the purpose of improving the strength of the layer itself, chemical vapor deposition is performed at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride such as CH 3 CN as a reaction gas in a normal chemical vapor deposition apparatus. It is also known that it has a vertically grown crystal structure.
JP 2003-266212 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し熱衝撃が付加される高速断続切削に用いた場合、硬質被覆層の下部層であるTi化合物層は高強度を有し、すぐれた耐衝撃性を示すものの、同上部層を構成する蒸着α型Al23層は、硬質で耐熱性にすぐれるものの、熱衝撃に対してきわめて脆いものであるために、これが原因で硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting has been on the trend of higher speed. For coated cermet tools, there is no problem if this is used for continuous cutting and interrupted cutting under normal conditions such as steel and cast iron. When used for high-speed intermittent cutting in which repeated thermal shock is applied at a very short pitch, the Ti compound layer, which is the lower layer of the hard coating layer, has high strength and excellent impact resistance, but the upper layer The vapor-deposited α-type Al 2 O 3 layer that constitutes the material is hard and has excellent heat resistance, but it is extremely brittle against thermal shock, and this causes chipping (small chipping) in the hard coating layer. As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成するAl23層の耐熱衝撃性向上をはかるべく研究を行った結果、
工具基体の表面に、通常の化学蒸着装置で、下部層として、通常の条件で、上記Ti化合物層を形成した後[この場合、上記の縦長成長結晶組織を有するTiCN層(以下、l−TiCN層で示す)を除くTi化合物層を、例えば物理蒸着装置の1種であるアークイオンプレーティング装置にて、カソード電極(蒸発源)として金属Tiを用い、反応雰囲気を、例えばメタン分解ガス、窒素ガス、あるいはメタン分解ガスと窒素ガスの混合ガス、さらにメタン分解ガスと酸素ガスの混合ガスや、メタン分解ガスと窒素ガスと酸素ガスの混合ガスの雰囲気として蒸着形成してもよい]、同じく通常の条件で、蒸着形成した状態でκ型またはθ型の結晶構造を有するAl23層を形成し、この状態でAr雰囲気中、温度:900〜960℃、保持時間:12〜24時間の条件で加熱処理を施すと、前記Ti化合物層は現状を保持したままで、前記κ型またはθ型の結晶構造のAl23層がα型結晶構造のAl23層に変態し、この結果の加熱変態α型Al23層は、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示すようになると共に、すぐれた耐熱衝撃性を具備するようになり、したがって、前記加熱変態α型Al23層の上に、さらに表面層としてCrN層を蒸着形成[この場合、化学蒸着形成しても、例えば上記の物理蒸着装置の1種であるアークイオンプレーティング装置にて、カソード電極(蒸発源)として金属Crを用い、反応雰囲気を窒素ガス雰囲気とすることにより形成してもよい]してなる硬質被覆層、すなわち、硬質被覆層の表面層が前記CrN層、上部層が前記加熱変態α型Al23層、下部層が上記Ti化合物層で構成された被覆サーメット工具においては、特に激しい熱衝撃を伴なう高速断続切削加工でも前記加熱変態α型Al23層が、高強度を有する前記Ti化合物層およびすぐれた潤滑性を発揮する前記CrN層との共存と相俟って、すぐれた耐熱衝撃性を発揮することから、硬質被覆層におけるチッピング発生が著しく抑制され、長期に亘ってすぐれた耐摩耗性を示すようになるという研究結果を得たのである。
Therefore, as a result of conducting research to improve the thermal shock resistance of the Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool from the above viewpoint,
After the Ti compound layer is formed on the surface of the tool base as a lower layer in a normal chemical vapor deposition apparatus under normal conditions, the TiCN layer having the above vertically grown crystal structure (hereinafter referred to as l-TiCN) For example, an arc ion plating apparatus, which is a kind of physical vapor deposition apparatus, is used to form a Ti compound layer except for a metal Ti as a cathode electrode (evaporation source) and a reaction atmosphere such as methane decomposition gas, nitrogen Gas or a mixed gas of methane decomposition gas and nitrogen gas, or a mixed gas of methane decomposition gas and oxygen gas, or a mixed gas of methane decomposition gas, nitrogen gas and oxygen gas may be deposited] in conditions to form the Al 2 O 3 layer having a κ-type or θ-type crystal structure in a state of vapor deposited in an Ar atmosphere in this state, temperature: 900-960 ° C., held During: When subjected to heat treatment at 12 to 24 hours of conditions, the Ti compound layer while maintaining the current state, Al 2 of the κ-type or θ-type of the Al 2 O 3 layer α-type crystal structure of the crystal structure As a result of the transformation to the O 3 layer, the heat-transformed α-type Al 2 O 3 layer shows an X-ray diffraction chart in which clear diffraction peaks appear on the (006) plane and the (018) plane in X-ray diffraction measurement. Therefore, it has excellent thermal shock resistance. Therefore, a CrN layer is deposited as a surface layer on the heat-transformed α-type Al 2 O 3 layer. For example, in an arc ion plating apparatus that is one of the above physical vapor deposition apparatuses, metal Cr may be used as the cathode electrode (evaporation source) and the reaction atmosphere may be a nitrogen gas atmosphere.] Hard coating layer, i.e. Surface layer the CrN layer hard coating layer, the heating transformation α type the Al 2 O 3 layer is the top layer, in the coated cermet tool lower layer is composed of the Ti compound layer, the accompanying particularly severe thermal shock Excellent thermal shock resistance in combination with coexistence of the high-strength Ti compound layer and the CrN layer exhibiting excellent lubricity in the heat-transformed α-type Al 2 O 3 layer even in high-speed intermittent cutting As a result, it has been found that the occurrence of chipping in the hard coating layer is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有するAl23に加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型Al23層、
(c)表面層として、蒸着形成され、かつ0.5〜3μmの平均層厚を有するCrN層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、硬質被覆層がすぐれた耐熱衝撃性を有する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) As a lower layer, all consist of one layer or two or more layers of TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer formed by vapor deposition, and have a total average layer thickness of 3 to 20 μm. Having a Ti compound layer,
(B) As an upper layer, heat treatment is applied to Al 2 O 3 having a κ-type or θ-type crystal structure in a state where chemical vapor deposition is formed, and the crystal structure is transformed into an α-type crystal structure. A heat-transformed α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm and showing an X-ray diffraction chart in which clear diffraction peaks appear on the (006) plane and the (018) plane by measurement,
(C) As a surface layer, a CrN layer formed by vapor deposition and having an average layer thickness of 0.5 to 3 μm,
The present invention is characterized by a coated cermet tool having a thermal shock resistance with an excellent hard coating layer formed by forming the hard coating layer configured as described above in (a) to (c).

なお、この発明の被覆サーメット工具の硬質被覆層の構成層の平均層厚を上記の通りに限定したのは以下に示す理由によるものである。
(a)下部層(Ti化合物層)
Ti化合物層は、自体が高強度を有し、これの存在によって硬質被覆層が高強度を具備するようになるほか、工具基体と上部層である加熱変態α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
The reason why the average layer thickness of the constituent layers of the hard coating layer of the coated cermet tool of the present invention is limited as described above is as follows.
(A) Lower layer (Ti compound layer)
The Ti compound layer itself has a high strength, and the presence of the Ti compound layer makes the hard coating layer have a high strength, and in addition to the tool base and the heat-transformed α-type Al 2 O 3 layer that is the upper layer. Also has an action that contributes to improving the adhesion of the hard coating layer to the tool substrate, but if the total average layer thickness is less than 3 μm, the above-mentioned action cannot be fully exerted, while the total When the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed intermittent cutting with high heat generation, and this causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm. .

(b)上部層(加熱変態α型Al23層)
加熱変態α型Al23層は、Al23自体のもつ高硬度とすぐれた耐熱性によって硬質被覆層の耐摩耗性を向上させると共に、上記の通り自身の具備するすぐれた耐熱衝撃性によって、硬質被覆層にチッピングが発生するのを著しく抑制する作用を有するが、その平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(B) Upper layer (heat transformed α-type Al 2 O 3 layer)
The heat-transformed α-type Al 2 O 3 layer improves the wear resistance of the hard coating layer due to the high hardness and excellent heat resistance of Al 2 O 3 itself, and as described above, the excellent thermal shock resistance possessed by itself. However, if the average layer thickness is less than 1 μm, the above effect cannot be fully exerted, while the average layer thickness exceeds 15 μm. When the thickness is too thick, chipping is likely to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

(c)表面層(CrN層)
CrN層には、被削材と切刃面との間に介在して、これら両者間の潤滑性を向上させ、もって耐チッピング性向上に寄与する作用を有するが、その平均層厚が0.5μm未満では、前記作用に所望の向上効果が得られず、一方前記作用は3μmまでの平均層厚で十分であることから、その平均層厚を0.5〜3μmと定めた。
(C) Surface layer (CrN layer)
The CrN layer is interposed between the work material and the cutting edge surface, and has an effect of improving the lubricity between them, thereby contributing to the improvement of chipping resistance. If the thickness is less than 5 μm, a desired improvement effect cannot be obtained in the above action, while an average layer thickness of up to 3 μm is sufficient for the action. Therefore, the average layer thickness is set to 0.5 to 3 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discriminating effect cannot be obtained, whereas the discriminating effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明被覆サーメット工具は、熱衝撃がきわめて高く、かつ高い発熱を伴なう鋼の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al23層がすぐれた耐熱衝撃性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を長期に亘って示すものである。 This invention-coated cermet tool has a high thermal shock, and even in high-speed intermittent cutting of steel with high heat generation, the heat-transformed α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer has excellent thermal shock Since it exhibits the properties, the occurrence of chipping at the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで同じく表3に示される条件で結晶構造がκ型またはθ型のAl23層を蒸着形成し、これにAr雰囲気中、温度:940℃に12〜24時間の範囲内の所定時間保持の条件で加熱処理を施して、前記κ型またはθ型の結晶構造のAl23層をα型結晶構造のAl23層に変態させてなる加熱変態α型Al23層を同じく表4に示される目標層厚で硬質被覆層の上部層として形成し、さらに同じく表3に示される条件にて、同表面層として、CrN層を表4に示される目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
また、比較の目的で、表5に示される通り、硬質被覆層の上部層を同じく表5に示される平均層厚の蒸着α型Al23層とする以外は同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
Next, a normal chemical vapor deposition apparatus was used on the surfaces of the tool bases A to F and the tool bases a to f, and Table 3 (l-TiCN in Table 3 is a vertically long shape described in JP-A-6-8010). TiCN having a target layer thickness shown in Table 4 under the conditions shown in Table 4 below, showing the conditions for forming a TiCN layer having a grown crystal structure. The compound layer is formed as a lower layer of the hard coating layer, and then an Al 2 O 3 layer having a crystal structure of κ type or θ type is formed by vapor deposition under the same conditions shown in Table 3, and this is performed in an Ar atmosphere at a temperature: Heat treatment is performed at 940 ° C. for 12 to 24 hours for a predetermined time, thereby converting the κ-type or θ-type crystal structure Al 2 O 3 layer into an α-type crystal structure Al 2 O 3 layer. also shown in Table 4 to heat transformation α type the Al 2 O 3 layer composed by transformation The present invention is formed by forming the upper layer of the hard coating layer with the target layer thickness and further depositing a CrN layer with the target layer thickness shown in Table 4 as the same surface layer under the conditions shown in Table 3. Cermet tools 1 to 13 were produced, respectively.
For comparison purposes, as shown in Table 5, a conventional coated cermet under the same conditions except that the upper layer of the hard coating layer is a vapor-deposited α-type Al 2 O 3 layer having the average layer thickness shown in Table 5 as well. Tools 1-13 were produced respectively.

この結果得られた上記の本発明被覆サーメット工具と従来被覆サーメット工具の硬質被覆層を構成する加熱変態α型Al23層と蒸着α型Al23層の相違を観察する目的でX線回折を測定した。
まず、X線回折測定用試料として、X線回折チャート上で(001)面および(002)面にのみ回折ピークが現れる単結晶WCを基体試料として用い、この基体試料の表面に、本発明被覆サーメット工具3、9、および12の目標層厚が15μm、10μm、および5μmの加熱変態α型Al23層、並びに従来被覆サーメット工具3、9、および12の同じく目標層厚が15μm、10μm、および5μmの蒸着α型Al23層の形成条件と同一の条件で、それぞれ目標層厚が15μm、10μm、および5μmの加熱変態α型Al23層および蒸着α型Al23層を直接形成して本発明被覆試料A〜Cおよび従来被覆試料a〜cをそれぞれ調製した。
For the purpose of observing the difference between the heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned present invention coated cermet tool and the conventional coated cermet tool obtained as a result, X Line diffraction was measured.
First, as a sample for X-ray diffraction measurement, a single crystal WC in which diffraction peaks appear only on the (001) plane and the (002) plane on the X-ray diffraction chart is used as a substrate sample, and the surface of the substrate sample is coated with the present invention. The target layer thicknesses of the cermet tools 3, 9, and 12 are 15 μm, 10 μm, and 5 μm in the heat-transformed α-type Al 2 O 3 layer, and the conventional coated cermet tools 3, 9, and 12 have the same target layer thicknesses of 15 μm, 10 μm. , And 5 μm of vapor-deposited α-type Al 2 O 3 layer under the same conditions as those for forming a heat-transformed α-type Al 2 O 3 layer and vapor-deposited α-type Al 2 O 3 with a target layer thickness of 15 μm, 10 μm, and 5 μm, respectively. Layers were formed directly to prepare inventive coated samples AC and conventional coated samples ac.

ついで、これら被覆試料の前記加熱変態α型Al23層および蒸着α型Al23層のX線回折測定を、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧:40kV、電流:350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を前記被覆試料表面に照射し、前記被覆試料から散乱したX線のうち、被覆試料表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行なった。この測定結果を図1〜6に示した。
本発明被覆試料A〜Cの加熱変態α型Al23層のX線回折チャートを示す図1〜3と、従来被覆試料a〜cの蒸着α型Al23層のX線回折チャートを示す図4〜6の比較から、前記加熱変態α型Al23層では(006)面および(018)面に明確な回折ピークが現れているのに対して、前記蒸着α型Al23層ではこれら(006)面および(018)面に回折ピークは存在しないことが明かである。
Next, X-ray diffraction measurement of the above-mentioned heat-transformed α-type Al 2 O 3 layer and vapor-deposited α-type Al 2 O 3 layer of these coated samples was performed using a normal X-ray diffractometer and Cu placed in the X-ray tube By irradiating the anode (target) with thermionic electrons generated from the metal W filament under the conditions of voltage: 40 kV and current: 350 mA, the characteristic X-ray having a wavelength of 0.154 nm from the Cu anode surface A certain Cu-Kα ray is generated, the characteristic X-ray is irradiated on the surface of the coated sample, and the X-ray diffracted at an angle equal to the X-ray incident angle θ with respect to the coated sample surface among the X-rays scattered from the coated sample. The intensity was measured by an X-ray detector. The measurement results are shown in FIGS.
1 to 3 showing X-ray diffraction charts of the heat-transformed α-type Al 2 O 3 layers of the inventive coated samples A to C, and X-ray diffraction charts of the deposited α-type Al 2 O 3 layers of the conventional coated samples a to c 4 to 6 show that, in the heat-transformed α-type Al 2 O 3 layer, clear diffraction peaks appear on the (006) plane and the (018) plane, whereas the evaporated α-type Al 2 In the O 3 layer, it is clear that there are no diffraction peaks on these (006) plane and (018) plane.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13について、これの硬質被覆層の構成層を走査型電子顕微鏡を用いて観察(層の縦断面を観察)したところ、前者ではいずれもTi化合物層、加熱変態α型Al23層、およびCrN層からなり、後者では、いずれもTi化合物と蒸着α型Al23層とCrN層からなることが確認された。さらに、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、同じく走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Moreover, about this invention coated cermet tool 1-13 obtained as a result, and the conventional coated cermet tool 1-13, the structural layer of this hard coating layer is observed using a scanning electron microscope (the longitudinal section of a layer is observed). As a result, the former is composed of a Ti compound layer, a heat-transformed α-type Al 2 O 3 layer, and a CrN layer, and the latter is composed of a Ti compound, a vapor-deposited α-type Al 2 O 3 layer, and a CrN layer. confirmed. Furthermore, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using the same scanning electron microscope (also measured in the longitudinal section), the average layer thickness was substantially the same as the target layer thickness. (Average value of 5-point measurement) was shown.

つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜7および従来被覆サーメット工具1〜13については、
被削材:JIS・SCM415の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:2.0mm、
送り:0.35mm/rev、
切削時間:4分、
の条件(切削条件Aという)での合金鋼の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・FC350の長さ方向等間隔4本縦溝入り丸棒、
切削速度:350m/min、
切り込み:1.0mm、
送り:0.15mm/rev、
切削時間:5分、
の条件(切削条件Bという)での普通鋳鉄の乾式高速断続切削試験(通常の切削速度は200m/min)、
被削材:JIS・S35Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.5mm、
送り:0.25m/rev、
切削時間:10分、
の条件(切削条件Cという)での炭素鋼の乾式高速断続切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, with respect to the present invention coated cermet tools 1 to 7 and the conventional coated cermet tools 1 to 13 in a state where any of the above various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig. ,
Work material: JIS / SCM415 lengthwise equal 4 round grooved round bars,
Cutting speed: 450 m / min,
Cutting depth: 2.0 mm
Feed: 0.35mm / rev,
Cutting time: 4 minutes
Dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: JIS / FC350 lengthwise equidistant round bars with 4 vertical grooves,
Cutting speed: 350 m / min,
Cutting depth: 1.0 mm,
Feed: 0.15mm / rev,
Cutting time: 5 minutes
Dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of normal cast iron under the conditions (cutting condition B)
Work material: JIS-S35C lengthwise equal length 4 round fluted round bars,
Cutting speed: 380 m / min,
Incision: 1.5mm,
Feed: 0.25m / rev,
Cutting time: 10 minutes,
The dry high-speed intermittent cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting condition C), the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2005313242
Figure 2005313242

Figure 2005313242
Figure 2005313242

Figure 2005313242
Figure 2005313242

Figure 2005313242
Figure 2005313242

Figure 2005313242
Figure 2005313242

Figure 2005313242
Figure 2005313242

表4〜6に示される結果から、本発明被覆サーメット工具1〜13は、熱衝撃がきわめて高く、かつ高い発熱を伴なう鋼の高速断続切削でも、硬質被覆層の上部層を構成する加熱変態α型Al23層がすぐれた耐熱衝撃性を発揮することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を示すのに対して、硬質被覆層の上部層が蒸着α型Al23層からなる従来被覆サーメット工具1〜13においては、高速断続切削では前記蒸着α型Al23層が激しい熱衝撃に耐えられず、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 6, the coated cermet tools 1 to 13 of the present invention have a very high thermal shock, and the heating constituting the upper layer of the hard coating layer even in high-speed intermittent cutting of steel accompanied by high heat generation. Since the transformed α-type Al 2 O 3 layer exhibits excellent thermal shock resistance, the occurrence of chipping at the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited, whereas the upper layer of the hard coating layer is In the conventional coated cermet tools 1 to 13 consisting of a vapor-deposited α-type Al 2 O 3 layer, the vapor-deposited α-type Al 2 O 3 layer cannot withstand severe thermal shock in high-speed intermittent cutting, and chipping occurs at the cutting edge. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に熱衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しい高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool according to the present invention has not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also cutting conditions with extremely high thermal shock and high heat generation. Even the most severe high-speed intermittent cutting shows excellent chipping resistance and demonstrates excellent cutting performance over a long period of time. It is possible to cope with the transformation sufficiently.

本発明被覆サーメット工具3の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:15μm)のX線回折チャートを示す図である。The present invention coated cermet heating transformation α type the Al 2 O 3 layer constituting the hard coating layer of the tool 3 (target layer thickness: 15 [mu] m) is a diagram showing an X-ray diffraction chart of. 本発明被覆サーメット工具9の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:10μm)のX線回折チャートを示す図である。The present invention heat transformed α-type the Al 2 O 3 layer constituting the hard coating layer of the coated cermet tool 9 (target layer thickness: 10 [mu] m) is a diagram showing an X-ray diffraction chart of. 本発明被覆サーメット工具12の硬質被覆層を構成する加熱変態α型Al23層(目標層厚:5μm)のX線回折チャートを示す図である。The present invention coated heat transformed α-type the Al 2 O 3 layer constituting the hard layer of the cermet tool 12 (target layer thickness: 5 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具3の硬質被覆層を構成する蒸着α型Al23層(目標層厚:15μm)のX線回折チャートを示す図である。Conventional coated cermet tool 3 of the hard coating layer deposited α-type the Al 2 O 3 layer constituting the (target layer thickness: 15 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具9の硬質被覆層を構成する蒸着α型Al23層(目標層厚:10μm)のX線回折チャートを示す図である。Conventional coated cermet hard layer deposition α type the Al 2 O 3 layer constituting the tool 9 (target layer thickness: 10 [mu] m) is a diagram showing an X-ray diffraction chart of. 従来被覆サーメット工具12の硬質被覆層を構成する蒸着α型Al23層(目標層厚:5μm)のX線回折チャートを示す図である。Conventional coated cermet tool 12 hard layer deposition α type the Al 2 O 3 layer constituting the (target layer thickness: 5 [mu] m) is a diagram showing an X-ray diffraction chart of.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層として、いずれも蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層として、化学蒸着形成した状態でκ型またはθ型の結晶構造を有する酸化アルミニウムに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、X線回折測定で(006)面および(018)面に明確な回折ピークが現れるX線回折チャートを示し、かつ1〜15μmの平均層厚を有する加熱変態α型酸化アルミニウム層、
(c)表面層として、蒸着形成され、0.5〜3μmの平均層厚を有する窒化クロム層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる硬質被覆層がすぐれた耐熱衝撃性を有する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) As a lower layer, each consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer formed by vapor deposition, and A Ti compound layer having a total average layer thickness of 3 to 20 μm,
(B) As an upper layer, heat treatment is applied to aluminum oxide having a κ-type or θ-type crystal structure in the state of chemical vapor deposition, and the crystal structure is transformed into an α-type crystal structure. A heat-transformed α-type aluminum oxide layer showing an X-ray diffraction chart in which clear diffraction peaks appear on the (006) plane and the (018) plane, and having an average layer thickness of 1 to 15 μm;
(C) a chromium nitride layer formed by vapor deposition and having an average layer thickness of 0.5 to 3 μm as a surface layer;
A surface-coated cermet cutting tool having excellent thermal shock resistance with a hard coating layer formed by forming the hard coating layer composed of (a) to (c) above.
JP2004130667A 2004-04-27 2004-04-27 Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance Withdrawn JP2005313242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004130667A JP2005313242A (en) 2004-04-27 2004-04-27 Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004130667A JP2005313242A (en) 2004-04-27 2004-04-27 Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance

Publications (1)

Publication Number Publication Date
JP2005313242A true JP2005313242A (en) 2005-11-10

Family

ID=35441204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004130667A Withdrawn JP2005313242A (en) 2004-04-27 2004-04-27 Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance

Country Status (1)

Country Link
JP (1) JP2005313242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7923101B2 (en) * 2007-02-01 2011-04-12 Seco Tools Ab Texture-hardened alpha-alumina coated tool
US7993742B2 (en) * 2005-09-27 2011-08-09 Seco Tools Ab Alumina layer with enhanced texture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993742B2 (en) * 2005-09-27 2011-08-09 Seco Tools Ab Alumina layer with enhanced texture
US7923101B2 (en) * 2007-02-01 2011-04-12 Seco Tools Ab Texture-hardened alpha-alumina coated tool

Similar Documents

Publication Publication Date Title
JP4811781B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP2006231433A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2009083008A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy cutting
JP4569743B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2005313242A (en) Surface coated cermet cutting tool with hard coating layer having excellent thermal shock resistance
JP4569862B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4747387B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP2004188575A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2005313245A (en) Surface coated cermet cutting tool with hard coating layer exerting excellent chipping resistance
JP2005313243A (en) Surface coated cermet cutting tool with hard coating layer having excellent chipping resistance
JP2005262323A (en) Surface-coated cermet cutting tool with hard coating layer having excellent chipping resistance
JP4569742B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JPH10251832A (en) Cutting tool made of surface-coated cemented carbide excellent in wear resistance
JP2004188577A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2005279915A (en) Surface-coated cermet cutting tool exhibiting superior chipping resistance in hard-coated layer
JP2004181614A (en) Surface-coated cermet cutting tool with hard coating layer of excellent thermal shock resistance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703