JP4811781B2 - Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer - Google Patents
Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer Download PDFInfo
- Publication number
- JP4811781B2 JP4811781B2 JP2005162515A JP2005162515A JP4811781B2 JP 4811781 B2 JP4811781 B2 JP 4811781B2 JP 2005162515 A JP2005162515 A JP 2005162515A JP 2005162515 A JP2005162515 A JP 2005162515A JP 4811781 B2 JP4811781 B2 JP 4811781B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- inclination angle
- degrees
- range
- distribution graph
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011195 cermet Substances 0.000 title claims description 41
- 238000005520 cutting process Methods 0.000 title claims description 35
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 title claims description 5
- 239000010410 layer Substances 0.000 claims description 167
- 238000009826 distribution Methods 0.000 claims description 34
- 239000013078 crystal Substances 0.000 claims description 30
- 239000011247 coating layer Substances 0.000 claims description 24
- 239000010936 titanium Substances 0.000 claims description 18
- 238000005229 chemical vapour deposition Methods 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 10
- 239000000853 adhesive Substances 0.000 claims description 8
- 230000001070 adhesive effect Effects 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 5
- 239000011295 pitch Substances 0.000 claims description 5
- 230000008719 thickening Effects 0.000 claims description 5
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 238000007254 oxidation reaction Methods 0.000 claims 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 38
- 239000000843 powder Substances 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000012495 reaction gas Substances 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000012298 atmosphere Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 102220358403 c.89C>G Human genes 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、硬質被覆層の上部層、すなわち化学蒸着形成した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al2O3層で示す)を、特に厚膜化した状態で、各種の鋼や鋳鉄などの切削加工に用いた場合にも、すぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, an upper layer of a hard coating layer, that is, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an α-type crystal structure in a state where chemical vapor deposition is formed is particularly thick. The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent chipping resistance even when used for cutting various steels and cast iron.
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜15μmの合計平均層厚を有するTi化合物層、
(b)上部層が、1〜15μmの平均層厚を有するα型Al2O3層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. , A carbon oxide (hereinafter referred to as TiCO) layer, and a carbonitride oxide (hereinafter referred to as TiCNO) layer, and has a total average layer thickness of 0.5 to 15 μm. Ti compound layer,
(B) an α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 1 to 15 μm;
A coated cermet tool formed by forming a hard coating layer composed of (a) and (b) above is known, and this coated cermet tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
近年の切削装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具に対する使用寿命の一層の延命化を図る目的で、特に硬質被覆層を構成する上部層、すなわちすぐれた高温硬さと耐熱性を有するα型Al2 O3 層には一段の厚膜化が強く望まれているが、前記α型Al2 O3 層の層厚を従来実用に供されている最大平均層厚である15μmを越えて厚膜化すると、Al2 O3 結晶粒が急激に粗大化し、かつ層自体の緻密性が著しく低下し、この結果高温強度の低下が避けられなくなることから、かかる厚膜化α型Al2 O3 層を硬質被覆層の上部層として蒸着形成してなる被覆サーメット工具においては、前記厚膜化α型Al2 O3 層が原因で、切刃部にチッピング(微少欠け)が発生し易くなり、この結果使用寿命のきわめて短いものとなることから、実用に供することができないのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting work, and with this purpose, especially for the purpose of further extending the service life of cutting tools. upper layer constituting the hard coating layer, i.e. excellent but the hot hardness and thickening of one step in the α-type the Al 2 O 3 layer having heat resistance is strongly demanded, of the α-type the Al 2 O 3 layer When the layer thickness exceeds 15 μm, which is the maximum average layer thickness that has been practically used in the past, the Al 2 O 3 crystal grains become coarser and the denseness of the layer itself is significantly reduced. since the decrease in the high-temperature strength can not be avoided, the coated cermet tool formed by depositing formed as an upper layer of such thickening α type the Al 2 O 3 layer a hard coating layer, the thickening α-type Al 2 O 3 layer due to chipping to the cutting edge (fine Chipping) is likely to occur, since it becomes very short for this result useful life, it can not be put to practical use at present.
そこで、本発明者等は、上述のような観点から、上記の従来被覆サーメット工具の硬質被覆層を構成する1〜15μmの平均層厚を有するα型Al2O3層に着目し、これの層厚を平均層厚で15μmを越えて厚膜化しても、前記厚膜化α型Al2O3層が原因のチッピングが切刃部に発生しない被覆サーメット工具を開発すべく研究を行った結果、
(a)一般に、上記の従来被覆サーメット工具の硬質被覆層の下部層であるTi化合物層を構成するTiCN層(以下、「従来TiCN層」という)は、通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl4:1〜5%、CH4:1〜5%、N2:10〜30%、H2:残り、
反応雰囲気温度:950〜1050℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で形成されるが、これを、同じく通常の化学蒸着装置で、
反応ガス組成−体積%で、TiCl4:2〜7%、CH3CN:0.5〜2.7%、N2:10〜20%、H2:残り、
反応雰囲気温度:820〜920℃、
反応雰囲気圧力:6〜20kPa、
とすると共に、上記の反応ガスを構成するCH3CNの成膜開始時点と成膜終了時点の含有割合を上記の含有範囲内で、層厚に対応して特定し、さらに、相対的に含有割合を低くした前記成膜開始時点から相対的に含有割合の高い前記成膜終了時点に向けて、CH3CNの含有割合を連続的または断続的に漸増させた条件(以下、改質条件という)で形成すると、前記改質条件で形成されたTiCN層(以下、「改質TiCN層」という)は、組織的に改質されて、上記の従来TiCN層に比して一段とすぐれた高温強度を有するようになること。
(b)上記の従来TiCN層と上記(a)の改質TiCN層について、
電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来TiCN層は、図3に例示される通り、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記改質TiCN層は、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークは、反応ガスを構成するCH3CNの含有量によってグラフ横軸の傾斜角区分に現れる位置および高さが変わること。
(c)上記の改質TiCN層および従来TiCN層の表面に、それぞれ従来α型Al2O3層の形成条件と同じ条件、すなわち、通常の化学蒸着装置にて、
反応ガス組成−体積%で、AlCl3:1〜5%、CO2:0.5〜10%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:3〜13kPa、
の条件で、α型Al2O3層を平均層厚で15μmを越えた18〜30μmの層厚に形成すると、前記従来TiCN層の上に形成された厚膜化α型Al2O3層では、上記の通りAl2 O3 結晶粒の粗大化が著しく、層自体の緻密性が著しく低下することから、高温強度の低下が避けられないのに対して、前記改質TiCN層上に形成された厚膜化α型Al2O3層では、形成時の前記α型Al2O3層は、前記改質TiCN層の結晶配列に著しく影響を受け、前記改質TiCN層のもつ結晶配列を履歴し、これを持続しながら成膜されるようになることから、この結果形成された厚膜化α型Al2O3層においては、平均層厚で18〜30μmの層厚に厚膜化したにもかかわらず、層厚方向に沿って、Al2O3結晶粒の粗大化が著しく抑制され、かつ層自体の緻密性も一様に保持されたものになるので、具備する高温強度は層厚が1〜15μmのα型Al2O3層のもつ高温強度と同等、寧ろそれ以上の高温強度を具備するようになり、この結果耐チッピング性の低下が著しく抑制されたものになること。
(d)上記の通り、改質TiCN層の形成に際して、上記反応ガスにおけるCH3CNの含有量を0.5〜2.7%とし、かつ、前記含有範囲内で、層厚に対応して成膜開始時点と成膜終了時点のCH3CNの含有量を特定すると共に、前記成膜開始時点から成膜終了時点に向けてCH3CNの含有量を漸次増加することにより、上記シャープな最高ピークが傾斜角区分の2〜10度の範囲内に現れると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜〜72%の割合を占める傾斜角度数分布グラフを示すようになるが、この場合、試験結果によれば、層厚の薄いほど成膜開始時点と成膜終了時点のCH3CNの含有量を前記0.5〜2.7%の範囲内で低い側に定め、層厚が中間では成膜開始時点と成膜終了時点のCH3CNの含有量を前記範囲内の中間の含有量とし、さらに層厚の厚いほど、前記CH3CNの含有範囲の高い側に定めると共に、その含有幅、すなわち(成膜終了時点のCH3CN含有量)−(成膜開始時点のCH3CN含有量)=1±0.15%とするのが望ましく、この含有幅が0.85未満では0〜10度の範囲内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45%未満となってしまい、改質TiCN層の前記厚膜化α型Al2O3層に及ぼす履歴作用が不十分となり、前記厚膜化α型Al2O3層に所望のすぐれた耐チッピング性を確保することができず、一方前記含有幅が1.15%を越えると、最高ピークの現れる傾斜角区分が2〜10度の範囲から外れてしまい、この場合は前記厚膜化α型Al2O3層に所望のすぐれた耐チッピング性を確保することができない場合が生じるようになること。
以上(a)〜(d)に示される研究結果を得たのである。
Therefore, the present inventors focused on the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm constituting the hard coating layer of the above-described conventional coated cermet tool from the above viewpoint, Research was conducted to develop a coated cermet tool in which chipping caused by the thickened α-type Al 2 O 3 layer does not occur at the cutting edge even if the layer thickness is increased to an average layer thickness exceeding 15 μm. result,
(A) In general, a TiCN layer (hereinafter referred to as a “conventional TiCN layer”) that constitutes a Ti compound layer that is a lower layer of the hard coating layer of the conventional coated cermet tool is an ordinary chemical vapor deposition apparatus.
Reaction gas composition - by volume%, TiCl 4: 1~5%, CH 4: 1~5%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1050 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed under the conditions (normal conditions), but this is also a normal chemical vapor deposition device,
Reaction gas composition - by volume%, TiCl 4: 2~ 7% , CH 3 CN: 0.5~ 2.7%, N 2: 10~ 20%, H 2: rest,
Reaction atmosphere temperature: 820-920 ° C.
Reaction atmosphere pressure: 6-20 kPa,
In addition, the content ratio of the CH 3 CN forming the reaction gas at the start of film formation and the end of film formation is specified in the above-described content range corresponding to the layer thickness, and is relatively contained. A condition in which the content ratio of CH 3 CN is gradually or intermittently increased from the film formation start time when the ratio is lowered to the film formation end time when the content ratio is relatively high (hereinafter referred to as reforming conditions). ), The TiCN layer formed under the above-mentioned modification conditions (hereinafter referred to as “modified TiCN layer”) is systematically modified and has a higher high-temperature strength than the conventional TiCN layer. To have.
(B) About the conventional TiCN layer and the modified TiCN layer of (a),
Using a field emission scanning electron microscope, as shown in the schematic explanatory diagrams of FIGS. 1A and 1B, electron beams are individually applied to crystal grains having a cubic crystal lattice existing within the measurement range of the surface polished surface. Irradiate and use an electron backscatter diffraction image apparatus, and the normal region of the {112} plane which is the crystal plane of the crystal grain with respect to the normal line of the polished surface with respect to the normal line of the surface polished surface at an interval of 0.1 μm / step Is measured, and the measured inclination angles within the range of 0 to 45 degrees out of the measured inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. As shown in FIG. 3, the conventional TiCN layer has an inclination angle that is unbiased when the distribution of measured inclination angles on the {112} plane is in the range of 0 to 45 degrees. While the number distribution graph is shown, the modified TiCN layer is illustrated in FIG. The street, the highest peak sharp appeared in a specific position of the tilt angle indicator, the sharp highest peak, the tilt angle position and height appear on the section of the graph the horizontal axis depending on the content of CH 3 CN constituting the reaction gas To change.
(C) On the surfaces of the modified TiCN layer and the conventional TiCN layer, the same conditions as the formation conditions of the conventional α-type Al 2 O 3 layer, that is, in a normal chemical vapor deposition apparatus,
Reaction gas composition - by volume%, AlCl 3: 1~5%, CO 2: 0.5~10%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2 :remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
In conditions, when formed in a layer thickness of 18 30 .mu.m beyond the 15μm the α type the Al 2 O 3 layer with an average layer thickness, the conventional TiCN layer thicker α-type Al 2 O 3 layer formed on the In this case, as described above, the Al 2 O 3 crystal grains are greatly coarsened, and the denseness of the layer itself is remarkably lowered. Therefore, the high temperature strength is unavoidably lowered, but it is formed on the modified TiCN layer. the thickening α-type Al 2 O 3 layer is, the α-type the Al 2 O 3 layer at the time of formation, the reformed significantly influenced by the crystal array of TiCN layer, the crystal array having a said reformed TiCN layer In the thickened α-type Al 2 O 3 layer formed as a result, the film thickness is increased to an average layer thickness of 18 to 30 μm. Nevertheless ized, along the thickness direction, Al 2 O 3 grain coarsening significantly inhibited, and Since denseness of itself be something that is uniformly held, high temperature strength, comprising the equivalent high temperature strength with the layer thickness of α-type Al 2 O 3 layer of 1 to 15 m, but rather includes a more high-temperature strength As a result, the reduction in chipping resistance is remarkably suppressed.
(D) As described above, when the modified TiCN layer is formed, the content of CH 3 CN in the reaction gas is set to 0.5 to 2.7% , and the content range corresponds to the layer thickness. By specifying the CH 3 CN content at the start of film formation and at the end of film formation, and gradually increasing the content of CH 3 CN from the start of film formation to the end of film formation, The highest peak appears in the range of 2 to 10 degrees of the inclination angle section, and the total of the frequencies existing in the range of 0 to 10 degrees represents a ratio of 45 to 72% of the total degrees in the inclination angle frequency distribution graph. Although exhibits a tilt angle frequency distribution graph occupied, in this case, the test according to the result, the content of of CH 3 CN deposition beginning and completion of the film formation time as thin thickness from 0.5 to 2 defined lower side within the .7%, middle layer thickness In the content of of CH 3 CN deposition beginning and completion of the film formation time and the content of the intermediate in the above range, the higher the thicker the layer thickness, with stipulated in the high side of content range of the CH 3 CN, the The content width, that is, (CH 3 CN content at the end of film formation) − (CH 3 CN content at the start of film formation) = 1 ± 0.15% is desirable, and this content width is less than 0.85 Then, the total ratio of the frequencies existing in the range of 0 to 10 degrees is less than 45% of the entire frequencies in the inclination angle frequency distribution graph, and the thickened α-type Al 2 O 3 layer of the modified TiCN layer. The hysteresis effect on the film becomes insufficient, and it is impossible to ensure the desired excellent chipping resistance in the thickened α-type Al 2 O 3 layer. On the other hand, when the content width exceeds 1.15%, out of range the inclination angle indicator of 2-10 degrees of appearance of the peak Put away, that the case is made to not be able to ensure the desired excellent chipping resistance in the thicker α type the Al 2 O 3 layer is produced.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成された工具基体の表面に、
(a)いずれも化学蒸着形成された、TiC層、TiN層、およびTiCN層のうちの1層または2層以上からなり、かつ0.1〜2μmの合計平均層厚を有する密着性Ti化合物層、
(b)上記(a)の密着性Ti化合物層上に直接、1〜8μmの平均層厚で化学蒸着形成されたTiCN層、
(c)上記(b)のTiCN層上に直接、18〜30μmの平均層厚で化学蒸着形成され、かつ化学蒸着形成された状態でα型の結晶構造を有する厚膜化α型Al2O3層、
以上(a)〜(c)からなる硬質被覆層を蒸着形成してなる表面被覆サーメット製切削工具において、
上記(b)のTiCN層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜72%の割合を占める傾斜角度数分布グラフを示す改質TiCN層、
で構成してなる、厚膜化α型Al2O3層がすぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
The present invention has been made based on the above research results, and on the surface of a tool base composed of a WC-based cemented carbide or TiCN-based cermet,
(A) Adhesive Ti compound layer formed by chemical vapor deposition, consisting of one or more of TiC layer, TiN layer, and TiCN layer, and having a total average layer thickness of 0.1 to 2 μm ,
(B) a TiCN layer formed by chemical vapor deposition with an average layer thickness of 1 to 8 μm directly on the adhesive Ti compound layer of (a) ;
(C) Thickened α-type Al 2 O formed directly on the TiCN layer of (b ) above by chemical vapor deposition with an average layer thickness of 18-30 μm and having an α-type crystal structure in the state of chemical vapor deposition. 3 layers,
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer comprising the above (a) to (c) ,
The TiCN layer of (b) above is
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface at an interval of / step , and 0 to 45 of the measured inclination angles. In the inclination angle number distribution graph in which the measured inclination angle within the range of degrees is divided for each pitch of 0.25 degree and the frequencies existing in each division are tabulated, the inclination within the range of 2 to 10 degrees The angle distribution graph showing the inclination angle frequency distribution graph in which the highest peak exists in the angle section and the total frequency within the range of 0 to 10 degrees occupies 45 to 72% of the total frequency in the inclination angle frequency distribution graph. Quality TiCN layer,
The thickened α-type Al 2 O 3 layer, which is composed of the above, is characterized by a coated cermet tool that exhibits excellent chipping resistance.
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層について、上記の通りに数値限定した理由を以下に説明する。
(a)密着性Ti化合物層
密着性Ti化合物層は、工具基体および改質TiCN層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.1μm未満では、所望のすぐれた密着性を確保することができず、一方前記密着性は2μmまでの合計平均層厚で充分であることから、その合計平均層厚を0.1〜2μmと定めた。
(b)改質TiCN層
上記の通り、反応ガスの構成成分であるCH3CNの含有割合を0.5〜2.7%とすると共に、成膜開始時点から成膜終了時点に向けてCH3CNの含有量を漸次増加することにより、2〜10度の傾斜角区分範囲内に測定傾斜角の最高ピークが現れ、かつ0〜10度の傾斜角区分内に存在する度数の合計割合が、傾斜角度数分布グラフにおける度数全体の45〜72%となる傾斜角度数分布グラフを示す改質TiCN層が形成されるようになり、この結果として改質TiCN層はすぐれた高温強度を具備するようになるほか、これの上に形成される厚膜化α型Al2O3層の組織に影響を及ぼし、Al2O3結晶粒の粗大化を著しく抑制し、かつ層自体の緻密性を厚膜化しても層厚方向に沿って一様に保持せしめる作用があるが、その平均層厚が1μm未満では前記作用に所望の効果が得られず、一方その平均層厚が8μmを越えると、偏摩耗の原因となる熱塑性変形が発生し易くなり、これが前記厚膜化α型Al2O3層のチッピング発生の原因となることから、その平均層厚を1〜8μmと定めた。
(c)厚膜化α型Al2O3層
上記の通り改質TiCN層の介在によって、これの組織的履歴を受け、結晶粒の粗大化が抑制され、かつ、組織的緻密性が保持された厚膜化α型Al2O3層の形成が可能となり、この結果1〜15μmの平均層厚を有するα型Al2O3層が具備する高温強度と同等以上の高温強度を具備し、耐チッピング性の低下が抑制されるようになる外、Al2O3層自身のもつすぐれた高温硬さと耐熱性によって、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が18μm未満では厚膜化の要求に十分満足に対応することができず、一方その平均層厚が30μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を18〜30μmと定めた。
Next, the reason why the constituent layers of the hard coating layer of the coated cermet tool of the present invention are numerically limited as described above will be described below.
(A) Adhesive Ti compound layer The adhesive Ti compound layer adheres firmly to both the tool substrate and the modified TiCN layer, and thus has the effect of contributing to improved adhesion of the hard coating layer to the tool substrate. If the total average layer thickness is less than 0.1 μm, the desired excellent adhesion cannot be ensured. On the other hand, the total average layer thickness up to 2 μm is sufficient. Was determined to be 0.1 to 2 μm.
(B) Modified TiCN layer As described above, the content ratio of CH 3 CN, which is a component of the reaction gas, is set to 0.5 to 2.7%, and CH from the start of film formation to the end of film formation. By gradually increasing the content of 3 CN, the highest peak of the measured tilt angle appears in the range of 2 to 10 degrees of tilt angle, and the total percentage of frequencies existing in the tilt angle section of 0 to 10 degrees is Then, a modified TiCN layer showing an inclined angle number distribution graph that is 45 to 72 % of the entire frequency in the inclined angle number distribution graph is formed, and as a result, the modified TiCN layer has excellent high-temperature strength. In addition to this, it affects the structure of the thickened α-type Al 2 O 3 layer formed on this, significantly suppresses the coarsening of Al 2 O 3 crystal grains, and reduces the density of the layer itself. Even if the film thickness is increased, it should be held uniformly along the thickness direction. However, if the average layer thickness is less than 1 μm, the desired effect cannot be obtained. On the other hand, if the average layer thickness exceeds 8 μm, thermoplastic deformation that causes uneven wear tends to occur. Since this causes the chipping of the thickened α-type Al 2 O 3 layer, the average layer thickness is set to 1 to 8 μm.
(C) Thickened α-type Al 2 O 3 layer As described above, due to the presence of the modified TiCN layer, it receives this organizational history, suppresses the coarsening of the crystal grains, and maintains the structural denseness. It is possible to form a thickened α-type Al 2 O 3 layer. As a result, the high-temperature strength equal to or higher than the high-temperature strength of the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm is provided. In addition to the reduction in chipping resistance being reduced, the excellent high-temperature hardness and heat resistance of the Al 2 O 3 layer itself contributes to improving the wear resistance of the hard coating layer, but the average layer thickness is 18 μm. can not correspond to satisfactory the requirements of thick film is less than, whereas when the average layer thickness becomes too thick beyond 30 [mu] m, since the chipping is likely to occur, the average layer thickness 18 30 .mu.m It was determined.
なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、硬質被覆層の最表面層として必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。 In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is The discriminating effect may not be obtained if the thickness is less than 0.1 μm, while the discriminating effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.
この発明の被覆サーメット工具は、硬質被覆層としての改質TiCN層がすぐれた高温強度を有し、かつ、これの上に形成される厚膜化α型Al2O3層に組織的影響を及ぼし、この結果前記厚膜化α型Al2O3層は前記改質TiCN層の履歴を受けて、1〜15μmの平均層厚を有するα型Al2O3層が具備する高温強度と同等、あるいはこれ以上の高温強度を具備するようになることから、平均層厚で18〜30μmの層厚に厚膜化したにもかかわらず、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになるものである。 In the coated cermet tool of the present invention, the modified TiCN layer as a hard coating layer has excellent high-temperature strength, and has a systematic influence on the thickened α-type Al 2 O 3 layer formed thereon. As a result, the thickened α-type Al 2 O 3 layer receives the history of the modified TiCN layer and is equivalent to the high temperature strength of the α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm. In addition, since it has a higher temperature strength than this, it has excellent wear resistance over a long period of time without occurrence of chipping even though the average layer thickness is increased to a layer thickness of 18 to 30 μm. It will come to show.
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。 Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で30時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 4 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, added with wax, ball mill mixed in acetone for 30 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By performing the processing, tool bases A to F made of a WC-base cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも1〜2.5μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで30時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a,c〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 1 to 2.5 μm. Co powder and Ni powder were prepared, and these raw material powders were blended into the blending composition shown in Table 2, wet mixed by a ball mill for 30 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a and c to f made of TiCN base cermet having a standard / CNMG12041 chip shape were formed.
つぎに、これらの工具基体A〜Fおよび工具基体a,c〜fの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件にて、硬質被覆層として密着性Ti化合物層および改質TiCN層を、表5に示される組み合わせで、かつ目標層厚で蒸着形成し、ついで同じく表3に示される条件にて、同厚膜化α型Al2O3層を同じく表5に示される組み合わせで、かつ目標層厚で蒸着形成することにより本発明被覆サーメット工具1〜11をそれぞれ製造した。 Next, on the surfaces of these tool bases A to F and tool bases a and cf , an ordinary chemical vapor deposition apparatus is used, and an adhesive Ti compound is used as a hard coating layer under the conditions shown in Tables 3 and 4. The layer and the modified TiCN layer are formed by vapor deposition in the combination shown in Table 5 and with the target layer thickness, and the same thickened α-type Al 2 O 3 layer is also shown under the conditions shown in Table 3. The coated cermet tools 1 to 11 of the present invention were produced by vapor deposition with the combination shown in FIG.
また、比較の目的で、表6に示される通り、本発明被覆サーメット工具1〜11の硬質被覆層を構成する改質TiCN層に代って、表3に示される条件で従来TiCN層を形成する以外は同一の条件で比較被覆サーメット工具1〜11をそれぞれ製造した。 For comparison purposes, as shown in Table 6, a conventional TiCN layer is formed under the conditions shown in Table 3 instead of the modified TiCN layer constituting the hard coating layers of the coated cermet tools 1 to 11 of the present invention. Comparative coated cermet tools 1 to 11 were produced under the same conditions except for the above.
ついで、上記の本発明被覆サーメット工具と比較被覆サーメット工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。 Next, an inclination angle number distribution graph was prepared for each of the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the above-described coated cermet tool of the present invention and the comparative coated cermet tool using a field emission scanning electron microscope. .
すなわち、上記傾斜角度数分布グラフは、上記の改質TiCN層および従来TiCN層の表面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。 That is, the tilt angle number distribution graph is set in a lens barrel of a field emission scanning electron microscope with the surfaces of the modified TiCN layer and the conventional TiCN layer being polished surfaces, and 70 ° on the polished surface. An electron backscatter diffraction imaging apparatus is irradiated by irradiating an electron beam with an acceleration voltage of 15 kV at an incident angle of 1 nA with an irradiation current of 1 nA on each crystal grain having a cubic crystal lattice existing within the measurement range of the polished surface. Using a 30 × 50 μm region at an interval of 0.1 μm / step, the inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the polished surface. Based on this measurement result, among the measured tilt angles, the measured tilt angles within the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and the frequencies existing in each section are tabulated. Created by.
この結果得られた各種の改質TiCN層および従来TiCNの傾斜角度数分布グラフにおいて、{112}面が最高ピークを示す傾斜角区分、並びに0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の傾斜角度数分布グラフ全体の傾斜角度数に占める割合をそれぞれ表5,6にそれぞれ示した。 As a result, in the graphs showing the distribution of tilt angles of various modified TiCN layers and conventional TiCN, the {112} plane has the highest peak, and the tilt angle within the range of 0 to 10 degrees. Tables 5 and 6 show the ratios of the tilt angle numbers to the tilt angle number distribution graph as a whole.
上記の各種の傾斜角度数分布グラフにおいて、表5,6にそれぞれ示される通り、本発明被覆サーメット工具の改質TiCN層は、いずれも{112}面の測定傾斜角の分布が2〜10度の範囲内の傾斜角区分に最高ピークが現れ、かつ0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合が45〜72%である傾斜角度数分布グラフを示すのに対して、比較被覆サーメット工具の従来TiCN層は、いずれも{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在せず、0〜10度の範囲内の傾斜角区分内に存在する傾斜角度数の割合も30%以下である傾斜角度数分布グラフを示すものであった。 In each of the above-mentioned various inclination angle number distribution graphs, as shown in Tables 5 and 6, the modified TiCN layer of the coated cermet tool of the present invention has a distribution of measured inclination angles on the {112} plane of 2 to 10 degrees. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section in the range of 0 to 10 % and the ratio of the inclination angle numbers existing in the inclination angle section in the range of 0 to 10 degrees is 45 to 72% is shown. On the other hand, the conventional TiCN layers of the comparative coated cermet tools are all unbiased in the distribution of the measured inclination angle of the {112} plane within the range of 0 to 45 degrees, the highest peak does not exist, and 0 to 10 degrees. The inclination angle number distribution graph in which the ratio of the inclination angle number existing in the inclination angle section within the range is 30% or less was also shown.
なお、図2は、本発明被覆サーメット工具5の改質TiCN層の傾斜角度数分布グラフ、図3は、比較被覆サーメット工具5の従来TiCN層の傾斜角度数分布グラフをそれぞれ示すものである。 FIG. 2 is a graph showing the distribution of inclination angle numbers of the modified TiCN layer of the coated cermet tool 5 of the present invention, and FIG. 3 is a graph showing the distribution of inclination angle numbers of the conventional TiCN layer of the comparative coated cermet tool 5.
さらに、上記の本発明被覆サーメット工具1〜11および比較被覆サーメット工具1〜11について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有する密着性Ti化合物層とα型Al2O3層からなることが確認された。また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, regarding the above-described coated cermet tools 1 to 11 and comparative coated cermet tools 1 to 11 , the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (layer When the longitudinal section was observed), it was confirmed that both the former and the latter were composed of an adhesive Ti compound layer and an α-type Al 2 O 3 layer having substantially the same composition as the target composition. Moreover, when the thickness of the constituent layer of the hard coating layer of these coated cermet tools was measured using a scanning electron microscope (same longitudinal section measurement), the average layer thickness (substantially the same as the target layer thickness) Average value of 5-point measurement) was shown.
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜11および従来被覆サーメット工具1〜11について、
被削材:JIS・SCM440の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min、
切り込み:1.5mm、
送り:0.15mm/rev、
切削時間:20分、
の条件(切削条件A)での合金鋼の乾式断続切削試験、
被削材:JIS・S30Cの丸棒、
切削速度:230m/min、
切り込み:1.2mm、
送り:0.18mm/rev、
切削時間:20分、
の条件(切削条件B)での炭素鋼の乾式連続切削試験、
被削材:JIS・FC250の丸棒、
切削速度:250m/min、
切り込み:2mm、
送り:0.2mm/rev、
切削時間:30分、
の条件(切削条件C)での鋳鉄の乾式連続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, with the various coated cermet tools described above, the present coated cermet tools 1 to 11 and the conventional coated cermet tools 1 to 11 in a state where each of the various coated cermet tools is screwed to the tip of the tool steel tool with a fixing jig.
Work material: JIS · SCM440 lengthwise equidistant 4 vertical grooved round bar,
Cutting speed: 200 m / min,
Incision: 1.5mm,
Feed: 0.15mm / rev,
Cutting time: 20 minutes,
Dry interrupted cutting test of alloy steel under the above conditions (cutting condition A),
Work material: JIS / S30C round bar,
Cutting speed: 230 m / min,
Cutting depth: 1.2mm,
Feed: 0.18mm / rev,
Cutting time: 20 minutes,
Dry continuous cutting test of carbon steel under the above conditions (cutting condition B),
Work material: JIS / FC250 round bar,
Cutting speed: 250 m / min,
Cutting depth: 2mm,
Feed: 0.2mm / rev,
Cutting time: 30 minutes,
The dry continuous cutting test of cast iron was performed under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.
表5〜7に示される結果から、本発明被覆サーメット工具1〜11は、いずれも硬質被覆層のうちの1層が、{112}面の傾斜角が2〜10度の範囲内の傾斜角区分で最高ピークを示すと共に、0〜10度の傾斜角区分範囲内に存在する度数の合計割合が45〜72%を占める傾斜角度数分布グラフを示す改質TiCN層で構成され、これの上に蒸着形成される厚膜化α型Al2O3層は前記改質TiCN層の履歴を強力に受け、組織的に影響されて、18〜30μmの厚膜であるにもかかわらず、1〜15μmの平均層厚を有するα型Al2O3層が具備する高温強度と同等、あるいはこれ以上の高温強度を具備することから、切刃部のチッピング発生が著しく抑制され、すぐれた耐摩耗性を長期に亘って発揮するのに対して、硬質被覆層が、{112}面の測定傾斜角の分布が0〜45度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す従来TiCN層の上に厚膜化α型Al2O3層を蒸着形成してなる比較被覆サーメット工具1〜11においては、いずれも前記厚膜化α型Al2O3層の高温強度不足が原因で、切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, according to the present invention coated cermet tools 1 to 11 , each of the hard coating layers has an inclination angle in the range where the inclination angle of {112} plane is 2 to 10 degrees. It is composed of a modified TiCN layer that shows the highest peak in the section and shows a tilt angle number distribution graph in which the total proportion of the frequencies existing in the tilt angle section range of 0 to 10 degrees occupies 45 to 72%. the thicker α type the Al 2 O 3 layer is deposited formed strongly receives a history of the reformed TiCN layer, is influenced systematically, 18 despite the thick film of 30 .mu.m,. 1 to Since it has high-temperature strength equal to or higher than that of the α-type Al 2 O 3 layer having an average layer thickness of 15 μm, chipping at the cutting edge is remarkably suppressed, and excellent wear resistance For a long time, hard coating layer , {112} plane measured tilt angle distribution is unbiased within the range of 0 to 45 degrees, and a thickened α-type Al 2 O film on a conventional TiCN layer showing a tilt angle number distribution graph in which no highest peak exists. In the comparative coated cermet tools 1 to 11 formed by vapor deposition of three layers, all of the thickened α-type Al 2 O 3 layers cause chipping at the cutting edge due to insufficient high-temperature strength. It is clear that the service life is reached in a short time.
上述のように、この発明の被覆サーメット工具は、これの硬質被覆層を構成するα型Al2O3層の層厚を平均層厚で18〜30μmに厚くしても、各種の鋼や鋳鉄などの切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮し、使用寿命の延命化を可能とするものであるから、切削加工のFA化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As mentioned above, coated cermet tool of the invention, also the thickness of α-type the Al 2 O 3 layer constituting this hard coating layer is thicker on the average layer thickness in 18 30 .mu.m, various steel or cast iron It shows excellent chipping resistance in cutting processes, etc., exhibits excellent wear resistance over a long period of time, and can extend the service life. It can be used satisfactorily for labor saving, energy saving, and cost reduction.
Claims (1)
(a)いずれも化学蒸着形成された、Tiの炭化物層、窒化物層、および炭窒化物層のうちの1層または2層以上からなり、かつ0.1〜2μmの合計平均層厚を有する密着性Ti化合物層、
(b)上記(a)の密着性Ti化合物層上に直接、1〜8μmの平均層厚で化学蒸着形成された炭窒化チタン層、
(c)上記(b)の炭窒化チタン層上に直接、18〜30μmの平均層厚で化学蒸着形成され、かつ化学蒸着形成された状態でα型の結晶構造を有する厚膜化α型酸化アルミニウム層、
以上(a)〜(c)からなる硬質被覆層を蒸着形成してなる表面被覆サーメット製切削工具において、
上記(b)の炭窒化チタン層を、
電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である{112}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、2〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜72%の割合を占める傾斜角度数分布グラフを示す改質炭窒化チタン層、
で構成したことを特徴とする厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
ただし、上記厚膜化α型酸化アルミニウム層のうち、電界放出型走査電子顕微鏡を用い、表面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用い、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフにおいて、1.25〜10.00度の範囲内の傾斜角区分に最高ピークが存在すると共に、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜80%の割合を占める傾斜角度数分布グラフを示す厚膜化改質α型酸化アルミニウム層を除く。 On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Any one or more of Ti carbide layer, nitride layer, and carbonitride layer formed by chemical vapor deposition and having a total average layer thickness of 0.1 to 2 μm Adhesive Ti compound layer,
(B) a titanium carbonitride layer formed by chemical vapor deposition with an average layer thickness of 1 to 8 μm directly on the adhesive Ti compound layer of (a),
(C) Thickening α-type oxidation directly formed on the titanium carbonitride layer of (b) with an average layer thickness of 18 to 30 μm and having an α-type crystal structure in the state of chemical vapor deposition Aluminum layer,
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer comprising the above (a) to (c),
The titanium carbonitride layer of (b) above is
Using a field emission scanning electron microscope, each crystal grain having a cubic crystal lattice existing within the measurement range of the surface polished surface is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to set a predetermined area to 0.1 μm. The inclination angle formed by the normal of the {112} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the surface-polished surface at an interval of / step, and 0 to 45 of the measured inclination angles. Inclination angle number distribution graph in which the measured inclination angle within the range of degrees is divided for every pitch of 0.25 degree and the frequencies existing in each division are aggregated, the inclination within the range of 2 to 10 degrees The angle distribution graph showing the inclination angle distribution graph in which the highest peak exists in the angle section and the total of the frequencies existing in the range of 0 to 10 degrees occupies 45 to 72% of the entire frequency in the inclination angle distribution graph. Quality titanium carbonitride layer,
A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a thickened α-type aluminum oxide layer characterized by comprising
However, among the above thickened α-type aluminum oxide layers, a field emission scanning electron microscope is used to irradiate each crystal grain having a hexagonal crystal lattice existing within the measurement range of the surface polished surface with an electron beam. An inclination angle formed by a normal line of the (0001) plane, which is a crystal plane of the crystal grain, with respect to a normal line of the surface-polished surface with respect to the normal line of the surface-polished surface at a spacing of 0.1 μm / step using a backscatter diffraction image apparatus. Of the measured tilt angles, and the measured tilt angles within the range of 0 to 45 degrees are divided into pitches of 0.25 degrees, and the tilt angles obtained by counting the frequencies existing in each section In the number distribution graph, the highest peak exists in the inclination angle section in the range of 1.25 to 10.00 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is the frequency in the inclination angle distribution graph. Accounting for 45-80% of the total The thickened modified α-type aluminum oxide layer showing the inclination angle number distribution graph is excluded .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005162515A JP4811781B2 (en) | 2005-06-02 | 2005-06-02 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005162515A JP4811781B2 (en) | 2005-06-02 | 2005-06-02 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006334721A JP2006334721A (en) | 2006-12-14 |
JP4811781B2 true JP4811781B2 (en) | 2011-11-09 |
Family
ID=37555689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005162515A Expired - Fee Related JP4811781B2 (en) | 2005-06-02 | 2005-06-02 | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4811781B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5088469B2 (en) * | 2007-06-12 | 2012-12-05 | 三菱マテリアル株式会社 | Surface-coated cutting tool exhibiting excellent fracture resistance with hard coating layer in heavy-duty machining and manufacturing method thereof |
JP5023839B2 (en) * | 2007-06-27 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting |
JP5003308B2 (en) * | 2007-06-27 | 2012-08-15 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP5152690B2 (en) * | 2007-08-31 | 2013-02-27 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting |
JP5023896B2 (en) * | 2007-08-31 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP5023895B2 (en) * | 2007-08-31 | 2012-09-12 | 三菱マテリアル株式会社 | Surface coated cutting tool |
JP2009090396A (en) * | 2007-10-05 | 2009-04-30 | Mitsubishi Materials Corp | Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting |
JP5239292B2 (en) * | 2007-10-26 | 2013-07-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool with excellent fracture resistance due to hard coating layer |
JP5239296B2 (en) * | 2007-11-02 | 2013-07-17 | 三菱マテリアル株式会社 | Surface-coated cutting tool with excellent fracture resistance due to hard coating layer |
JP5170828B2 (en) * | 2008-01-18 | 2013-03-27 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting |
JP5170830B2 (en) * | 2008-01-18 | 2013-03-27 | 三菱マテリアル株式会社 | A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed interrupted cutting |
JP5170829B2 (en) * | 2008-01-18 | 2013-03-27 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting |
EP2305405B1 (en) * | 2008-07-14 | 2013-12-18 | Tungaloy Corporation | Coated member |
JP5582409B2 (en) * | 2011-01-11 | 2014-09-03 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping resistance due to hard coating layer |
JP6650108B2 (en) * | 2014-12-26 | 2020-02-19 | 三菱マテリアル株式会社 | Surface coated cutting tool with excellent chipping and wear resistance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3109306B2 (en) * | 1992-11-25 | 2000-11-13 | 三菱マテリアル株式会社 | Surface-coated cermet cutting tool with improved wear resistance of hard coating layer |
JP3972299B2 (en) * | 2002-10-01 | 2007-09-05 | 三菱マテリアル株式会社 | Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting |
-
2005
- 2005-06-02 JP JP2005162515A patent/JP4811781B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2006334721A (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4811781B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4466841B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4747324B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP4534790B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4811782B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4730522B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4747388B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4569743B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4466848B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP4720283B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP2008080476A (en) | Surface coated cutting tool with hard coated layer exerting excellent abrasion resistance in high speed cutting work | |
JP2006289586A (en) | Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP2006289546A (en) | Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work | |
JP4569746B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4756454B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4747338B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials | |
JP4747387B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4483510B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP5170829B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP4569861B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4529578B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting | |
JP4692065B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer | |
JP4569745B2 (en) | Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer | |
JP4438559B2 (en) | Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting | |
JP4666211B2 (en) | Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110120 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110315 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110526 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110801 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4811781 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110814 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |