JP2004299022A - Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance - Google Patents

Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance Download PDF

Info

Publication number
JP2004299022A
JP2004299022A JP2003097530A JP2003097530A JP2004299022A JP 2004299022 A JP2004299022 A JP 2004299022A JP 2003097530 A JP2003097530 A JP 2003097530A JP 2003097530 A JP2003097530 A JP 2003097530A JP 2004299022 A JP2004299022 A JP 2004299022A
Authority
JP
Japan
Prior art keywords
layer
type
vapor deposition
thickness
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003097530A
Other languages
Japanese (ja)
Inventor
Toshiaki Ueda
稔晃 植田
Takatoshi Oshika
高歳 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003097530A priority Critical patent/JP2004299022A/en
Publication of JP2004299022A publication Critical patent/JP2004299022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool having a hard coated layer exhibiting superior heat and impact resistance. <P>SOLUTION: This cutting tool is so formed that (a) a lower layer, (b) an upper layer and (c) the hard coated layer are formed on the surface of a tool base body comprising WC-group cemented carbide or TiCN-group cermet. The lower layer comprises a single layer or more layers of Ti compound layer formed by chemical vapor deposition and having the mean total layer thickness of 0.5-20 μm. The upper layer comprises a composite double α type Al<SB>2</SB>O<SB>3</SB>layer constituted of a lower side layer, which has a structure having a specific crystal structure under a state formed by the chemical vapor deposition and dispersedly distributed with transformation cracks formed by heating and a heat transformation α type Al<SB>2</SB>O<SB>3</SB>layer with the mean layer thickness of 1-20 μm; and an upper side layer of a vapor deposition α type Al<SB>2</SB>O<SB>3</SB>layer having an α type crystal structure under a state formed by the chemical vapor deposition and having the means layer thickness of 0.1-2 μm. The hard coated layer comprises a surface layer of Ti oxide layer formed by vapor deposition, satisfying a specific composition formula: TiO<SB>x</SB>, and having the mean layer thickness of 0.1-3 μm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、高速断続切削時に切刃部にきわめて短いピッチで繰り返し付加される熱衝撃に対して硬質被覆層がすぐれた耐熱衝撃性を示し、かつ硬質被覆層が切粉に対してすぐれた表面潤滑性を示すことから、各種の鋼や鋳鉄は勿論のこと、特にきわめて粘性が高く、かつ切粉が切刃表面に溶着し易いステンレス鋼や軟鋼などの難削材の高速断続切削加工に用いた場合に、切刃にチッピング(微小欠け)などの発生なく、すぐれた切削性能を長期に亘って発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる基体(以下、これらを総称して工具基体という)の表面に、
(a)いずれも化学蒸着形成されたTiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ0.5〜20μmの合計平均層厚を有するTi化合物層で構成された下部層、
(b)化学蒸着形成した状態でα型結晶構造を有し、かつ1〜25μmの平均層厚を有する蒸着α型酸化アルミニウム(以下、Alで示す)層で構成された上部層、
(c)化学蒸着形成され、
組成式:TiO
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、 X値がTiに対する原子比で1.2〜1.9、
を満足し、かつ0.1〜3μmの平均層厚を有するTi酸化物層で構成された表面層、
以上(a)〜(c)からなる硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼、特にステンレス鋼や軟鋼などのきわめて粘性が高く、かつ切粉が切刃表面に溶着し易い難削材や、鋳鉄などの連続切削や断続切削に用いられていることも知られている(例えば、特許文献1参照)。
【0003】
また、一般に、上記の被覆サーメット工具の硬質被覆層を構成する蒸着形成されたTi化合物層や蒸着α型Al 層、さらにTi酸化物層が粒状結晶組織を有し、また前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物、例えばCHCNを含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている(例えば、特許文献2参照)。
【0004】
【特許文献1】
特開2001−310203号公報
【特許文献2】
特開平6−8010号公報
【0005】
【発明が解決しようとする課題】
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを切削条件の最も厳しい高速断続切削、すなわち切刃部にきわめて短いピッチで繰り返し熱衝撃が付加される高速断続切削に用いた場合、硬質被覆層の上部層を構成する蒸着α型Al層は、硬質で耐熱性にすぐれるものの、熱衝撃に脆いために、硬質被覆層にはチッピング(微小欠け)が発生し易くなり、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、上記の被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al層の耐熱衝撃性向上をはかるべく研究を行った結果、
通常の化学蒸着装置で、硬質被覆層の上部層を構成するAl層を形成するに際して、前記上部層の下側層として、通常の条件で、蒸着形成した状態でκ型の結晶構造を有するAl層を相対的に厚膜で蒸着形成し、これに水素雰囲気中、温度:1000〜1100℃、保持時間:2〜10時間の条件で加熱処理を施すと、前記κ型の結晶構造のAl層がα型結晶構造のAl層に変態し、この結果の加熱変態α型Al層には変態クラックが層中に分散分布するようになり、ついでこの状態の加熱変態α型Al層の表面に、上部層の上側層として、同じく通常の条件で、相対的に薄膜の蒸着α型Al層を形成してなる複合2重α型Al層を、被覆サーメット工具の硬質被覆層の上部層として下部層であるTi化合物層および表面層であるTi酸化物層と共に構成すると、この結果の硬質被覆層を形成してなる被覆サーメット工具においては、前記上部層の下側層を構成する加熱変態α型Al層中に分散分布する変態クラックが、特に高速断続切削時の激しい熱衝撃を吸収して緩和することから硬質被覆層におけるチッピング発生が著しく抑制されるようになるという研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、
(a)いずれも化学蒸着形成されたTiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ0.5〜20μmの合計平均層厚を有するTi化合物層で構成された下部層、
(b)化学蒸着形成した状態でκ型結晶構造を有するAlに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、前記加熱処理で発生した変態クラックが分散分布した組織および1〜20μmの平均層厚を有する加熱変態α型Al層の下側層と、化学蒸着形成した状態でα型結晶構造を有し、かつ0.1〜2μmの平均層厚を有する蒸着α型Al層の上側層からなる複合2重α型Al層で構成された上部層、
(c)化学蒸着形成され、
組成式:TiO
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、 X値がTiに対する原子比で1.2〜1.9、
を満足し、かつ0.1〜3μmの平均層厚を有するTi酸化物層で構成された表面層、
以上(a)〜(c)からなる硬質被覆層を形成してなる、硬質被覆層がすぐれた耐熱衝撃性を有する被覆サーメット工具に特徴を有するものである。
【0008】
つぎに、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層(Ti化合物層)
Ti化合物層は、自体が強度を有し、これの存在によって硬質被覆層が強度を具備するようになるほか、工具基体と上部層の下側層である加熱変態α型Al層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が0.5μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、特に高熱発生を伴なう高速断続切削で熱塑性変形を起し易くなり、これが摩耗促進の原因となる偏摩耗が発生し易くなることから、その合計平均層厚を0.5〜20μmと定めた。
【0009】
(b)上部層の下側層である加熱変態α型Al
加熱変態α型Al層には、硬質被覆層の耐摩耗性を向上させると共に、上記の通り上側層である蒸着α型Al層の下部に存在し、層中に分散分布する変態クラックの作用で熱衝撃を吸収して、硬質被覆層にチッピングが発生するのを防止する作用があるが、その平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えて厚くなりすぎると、強度が低下し、チッピング発生抑制効果が急減して、チッピングの発生が促進されるようになることから、その平均層厚を1〜20μmと定めた。
【0010】
(c)上部層の上側層である蒸着α型Al
蒸着α型Al層には、上記の加熱変態α型Al層中の変態クラックを硬質被覆層中に内蔵させた状態にして、チッピングを発生させることなく耐摩耗性を向上させる作用があるが、その平均層厚が0.1μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が2μmを越えて厚くなりすぎると、これ自体にチッピングが発生し易くなることから、その平均層厚を0.1〜2μmと定めた。
【0011】
(d)表面層(Ti酸化物層)
表面層を構成するTi酸化物層は、上記の特許文献1に記載される通り、通常の化学蒸着装置で、反応ガス組成を、体積%で、
TiCl:0.2〜10%、
CO:0.1〜10%、
Ar:5〜60%、
:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で蒸着形成され、厚さ方向中央部をオージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.2〜1.9、即ち、
組成式:TiO
で表わした場合、X値がTiに対する原子比で1.2〜1.9、
を満足する組成を有するものであり、ステンレス鋼や軟鋼などの粘性の高い難削材に対する親和性がきわめて低く、高い発熱を伴う高速切削加工でも変わらないすぐれた表面潤滑性を発揮するものである。したがって、酸素(O)のTiに対するX値が、原子比で、1.2未満では所望のすぐれた表面潤滑性を確保することができず、一方その値が1.9を越えると、層中に気孔が形成され易くなり、健全な表面層の安定的形成が難しくなるという理由から、X値を1.2〜1.9と定めてある。また、その平均層厚が0.1μm未満では、所望の表面潤滑性を確保することができないことから、チッピングが発生し易くなり、一方前記Ti酸化物層による前記作用は3μmまでの平均層厚で十分であり、経済性を考慮して、その平均層厚を0.1〜3μmと定めた。
【0012】
さらに、この発明の被覆サーメット工具の硬質被覆層を構成するTi酸化物層をX線回折により観察したところ、組成式:TiOのX値に対応して、Ti、Ti、Ti、およびTiなどのうちの少なくともいずれかに主要ピークが現れる回折パターンを示し、これらの回折結果から前記Ti酸化物層はMagneli相と呼ばれるものからなり、一般的にTi2n−1で表わされるものであることが明らかである。
【0013】
【発明の実施の形態】
つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。
【0014】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。
【0015】
ついで、これらの工具基体A〜Fおよび工具基体a〜fの表面に、通常の化学蒸着装置を用い、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで同じく表3に示される条件で蒸着形成した状態でκ型の結晶構造を有する蒸着κ型Al層を形成し、これに水素雰囲気中、温度:1050℃に2〜8時間の範囲内の所定時間保持の条件で加熱処理を施して、前記Al層のκ型の結晶構造をα型に変態させ、かつ加熱変態生成クラックが層中に分散分布した加熱変態α型Al層を同じく表5に示される目標層厚で硬質被覆層の上部層を構成する下側層として形成し、さらに同じく表3に示される条件で、かつ表5に示される目標層厚の蒸着α型Al層を同上部層を構成する上側層として形成し、さらに同じく表4に示される条件で、かつ表5に示される目標層厚のTi酸化物層を同表面層として形成することにより本発明被覆サーメット工具1〜12をそれぞれ製造した。
また、比較の目的で、表6に示される通り、硬質被覆層の上部層を同じく表6に示される平均層厚の蒸着α型Al層とする以外は同一の条件で従来被覆サーメット工具1〜12をそれぞれ製造した。
【0016】
この結果得られた上記の本発明被覆サーメット工具の硬質被覆層の上部層の下側層を構成する加熱変態α型Al層と、従来被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al層の相違を観察する目的でX線回折を測定した。
まず、X線回折測定用試料として、X線回折チャート上で(001)面および(002)面にのみ回折ピークが現れる単結晶WCを基体試料として用い、この基体試料の表面に、本発明被覆サーメット工具3、6、および9の硬質被覆層を構成する上部層の下側層である目標層厚が15μm、10μm、および5μmの加熱変態α型Al層の形成条件と同一の条件で、それぞれ目標層厚が15μm、10μm、および5μmの加熱変態α型Al層を直接形成して本発明被覆試料A〜Cとし、また上記従来被覆サーメット工具1〜12の硬質被覆層の上部層を構成する蒸着α型Al層の形成条件と同一の条件で、前記本発明被覆サーメット工具3、6、および9に対応して、それぞれ目標層厚を15μm、10μm、および5μmとした蒸着α型Al層を直接形成して従来被覆試料a〜cとすることにより調製した。
【0017】
ついで、これら被覆試料の前記加熱変態α型Al層および蒸着α型Al層のX線回折測定を、通常のX線回折装置を用い、X線管中に設置されたCu陽極(ターゲット)に対して、電圧:40kV、電流:350mAの条件で金属Wフィラメントから発生させた熱電子を加速照射することにより、前記Cu陽極表面から0.154nmの波長を有する特性X線であるCu−Kα線を発生させ、前記特性X線を前記被覆試料表面に照射し、前記被覆試料から散乱したX線のうち、被覆試料表面に対するX線入射角度θと等しい角度で回折したX線の強度をX線検出器にて測定することにより行なった。この測定結果を図1〜6に示した。
本発明被覆試料A〜Cの加熱変態α型Al層のX線回折チャートを示す図1〜3と、従来被覆試料a〜cの蒸着α型Al層のX線回折チャートを示す図4〜6の比較から、前記加熱変態α型Al層では(006)面および(018)面に明確な回折ピークが現れているのに対して、前記蒸着α型Al層ではこれら(006)面および(018)面に回折ピークは存在しないことが明かである。
【0018】
また、この結果得られた本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12について、これの硬質被覆層の構成層を走査型電子顕微鏡を用いて観察(層の縦断面を観察)したところ、前者ではいずれもTi化合物層の下部層、加熱変態生成クラックが層中に分散分布した加熱変態α型Al層の下側層と蒸着α型Al層の上側層で構成された複合2重α型Al層からなる上部層、およびTi酸化物層の表面層からなり、後者では、いずれもTi化合物の下部層、蒸着α型Al層の上部層、およびTi酸化物層の表面層からなることが確認された。
さらに、上記の本発明被覆サーメット工具1〜12および従来被覆サーメット工具1〜12の表面層について、その厚さ方向中央部の酸素含有割合(X値)をオージェ分光分析装置を用いて測定したところ、表4に示される目標値と実質的に同じ値を示した。
また、これらの被覆サーメット工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0019】
つぎに、上記の各種の被覆サーメット工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆サーメット工具1〜6および従来被覆サーメット工具1〜6については、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:1mm、
送り:0.15mm/rev、
切削時間3分、
の条件でのステンレス鋼の乾式高速断続切削試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:2mm、
送り:0.2mm/rev、
切削時間:3分、
の条件での軟鋼の乾式高速断続切削試験を行った。
【0020】
さらに、本発明被覆サーメット工具7〜12および従来被覆サーメット工具7〜12については、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:0.6mm、
送り:0.15mm/rev、
切削時間:3分、
の条件でのステンレス鋼の乾式高速断続切削試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み1mm、
送り:0.15mm/rev、
切削時間:3分、
の条件での軟鋼の乾式高速断続切削試験を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0021】
【表1】

Figure 2004299022
【0022】
【表2】
Figure 2004299022
【0023】
【表3】
Figure 2004299022
【0024】
【表4】
Figure 2004299022
【0025】
【表5】
Figure 2004299022
【0026】
【表6】
Figure 2004299022
【0027】
【表7】
Figure 2004299022
【0028】
【発明の効果】
表5〜7に示される結果から、本発明被覆サーメット工具1〜12は、硬質被覆層の上部層の下側層を構成する加熱変態α型Al層中に分散分布する加熱変態生成クラックによるすぐれた熱衝撃吸収性および表面層のTi酸化物層のもつ切粉に対するすぐれた表面潤滑性の作用で、特に熱衝撃がきわめて高く、かつ高い発熱を伴なうステンレス鋼や軟鋼の高速断続切削でも、切刃のチッピング発生が著しく抑制され、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層の上部層が蒸着α型Al層からなる従来被覆サーメット工具1〜12においては、高速断続切削では前記蒸着α型Al層が激しい熱衝撃に耐えられないことから、切刃にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆サーメット工具は、通常の条件での各種鋼や鋳鉄などの連続切削や断続切削は勿論のこと、特に熱衝撃がきわめて高く、かつ高い発熱を伴なう切削条件の最も厳しいステンレス鋼や軟鋼などの難削材の高速断続切削でもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】本発明被覆サーメット工具3の硬質被覆層の上部層を構成する下側層に相当する目標層厚が15μmの加熱変態α型Al層のX線回折チャートを示す図である。
【図2】本発明被覆サーメット工具6の硬質被覆層の上部層を構成する下側層に相当する目標層厚が10μmの加熱変態α型Al層のX線回折チャートを示す図である。
【図3】本発明被覆サーメット工具9の硬質被覆層の上部層を構成する下側層に相当する目標層厚が5μmの加熱変態α型Al層のX線回折チャートを示す図である。
【図4】従来被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al層について、本発明被覆サーメット工具3に対応して目標層厚を15μmとした蒸着α型Al層のX線回折チャートを示す図である。
【図5】従来被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al層について、本発明被覆サーメット工具6に対応して目標層厚を10μmとした蒸着α型Al層のX線回折チャートを示す図である。
【図6】従来被覆サーメット工具の硬質被覆層の上部層を構成する蒸着α型Al層について、本発明被覆サーメット工具9に対応して目標層厚を5μmとした蒸着α型Al層のX線回折チャートを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a hard coating layer having excellent thermal shock resistance against thermal shock repeatedly applied to a cutting edge portion at an extremely short pitch during high-speed intermittent cutting, and a surface in which the hard coating layer is excellent against cutting chips. Used for high-speed intermittent cutting of difficult-to-cut materials such as stainless steel and mild steel, as well as various steels and cast irons, as well as extremely viscous and easily chipped chips are easily welded to the cutting edge surface due to its lubricity. The present invention relates to a surface-coated cermet cutting tool (hereinafter, referred to as a coated cermet tool) that exhibits excellent cutting performance over a long period of time without causing chipping (minute chipping) on the cutting edge.
[0002]
[Prior art]
Conventionally, in general, a surface of a substrate (hereinafter, these are collectively referred to as a tool substrate) made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter, referred to as TiCN) -based cermet,
(A) All of them are Ti carbide (hereinafter, referred to as TiC) layer, nitride (hereinafter, also referred to as TiN) layer, carbonitride (hereinafter, referred to as TiCN) layer, carbon oxide (hereinafter, referred to as TiCN) formed by chemical vapor deposition. , A Ti compound layer composed of one or more layers of a carbonitride oxide (hereinafter, represented by TiCNO) layer and having a total average layer thickness of 0.5 to 20 μm. Lower layer,
(B) an upper layer composed of a deposited α-type aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer having an α-type crystal structure in a state formed by chemical vapor deposition and having an average layer thickness of 1 to 25 μm;
(C) formed by chemical vapor deposition;
Composition formula: TiO X ,
When expressed in the formula, the central part in the thickness direction is measured by an Auger spectrometer, and the X value is 1.2 to 1.9 in atomic ratio to Ti,
And a surface layer composed of a Ti oxide layer having an average layer thickness of 0.1 to 3 μm,
A coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) to (c) above is known, and this coated cermet tool has a very high viscosity such as, for example, various steels, particularly stainless steel and mild steel. It is also known that the cutting powder is used for continuous cutting or intermittent cutting of a difficult-to-cut material or cast iron or the like that is easily welded to the cutting blade surface (for example, see Patent Document 1).
[0003]
In addition, generally, a vapor-deposited Ti compound layer or a vapor-deposited α-type Al 2 O 3 layer constituting a hard coating layer of the above-mentioned coated cermet tool, and further a Ti oxide layer have a granular crystal structure, and the Ti compound For the purpose of improving the strength of the layer itself, a TiCN layer constituting the layer is mixed with an organic carbonitride, for example, a mixed gas containing CH 3 CN as a reaction gas at a temperature of 700 to 950 ° C. by a normal chemical vapor deposition apparatus. It is also known to form a vertically elongated crystal structure by chemical vapor deposition in a medium temperature range (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP 2001-310203 A [Patent Document 2]
JP-A-6-8010 [0005]
[Problems to be solved by the invention]
In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there is a strong demand for labor saving, energy saving, and further cost reduction for cutting work.Accordingly, cutting work tends to be even faster, In the case of coated cermet tools, there is no problem if this is used for continuous cutting or interrupted cutting under ordinary conditions such as steel or cast iron. When used in high-speed interrupted cutting in which thermal shock is repeatedly applied at a very short pitch to the surface, the deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is hard and has excellent heat resistance, Because of its brittleness, chipping (small chipping) easily occurs in the hard coating layer, and as a result, the service life of the hard coating layer is relatively short in the present situation.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors have conducted research to improve the thermal shock resistance of the vapor deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer of the above coated cermet tool. result,
When forming an Al 2 O 3 layer constituting an upper layer of a hard coating layer by a normal chemical vapor deposition apparatus, a κ-type crystal structure is formed as a lower layer of the upper layer under normal conditions by vapor deposition. When an Al 2 O 3 layer having the following formula is formed by vapor deposition as a relatively thick film and subjected to a heat treatment in a hydrogen atmosphere at a temperature of 1000 to 1100 ° C. and a holding time of 2 to 10 hours, the κ type is obtained. of the Al 2 O 3 layer of the crystal structure is transformed into the Al 2 O 3 layer of α-type crystal structure, this is the result heat transformation α type the Al 2 O 3 layer of now transformation cracks disperse distribution in the layer Then, on the surface of the heat-transformed α-type Al 2 O 3 layer in this state, a relatively thin film-deposited α-type Al 2 O 3 layer is formed under the same conditions as the upper layer of the upper layer. double α type the Al 2 O 3 layer, the upper portion of the hard coating layer of the coated cermet tools In the coated cermet tool formed by forming the hard coating layer as a result, the heat transformation forming the lower layer of the upper layer is performed. Research results show that transformation cracks distributed and distributed in the α-type Al 2 O 3 layer absorb and mitigate severe thermal shocks, especially during high-speed interrupted cutting, so that chipping in the hard coating layer is significantly suppressed. I got it.
[0007]
The present invention has been made on the basis of the above research results, and has a tool base made of a WC-based cemented carbide or a TiCN-based cermet,
(A) Each of them comprises one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer and a TiCNO layer formed by chemical vapor deposition, and has a total average layer thickness of 0.5 to 20 μm. A lower layer composed of a Ti compound layer,
(B) A heat treatment is applied to Al 2 O 3 having a κ-type crystal structure in a state formed by chemical vapor deposition to transform the crystal structure into an α-type crystal structure, and the transformed cracks generated by the heat treatment are dispersed and distributed. A lower layer of a heat-transformed α-type Al 2 O 3 layer having a textured structure and an average layer thickness of 1 to 20 μm, and an average layer of 0.1 to 2 μm having an α-type crystal structure in a state formed by chemical vapor deposition. An upper layer composed of a composite double α-type Al 2 O 3 layer comprising an upper layer of a vapor-deposited α-type Al 2 O 3 layer having a thickness,
(C) formed by chemical vapor deposition;
Composition formula: TiO X ,
When expressed in the formula, the central part in the thickness direction is measured by an Auger spectrometer, and the X value is 1.2 to 1.9 in atomic ratio to Ti,
And a surface layer composed of a Ti oxide layer having an average layer thickness of 0.1 to 3 μm,
The present invention is characterized by a coated cermet tool in which the hard coating layer formed of the above (a) to (c) has excellent thermal shock resistance.
[0008]
Next, the reasons for limiting the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention as described above will be described.
(A) Lower layer (Ti compound layer)
The Ti compound layer itself has strength, and the presence of the Ti compound layer enables the hard coating layer to have strength. In addition, the tool base and the heat-transformed α-type Al 2 O 3 layer which is the lower layer of the upper layer are formed. Although it has an effect of firmly adhering to any of them, and thus has an effect of improving the adhesion of the hard coating layer to the tool base, if the total average layer thickness is less than 0.5 μm, the effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation, especially in high-speed interrupted cutting accompanied by high heat generation, and this tends to cause uneven wear which causes wear promotion. The total average layer thickness was determined to be 0.5-20 μm.
[0009]
The heat transformed α-type the Al 2 O 3 layer heated transformed α-type Al 2 O 3 layer which is the lower layer of the (b) an upper layer, thereby improving the wear resistance of the hard coating layer, the street upper layer of the It exists under a certain vapor deposited α-type Al 2 O 3 layer and absorbs thermal shock due to the effect of transformation cracks dispersed and distributed in the layer, and has the effect of preventing chipping from occurring in the hard coating layer. When the average layer thickness is less than 1 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, when the average layer thickness exceeds 20 μm, the strength is reduced, and the effect of suppressing the occurrence of chipping is sharply reduced. Since the occurrence of chipping is promoted, the average layer thickness is set to 1 to 20 μm.
[0010]
(C) The upper layer is a vapor-deposited α-type Al 2 O 3 layer deposited α-type Al 2 O 3 layer of the upper layer, the transformation cracks three layers during heating transformation α-type Al 2 O of the hard coating layer In the built-in state, there is an effect of improving abrasion resistance without causing chipping. However, if the average layer thickness is less than 0.1 μm, the above effect cannot be sufficiently exerted. If the layer thickness exceeds 2 μm and becomes too thick, chipping tends to occur on itself, so the average layer thickness was set to 0.1 to 2 μm.
[0011]
(D) Surface layer (Ti oxide layer)
As described in Patent Literature 1, the Ti oxide layer constituting the surface layer is prepared by using a normal chemical vapor deposition apparatus to change the reaction gas composition by volume%.
TiCl 4: 0.2~10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : remaining,
And
Reaction atmosphere temperature: 800 to 1100 ° C,
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
The central part in the thickness direction was measured with an Auger spectrometer, and the ratio of oxygen to Ti was 1.2 to 1.9 in atomic ratio, that is,
Composition formula: TiO X ,
Where X is 1.2 to 1.9 in atomic ratio to Ti,
It has a very low affinity for highly viscous and difficult-to-cut materials such as stainless steel and mild steel, and exhibits excellent surface lubricity that does not change even in high-speed cutting with high heat generation. . Therefore, if the X value of oxygen (O) with respect to Ti is less than 1.2 in atomic ratio, the desired excellent surface lubricating property cannot be ensured. The X value is set to 1.2 to 1.9 because the pores are easily formed in the sample, and it is difficult to form a sound surface layer stably. If the average layer thickness is less than 0.1 μm, the desired surface lubricity cannot be ensured, so that chipping is likely to occur, while the effect of the Ti oxide layer is less than 3 μm. Is sufficient, and the average layer thickness is set to 0.1 to 3 μm in consideration of economy.
[0012]
Further, when the Ti oxide layer constituting the hard coating layer of the coated cermet tool of the present invention was observed by X-ray diffraction, Ti 2 O 3 and Ti 3 O 5 were obtained in accordance with the X value of the composition formula: TiO X. , Ti 4 O 7 , and Ti 5 O 9 show a diffraction pattern in which a main peak appears in at least one of them. From these diffraction results, the Ti oxide layer is composed of a material called a Magneli phase, and is generally it is clear that those represented by Ti n O 2n-1.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the coated cermet tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, TiC powder both having an average particle size of 1 to 3 [mu] m, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, prepared TaN powder and Co powder, Then, these raw material powders were blended into the blending composition shown in Table 1, further added with wax, ball-milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Then, this green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is honed with R: 0.07 mm. By processing, tool bases A to F made of a WC-based cemented carbide having a throw-away tip shape specified in ISO-CNMG120408 were manufactured, respectively.
[0014]
Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder each having an average particle diameter of 0.5 to 2 μm , Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet-mixed in a ball mill for 24 hours, dried, and pressed into a green compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge was subjected to a honing process of R: 0.07 mm to obtain an ISO. Tool bases a to f made of TiCN-based cermet having a tip shape of standard CNMG120412 were formed.
[0015]
Then, on the surfaces of the tool bases A to F and the tool bases a to f, a conventional chemical vapor deposition apparatus was used, and Table 3 (l-TiCN in Table 3 is a vertically long sheet described in JP-A-6-8010). The conditions for forming a TiCN layer having a growth crystal structure are shown, and the other conditions are conditions for forming a normal granular crystal structure.) A compound layer was formed by vapor deposition as a lower layer of the hard coating layer, and then a vapor-deposited κ-type Al 2 O 3 layer having a κ-type crystal structure was formed under the same conditions as shown in Table 3, and hydrogen was added thereto. A heat treatment is performed in an atmosphere at a temperature of 1050 ° C. for a predetermined time within a range of 2 to 8 hours to transform the κ-type crystal structure of the Al 2 O 3 layer into an α-type, and heat transformation Heat-transformed α-type A in which formed cracks are dispersed and distributed in the layer The l 2 O 3 layer is formed as the lower layer constituting the upper layer of the hard coating layer with the target layer thickness also shown in Table 5, and further under the conditions shown in Table 3 and the target layer shown in Table 5. A thick vapor deposited α-type Al 2 O 3 layer is formed as an upper layer constituting the upper layer, and a Ti oxide layer having a target layer thickness shown in Table 4 and a target layer thickness shown in Table 5 is further formed on the same surface. The coated cermet tools 1 to 12 of the present invention were manufactured by forming them as layers.
For the purpose of comparison, as shown in Table 6, the conventional coating cermet was prepared under the same conditions except that the upper layer of the hard coating layer was an evaporated α-type Al 2 O 3 layer having an average layer thickness also shown in Table 6. Tools 1 to 12 were manufactured respectively.
[0016]
The resulting heat-transformed α-type Al 2 O 3 layer constituting the lower layer of the upper layer of the hard coating layer of the coated cermet tool of the present invention and the upper layer of the hard coating layer of the conventionally coated cermet tool. X-ray diffraction was measured for the purpose of observing the difference between the deposited α-type Al 2 O 3 layers.
First, as a sample for X-ray diffraction measurement, a single crystal WC having a diffraction peak only on the (001) plane and the (002) plane on the X-ray diffraction chart was used as a substrate sample. The same conditions as those for forming the heating transformed α-type Al 2 O 3 layer having a target layer thickness of 15 μm, 10 μm, and 5 μm, which is the lower layer constituting the hard coating layer of the cermet tools 3, 6, and 9, Then, the heat-transformed α-type Al 2 O 3 layers having the target layer thicknesses of 15 μm, 10 μm, and 5 μm, respectively, are directly formed to obtain coating samples A to C of the present invention, and hard coating layers of the conventional coating cermet tools 1 to 12 described above. Under the same conditions as the conditions for forming the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer, the target layer thicknesses were set to 15 μm, 10 μm and 5 It was prepared by directly forming a vapor-deposited α-type Al 2 O 3 layer having a thickness of μm to obtain conventional coated samples a to c.
[0017]
Next, the X-ray diffraction measurement of the above-mentioned heat-transformed α-type Al 2 O 3 layer and the vapor-deposited α-type Al 2 O 3 layer of these coated samples was carried out by using a usual X-ray diffractometer, and Cu was placed in an X-ray tube. By irradiating the anode (target) with thermoelectrons generated from the metal W filament under the conditions of voltage: 40 kV and current: 350 mA, characteristic X-rays having a wavelength of 0.154 nm from the Cu anode surface are obtained. X-rays that generate a certain Cu-Kα ray, irradiate the characteristic X-ray to the surface of the coated sample, and diffract at an angle equal to the X-ray incident angle θ with respect to the coated sample surface among the X-rays scattered from the coated sample Was measured with an X-ray detector. The measurement results are shown in FIGS.
FIGS. 1 to 3 show X-ray diffraction charts of the heat-transformed α-type Al 2 O 3 layers of coating samples A to C of the present invention, and X-ray diffraction charts of vapor-deposited α-type Al 2 O 3 layers of conventional coating samples a to c. 4 to 6, the heating-transformed α-type Al 2 O 3 layer shows clear diffraction peaks on the (006) plane and the (018) plane, whereas the vapor-deposited α-type Al 2 the O 3 layer is clear that these (006) plane and (018) diffraction peak at a surface are not present.
[0018]
Further, with respect to the coated cermet tools 1 to 12 of the present invention and the conventional coated cermet tools 1 to 12 obtained as a result, the constituent layers of the hard coating layer were observed using a scanning electron microscope (observing the longitudinal section of the layers). As a result, in the former, the lower layer of the Ti compound layer, the lower layer of the heat-transformed α-type Al 2 O 3 layer in which cracks generated by the heat-transformation are dispersed and distributed in the layer, and the upper layer of the vapor-deposited α-type Al 2 O 3 layer And an upper layer composed of a composite double α-type Al 2 O 3 layer, and a surface layer of a Ti oxide layer. In the latter case, a lower layer of a Ti compound and a vapor-deposited α-type Al 2 O 3 layer are provided. It was confirmed that it was composed of an upper layer and a surface layer of a Ti oxide layer.
Further, for the surface layers of the coated cermet tools 1 to 12 of the present invention and the conventional coated cermet tools 1 to 12, the oxygen content ratio (X value) at the center in the thickness direction was measured using an Auger spectroscopic analyzer. , And substantially the same values as the target values shown in Table 4.
In addition, when the thicknesses of the constituent layers of the hard coating layer of these coated cermet tools were measured using a scanning electron microscope (also in the longitudinal section), the average layer thickness was substantially the same as the target layer thickness. (Average value of five-point measurements).
[0019]
Next, the above coated cermet tools 1 to 6 of the present invention and the conventional coated cermet tools 1 to 6 in a state where each of the above various coated cermet tools was screwed to the tip of a tool steel tool with a fixing jig, ,
Work material: Round bar with four vertical grooves at equal intervals in the length direction of JIS / SUS304,
Cutting speed: 420m / min,
Notch: 1 mm,
Feed: 0.15 mm / rev,
Cutting time 3 minutes,
Dry high-speed intermittent cutting test of stainless steel under the conditions of
Work material: JIS S15C lengthwise round bar
Cutting speed: 420m / min,
Cut: 2mm,
Feed: 0.2 mm / rev,
Cutting time: 3 minutes,
A dry high-speed interrupted cutting test of mild steel was performed under the following conditions.
[0020]
Further, for the coated cermet tools 7 to 12 of the present invention and the conventional coated cermet tools 7 to 12,
Work material: Round bar with four vertical grooves at equal intervals in the length direction of JIS / SUS304,
Cutting speed: 420m / min,
Cut: 0.6 mm,
Feed: 0.15 mm / rev,
Cutting time: 3 minutes,
Dry high-speed intermittent cutting test of stainless steel under the conditions of
Work material: JIS S15C lengthwise round bar
Cutting speed: 420m / min,
1 mm notch,
Feed: 0.15 mm / rev,
Cutting time: 3 minutes,
A dry high-speed intermittent cutting test was performed on mild steel under the following conditions, and the flank wear width of the cutting edge was measured in each cutting test. Table 7 shows the measurement results.
[0021]
[Table 1]
Figure 2004299022
[0022]
[Table 2]
Figure 2004299022
[0023]
[Table 3]
Figure 2004299022
[0024]
[Table 4]
Figure 2004299022
[0025]
[Table 5]
Figure 2004299022
[0026]
[Table 6]
Figure 2004299022
[0027]
[Table 7]
Figure 2004299022
[0028]
【The invention's effect】
From the results shown in Tables 5 to 7, the coated cermet tools 1 to 12 of the present invention showed that the heat-transformed α-type Al 2 O 3 layer dispersed and distributed in the heat-transformed α-type Al 2 O 3 layer constituting the lower layer of the hard coating layer Excellent thermal shock absorption due to cracking and excellent surface lubrication for chips of the surface Ti oxide layer, especially for stainless steel and mild steel with extremely high thermal shock and high heat generation. Even in intermittent cutting, the occurrence of chipping of the cutting edge is remarkably suppressed, and excellent wear resistance is exhibited. On the other hand, the conventional coated cermet tools 1 to 3 in which the upper layer of the hard coating layer is made of a vapor-deposited α-type Al 2 O 3 layer In No. 12, since the vapor deposited α-type Al 2 O 3 layer cannot withstand severe thermal shock in high-speed intermittent cutting, it is clear that chipping occurs on the cutting edge and the service life is reached in a relatively short time. .
As described above, the coated cermet tool of the present invention can be used not only for continuous cutting or intermittent cutting of various steels or cast irons under normal conditions, but also for cutting conditions accompanied by extremely high thermal shock and high heat generation. It exhibits excellent chipping resistance even in high-speed interrupted cutting of difficult-to-cut materials such as stainless steel and mild steel, and exhibits excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily cope with labor and energy savings and cost reduction.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer having a target layer thickness of 15 μm corresponding to the lower layer constituting the upper layer of the hard coating layer of the coated cermet tool 3 of the present invention. is there.
FIG. 2 is a diagram showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer having a target layer thickness of 10 μm corresponding to the lower layer constituting the upper layer of the hard coating layer of the coated cermet tool 6 of the present invention. is there.
FIG. 3 is a view showing an X-ray diffraction chart of a heat-transformed α-type Al 2 O 3 layer having a target layer thickness of 5 μm corresponding to the lower layer constituting the upper layer of the hard coating layer of the coated cermet tool 9 of the present invention. is there.
[4] Conventional coating the cermet tools hard layer deposition α type the Al 2 O 3 layer constituting the upper layer of the present invention coated cermet tool 3 deposited α-type to the target layer thickness and 15μm in correspondence with Al 2 X-ray diffraction chart of the O 3 layer is a diagram showing a.
[5] Conventional coated cermet for hard coating layer deposited α-type the Al 2 O 3 layer constituting the upper layer of the tool, the present invention coated cermet tool 6 in response to the deposition α-type target layer thickness was 10 [mu] m Al 2 X-ray diffraction chart of the O 3 layer is a diagram showing a.
[6] Conventional coated cermet for hard coating layer deposited α-type the Al 2 O 3 layer constituting the upper layer of the tool, the present invention coated cermet tool 9 corresponds deposited α-type target layer thickness was 5 [mu] m Al 2 X-ray diffraction chart of the O 3 layer is a diagram showing a.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の表面に、
(a)いずれも化学蒸着形成されたTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ0.5〜20μmの合計平均層厚を有するTi化合物層で構成された下部層、
(b)化学蒸着形成した状態でκ型結晶構造を有する酸化アルミニウムに加熱処理を施して結晶構造をα型結晶構造に変態してなると共に、前記加熱処理で発生した変態クラックが分散分布した組織および1〜20μmの平均層厚を有する加熱変態α型酸化アルミニウム層の下側層と、化学蒸着形成した状態でα型の結晶構造を有し、かつ0.1〜2μmの平均層厚を有する蒸着α型酸化アルミニウム層の上側層からなる複合2重α型酸化アルミニウム層で構成された上部層、
(c)化学蒸着形成され、
組成式:TiO
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、 X値はTiに対する原子比で1.2〜1.9、
を満足し、かつ0.1〜3μmの平均層厚を有するTi酸化物層で構成された表面層、
以上(a)〜(c)からなる硬質被覆層を形成してなる、硬質被覆層がすぐれた耐熱衝撃性を有する表面被覆サーメット製切削工具。
On the surface of a tool substrate made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) each of which is composed of one or more of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer of Ti formed by chemical vapor deposition; A lower layer composed of a Ti compound layer having a total average layer thickness of 2020 μm,
(B) A structure in which aluminum oxide having a κ-type crystal structure is subjected to heat treatment in a state formed by chemical vapor deposition to transform the crystal structure into an α-type crystal structure, and the transformed cracks generated by the heat treatment are dispersed and distributed. And a lower layer of a heat-transformed α-type aluminum oxide layer having an average layer thickness of 1 to 20 μm, and having an α-type crystal structure in a state formed by chemical vapor deposition, and having an average layer thickness of 0.1 to 2 μm. An upper layer composed of a composite double α-type aluminum oxide layer consisting of an upper layer of a vapor-deposited α-type aluminum oxide layer,
(C) formed by chemical vapor deposition;
Composition formula: TiO X ,
When expressed in the formula, the central part in the thickness direction is measured by an Auger spectrometer, and the X value is 1.2 to 1.9 in atomic ratio to Ti,
And a surface layer composed of a Ti oxide layer having an average layer thickness of 0.1 to 3 μm,
A cutting tool made of a surface-coated cermet having a hard coating layer having excellent thermal shock resistance, wherein the cutting tool is formed by forming the hard coating layer comprising (a) to (c).
JP2003097530A 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance Pending JP2004299022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097530A JP2004299022A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097530A JP2004299022A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Publications (1)

Publication Number Publication Date
JP2004299022A true JP2004299022A (en) 2004-10-28

Family

ID=33409284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097530A Pending JP2004299022A (en) 2003-04-01 2003-04-01 Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance

Country Status (1)

Country Link
JP (1) JP2004299022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125658A (en) * 2005-11-04 2007-05-24 Mitsubishi Materials Corp Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125658A (en) * 2005-11-04 2007-05-24 Mitsubishi Materials Corp Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting

Similar Documents

Publication Publication Date Title
JP4432097B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials
JP4946333B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2005131730A (en) Surface-coated cermet cutting tool with hard coating layer having superior chipping resistance
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004122269A (en) Surface coated cermet cutting tool exhibiting superior chipping resistance under high speed heavy duty cutting
JP2004299021A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2006334710A (en) Surface coated cermet cutting tool whose hard coating layer exhibits high chipping resistance in high-speed heavy cutting operation
JP2005279912A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2004188500A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2004299022A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JP2004188575A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP4569746B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP2004188576A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance and surface lubrication performance
JP2004188502A (en) Cutting tool of surface-coated cermet with hard coating layer having excellent thermal shock resistance
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2004181617A (en) Surface coated cermet made cutting tool with hard coat layer having excellent thermal impact resistance and surface lubricity
JP4569861B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP2004181615A (en) Surface-coated cermet cutting tool with hard coating layer of excellent thermal shock resistance and surface lubricatability
JP5170829B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2004181616A (en) Surface coated cermet made cutting tool with hard coat layer having excellent thermal impact resistance and surface lubricity
JP2004181614A (en) Surface-coated cermet cutting tool with hard coating layer of excellent thermal shock resistance
JP2004181556A (en) Surface coated cermet made cutting tool with hard coat layer having excellent thermal impact resistance and surface lubricity
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Effective date: 20070905

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070921

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080201

Free format text: JAPANESE INTERMEDIATE CODE: A02