JP3371796B2 - Surface coated cemented carbide cutting tool with excellent fracture resistance - Google Patents

Surface coated cemented carbide cutting tool with excellent fracture resistance

Info

Publication number
JP3371796B2
JP3371796B2 JP7296098A JP7296098A JP3371796B2 JP 3371796 B2 JP3371796 B2 JP 3371796B2 JP 7296098 A JP7296098 A JP 7296098A JP 7296098 A JP7296098 A JP 7296098A JP 3371796 B2 JP3371796 B2 JP 3371796B2
Authority
JP
Japan
Prior art keywords
layer
crystal structure
layer thickness
cemented carbide
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7296098A
Other languages
Japanese (ja)
Other versions
JPH11269650A (en
Inventor
高歳 大鹿
哲彦 本間
惠滋 中村
一也 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP7296098A priority Critical patent/JP3371796B2/en
Publication of JPH11269650A publication Critical patent/JPH11269650A/en
Application granted granted Critical
Publication of JP3371796B2 publication Critical patent/JP3371796B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of surface-coated cemented carbide, excellent in chipping resistance and exhibiting excellent cutting performance over a long period. SOLUTION: This cutting tool made of surface-coated cemented carbide is obtd. by chemically vapor-depositing and/or physically vapor-depositing, on the surface of a WC base cemented carbide substrate, a hard coating layer having total overage layer thickness of 3 to 20 μm and composed, in order from the surface side of the substrate, of a TiN layer with a granular crystal structure having 0.1 to 2 μm average layer thickness, a TiCN layer with a longitudinally growing crystal structure having 1 to 15 μm average layer thickness, an Al2 O3 layer with a granular crystal structure having 0.5 to 15 μm average layer thickness and also having a crystal structure of the α type, κ type or the mixed type of α and κ and a TiN layre with a granular crystal structure having 0.1 to 3 μm average layer thickness. In this case, on the space between the TiCN layer and the Al2 O3 layer, a Ti2 O3 layer by chemical vapor deposition or physical vapor deposition showing an X-ray diffraction pattern in which the maximum diffraction peak height appears in the angle of diffraction (2θ) of 24.0±1 degrees by X-ray diffraction using CuKα ray as a radiation source is interposed by the average layer thickness of 0.1 to 2 μm.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、すぐれた耐欠損
性を有し、特に例えば鋼や鋳鉄などの高速切削や、高切
り込みおよび高送りなどの重切削に用いた場合にも、切
刃に欠けやチッピング(微小欠け)などの発生なく、す
ぐれた切削性能を長期に亘って発揮する表面被覆超硬合
金製切削工具(以下、被覆超硬工具と云う)に関するも
のである。 【0002】 【従来の技術】従来、一般に、例えば特開平6−315
03号公報、特開平6−316758号公報、および特
開平7−216549号公報などに記載されるように、
炭化タングステン基超硬合金基体(以下、超硬基体とい
う)の表面に、周期律表の4a、5a、および6a族金
属の炭化物、窒化物、および炭窒化物のうちの1種の単
層または2種以上の複層からなる金属炭・窒化物層と、
酸化アルミニウム(以下、Al23 で示す)層とで構
成され、前記金属炭・窒化物層およびAl23層はい
ずれも粒状結晶組織を有し、また前記金属炭・窒化物層
のうちの炭窒化チタン(以下、TiCNで示す)層には
縦長成長結晶組織をもつものもあり、さらに前記Al2
3 層はα型、κ型、またはαとκの混合型結晶構造を
もつものである硬質被覆層を3〜20μmの平均層厚で
化学蒸着および/または物理蒸着してなる被覆超硬工具
が知られており、またこの被覆超硬工具が鋼や鋳鉄など
の連続切削や断続切削に用いられていることも知られて
いる。 【0003】 【発明が解決しようとする課題】一方、近年、切削装置
の高性能化、高出力化、およびFA化はめざましく、さ
らに切削加工の省力化および省エネ化に対する要求も強
く、これに伴い、切削加工は、高速化および高切り込み
や高送りなどの重切削化の傾向にあるが、上記の従来被
覆超硬工具においては、これを高速切削や重切削などに
用いると、特に金属炭・窒化物層とAl23 層の層間
密着性不足が原因で切刃に欠けやチッピングが発生し易
く、この結果比較的短時間で使用寿命に至るのが現状で
ある。 【0004】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の硬質被覆層が金属炭・窒
化物層とAl23 層で構成される従来被覆超硬工具に
着目し、これの耐欠損性向上を図るべく研究を行った結
果、超硬基体の表面に化学蒸着される硬質被覆層の構成
を、基体表面側から順に、粒状結晶組織を有する窒化チ
タン(以下、TiNで示す)層、縦長成長結晶組織を有
するTiCN層、粒状結晶組織を有するAl23 層、
粒状結晶組織のTiN層、に特定した上で、上記TiC
N層と上記Al23 層との間に、硬質被覆層として
Cukα線を線源として用いたX線回折で、図1に例示
されるように、24.0±1度の回折角(2θ)に最高
回折ピーク高さが現れるX線回折パターンを示す、化学
蒸着形成の粒状結晶組織を有する三酸化二チタン(以
下、Ti23 で示す)層を介在させると、前記Ti2
3 層は上記TiCN層および上記Al23 層のいず
れに対してもきわめて高い層間密着性をもつことから、
この結果の被覆超硬工具は、鋼や鋳鉄などの連続切削お
よび断続切削を高速切削条件並びに重切削条件で行って
も、すぐれた耐欠損性を示し、長期に亘ってすぐれた切
削性能を発揮するという研究結果を得たのである。 【0005】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、基体表面側か
ら順に、0.1〜2μmの平均層厚を有する粒状結晶組
織のTiN層、1〜15μmの平均層厚を有する縦長成
長結晶組織のTiCN層、0.5〜15μmの平均層厚
を有し、かつα型、κ型、またはαとκの混合型結晶構
造を有する粒状結晶組織のAl23 層、0.1〜3μ
mの平均層厚を有する粒状結晶組織のTiN層、で構成
された硬質被覆層を化学蒸着してなる被覆超硬工具にお
いて、上記TiCN層と上記Al23 層の間に、硬質
被覆層として0.1〜2μmの平均層厚を有し、かつC
ukα線を線源として用いたX線回折で、24.0±1
度の回折角(2θ)に最高回折ピーク高さが現れるX線
回折パターンを示す化学蒸着形成のTi23 層を介在
させ、かつ硬質被覆層の全体平均層厚を3〜20μm
することにより耐欠損性を向上せしめた被覆超硬工具に
特徴を有するものである。 【0006】つぎに、この発明の被覆超硬工具の硬質被
覆層の構成層の平均層厚および全体平均層厚を上記の通
りに限定した理由を説明する。 (a)TiN層(超硬基体側) TiN層は、超硬基体表面に対する密着性にすぐれ、か
つ硬質被覆層形成時における超硬基体の構成成分の硬質
被覆層中への拡散移動を阻止し、もって硬質被覆層の特
性低下を抑制する作用をもつが、その層厚が0.1μm
未満では前記作用が十分に発揮されず、一方前記作用は
2μmまでの層厚で十分であることから、その層厚を
0.1〜2μmと定めた。 【0007】(b)TiCN層 TiCN層は、すぐれた靭性を有し、かつ耐摩耗性にも
すぐれているので、切刃に欠けやチッピングなどの発生
なく、すぐれた切削性能を長期に亘って発揮するのに不
可欠なものであるが、その層厚が1μm未満では前記作
用を十分に発揮させることができず、一方その層厚が1
5μmを越えると、切刃に熱塑性変形が生じ易くなり、
これが偏摩耗の原因となることから、その層厚を1〜1
5μmと定めた。 【0008】(c)Ti23 層 Ti23 層は、TiCN層とAl23 層のいずれに
も強固に密着し、もってこれら両者の層間密着性不足が
原因の欠けやチッピングの発生を抑制する作用をもつ
が、その層厚が0.1μm未満では前記作用に所望の効
果が得られず、一方その層厚が2μmを越えると、切刃
に欠けやチッピングが発生し易くなることから、その層
厚を0.1〜2μmと定めた。 【0009】(d)Al23 層 Al23 層は、耐酸化性および熱的安定性にすぐれ、
かつ高硬度をもつことから、上記TiCN層と共に、工
具の耐摩耗性向上には不可欠であるが、その層厚が0.
5μm未満では所望の耐摩耗性を確保することができ
ず、一方その層厚が15μmを越えると、切刃に欠けや
チッピングが発生し易くなることから、その層厚を0.
5〜15μmと定めた。 【0010】(e)TiN層 TiN層は、これ自体が黄金色の色調を有することか
ら、工具の使用前と使用後の識別を容易にするために形
成されるものであり、したがって0.1μm未満の層厚
では前記色調の付与が不十分であり、一方前記色調の付
与は3μmまでの層厚で十分であることから、その層厚
を0.1〜3μmと定めた。 【0011】(f)硬質被覆層の全体平均層厚 その層厚が3μmでは所望のすぐれた耐摩耗性を確保す
ることができず、一方その層厚が20μmを越えると、
切刃に欠けやチッピングが発生し易くなることから、そ
の全体平均層厚を3〜20μmと定めた。 【0012】また、この発明の被覆超硬工具の硬質被覆
層を構成するTi23 層は、反応ガス組成−容量%
で、TiCl4 :0.4〜10%、CO2:0.4〜1
0%、Ar:10〜60%、H2 :残り、 雰囲気温度:800〜1100℃、 雰囲気圧力:50〜500Torr、 の条件で形成することができる。 【0013】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、平
均粒径:2.8μmを有する中粒WC粉末、同4.9μ
mの粗粒WC粉末、同1.5μmの(Ti,W)C(重
量比で、以下同じ、TiC/WC=30/70)粉末、
同1.2μmの(Ti,W)CN(TiC/TiN/W
C=24/20/56)粉末、同1.2μmの(Ta,
Nb)C(TaC/NbC=90/10)粉末、および
同1.1μmのCo粉末を用意し、これら原料粉末を表
1に示される配合組成に配合し、ボールミルで72時間
湿式混合し、乾燥した後、ISO・CNMG12040
8(超硬基体A〜D用)および同SEEN42AFTN
1(超硬基体E用)に定める形状の圧粉体にプレス成形
し、この圧粉体を同じく表1に示される条件で真空焼結
することにより超硬基体A〜Eをそれぞれ製造した。さ
らに、上記超硬基体Bに対して、100TorrのCH
4 ガス雰囲気中、温度:1400℃に1時間保持後、徐
冷の滲炭処理を施し、処理後、超硬基体表面に付着する
カーボンとCoを酸およびバレル研磨で除去することに
より、表面から11μmの位置で最大Co含有量:1
5.9重量%、深さ:42μmのCo富化帯域を基体表
面部に形成した。また、上記超硬基体AおよびDには、
焼結したままで、表面部に表面から17μmの位置で最
大Co含有量:9.1重量%、深さ:23μmのCo富
化帯域が形成されており、残りの超硬基体CおよびEに
は、前記Co富化帯域の形成がなく、全体的に均質な組
織をもつものであった。なお、表1には、上記超硬基体
A〜Eの内部硬さ(ロックウエル硬さAスケール)をそ
れぞれ示した。 【0014】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2(表中の縦長成長結晶組織を有するTiCN
層は特開平6−8010号公報に記載されるTiCN層
に相当するものである)に示される条件にて、表3に示
される組成および平均層厚の硬質被覆層を形成すること
により本発明被覆超硬工具1〜5、およびTi23
の形成のない比較被覆超硬工具1〜5をそれぞれ製造し
た。なお、図1は本発明被覆超硬工具2のTi23
形成直後のX線回折パターンを示したが、本発明被覆超
硬工具1、3、4、および5においても同様な結果を示
した。 【0015】つぎに、上記本発明被覆超硬工具1〜4お
よび比較被覆超硬工具1〜4について、 被削材:JIS・SCM440(硬さ:HB 220)の
丸棒、 切削速度:350m/min.、 切り込み:2mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式連続高速切削試験、 被削材:JIS・SNCM439(硬さ:HB 250)
の丸棒、 切削速度:200m/min.、 切り込み:2mm、 送り:0.8mm/rev.、 切削時間:2分、 の条件での合金鋼の乾式連続高送り切削試験、 被削材:JIS・SNCM439(硬さ:HB 250)
の角材、 切削速度:250m/min.、 切り込み:2mm、 送り:0.2mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式断続高速切削試験を行い、いず
れの切削試験でも切刃の逃げ面摩耗幅を測定した。これ
らの測定結果を表4に示した。また、上記本発明被覆超
硬工具1、4および比較被覆超硬工具1、4について
は、 被削材:JIS・FC300の丸棒、 切削速度:450m/min.、 切り込み:2mm、 送り:0.3mm/rev.、 切削時間:10分、 の条件で鋳鉄の乾式連続高速切削試験を行い、同じく切
刃の逃げ面摩耗幅を測定し、この測定結果を表4に示し
た。さらに、上記本発明被覆超硬工具5および比較被覆
超硬工具5について、 被削材:幅100mm×長さ500mmの寸法をもつた
JIS・SNCM439の角材、 使用条件:直径125mmのカッターに単刃取り付け、 切削速度:250m/min.、 切り込み:2mm、 送り:0.2mm/刃、 切削時間:2パス(1パスの切削時間4.5分)、 の条件での合金鋼の乾式高速フライス切削試験を行い、
切刃の逃げ面摩耗幅を測定した。この測定結果も表4に
示した。 【0016】 【表1】 【0017】 【表2】 【0018】 【表3】【0019】 【表4】 【0020】 【発明の効果】表3、4に示される結果から、本発明被
覆超硬工具1〜5は、いずれも硬質被覆層のTiCN層
と上記Al23 層の間に介在させたTi23 層の作
用によって苛酷な切削条件となる合金鋼および鋳鉄の高
速切削並びに重切削においても、前記Ti23 層の形
成がない比較被覆超硬工具1〜5に比して一段とすぐれ
た耐欠損性を発揮することが明らかである。上述のよう
に、この発明の被覆超硬工具は、鋼や鋳鉄などの通常の
条件での連続切削や断続切削は勿論のこと、特にこれら
の切削を高速条件や重切削条件で行っても、すぐれた耐
欠損性を示し、長期に亘ってのすぐれた切削性能を発揮
するものであり、切削加工の省力化および省エネ化に寄
与するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an excellent fracture resistance and is particularly suitable for high-speed cutting of steel and cast iron, and heavy cutting such as high cutting and high feed. When used for cutting, a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent cutting performance for a long period of time without chipping or chipping (small chipping) of the cutting edge ). 2. Description of the Related Art Conventionally, generally, for example, Japanese Patent Application Laid-Open No. 6-315
03, JP-A-6-316758, and JP-A-7-216549, etc.
A single layer of one of carbides, nitrides, and carbonitrides of metals of groups 4a, 5a, and 6a of the periodic table is formed on the surface of a tungsten carbide-based cemented carbide substrate (hereinafter, referred to as a cemented carbide substrate). A metal charcoal / nitride layer composed of two or more types of multiple layers,
An aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer, wherein each of the metal carbon nitride layer and the Al 2 O 3 layer has a granular crystal structure. among the titanium carbonitride (hereinafter, shown by TiCN) in layers also those having an elongated growth crystal structure, further wherein Al 2
O 3 layer α type, kappa-type or α and kappa mixed coating cemented carbide tool crystalline hard coating layer are those having a structure with an average layer thickness of 3~20μm formed by chemical vapor deposition and / or physical vapor deposition, It is also known that this coated carbide tool is used for continuous cutting or interrupted cutting of steel, cast iron, or the like. On the other hand, in recent years, high performance, high output, and FA of cutting equipment have been remarkable, and there is a strong demand for labor saving and energy saving of cutting work. However, the cutting process tends to be high speed and heavy cutting such as high cutting and high feed, but in the above-mentioned conventional coated carbide tools, if this is used for high speed cutting or heavy cutting, especially metal charcoal Due to insufficient adhesion between the nitride layer and the Al 2 O 3 layer, chipping or chipping is apt to occur in the cutting edge, and as a result, the service life is currently reached in a relatively short time. [0004] Therefore, the present inventors have proposed:
From the above viewpoint, we focused on a conventional coated carbide tool in which the hard coating layer was composed of a metal carbon / nitride layer and an Al 2 O 3 layer, and conducted research to improve the fracture resistance of the tool. As a result, the structure of the hard coating layer chemically vapor-deposited on the surface of the cemented carbide substrate was changed from the substrate surface side to a titanium nitride (hereinafter referred to as TiN) layer having a granular crystal structure and a TiCN layer having a vertically-grown crystal structure. An Al 2 O 3 layer having a granular crystal structure,
After specifying a TiN layer having a granular crystal structure,
As a hard coating layer between the N layer and the Al 2 O 3 layer,
In X-ray diffraction using Cuka radiation as a radiation source, as shown in FIG. 1, a chemical pattern showing an X-ray diffraction pattern in which the highest diffraction peak height appears at a diffraction angle (2θ) of 24.0 ± 1 degree.
Trioxide titanium (hereinafter, Ti 2 O indicated by 3) having a granular crystal structure of the deposition formation when the intervening layer, the Ti 2
Since the O 3 layer has extremely high interlayer adhesion to both the TiCN layer and the Al 2 O 3 layer,
The resulting coated carbide tool exhibits excellent chipping resistance even when performing continuous and interrupted cutting of steel and cast iron under high-speed and heavy cutting conditions, and demonstrates excellent cutting performance over a long period of time. The research result was obtained. The present invention has been made on the basis of the above research results, and has a granular crystal structure of TiN having an average layer thickness of 0.1 to 2 μm on the surface of a cemented carbide substrate in order from the substrate surface side. Layer, TiCN layer with a longitudinal growth crystal structure having an average layer thickness of 1 to 15 μm, having an average layer thickness of 0.5 to 15 μm, and having an α-type, κ-type, or a mixed-type crystal structure of α and κ Al 2 O 3 layer of granular crystal structure, 0.1-3μ
TiN layer of granular crystal structure having an average layer thickness of m, in the coated cemented carbide tool with a hard coating layer constituted formed by chemical vapor deposition, between the TiCN layer and the the Al 2 O 3 layer, a hard
A coating layer having an average layer thickness of 0.1 to 2 μm and C
X-ray diffraction using ukα ray as a radiation source, 24.0 ± 1
A Ti 2 O 3 layer formed by chemical vapor deposition showing an X-ray diffraction pattern in which the highest diffraction peak height appears at a diffraction angle (2θ) in degrees is interposed, and the entire average layer thickness of the hard coating layer is 3 to 20 μm. This is a feature of a coated carbide tool having improved fracture resistance due to the above. Next, the reason why the average layer thickness of the constituent layers of the hard coating layer and the overall average layer thickness of the coated carbide tool of the present invention are limited as described above will be described. (A) TiN Layer (Super Hard Substrate Side) The TiN layer has excellent adhesion to the surface of the super hard substrate, and prevents diffusion and transfer of the constituents of the super hard substrate into the hard coating layer during formation of the hard coating layer. This has the effect of suppressing the deterioration of the characteristics of the hard coating layer, but the thickness of the layer is 0.1 μm.
If it is less than 3, the above effect is not sufficiently exhibited, while the above effect is sufficient with a layer thickness of up to 2 μm. (B) TiCN layer The TiCN layer has excellent toughness and excellent abrasion resistance, so that it has excellent cutting performance over a long period without chipping or chipping of the cutting edge. Although it is indispensable to exert the effect, if the layer thickness is less than 1 μm, the above effect cannot be sufficiently exerted.
If the thickness exceeds 5 μm, the cutting edge is likely to undergo thermoplastic deformation,
Since this causes uneven wear, the layer thickness is set to 1 to 1
It was determined to be 5 μm. (C) Ti 2 O 3 layer The Ti 2 O 3 layer firmly adheres to both the TiCN layer and the Al 2 O 3 layer, so that lack of interlayer adhesion between these two causes chipping or chipping. If the layer thickness is less than 0.1 μm, the desired effect cannot be obtained. If the layer thickness exceeds 2 μm, chipping and chipping of the cutting edge are liable to occur. Therefore, the layer thickness was determined to be 0.1 to 2 μm. (D) Al 2 O 3 layer The Al 2 O 3 layer has excellent oxidation resistance and thermal stability,
Since it has high hardness, it is indispensable to improve the wear resistance of the tool together with the TiCN layer.
If the thickness is less than 5 μm, the desired wear resistance cannot be ensured. On the other hand, if the thickness exceeds 15 μm, chipping and chipping easily occur on the cutting edge.
It was determined to be 5 to 15 μm. (E) TiN layer Since the TiN layer itself has a golden color tone, it is formed for facilitating discrimination between before and after use of the tool. When the layer thickness is less than the above, the application of the color tone is insufficient, while the application of the color tone requires a layer thickness of up to 3 μm. Therefore, the layer thickness is set to 0.1 to 3 μm. (F) Overall average thickness of the hard coating layer If the thickness is 3 μm, the desired excellent wear resistance cannot be ensured. On the other hand, if the thickness exceeds 20 μm,
Since chipping and chipping easily occur in the cutting blade, the overall average layer thickness was determined to be 3 to 20 μm. Further, the Ti 2 O 3 layer constituting the hard coating layer of the coated cemented carbide tool of the present invention has a reaction gas composition—volume%
And TiCl 4 : 0.4 to 10%, CO 2 : 0.4 to 1
0%, Ar: 10~60%, H 2: remainder, ambient temperature: 800 to 1100 ° C., atmospheric pressure: 50~500Torr, can be formed in the condition. Next, the coated carbide tool of the present invention will be described in detail with reference to examples. Medium-sized WC powder having an average particle diameter of 2.8 μm, 4.9 μm as the raw material powder
m of coarse WC powder, 1.5 μm of (Ti, W) C (the same in weight ratio, hereinafter, TiC / WC = 30/70) powder,
1.2 μm (Ti, W) CN (TiC / TiN / W
C = 24/20/56) powder, 1.2 μm (Ta,
Nb) C (TaC / NbC = 90/10) powder and Co powder of 1.1 μm were prepared, and these raw material powders were blended in the composition shown in Table 1, wet-mixed in a ball mill for 72 hours, and dried. After that, ISO ・ CNMG12040
8 (for carbide substrates A to D) and SEEN42AFTN
Press molded into a green compact having the shape defined in No. 1 (for the super hard substrate E), and the green compact was vacuum-sintered under the conditions shown in Table 1 to produce super hard substrates A to E, respectively. Further, the above-mentioned super hard substrate B was subjected to 100 Torr CH.
After holding at a temperature of 1400 ° C. for 1 hour in a 4 gas atmosphere, a slow cooling carburization treatment is performed, and after the treatment, carbon and Co adhering to the surface of the carbide substrate are removed from the surface by acid and barrel polishing. Maximum Co content at 11 μm: 1
A Co-enriched zone of 5.9% by weight and a depth of 42 μm was formed on the surface of the substrate. In addition, the above-mentioned carbide substrates A and D include:
As-sintered, a Co-enriched zone having a maximum Co content of 9.1% by weight and a depth of 23 μm was formed on the surface at a position 17 μm from the surface, and the remaining carbide substrates C and E were formed. Has no formation of the Co-enriched zone and has an overall homogeneous structure. Table 1 shows the internal hardness (Rockwell hardness A scale) of each of the carbide substrates A to E. Then, the surface of each of the superhard substrates A to E was honed, and was subjected to a conventional chemical vapor deposition apparatus, as shown in Table 2 (TiCN having a vertically elongated crystal structure in the table).
The layer is equivalent to the TiCN layer described in JP-A-6-8010) under the conditions shown in Table 3 to form a hard coating layer having the composition and average thickness shown in Table 3. coated carbide tools 1-5, and Ti 2 O 3 layers formed without a comparison coated cemented carbide tools 1 to 5 were prepared respectively. FIG. 1 shows the X-ray diffraction pattern of the coated carbide tool 2 of the present invention immediately after the Ti 2 O 3 layer was formed. Similar results were obtained with the coated carbide tools 1, 3, 4, and 5 of the present invention. Indicated. Next, for the coated carbide tools 1-4 of the present invention and the comparative coated carbide tools 1-4, a work material: a round bar of JIS SCM440 (hardness: HB 220), a cutting speed: 350 m / min. Infeed: 2 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry continuous high-speed cutting test of alloy steel under the following conditions: Work material: JIS SNCM439 (Hardness: HB250)
Round bar, Cutting speed: 200 m / min. Infeed: 2 mm Feed: 0.8 mm / rev. , Cutting time: 2 minutes, Dry continuous high-feed cutting test of alloy steel under the following conditions: Work material: JIS SNCM439 (Hardness: HB250)
Square material, Cutting speed: 250 m / min. Infeed: 2 mm Feed: 0.2 mm / rev. The cutting intermittent high-speed cutting test of the alloy steel was performed under the following conditions: cutting time: 5 minutes, and the flank wear width of the cutting edge was measured in each cutting test. Table 4 shows the results of these measurements. In addition, the coated carbide tools 1 and 4 of the present invention and the comparative coated carbide tools 1 and 4 are described below. Work material: JIS FC300 round bar, Cutting speed: 450 m / min. Infeed: 2 mm Feed: 0.3 mm / rev. A dry continuous high-speed cutting test was performed on the cast iron under the following conditions: cutting time: 10 minutes, and the flank wear width of the cutting edge was also measured. The measurement results are shown in Table 4. Further, for the coated carbide tool 5 of the present invention and the comparative coated carbide tool 5, a work material: a square material of JIS SNCM439 having a size of 100 mm in width × 500 mm in length, and a use condition: a cutter having a diameter of 125 mm and a single edge Mounting, cutting speed: 250 m / min. , Depth of cut: 2 mm, feed: 0.2 mm / tooth, cutting time: 2 passes (cutting time of 1 pass: 4.5 minutes), dry dry high speed milling test of alloy steel under the following conditions:
The flank wear width of the cutting blade was measured. The measurement results are also shown in Table 4. [Table 1] [Table 2] [Table 3] [Table 4] According to the results shown in Tables 3 and 4, all of the coated carbide tools 1 to 5 of the present invention were interposed between the TiCN layer of the hard coating layer and the Al 2 O 3 layer. Even in high-speed cutting and heavy-duty cutting of alloy steel and cast iron, which are subjected to severe cutting conditions due to the action of the Ti 2 O 3 layer, they are much more effective than the comparative coated carbide tools 1-5 in which the Ti 2 O 3 layer is not formed. It is clear that it exhibits excellent fracture resistance. As described above, the coated cemented carbide tool of the present invention is not limited to continuous cutting and interrupted cutting under ordinary conditions such as steel and cast iron, and even if these cuttings are performed under high-speed conditions or heavy cutting conditions, It exhibits excellent fracture resistance and exhibits excellent cutting performance over a long period of time, and contributes to labor saving and energy saving in cutting.

【図面の簡単な説明】 【図1】本発明被覆超硬工具2のTi23 層形成直後
のX線回折パターンを示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an X-ray diffraction pattern immediately after forming a Ti 2 O 3 layer of a coated carbide tool 2 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳田 一也 埼玉県大宮市北袋町1−297 三菱マテ リアル株式会社 総合研究所内 (56)参考文献 特開 平11−152570(JP,A) 特開 平10−18039(JP,A) 特開 平8−187605(JP,A) 特公 平5−47624(JP,B2) 特公 昭56−52108(JP,B2) (58)調査した分野(Int.Cl.7,DB名) B23B 27/14 C23C 16/40 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuya Yanagita 1-297 Kitabukurocho, Omiya City, Saitama Prefecture Mitsubishi Materials Corporation General Research Laboratory (56) References JP-A-11-152570 (JP, A) JP-A-10-18039 (JP, A) JP-A-8-187605 (JP, A) JP-B 5-47624 (JP, B2) JP-B-56-52108 (JP, B2) (58) Fields investigated (Int) .Cl. 7 , DB name) B23B 27/14 C23C 16/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】炭化タングステン基超硬合金基体の表面
に、基体表面側から順に、 0.1〜2μmの平均層厚を有する粒状結晶組織の窒化
チタン層、 1〜15μmの平均層厚を有する縦長成長結晶組織の炭
窒化チタン層、 0.5〜15μmの平均層厚を有し、かつα型、κ型、
またはαとκの混合型結晶構造を有する粒状結晶組織の
酸化アルミニウム層、 0.1〜3μmの平均層厚を有する粒状結晶組織の窒化
チタン層、 で構成された硬質被覆層を化学蒸着してなる表面被覆超
硬合金製切削工具において、 上記炭窒化チタン層と上記酸化アルミニウム層の間に、
硬質被覆層として0.1〜2μmの平均層厚を有し、か
つCukα線を線源として用いたX線回折で、24.0
±1度の回折角(2θ)に最高回折ピーク高さが現れる
X線回折パターンを示す化学蒸着形成の三酸化二チタン
層を介在させ、かつ硬質被覆層の全体平均層厚を3〜2
0μmとしたこと、を特徴とする耐欠損性のすぐれた表
面被覆超硬合金製切削工具。
(57) Claims: 1. A titanium nitride layer having a granular crystal structure having an average layer thickness of 0.1 to 2 µm on a surface of a tungsten carbide-based cemented carbide substrate in order from the substrate surface side. A titanium carbonitride layer having a vertical growth crystal structure having an average layer thickness of 1 to 15 μm, an average layer thickness of 0.5 to 15 μm, and α-type and κ-type;
Or aluminum oxide layer of granular crystal structure having a mixed crystal structure of the α and kappa, titanium nitride layer of granular crystal structure having an average layer thickness of 0.1 to 3 m, in the hard coating layer formed by chemical vapor deposition In the surface-coated cemented carbide cutting tool, the titanium carbide layer and the aluminum oxide layer,
It has an average layer thickness of 0.1 to 2 μm as a hard coating layer , and is 24.0 in X-ray diffraction using Cuka radiation as a radiation source.
A titanium oxide layer formed by chemical vapor deposition showing an X-ray diffraction pattern exhibiting the highest diffraction peak height at a diffraction angle (2θ) of ± 1 degree is interposed, and the total average layer thickness of the hard coating layer is 3 to 2
A cutting tool made of a surface-coated cemented carbide having excellent fracture resistance, characterized in that the thickness is 0 μm .
JP7296098A 1998-03-23 1998-03-23 Surface coated cemented carbide cutting tool with excellent fracture resistance Expired - Lifetime JP3371796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7296098A JP3371796B2 (en) 1998-03-23 1998-03-23 Surface coated cemented carbide cutting tool with excellent fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7296098A JP3371796B2 (en) 1998-03-23 1998-03-23 Surface coated cemented carbide cutting tool with excellent fracture resistance

Publications (2)

Publication Number Publication Date
JPH11269650A JPH11269650A (en) 1999-10-05
JP3371796B2 true JP3371796B2 (en) 2003-01-27

Family

ID=13504468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7296098A Expired - Lifetime JP3371796B2 (en) 1998-03-23 1998-03-23 Surface coated cemented carbide cutting tool with excellent fracture resistance

Country Status (1)

Country Link
JP (1) JP3371796B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE526604C2 (en) 2002-03-22 2005-10-18 Seco Tools Ab Coated cutting tool for turning in steel
DE102004007653A1 (en) 2003-02-17 2004-08-26 Kyocera Corp. Surface coated part
JP2004284003A (en) * 2003-02-28 2004-10-14 Mitsubishi Materials Corp Surface-coated cermet cutting tool exhibiting excellent chipping resistance in hard coated layer

Also Published As

Publication number Publication date
JPH11269650A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3402146B2 (en) Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP2001310203A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP3436169B2 (en) Surface-coated cemented carbide cutting tool with an aluminum oxide layer that forms the hard coating layer exhibits excellent toughness
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3331929B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3353675B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance
JP3519127B2 (en) High thermal conductive coated tool
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP3661503B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH11267903A (en) Surface-coat cutting tool made of cemented carbide having excellent in fracture resistance
JPH11267904A (en) Surface-coat cutting tool made of cemented carbide having excellent in fracture resistance
JP2001150206A (en) Surface-coated tungsten carbide group sintered allow- made cutting tool which displays excellent defect resistance in interrupted double cutting
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JPH1177405A (en) Surface coated cemented carbide cutting tool excellent in high speed cutting and wear resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

EXPY Cancellation because of completion of term