JPH10204639A - Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance - Google Patents

Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance

Info

Publication number
JPH10204639A
JPH10204639A JP361597A JP361597A JPH10204639A JP H10204639 A JPH10204639 A JP H10204639A JP 361597 A JP361597 A JP 361597A JP 361597 A JP361597 A JP 361597A JP H10204639 A JPH10204639 A JP H10204639A
Authority
JP
Japan
Prior art keywords
layer
degrees
layers
hard coating
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP361597A
Other languages
Japanese (ja)
Inventor
Toshiaki Ueda
稔晃 植田
Akira Osada
晃 長田
斉 ▲功▼刀
Hitoshi Kunugi
Takeki Hamaguchi
雄樹 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP361597A priority Critical patent/JPH10204639A/en
Publication of JPH10204639A publication Critical patent/JPH10204639A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cutting tool made of surface-coated cemented carbide in which a hard coating layer shows excellent chipping resistance over a long period. SOLUTION: This cutting tool made of surface-coated cemented carbide is composed by chemically and/or physically vapor-depositing on the surface of a WC base cemented carbide substrate, a hard coating layer contg. α type Al2 O3 layers, e.g. a hard coating layer composed of at least one or >= two kinds among Ti compound layers composed of a TiC layer, a TiN layer, a TiCN layer, a TiO2 layer, a TiCO layer, a TiNO layer and a TiCNO layer and α type Al2 O3 layers with the average layer thickness of 2 to 20μm. In this case, the αtype Al2 O3 layers composing the hard coating layer are composed of two or more α type Al2 O3 unit layers showing different X-ray diffraction patterns. Furthermore, the α type Al2 O3 unit layers are composed of α type Al2 O3 composite layers showing X-ray diffraction patterns in which the most intensive peak appears in any of 25.5 degrees at 2θ, 35.5 degrees at 2θ, 37.2 degrees at 2θ and 68.4 degrees at 2θ, and the ratio of the most intensive peak height (H1 ) to the secondary peak height (H2 ) in the same X-ray diffraction pattern, i.e., (H1 )/(H2 ) is regulated to 1.5 to 2.7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、硬質被覆層がす
ぐれた耐チッピング性を有し、したがって例えば鋼や鋳
鉄の高速切削や、高送りおよび高切込みなどの重切削な
どの苛酷な条件で用いた場合にも切刃にチッピング(微
小欠け)の発生なく、長期に亘ってすぐれた切削性能を
発揮する表面被覆超硬合金製切削工具(以下、被覆超硬
工具と云う)に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a hard coating layer having excellent chipping resistance, and is therefore applicable to severe conditions such as high-speed cutting of steel and cast iron and heavy cutting such as high feed and high cutting. The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent cutting performance over a long period of time without chipping (small chipping) of the cutting edge.

【0002】[0002]

【従来の技術】従来、一般に、炭化タングステン基超硬
合金基体(以下、超硬基体という)の表面に、α型酸化
アルミニウム(以下、Al23 で示す)層を含む硬質
被覆層、例えばTiの炭化物(以下、TiCで示す)
層、窒化物(以下、同じくTiNで示す)層、炭窒化物
(以下、TiCNで示す)層、酸化物(以下、TiO2
で示す)層、炭酸化物(以下、TiCOで示す)層、窒
酸化物(以下、TiNOで示す)層、および炭窒酸化物
(以下、TiCNOで示す)層からなるTi化合物層の
うちの1種または2種以上と、Al23 層とで構成さ
れた硬質被覆層を2〜20μmの平均層厚で化学蒸着お
よび/または物理蒸着してなる被覆超硬工具が知られて
おり、またこの被覆超硬工具が鋼や鋳鉄などの連続切削
や断続切削に用いられていることも知られている。
2. Description of the Related Art Conventionally, generally, a hard coating layer including an α-type aluminum oxide (hereinafter, referred to as Al 2 O 3 ) layer is formed on a surface of a tungsten carbide-based cemented carbide substrate (hereinafter, referred to as a cemented carbide substrate). Ti carbide (hereinafter referred to as TiC)
Layer, nitride (hereinafter also indicated as TiN) layer, carbonitride (hereinafter indicated as TiCN) layer, oxide (hereinafter referred to as TiO 2)
), A carbon oxide (hereinafter referred to as TiCO) layer, a nitrogen oxide (hereinafter referred to as TiNO) layer, and a Ti compound layer including a carbon oxynitride (hereinafter referred to as TiCNO) layer. Coated carbide tools are known which are obtained by chemical vapor deposition and / or physical vapor deposition of a hard coating layer composed of one or more kinds and an Al 2 O 3 layer with an average layer thickness of 2 to 20 μm. It is also known that this coated carbide tool is used for continuous cutting or interrupted cutting of steel, cast iron, or the like.

【0003】[0003]

【発明が解決しようとする課題】一方、近年の切削装置
の高性能化および高出力化はめざましく、かつ省力化に
対する要求も強く、これに伴い、切削加工は高速化並び
に高送りおよび高切込みなどの重切削化の傾向にある
が、上記の従来被覆超硬工具においては、これを構成す
る硬質被覆層のうち、特にAl23 層は耐酸化性と熱
的安定性にすぐれ、さらに高硬度を有するが、他の構成
層であるTi化合物層に比して相対的に強度が低く、か
つ脆いことが原因で、例えば鋼や鋳鉄などの高速切削や
重切削などの苛酷な条件での切削では切刃にチッピング
が発生し易く、これが原因で比較的短時間で使用寿命に
至るのが現状である。
On the other hand, in recent years, high performance and high output of a cutting device have been remarkable, and there is a strong demand for labor saving. Accordingly, cutting has been performed at a high speed and a high feed rate and a high depth of cut have been required. However, in the above-mentioned conventional coated carbide tools, the Al 2 O 3 layer among the hard coating layers constituting the same is particularly excellent in oxidation resistance and thermal stability, and has a higher hardness. Although it has hardness, its strength is relatively low as compared to the Ti compound layer, which is another constituent layer, and it is brittle.For example, in severe conditions such as high-speed cutting or heavy cutting of steel or cast iron. In cutting, chipping easily occurs on the cutting edge, and as a result, the service life of the cutting blade is relatively short and the service life is short.

【0004】[0004]

【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、被覆超硬工具の硬質被覆層を構
成するAl23 層に着目し、これの強度および靭性向
上を図るべく研究を行った結果、一般に、上記の従来被
覆超硬工具の硬質被覆層を構成するAl23層は、化
学蒸着装置を用いた場合、例えば、 (A)反応ガス組成 容量%で、AlCl3 :1〜3%、CO2 :1.5〜
4.5%、HCl:3〜9%、H2 S:1〜2%、H
2 :残り、 (B)反応温度:900〜1100℃、 (C)反応圧力:25〜100torr、 の条件で形成されるが、上記条件での上記Al23
の形成に先だって、超硬基体表面に対して、 (a)反応ガス組成 容量%で、AlCl3 :20〜25%、CO2 :35〜
37.5%、H2 :残り、 (b)反応温度:1000〜1200℃、 (c)反応圧力:0.01〜1torr、 (d)時間:10〜60分、 の条件で結晶核形成前処理を行ない、この結晶核形成前
処理後の超硬基体表面に上記の(A)〜(C)の条件で
所定厚さのAl23 層を形成すると、上記の(a)〜
(d)の条件での結晶核形成前処理を行なわないで形成
した従来Al2 3 層では、図5に例示されるX線回折
パターンを示していたものが、前記結晶核形成前処理条
件を調整することによって、図1〜4にそれぞれ例示さ
れる通り、2θで25.5度、同35.5度、同37.
2度、および68.4度のいずれかに最強ピークが現わ
れ、前記最強ピーク高さ(H1 )と同じX線回折パター
ンにおける2番目のピーク高さ(H2 )の比(H1 )/
(H2 )が1.5〜2.7であるX線回折パターンを示
すようになり、これをA23 単位層とし、異なったX
線回折パターンを示す2層以上の前記A23 単位層で
23 層を構成すると、この結果のA23 複合層
は、上記従来Al23 層に比して高強度および高靭性
をもつようになることから、硬質被覆層はすぐれた耐チ
ッピング性を有するようになり、したがって被覆超硬工
具は、鋼や鋳鉄などの高速切削や重切削などの苛酷な条
件での切削にも切刃にチッピングの発生がなく、すぐれ
た切削性能を長期に亘って発揮するようになるという研
究結果を得たのである。
Means for Solving the Problems Accordingly, the present inventors have
From the viewpoint as described above, the hard coating layer of the coated carbide tool is formed.
Al formedTwo OThree Focusing on the layer, its strength and toughness
As a result of conducting research to improve
Al constituting hard coating layer of coated carbide toolTwo OThreeThe layers are
When a chemical vapor deposition apparatus is used, for example, (A) reaction gas compositionThree : 1-3%, COTwo : 1.5 ~
4.5%, HCl: 3-9%, HTwo S: 1-2%, H
Two (B) reaction temperature: 900 to 1100 ° C .; (C) reaction pressure: 25 to 100 torr.Two OThree layer
Prior to the formation of, the (a) reaction gas composition in volume%Three : 20-25%, COTwo : 35 ~
37.5%, HTwo : Remaining, (b) reaction temperature: 1000 to 1200 ° C., (c) reaction pressure: 0.01 to 1 torr, (d) time: 10 to 60 minutes. Before formation
The surface of the super-hard substrate after the treatment is treated under the above conditions (A) to (C).
Al of specified thicknessTwo OThree When a layer is formed, the above (a) to
Formed without pretreatment for crystal nucleus formation under condition (d)
Conventional AlTwo O Three In the layer, the X-ray diffraction illustrated in FIG.
What showed the pattern, the crystal nucleation pretreatment strip
By adjusting the matter, examples are shown in Figs.
25.5 degrees, 35.5 degrees, and 37.degree.
The strongest peak appears at either 2 degrees or 68.4 degrees
The strongest peak height (H1X-ray diffraction pattern
The second peak height (HTwo) Ratio (H1) /
(HTwo) Shows an X-ray diffraction pattern of 1.5 to 2.7.
And this is ATwo OThree Unit layer and different X
A of two or more layers showing a line diffraction patternTwo OThree At the unit layer
ATwo OThree When the layers are constructed, the resulting ATwo OThree Composite layer
Is the conventional AlTwo OThree High strength and high toughness compared to layers
The hard coating layer has excellent resistance to
Comes to have a papping property, and therefore coated carbide
The tool is used for severe cutting such as high-speed cutting and heavy cutting of steel and cast iron.
No chipping on the cutting edge for cutting
That cutting performance will be exhibited over a long period of time.
The result was obtained.

【0005】なお、図1に示すX線回折パターンは、通
常の化学蒸着装置にて、後述する超硬基体Aの表面に、 (a)反応ガス組成 容量%で、AlCl3 :22%、CO2 :37%、H
2 :残り、 (b)反応温度:1150℃、 (c)反応圧力:0.1torr、 (d)時間:40分、 の条件で結晶核形成前処理を行ない、この結晶核形成前
処理後の超硬基体表面に、通常の条件、すなわち、 (A)反応ガス組成 容量%で、AlCl3 :2%、CO2 :8%、HCl:
3%、H2 S:3%、H2 :残り、 (B)反応温度:1000℃、 (C)反応圧力:50torr、 (D)時間:300分(実施例の平均層厚は時間で調
整)、 の条件で形成した平均層厚:5μmのAl2 3 層(以
下の実施例で、以上の条件で形成したAl2 3 層をA
2 3 単位層アと云う)で、H1 が2θ:25.5度
に現れ、H1 /H2 :1.6を示すものである。
[0005] Note that, X-rays diffraction pattern shown in Figure 1, in a normal chemical vapor deposition apparatus, the surface of the carbide substrate A to be described later, with (a) the reaction gas composition volume%, AlCl 3: 22%, CO 2 : 37%, H
2 : Remaining, (b) reaction temperature: 1150 ° C., (c) reaction pressure: 0.1 torr, (d) time: 40 minutes, pretreatment for crystal nucleation was performed. On the surface of the cemented carbide substrate, under normal conditions, that is, (A) reaction gas composition volume%, AlCl 3 : 2%, CO 2 : 8%, HCl:
3%, H 2 S: 3%, H 2 : residual, (B) reaction temperature: 1000 ° C., (C) reaction pressure: 50 torr, (D) time: 300 minutes (the average layer thickness in Examples is adjusted by time) ), The average layer thickness formed under the following conditions: 5 μm Al 2 O 3 layer (In the following examples, the Al 2 O 3 layer formed under the above conditions was A
In l 2 O 3 referred to as the unit layer A), H 1 is 2 [Theta]: appears to 25.5 degrees, H 1 / H 2: shows a 1.6.

【0006】また、図2に示すX線回折パターンは、同
じく超硬基体Aの表面に、 (a)反応ガス組成 容量%で、AlCl3 :20%、CO2 :35%、H
2 :残り、 (b)反応温度:1050℃、 (c)反応圧力:0.05torr、 (d)時間:10分、 の条件で結晶核形成前処理を行ない、この結晶核形成前
処理後の超硬基体表面に、通常の条件、すなわち、 (A)反応ガス組成 容量%で、AlCl3 :2%、CO2 :10%、HC
l:5%、H2 S:2%、H2 :残り、 (B)反応温度:1020℃、 (C)反応圧力:50torr、 (D)時間:280分(実施例の平均層厚は時間で調
整)、 の条件で形成した平均層厚:5μmのAl2 3 層(以
下の実施例で、以上の条件で形成したAl2 3 層をA
2 3 単位層イと云う)で、H1 が2θ:35.5度
に現れ、H1 /H2 :2.7を示すものである。
The X-ray diffraction pattern shown in FIG. 2 also shows that (a) the reaction gas composition volume%, AlCl 3 : 20%, CO 2 : 35%, H
2 : remaining, (b) reaction temperature: 1050 ° C., (c) reaction pressure: 0.05 torr, (d) time: 10 minutes, pretreatment for crystal nucleus formation was performed. On the surface of the cemented carbide substrate, under ordinary conditions, that is, (A) reaction gas composition volume%, AlCl 3 : 2%, CO 2 : 10%, HC
1: 5%, H 2 S: 2%, H 2 : residual, (B) reaction temperature: 1020 ° C., (C) reaction pressure: 50 torr, (D) time: 280 minutes (average layer thickness in Examples is time The average layer thickness formed under the following conditions: 5 μm Al 2 O 3 layer (In the following examples, the Al 2 O 3 layer formed under the above conditions was A
In l 2 O 3 referred to as the unit layer b), H 1 is 2 [Theta]: appears to 35.5 degrees, H 1 / H 2: shows a 2.7.

【0007】図3に示すX線回折パターンは、同じく超
硬基体Aの表面に、 (a)反応ガス組成 容量%で、AlCl3 :22%、CO2 :37%、H
2 :残り、 (b)反応温度:1100℃、 (c)反応圧力:0.01torr、 (d)時間:50分、 の条件で結晶核形成前処理を行ない、この結晶核形成前
処理後の超硬基体表面に、通常の条件、すなわち、 (A)反応ガス組成 容量%で、AlCl3 :2%、CO2 :8%、HCl:
5%、H2 S:2%、H2 :残り、 (B)反応温度:960℃、 (C)反応圧力:50torr、 (D)時間:340分(実施例の平均層厚は時間で調
整)、 の条件で形成した平均層厚:5μmのAl2 3 層(以
下の実施例で、以上の条件で形成したAl2 3 層をA
2 3 単位層ウと云う)で、H1 が2θ:37.2度
に現れ、H1 /H2 :2.4を示すのものである。
The X-ray diffraction pattern shown in FIG. 3 shows that (a) the reaction gas composition volume%, AlCl 3 : 22%, CO 2 : 37%, H
2 : Remaining, (b) Reaction temperature: 1100 ° C., (c) Reaction pressure: 0.01 torr, (d) Time: 50 minutes, pretreatment for crystal nucleation was performed. On the surface of the cemented carbide substrate, under normal conditions, that is, (A) reaction gas composition volume%, AlCl 3 : 2%, CO 2 : 8%, HCl:
5%, H 2 S: 2%, H 2 : residual, (B) reaction temperature: 960 ° C., (C) reaction pressure: 50 torr, (D) time: 340 minutes (the average layer thickness in Examples is adjusted by time) ), The average layer thickness formed under the following conditions: 5 μm Al 2 O 3 layer (In the following examples, the Al 2 O 3 layer formed under the above conditions was A
In l 2 O 3 referred to as the unit layer c), H 1 is 2 [Theta]: 37.2 [deg appeared, H 1 / H 2: is of showing a 2.4.

【0008】さらに、図4に示すX線回折パターンは、
同じく超硬基体Aの表面に、 (a)反応ガス組成 容量%で、AlCl3 :25%、CO2 :37.5%、
2 :残り、 (b)反応温度:1200℃、 (c)反応圧力:0.1torr、 (d)時間:30分、 の条件で結晶核形成前処理を行ない、この結晶核形成前
処理後の超硬基体表面に、通常の条件、すなわち、 (A)反応ガス組成 容量%で、AlCl3 :2%、CO2 :10%、HC
l:2%、H2 S:1%、H2 :残り、 (B)反応温度:960℃、 (C)反応圧力:50torr、 (D)時間:330分(実施例の平均層厚は時間で調
整)、 の条件で形成した平均層厚:5μmのAl2 3 層(以
下の実施例で、以上の条件で形成したAl2 3 層をA
2 3 単位層エと云う)で、H1 が2θ:68.4度
に現れ、H1 /H2 :2.1を示すののものである。
Further, the X-ray diffraction pattern shown in FIG.
Similarly, on the surface of the cemented carbide substrate A, (a) 25% of AlCl 3 , 37.5% of CO 2 ,
H 2 : remaining, (b) reaction temperature: 1200 ° C., (c) reaction pressure: 0.1 torr, (d) time: 30 minutes, pretreatment for forming crystal nuclei, and after this pretreatment for forming crystal nuclei. On the surface of the cemented carbide substrate, the following conditions were used: (A) reaction gas composition volume%, AlCl 3 : 2%, CO 2 : 10%, HC
1: 2%, H 2 S: 1%, H 2 : residual, (B) reaction temperature: 960 ° C., (C) reaction pressure: 50 torr, (D) time: 330 minutes (average layer thickness in Examples is time The average layer thickness formed under the following conditions: 5 μm Al 2 O 3 layer (In the following examples, the Al 2 O 3 layer formed under the above conditions was A
In l 2 O 3 referred to as the unit layer d), H 1 is 2 [Theta]: 68.4 [deg appeared, H 1 / H 2: is intended to indicate a 2.1.

【0009】なお、図5に示すX線回折パターンは、同
じく超硬基体Aの表面に、通常の条件、すなわち、 (A)反応ガス組成 容量%で、AlCl3 :2%、CO2 :10%、HC
l:5%、H2 S:1%、H2 :残り、 (B)反応温度:1020℃、 (C)反応圧力:50torr、 (D)時間: 分(実施例の平均層厚は時間で調
整)、 の条件で形成した平均層厚:5μmの従来Al2 3
(以下の実施例で、以上の条件で形成したAl2 3
をAl2 3 単一層オと云う)のものである。
The X-ray diffraction pattern shown in FIG. 5 shows that the surface of the superhard substrate A is also formed under normal conditions, that is, (A) the reaction gas composition volume%, AlCl 3 : 2%, CO 2 : 10 %, HC
1: 5%, H 2 S: 1%, H 2 : residual, (B) reaction temperature: 1020 ° C., (C) reaction pressure: 50 torr, (D) time: minute (the average layer thickness in Examples is time Adjustment) The average thickness of the conventional Al 2 O 3 layer formed under the following conditions: 5 μm (in the following examples, the Al 2 O 3 layer formed under the above conditions is referred to as an Al 2 O 3 single layer). Things.

【0010】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、Al23
を含む硬質被覆層、例えばTiC層、TiN層、TiC
N層、TiO2 層、TiCO層、TiNO層、およびT
iCNO層からなるTi化合物層のうちの1種または2
種以上と、Al2 3 層とで構成された硬質被覆層を2
〜20μmの平均層厚で形成してなる被覆超硬工具にお
いて、前記硬質被覆層を構成するAl23 層を、異な
ったX線回折パターンを示す2層以上のAl23 単位
層からなり、かつ前記Al23 単位層が、2θで2
5.5度、同35.5度、同37.2度、および68.
4度のいずれかに最強ピークが現われ、前記最強ピーク
高さ(H1 )と同じX線回折パターンにおける2番目の
ピーク高さ(H2 )の比(H1 )/(H2 )が1.5〜
2.7であるX線回折パターンを示すAl23 複合層
で構成してなる、硬質被覆層がすぐれた耐チッピング性
を有する被覆超硬工具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and includes a hard coating layer including an Al 2 O 3 layer, for example, a TiC layer, a TiN layer, a TiC layer
N layer, TiO 2 layer, TiCO layer, TiNO layer, and T layer
One or two of Ti compound layers made of iCNO layer
And a hard coating layer composed of an Al 2 O 3 layer
In the coated cemented carbide tool formed with an average layer thickness of 2020 μm, the Al 2 O 3 layer constituting the hard coating layer is formed from two or more Al 2 O 3 unit layers showing different X-ray diffraction patterns. And the Al 2 O 3 unit layer is 2 at 2θ.
5.5 degrees, 35.5 degrees, 37.2 degrees, and 68.degree.
The strongest peak appears at any one of the four degrees, and the ratio (H 1 ) / (H 2 ) of the second peak height (H 2 ) in the same X-ray diffraction pattern as the strongest peak height (H 1 ) is 1 .5-
The present invention is characterized by a coated carbide tool having a hard coating layer having excellent chipping resistance, which is composed of an Al 2 O 3 composite layer exhibiting an X-ray diffraction pattern of 2.7.

【0011】なお、この発明の被覆超硬工具において、
硬質被覆層のうちのAl23 複合層を構成するAl2
3 単位層のX線回折パターンにおける最強ピーク高さ
(H 1 )と2番目のピーク高さ(H2 )の比(H1 )/
(H2 ):1.5〜2.7は、経験的に定めたものであ
って、その比が1.5未満であるX線回折パターンを示
すAl23 単位層がAl23 複合層中に存在した場
合、所望の高強度および高靭性を確保することができ
ず、この結果硬質被覆層に所望の耐チッピング性向上効
果が現われず、一方その比を2.7を越えて高くするこ
とはきわめて困難であるという理由によるものであり、
この場合その比を2.0〜2.5とするのが望ましく、
また、硬質被覆層の平均層厚を2〜20μmとしたの
は、その層厚が2μm未満では所望のすぐれた耐摩耗性
を確保することができず、一方その層厚が20μmを越
えると、耐欠損性が低下するようになるという理由から
であり、望ましくは3〜10μmの平均層厚とするのが
よい。
In the coated carbide tool according to the present invention,
Al in the hard coating layerTwo OThree Al constituting the composite layerTwo 
OThree Strongest peak height in X-ray diffraction pattern of unit layer
(H 1) And the second peak height (HTwo) Ratio (H1) /
(HTwo): 1.5 to 2.7 are empirically determined.
Thus, an X-ray diffraction pattern whose ratio is less than 1.5 is shown.
AlTwo OThree Unit layer is AlTwo OThree Fields that existed in the composite layer
The desired high strength and high toughness can be secured
As a result, the hard coating layer has the desired effect of improving chipping resistance.
No effect, while increasing the ratio above 2.7
Is extremely difficult,
In this case, the ratio is desirably 2.0 to 2.5,
In addition, the average layer thickness of the hard coating layer was set to 2 to 20 μm.
Has a desired excellent wear resistance when its layer thickness is less than 2 μm.
Cannot be secured, while the layer thickness exceeds 20 μm.
, The fracture resistance will decrease.
Preferably, the average layer thickness is 3 to 10 μm.
Good.

【0012】[0012]

【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。原料粉末として、平
均粒径:3μmの中粒WC粉末、同5μmの粗粒WC粉
末、同1.5μmの(Ti,W)C(重量比で、以下同
じ、TiC/WC=30/70)粉末、同1.2μmの
(Ti,W)CN(重量比で、以下同じ、TiC/Ti
N/WC=24/20/56)粉末、同1.3μmの
(Ta,Nb)C(TaC/NbC=90/10)粉
末、および同1.2μmのCo粉末を用意し、これら原
料粉末を表1に示される配合組成に配合し、ボールミル
で72時間湿式混合し、乾燥した後、ISO・CNMG
120408(超硬基体A〜D用)および同SEEN4
2AFTN1(超硬基体E用)に定める形状の圧粉体に
プレス成形し、この圧粉体を同じく表1に示される条件
で真空焼結することにより超硬基体A〜Eをそれぞれ製
造した。さらに、上記超硬基体Bに対して、100to
rrのCH4 ガス雰囲気中、1400℃に1時間保持
後、徐冷の浸炭処理を施し、処理後、基体表面に付着す
る炭素とCoを酸およびバレル研磨で除去することによ
り、表面から深さ:10μmの位置で最大Co含有量:
15重量%、深さ:40μmのCo富化帯域を基体表面
部に形成した。また、上記超硬基体AおよびDには、焼
結したままで、表面から深さ:15μmの位置で最大C
o含有量:9重量%、深さ:20μmのCo富化帯域が
表面部に形成されており、残りの上記超硬基体Cおよび
Eには、前記Co富化帯域の形成がなく、全体的に均質
な組織をもつものであった。なお、表1には、上記超硬
基体A〜Eの内部硬さ(ロックウエル硬さAスケール)
をそれぞれ示した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the coated carbide tool of the present invention will be specifically described with reference to examples. As raw material powders, average WC powder having an average particle diameter of 3 μm, coarse WC powder having an average particle diameter of 5 μm, and (Ti, W) C having an average particle diameter of 1.5 μm (the same in weight ratio, hereinafter, TiC / WC = 30/70) 1.2 μm (Ti, W) CN (weight ratio, same hereafter, TiC / Ti)
N / WC = 24/20/56) powder, 1.3 μm (Ta, Nb) C (TaC / NbC = 90/10) powder and 1.2 μm Co powder were prepared. After blending into the blending composition shown in Table 1, wet-mixing with a ball mill for 72 hours, and drying, ISO / CNMG
120408 (for carbide substrates A to D) and SEEN4
Pressed into a green compact having a shape defined by 2AFTN1 (for the superhard substrate E), and the green compact was vacuum-sintered under the conditions shown in Table 1 to produce the superhard substrates A to E, respectively. Further, 100 to
After holding at 1400 ° C. for 1 hour in an rr CH 4 gas atmosphere, a slow cooling carburizing treatment is performed, and after the treatment, carbon and Co adhering to the substrate surface are removed by acid and barrel polishing to obtain a depth from the surface. : Maximum Co content at a position of 10 μm:
A Co-enriched zone of 15% by weight and a depth of 40 μm was formed on the surface of the substrate. In addition, the cemented carbide substrates A and D have a maximum C at a depth of 15 μm from the surface while being sintered.
o Co-enriched zone having a content of 9% by weight and a depth of 20 μm is formed on the surface portion, and the remaining cemented carbide substrates C and E do not have the Co-enriched zone. Had a homogeneous structure. Table 1 shows the internal hardness (Rockwell hardness A scale) of each of the superhard substrates A to E.
Are shown respectively.

【0013】ついで、これらの超硬基体A〜Eの表面
に、ホーニングを施した状態で、通常の化学蒸着装置を
用い、表2に示される条件、並びに上記のAl2 3
形成条件にて、表3、4に示される組成および平均層厚
のTi化合物層およびAl2 3 層を形成することによ
り本発明被覆超硬工具1〜12および従来被覆超硬工具
1〜9をそれぞれ製造した。
Next, the surfaces of these super hard substrates A to E
Then, with the honing applied, a normal chemical vapor deposition
The conditions shown in Table 2 and the above AlTwoOThreelayer
Under the forming conditions, the composition and average layer thickness shown in Tables 3 and 4
Ti layer and AlTwoO ThreeBy forming a layer
Coated carbide tools 1 to 12 of the present invention and conventional coated carbide tools
1 to 9 were each manufactured.

【0014】つぎに、上記本発明被覆超硬工具1〜11
および従来被覆超硬工具1〜8について、 被削材:SCM440の丸棒、 切削速度:300m/min.、 切込み:5mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式連続高速高切込み切削試験、並
びに、 被削材:SCM439の角材、 切削速度:100m/min.、 切込み:2.5mm.、 送り:0.2mm/rev.、 切削時間:5分、 の条件での合金鋼の乾式断続高切込み切削試験を行い、
さらに上記本発明被覆超硬工具12および従来被覆超硬
工具9について、 被削材:FC25の角材、 切削速度:100m/min.、 切込み:3mm.、 送り:0.3mm/刃、 切削時間:40分、 の条件での鋳鉄の乾式高切込みフライス切削試験を行
い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定し
た。これらの測定結果を表5に示した。
Next, the coated carbide tools 1 to 11 according to the present invention will be described.
Work material: round bar of SCM440, cutting speed: 300 m / min. Infeed: 5 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry continuous high speed high depth cutting test of alloy steel under the following conditions: Work material: Square bar of SCM439, Cutting speed: 100 m / min. Notch: 2.5 mm. Feed: 0.2 mm / rev. , Cutting time: 5 minutes, dry intermittent high depth cutting test of alloy steel under the conditions of
Further, regarding the above-mentioned coated carbide tool 12 of the present invention and the conventionally coated carbide tool 9, a work material: a square material of FC25, a cutting speed: 100 m / min. Infeed: 3 mm. , Feed: 0.3 mm / tooth, cutting time: 40 minutes, a dry high-cut milling test of cast iron was performed under the following conditions, and the flank wear width of the cutting blade was measured in each of the cutting tests. Table 5 shows the results of these measurements.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 [Table 4]

【0019】[0019]

【表5】 [Table 5]

【0020】[0020]

【発明の効果】表3〜5に示される結果から、硬質被覆
層におけるAl2 3 層が複層のAl 2 3 単位層で構
成されたAl2 3 複合層からなる本発明被覆超硬工具
1〜12は、いずれもAl2 3 単一層で構成された従
来被覆超硬工具1〜9に比して、前記Al2 3 複合層
が前記Al2 3 単一層に比して高強度および高靭性を
もつことから、苛酷な切削条件となる鋳鉄および鋼の高
送り切削でも切刃にチッピングの発生なく、すぐれた切
削性能を長期に亘って発揮するのに対して、従来被覆超
硬工具1〜9においては、前記Al2 3 単一層が原因
で切刃にチッピングの発生は避けられず、いずれもこれ
が原因で比較的短時間で使用寿命に至ることが明らかで
ある。上述のように、この発明の被覆超硬工具は、これ
を構成する硬質被覆層のうちのAl2 3 層が異なった
X線回折パターンを示す2層以上のAl23 単位層か
らなるAl2 3 複合層で構成され、これによってすぐ
れた耐チッピング性を有するようになるので、鋼や鋳鉄
などの通常の条件での連続切削や断続切削は勿論のこ
と、高速切削や高送りおよび高切込み切削などの苛酷な
条件での切削に用いた場合にも切刃にチッピングの発生
なく、長期に亘ってすぐれた切削性能を発揮するもので
あり、したがって切削装置の高性能化および高出力化に
十分に対応でき、かつ省力化にも寄与するものである。
According to the results shown in Tables 3 to 5, the hard coating
Al in the layerTwoOThreeAl layer with multiple layers TwoOThreeComposed of unit layers
Al formedTwoOThreeThe coated carbide tool of the present invention comprising a composite layer
1 to 12 are all AlTwoOThreeA single-tier slave
Compared to conventional coated carbide tools 1-9TwoOThreeComposite layer
Is the AlTwoOThreeHigh strength and high toughness compared to single layer
The high cast iron and steel conditions
Excellent cutting performance without chipping on the cutting edge even in feed cutting
While cutting performance is exhibited over a long period of time,
In the hard tools 1 to 9, the AlTwoOThreeDue to single layer
The occurrence of chipping on the cutting blade is inevitable.
It is clear that the service life can be reached in a relatively short time due to
is there. As described above, the coated carbide tool of the present invention
Of the hard coating layer constitutingTwoOThreeLayers were different
Two or more layers of Al showing an X-ray diffraction patternTwo OThree Unit layer
AlTwoOThreeComposed of composite layers, which allows immediate
Steel and cast iron
Continuous cutting and intermittent cutting under normal conditions such as
And severe cutting such as high speed cutting, high feed and high depth of cut
Chipping on the cutting edge even when used for cutting under conditions
With excellent cutting performance over a long period of time
Yes, and therefore for higher performance and higher output of cutting equipment
It can respond sufficiently and contribute to labor saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Al2 3 単位層アのX線回折パターン(H1
/H2 :1.6)を示す図である。
[1] Al 2 O 3 units layer A of X-ray diffraction pattern (H 1
/ H 2 : 1.6).

【図2】Al2 3 単位層イのX線回折パターン(H1
/H2 :2.7)を示す図である。
[Figure 2] Al 2 O 3 units Soi of X-ray diffraction pattern (H 1
/ H 2 : 2.7).

【図3】Al2 3 単位層ウのX線回折パターン(H1
/H2 :2.4)を示す図である。
[3] Al 2 O 3 units Sou of X-ray diffraction pattern (H 1
/ H 2 : 2.4).

【図4】Al2 3 単位層エのX線回折パターン(H1
/H2 :2.1)を示す図である。
[4] Al 2 O 3 units layer d of X-ray diffraction pattern (H 1
/ H 2 : 2.1).

【図5】従来のAl2 3 単一層のX線回折パターンを
示す図である。
FIG. 5 is a diagram showing an X-ray diffraction pattern of a conventional Al 2 O 3 single layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 濱口 雄樹 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yuki Hamaguchi 1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Pref. Mitsubishi Materials Corporation Tsukuba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭化タングステン基超硬合金基体の表面
に、α型酸化アルミニウム層を含む硬質被覆層を2〜2
0μmの平均層厚で化学蒸着および/または物理蒸着し
てなる表面被覆超硬合金製切削工具において、 前記硬質被覆層を構成するα型酸化アルミニウム層を、
異なったX線回折パターンを示す2層以上のα型酸化ア
ルミニウム単位層からなり、かつ前記α型酸化アルミニ
ウム単位層が、2θで25.5度、同35.5度、同3
7.2度、および68.4度のいずれかに最強ピークが
現われ、前記最強ピーク高さ(H1 )と同じX線回折パ
ターンにおける2番目のピーク高さ(H2 )の比
(H1 )/(H 2 )が1.5〜2.7であるX線回折パ
ターンを示すα型酸化アルミニウム複合層で構成したこ
とを特徴とする硬質被覆層がすぐれた耐チッピング性を
有する表面被覆超硬合金製切削工具。
1. The surface of a tungsten carbide-based cemented carbide substrate
A hard coating layer containing an α-type aluminum oxide layer
Chemical vapor deposition and / or physical vapor deposition with an average layer thickness of 0 μm
In a cutting tool made of a surface-coated cemented carbide, comprising:
Two or more layers of α-type oxides showing different X-ray diffraction patterns
Aluminium oxide layer, and
25.5 degrees, 35.5 degrees, and 3 degrees in 2θ
The strongest peak at either 7.2 degrees or 68.4 degrees
Appears, the strongest peak height (H1X-ray diffraction pattern
The second peak height (HTwo) Ratio
(H1) / (H Two) Is 1.5 to 2.7.
Turned α-type aluminum oxide composite layer
The hard coating layer characterized by excellent chipping resistance
Surface coated cemented carbide cutting tool.
【請求項2】 炭化タングステン基超硬合金基体の表面
に、Tiの炭化物層、窒化物層、炭窒化物層、酸化物
層、炭酸化物層、窒酸化物層、および炭窒酸化物層から
なるTi化合物層のうちの1種または2種以上と、α型
酸化アルミニウム層とで構成された硬質被覆層を2〜2
0μmの平均層厚で化学蒸着および/または物理蒸着し
てなる表面被覆超硬合金製切削工具において、 前記硬質被覆層を構成するα型酸化アルミニウム層を、
異なったX線回折パターンを示す2層以上のα型酸化ア
ルミニウム単位層からなり、かつ前記α型酸化アルミニ
ウム単位層が、2θで25.5度、同35.5度、同3
7.2度、および68.4度のいずれかに最強ピークが
現われ、前記最強ピーク高さ(H1 )と同じX線回折パ
ターンにおける2番目のピーク高さ(H2 )の比
(H1 )/(H 2 )が1.5〜2.7であるX線回折パ
ターンを示すα型酸化アルミニウム複合層で構成したこ
とを特徴とする硬質被覆層がすぐれた耐チッピング性を
有する表面被覆超硬合金製切削工具。
2. The surface of a tungsten carbide-based cemented carbide substrate
, Ti carbide layer, nitride layer, carbonitride layer, oxide
Layers, carbonate layers, nitroxide layers, and carbonitride layers
Or two or more of the Ti compound layers
Hard coating layer composed of aluminum oxide layer and 2-2
Chemical vapor deposition and / or physical vapor deposition with an average layer thickness of 0 μm
In a cutting tool made of a surface-coated cemented carbide, comprising:
Two or more layers of α-type oxides showing different X-ray diffraction patterns
Aluminium oxide layer, and
25.5 degrees, 35.5 degrees, and 3 degrees in 2θ
The strongest peak at either 7.2 degrees or 68.4 degrees
Appears, the strongest peak height (H1X-ray diffraction pattern
The second peak height (HTwo) Ratio
(H1) / (H Two) Is 1.5 to 2.7.
Turned α-type aluminum oxide composite layer
The hard coating layer characterized by excellent chipping resistance
Surface coated cemented carbide cutting tool.
JP361597A 1997-01-13 1997-01-13 Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance Withdrawn JPH10204639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP361597A JPH10204639A (en) 1997-01-13 1997-01-13 Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP361597A JPH10204639A (en) 1997-01-13 1997-01-13 Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance

Publications (1)

Publication Number Publication Date
JPH10204639A true JPH10204639A (en) 1998-08-04

Family

ID=11562406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP361597A Withdrawn JPH10204639A (en) 1997-01-13 1997-01-13 Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance

Country Status (1)

Country Link
JP (1) JPH10204639A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202264A (en) * 2008-02-27 2009-09-10 Kyocera Corp Cutting tool and its manufacturing method
WO2015030073A1 (en) 2013-08-27 2015-03-05 京セラ株式会社 Coated tool
WO2015093530A1 (en) 2013-12-17 2015-06-25 京セラ株式会社 Coated tool
KR20170036028A (en) 2014-08-28 2017-03-31 쿄세라 코포레이션 Coated tool
WO2017061058A1 (en) 2015-10-09 2017-04-13 住友電工ハードメタル株式会社 Surface-coated cutting tool
KR20170042323A (en) 2014-09-24 2017-04-18 쿄세라 코포레이션 Coated tool
US10744568B2 (en) 2015-01-28 2020-08-18 Kyocera Corporation Coated tool

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202264A (en) * 2008-02-27 2009-09-10 Kyocera Corp Cutting tool and its manufacturing method
US9970104B2 (en) 2013-08-27 2018-05-15 Kyocera Corporation Coated tool
WO2015030073A1 (en) 2013-08-27 2015-03-05 京セラ株式会社 Coated tool
CN105517738A (en) * 2013-08-27 2016-04-20 京瓷株式会社 Coated tool
EP3040143A4 (en) * 2013-08-27 2017-11-01 Kyocera Corporation Coated tool
CN105517738B (en) * 2013-08-27 2017-11-10 京瓷株式会社 coated tool
WO2015093530A1 (en) 2013-12-17 2015-06-25 京セラ株式会社 Coated tool
KR20160088351A (en) 2013-12-17 2016-07-25 쿄세라 코포레이션 Coated tool
CN105828991A (en) * 2013-12-17 2016-08-03 京瓷株式会社 Coated tool
US10174421B2 (en) 2013-12-17 2019-01-08 Kyocera Corporation Coated tool
KR20170036028A (en) 2014-08-28 2017-03-31 쿄세라 코포레이션 Coated tool
US10369632B2 (en) 2014-08-28 2019-08-06 Kyocera Corporation Coated tool
KR20170042323A (en) 2014-09-24 2017-04-18 쿄세라 코포레이션 Coated tool
US10370758B2 (en) 2014-09-24 2019-08-06 Kyocera Corporation Coated tool
US10744568B2 (en) 2015-01-28 2020-08-18 Kyocera Corporation Coated tool
KR20180021632A (en) 2015-10-09 2018-03-05 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Surface-coated cutting tool
US9844816B2 (en) 2015-10-09 2017-12-19 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2017061058A1 (en) 2015-10-09 2017-04-13 住友電工ハードメタル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP2001009604A (en) Cutting tool made of surface coated tungsten carbide base cemented carbide in which hard coated layer has excellent abrasive resistance in high speed cutting
JP2000218410A (en) Surface coated cemented carbide cutting tool having good tenacity of aluminum oxide layer forming hard coated layer
JPH10204639A (en) Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP3282592B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JPH11138308A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer having excellent antichipping property
JP3433686B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP3419140B2 (en) Surface coated cutting tool
JP3236910B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance with hard coating layer
JP3266047B2 (en) Surface coated cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP2927181B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH1076406A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP3230372B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3230396B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3230375B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer
JP3119414B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3282600B2 (en) Surface-coated cemented carbide cutting tool with a hard coating layer that exhibits excellent fracture resistance
JPH1076405A (en) Cemented carbide cutting tool covered with hard covering layer excellent in anti-chipping property
JP2000158207A (en) Surface-covering tungsten carbide group cemented carbide alloy cutting tool having its hard covering layer exhibit excellent wear resistance
JP3358533B2 (en) Slow-away cutting insert made of surface-coated cemented carbide with excellent fracture resistance
JP2001096404A (en) Surface-coated cutting tool of tungsten carbide-based cemented carbide exhibiting appreciable chipping resistance of hard coating layer in intermittent heavy cutting
JP2001062603A (en) Surface coated cutting tool made of tungsten cemented carbide super hard alloy whose hard coated layer displays excellent tipping resistance in interrupted heavy cutting
JP2927182B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JP3230374B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting tool with excellent interlayer adhesion and fracture resistance with a hard coating layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406