WO2015093530A1 - Coated tool - Google Patents

Coated tool Download PDF

Info

Publication number
WO2015093530A1
WO2015093530A1 PCT/JP2014/083412 JP2014083412W WO2015093530A1 WO 2015093530 A1 WO2015093530 A1 WO 2015093530A1 JP 2014083412 W JP2014083412 W JP 2014083412W WO 2015093530 A1 WO2015093530 A1 WO 2015093530A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum oxide
oxide layer
hkl
layer
peak
Prior art date
Application number
PCT/JP2014/083412
Other languages
French (fr)
Japanese (ja)
Inventor
芳和 児玉
栄仁 谷渕
晃 李
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to KR1020167015991A priority Critical patent/KR101822514B1/en
Priority to US15/105,110 priority patent/US10174421B2/en
Priority to JP2015533334A priority patent/JP5890594B2/en
Priority to CN201480068671.XA priority patent/CN105828991B/en
Priority to EP14872531.0A priority patent/EP3085478B1/en
Publication of WO2015093530A1 publication Critical patent/WO2015093530A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Definitions

  • the present invention relates to a coated tool having a coating layer on the surface of a substrate.
  • Such cutting tools are increasingly used in heavy interrupted cutting where a large impact is applied to the cutting edge in accordance with the recent improvement in cutting efficiency. Under such severe cutting conditions, a large amount of coating is required. In order to suppress chipping due to impact and peeling of the coating layer, improvements in fracture resistance and wear resistance are required.
  • Patent Document 1 optimizes the particle size and thickness of the aluminum oxide layer and sets the (012) plane organization coefficient (Texture Coefficient: 1). .3 or more, a technique capable of forming a dense aluminum oxide layer having high fracture resistance is disclosed. Further, in Patent Document 2, by making the organization coefficient in the (012) plane of the aluminum oxide layer 2.5 or more, the residual stress in the aluminum oxide layer is easily released, so that the fracture resistance of the aluminum oxide layer is improved. A technique capable of improving the above is disclosed.
  • Patent Document 3 as a technique for improving the wear resistance in the cutting tool, an aluminum oxide layer located immediately above the intermediate layer is formed by laminating two or more unit layers exhibiting different X-ray diffraction patterns. The technique which can improve the intensity
  • Patent Document 4 the (006) plane orientation coefficient of the aluminum oxide layer is increased to 1.8 or more, and the peak intensity ratio I (104) / I (110) between the (104) plane and the (110) plane is A cutting tool controlled to a predetermined range is disclosed.
  • the peak intensity ratio I (104) / I (012) between the (104) plane and the (012) plane of the aluminum oxide layer is set to be higher than that of the first plane below the aluminum oxide layer.
  • a cutting tool that is larger in surface is disclosed.
  • Japanese Patent No. 6-316758 Japanese Patent Laid-Open No. 2003-025114 Japanese Patent Laid-Open No. 10-204639 JP 2013-132717 A JP 2009-202264 A
  • the coating layer has insufficient wear resistance and fracture resistance.
  • minute chipping occurs in the aluminum oxide layer, and this triggers the wear to easily progress, and further improvement of the aluminum oxide layer has been demanded.
  • the coated tool of this embodiment includes a base and a coating layer provided on the surface of the base. Having a cutting edge and a flank on the coating layer;
  • the coating layer includes at least a portion in which a titanium carbonitride layer and an aluminum oxide layer having an ⁇ -type crystal structure are sequentially laminated, Based on the peak of the aluminum oxide layer analyzed by X-ray diffraction analysis, when the value represented by the following formula is the orientation coefficient Tc (hkl), The orientation coefficient Tc1 (0 1 14) measured from the surface side of the aluminum oxide layer on the flank side is 1.0 or more.
  • Orientation coefficient Tc (hkl) ⁇ I (hkl) / I 0 (hkl) ⁇ / [(1/8) ⁇ ⁇ ⁇ I (HKL) / I 0 (HKL) ⁇ ]
  • (HKL) is the crystal plane of (012), (104), (110), (113), (024), (116), (124), (0 1 14)
  • I (HKL) and I (hkl) are the peak intensities I 0 (HKL) and I 0 (hkl) of the peaks attributed to the respective crystal planes detected in the X-ray diffraction analysis of the aluminum oxide layer are JCPDS cards No. Standard diffraction intensities of crystal planes described in 43-1484
  • the peak orientation coefficient Tc1 (0 1 14) measured from the surface side of the aluminum oxide layer on the flank face is as high as 1.0 or more, so that chipping of the aluminum oxide layer is suppressed and resistance to resistance is increased. Abrasion is improved and the coated tool can be used for a long time.
  • the intersecting ridge portion formed by the rake face 2 and the flank face 3 forms a cutting edge 4.
  • the tool 1 includes a base 5 and a coating layer 6 provided on the surface of the base 5.
  • the covering layer 6 is formed by laminating a lower layer 7, a titanium carbonitride layer 8, an intermediate layer 9, an aluminum oxide layer 10, and a surface layer 11 in this order from the substrate 5 side.
  • the aluminum oxide layer 10 has an ⁇ -type crystal structure.
  • the value represented by the following formula is defined as the orientation coefficient Tc (hkl) at the peak of the aluminum oxide layer 10 by X-ray diffraction analysis.
  • Orientation coefficient Tc (hkl) ⁇ I (hkl) / I 0 (hkl) ⁇ / [(1/8) ⁇ ⁇ ⁇ I (HKL) / I 0 (HKL) ⁇ ]
  • (HKL) is the crystal plane I (HKL) and I of (012), (104), (110), (113), (024), (116), (124), (0 1 14).
  • Hkl is the peak intensity I 0 (HKL) and I 0 (hkl) of the peak attributed to each crystal plane detected in the X-ray diffraction analysis of the aluminum oxide layer 10 according to JCPDS card no. 43-1484, the standard diffraction intensity of each crystal plane, and the orientation coefficient Tc1 of the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side, and the aluminum oxide layer 10 on the flank 3 side.
  • the orientation coefficient at the substrate-side peak detected by measurement in a state where only a substrate-side portion of the aluminum oxide layer 10 is left is Tc2, and from the surface side of the aluminum oxide layer 10 on the rake face 2 side. It is defined as the orientation coefficient Tc3 of the surface side peak to be measured.
  • the orientation coefficient Tc1 (0 1 14) is 1.0 or more. Thereby, the wear resistance of the aluminum oxide layer 10 is improved. As a result, the tool 1 can be used for a long time.
  • the orientation coefficient Tc1 (0 1 14) increases, that is, the ratio of the peak intensity I (0 1 14) of the (0 1 14) plane increases, the film formation direction (surface) from the surface side of the aluminum oxide layer 10 increases. It is considered that the aluminum oxide crystal constituting the aluminum oxide layer 10 is easily deformed against an impact applied in a direction perpendicular to the direction, and resistance to breakage is increased.
  • Tc1 (0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ 1 14)
  • Tc1 0.05 ⁇ ⁇ ⁇ ⁇ ⁇ 1 14
  • the minute chipping generated on the surface of the aluminum oxide layer 10 is suppressed, and the wear caused by the minute chipping progresses. It seems to be able to suppress this.
  • a particularly desirable range of Tc1 (0 1 14) is 1.3 to 10, a particularly desirable range is 1.5 to 5, and a further desirable range is 2.0 to 3.5.
  • Tc1 (0 1 14) and Tc2 (0 1 14) are compared, Tc1 (0 1 14) is larger than Tc2 (0 1 14). That is, Tc2 (0 1 14) is smaller than Tc1 (0 1 14).
  • Tc2 (0 1 14) is larger than Tc1 (0 1 14).
  • Tc2 (0 1 14) is smaller than Tc1 (0 1 14).
  • Tc2 (0 1 14) increases, the coefficient of thermal expansion in the direction parallel to the surface of the aluminum oxide layer 10 and the surface of the intermediate layer 9 and the titanium carbonitride layer 8 below the aluminum oxide layer 10 are parallel. The difference from the coefficient of thermal expansion in the direction increases, and the aluminum oxide layer 10 tends to be peeled off from the intermediate layer 9 and the titanium carbonitride layer 8.
  • Tc2 (0 1 14) of the aluminum oxide layer 10 peeling of the aluminum oxide layer 10 can be suppressed by reducing Tc2 (0 1 14) of the aluminum oxide layer 10.
  • a desirable range of Tc2 (0 1 14) is 0.3 to 1.5.
  • Tc2 (0 1 14) and Tc1 (0 1 14) of the aluminum oxide layer 10 will be described.
  • the X-ray diffraction analysis of the aluminum oxide layer 10 is measured using an X-ray diffraction analysis apparatus using a general CuK ⁇ ray.
  • the JCPDS card No In obtaining the peak intensity of each crystal plane of the aluminum oxide layer 10 from the X-ray diffraction chart, the JCPDS card No.
  • the diffraction angle of each crystal face described in 43-1484 is confirmed, the crystal face of the detected peak is identified, and the peak intensity is measured.
  • the peak detected by X-ray diffraction analysis is identified using a JCPDS card, but the peak position may be shifted due to residual stress or the like present in the coating layer 6. Therefore, in order to confirm whether or not the detected peak is the peak of the aluminum oxide layer 10, an X-ray diffraction analysis is performed with the aluminum oxide layer 10 polished, and the peaks detected before and after polishing are compared. To do. From this difference, it can be confirmed that it is the peak of the aluminum oxide layer 10.
  • the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side is measured.
  • the peak intensity of the aluminum oxide layer 10 is measured from the surface side of the aluminum oxide layer 10 to the base 5 side of the aluminum oxide layer 10. More specifically, X-ray diffraction analysis is performed on the coating layer 6 in a state where the surface layer 11 is removed by polishing or in a state where the surface layer 11 is not polished. The peak intensity of each peak obtained is measured to calculate the orientation coefficient Tc1 (hkl).
  • a thickness of 20% or less of the thickness of the aluminum oxide layer 10 may be removed.
  • Tc2 (hkl) a part of the aluminum oxide layer 10 on the flank 3 side is polished, and the peak intensity is measured in a state where only the substrate side portion of the aluminum oxide layer 10 is left.
  • the aluminum oxide layer 10 of the coating layer 6 is polished to a thickness of 10 to 40% with respect to the thickness of the aluminum oxide layer 10 before polishing. Polishing is performed by brush processing using diamond abrasive grains, processing by an elastic grindstone, or blast processing. Thereafter, the polished portion of the aluminum oxide layer 10 is subjected to X-ray diffraction analysis under the same conditions as those in the surface side portion of the aluminum oxide layer 10, the peak of the aluminum oxide layer 10 is measured, and the orientation coefficient Tc2 ( hkl) is calculated.
  • orientation coefficient Tc is an index representing the degree of orientation of each crystal plane because it is determined by the ratio to the non-oriented standard data defined by the JCPDS card. Further, “(hkl)” of Tc (hkl) indicates a crystal plane for calculating the orientation coefficient.
  • I (104) and I (116) are the first and second strongest in the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side. .
  • I (0 1 14) is the peak intensity within the eighth, and particularly preferably the third to sixth peak intensity.
  • Tc1 (104) at the surface side peak of the aluminum oxide layer on the flank 3 side is larger than Tc3 (104) at the substrate side peak of the aluminum oxide layer on the flank 3 side.
  • Tc1 (104) is larger than Tc3 (104)
  • the chipping resistance of the aluminum oxide layer 10 is not sufficiently improved, and Tc1 (0 1 14) is 1.0 or more. It was found that the crater wear resistance of the aluminum oxide layer 10 is greatly improved.
  • the orientation coefficient Tc3 (104) is smaller than Tc1 (104).
  • the titanium carbonitride layer 8 is a laminate in which a so-called MT (Moderate Temperature) -titanium carbonitride layer 8a and HT-titanium carbonitride layer 8b are present in this order from the substrate side.
  • the MT-titanium carbonitride layer 8a is made of columnar crystals containing acetonitrile (CH 3 CN) gas as a raw material and formed at a relatively low film formation temperature of 780 to 900 ° C.
  • the HT (High Temperature) -titanium carbonitride layer 8b is made of granular crystals formed at a high film formation temperature of 950 to 1100.degree.
  • the surface of the HT-titanium carbonitride layer 8b is formed with triangular projections in a cross-sectional view that tapers toward the aluminum oxide layer 10, thereby increasing the adhesion of the aluminum oxide layer 10. Further, peeling and chipping of the coating layer 6 can be suppressed.
  • the intermediate layer 9 is provided on the surface of the HT-titanium carbonitride layer 8b.
  • the intermediate layer 9 contains titanium and oxygen, and is made of, for example, TiAlCNO, TiCNO, or the like.
  • FIG. 2 is made up of a lower intermediate layer 9a and an upper intermediate layer 9b on which these are laminated.
  • the aluminum oxide particles constituting the aluminum oxide layer 10 have an ⁇ -type crystal structure.
  • the aluminum oxide layer 10 having an ⁇ -type crystal structure has high hardness, and can improve the wear resistance of the coating layer 6.
  • the intermediate layer 9 has a laminated structure of the lower intermediate layer 9a made of TiAlCNO and the upper intermediate layer 9b made of TiCNO, there is an effect of improving the fracture resistance of the cutting tool 1.
  • the titanium carbonitride layer 8 is provided with a thickness of 6.0 to 13.0 ⁇ m, and the intermediate layer 9 is provided with a thickness of 0.05 to 0.5 ⁇ m.
  • the lower layer 7 and the surface layer 11 are made of titanium nitride. In other embodiments, at least one of the lower layer 7 and the surface layer 11 may not be provided.
  • the lower layer 7 is provided with a thickness of 0.1 to 1.0 ⁇ m
  • the surface layer 11 is provided with a thickness of 0.1 to 3.0 ⁇ m.
  • each layer and the properties of the crystals constituting each layer should be measured by observing an electron micrograph (scanning electron microscope (SEM) photograph or transmission electron microscope (TEM) photograph) in the cross section of the tool 1. Is possible.
  • the crystal form of the crystals constituting each layer of the coating layer 6 is columnar.
  • the average ratio of the average crystal width to the length in the thickness direction of the coating layer 6 of each crystal is 0 on average. .3 or less states.
  • the crystal form is defined as granular.
  • the base 5 of the tool 1 is a hard material composed of tungsten carbide (WC) and, if desired, at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table.
  • Cemented carbide, Ti-based cermet, or Si 3 N 4 , Al 2 O 3 , diamond, cubic nitridation in which phases are bonded with a binder phase composed of an iron group metal such as cobalt (Co) or nickel (Ni) Ceramics such as boron (cBN) can be used.
  • substrate 5 may consist of a cemented carbide or a cermet from the point of a fracture resistance and abrasion resistance. Further, depending on the application, the base 5 may be made of a metal such as carbon steel, high-speed steel, or alloy steel.
  • the said cutting tool applies the cutting edge 4 formed in the cross
  • the coated tool of the present embodiment can be applied to various uses such as an excavation tool and a blade, and in this case also has excellent mechanical reliability.
  • metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powder such as metal carbide, nitride, carbonitride, oxide, etc. that can form a hard alloy to be the base 5 by firing, press molding, casting
  • inorganic powder such as metal carbide, nitride, carbonitride, oxide, etc. that can form a hard alloy to be the base 5 by firing, press molding, casting
  • the substrate 5 made of the hard alloy described above is fired in a vacuum or non-oxidizing atmosphere. Make it. Then, the surface of the substrate 5 is subjected to polishing or honing of the cutting edge as desired.
  • CVD chemical vapor deposition
  • a mixed gas composed of 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and the balance of hydrogen (H 2 ) gas is prepared as a reaction gas composition.
  • TiCl 4 titanium tetrachloride
  • N 2 nitrogen
  • H 2 hydrogen
  • the reaction gas composition is 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 5 to 60% by volume of nitrogen (N 2 ) gas, and 0.1% of acetonitrile (CH 3 CN) gas as the reaction gas composition.
  • An MT-titanium carbonitride layer is prepared by adjusting a mixed gas consisting of 1 to 3.0% by volume and the remainder of hydrogen (H 2 ) gas into the chamber and setting the film forming temperature to 780 to 880 ° C. and 5 to 25 kPa. Is deposited.
  • the average crystal width of the titanium carbonitride columnar crystals constituting the titanium carbonitride layer is more on the surface side than on the substrate side. This can be a larger configuration.
  • an HT-titanium carbonitride layer constituting the upper portion of the titanium carbonitride layer 8 is formed.
  • the specific film forming conditions of the HT-titanium carbonitride layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 1 to 4% by volume, nitrogen (N 2 ) gas is 5 to 20% by volume, A mixed gas composed of 0.1 to 10% by volume of methane (CH 4 ) gas and the remaining hydrogen (H 2 ) gas is prepared and introduced into the chamber, and the film forming temperature is set to 900 to 1050 ° C. and 5 to 40 kPa. Form a film.
  • the intermediate layer 9 is produced.
  • the specific film forming conditions for this embodiment are as follows.
  • TiCl 4 ) gas is 3 to 30% by volume
  • methane (CH 4 ) gas is 3 to 15% by volume
  • nitrogen (N 2 ) 5-10% by volume of gas 0.5-1% by volume of carbon monoxide (CO) gas
  • AlCl 3 aluminum trichloride
  • the mixed gas consisting of These mixed gases are adjusted and introduced into the chamber to form a film at a film forming temperature of 900 to 1050 ° C. and 5 to 40 kPa.
  • an intermediate layer 9 having irregularities on the surface of the titanium carbonitride layer 8 is formed.
  • titanium tetrachloride (TiCl 4 ) gas is 3 to 15% by volume
  • methane (CH 4 ) gas is 3 to 10% by volume
  • nitrogen (N 2 ) gas is 10 to 25%.
  • a mixed gas comprising volume%, carbon monoxide (CO) gas in an amount of 1 to 5 volume%, and the remainder consisting of hydrogen (H 2 ) gas is prepared.
  • These mixed gases are adjusted and introduced into the chamber to form a film at a film forming temperature of 900 to 1050 ° C. and 5 to 40 kPa.
  • the nitrogen (N 2 ) gas may be changed to argon (Ar) gas.
  • an aluminum oxide layer 10 is formed.
  • nuclei of aluminum oxide crystals are formed. 5 to 10% by volume of aluminum trichloride (AlCl 3 ) gas, 0.1 to 1.0% by volume of hydrogen chloride (HCl) gas, 0.1 to 5.0% by volume of carbon dioxide (CO 2 ) gas, A mixed gas consisting of hydrogen (H 2 ) gas is used, and the temperature is set to 950 to 1100 ° C. and 5 to 10 kPa.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • CO 2 carbon dioxide
  • a mixed gas consisting of hydrogen (H 2 ) gas is used, and the temperature is set to 950 to 1100 ° C. and 5 to 10 kPa.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • CO 2 carbon dioxide
  • TiN layer 11 a surface layer (TiN layer) 11 is formed as desired.
  • Specific film forming conditions are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, and the remainder is hydrogen (H 2 ) gas.
  • a mixed gas consisting of the above is adjusted and introduced into the chamber, and the film is formed at a film forming temperature of 960 to 1100 ° C. and 10 to 85 kPa.
  • At least the cutting edge portion of the surface of the formed coating layer 6 is polished.
  • the cutting edge portion is processed smoothly, the welding of the work material is suppressed, and the tool is further excellent in fracture resistance.
  • a coating layer was formed on the cemented carbide substrate by the chemical vapor deposition (CVD) method under the film formation conditions shown in Table 1 to produce a cutting tool.
  • CVD chemical vapor deposition
  • the surface side peak the highest intensity peak and the second highest intensity peak were confirmed, and the (0 ⁇ 1 14) plane, (104) plane, and (116) plane of each crystal plane of the JCPDS card were also confirmed.
  • An orientation coefficient Tc1 (hkl) was calculated.
  • the flank is polished until it becomes 10 to 40% of the thickness of the aluminum oxide layer.
  • a part of the aluminum oxide layer is polished to leave only the substrate side portion.
  • the substrate-side peak (denoted as the substrate side in the table) measured in step 1 and the peak intensity of each peak were measured.
  • Sample No. Tc1 (011 14) is 1.0 or more. In Nos. 1 to 7, minute chipping of the aluminum oxide layer was suppressed, and almost no peeling occurred. In particular, in the surface side peak of the aluminum oxide layer, the sample No. 1 in which the (104) plane and (116) plane consist of the first and second highest peaks. For samples 1 to 4 and 6, sample no. Compared to 5 and 7, the crater wear width was smaller and the wear resistance was particularly excellent. In addition, the sample No. 1 in which the substrate-side orientation coefficient Tc2 (0 1 14) is smaller than the surface-side orientation coefficient Tc1 (0 1 14). Nos. 1 to 6 had particularly small crater wear. Furthermore, the sample No. 2 in which the orientation coefficient Tc3 (104) of the surface side peak on the rake face is smaller than the orientation coefficient Tc1 (104) of the surface side peak on the flank face. In Nos. 1 to 6, the number of impacts that led to defects was particularly large.

Abstract

Provided is a coated tool with improved wear resistance of an aluminium oxide layer. The coated tool such as a cutting tool (1) is provided with a base material (5) and a coating layer (6) provided to the surface of the base material (5), and having a cutting blade (4) and a relief (3) on the coating layer. The coating layer (6) contains a part in which at least a titanium carbonitride layer (8) and an aluminium oxide layer (10) having a alpha-type crystal structure are laminated in sequence, and with regard to the texture coefficient (Tc) (hkl) which is calculated on the basis of the peak of the aluminium oxide layer (10) analyzed by X-ray diffraction analysis, the texture coefficient (Tc1)(0114) measured from the surface side of the aluminium oxide layer (10) on the relief (3) side is at least 1.0.

Description

被覆工具Coated tool
 本発明は、基体の表面に被覆層を有する被覆工具に関する。 The present invention relates to a coated tool having a coating layer on the surface of a substrate.
 従来から、超硬合金やサーメット、セラミックス等の基体表面に、炭化チタン層、窒化チタン層、炭窒化チタン層、酸化アルミニウム層及び窒化チタンアルミニウム層等が単数又は複数形成された切削工具等の被覆工具が知られている。 Conventionally, coating of cutting tools or the like in which one or more titanium carbide layers, titanium nitride layers, titanium carbonitride layers, aluminum oxide layers, titanium aluminum nitride layers, etc. are formed on the surface of a substrate such as cemented carbide, cermet, ceramics, etc. Tools are known.
 このような切削工具は、最近の切削加工の高能率化に従って、大きな衝撃が切刃にかかる重断続切削等に用いられる機会が増えており、係る過酷な切削条件においては、被覆層にかかる大きな衝撃によるチッピングや被覆層の剥離を抑制するため、耐欠損性・耐摩耗性の向上が求められている。 Such cutting tools are increasingly used in heavy interrupted cutting where a large impact is applied to the cutting edge in accordance with the recent improvement in cutting efficiency. Under such severe cutting conditions, a large amount of coating is required. In order to suppress chipping due to impact and peeling of the coating layer, improvements in fracture resistance and wear resistance are required.
 上記切削工具において耐欠損性を向上させる技術として、特許文献1では、酸化アルミニウム層の粒径と層厚を適正化すると共に、(012)面における組織化係数(Texture Coefficient:配向係数)を1.3以上とすることにより、緻密で耐欠損性の高い酸化アルミニウム層を形成することができる技術が開示されている。また、特許文献2では、酸化アルミニウム層の(012)面における組織化係数を2.5以上とすることで、酸化アルミニウム層における残留応力が解放されやすくすることにより、酸化アルミニウム層の耐欠損性を向上させることができる技術が開示されている。 As a technique for improving the fracture resistance in the above cutting tool, Patent Document 1 optimizes the particle size and thickness of the aluminum oxide layer and sets the (012) plane organization coefficient (Texture Coefficient: 1). .3 or more, a technique capable of forming a dense aluminum oxide layer having high fracture resistance is disclosed. Further, in Patent Document 2, by making the organization coefficient in the (012) plane of the aluminum oxide layer 2.5 or more, the residual stress in the aluminum oxide layer is easily released, so that the fracture resistance of the aluminum oxide layer is improved. A technique capable of improving the above is disclosed.
 さらに、特許文献3では、上記切削工具において耐摩耗性を向上させる技術として、中間層の直上に位置する酸化アルミニウム層が、異なるX線回折パターンを示す2層以上の単位層を積層してなるように形成されることにより、被膜の強度及び靭性を向上させることができる技術が開示されている。 Furthermore, in Patent Document 3, as a technique for improving the wear resistance in the cutting tool, an aluminum oxide layer located immediately above the intermediate layer is formed by laminating two or more unit layers exhibiting different X-ray diffraction patterns. The technique which can improve the intensity | strength and toughness of a film by forming in this way is disclosed.
 また、特許文献4では、酸化アルミニウム層の(006)面配向係数を1.8以上と高め、かつ(104)面と(110)面とのピーク強度比I(104)/I(110)と所定の範囲に制御した切削工具が開示されている。 In Patent Document 4, the (006) plane orientation coefficient of the aluminum oxide layer is increased to 1.8 or more, and the peak intensity ratio I (104) / I (110) between the (104) plane and the (110) plane is A cutting tool controlled to a predetermined range is disclosed.
 さらに、特許文献5では、酸化アルミニウム層の(104)面と(012)面とのピーク強度比I(104)/I(012)を、酸化アルミニウム層の下側の第一面よりも第二面で大きくした切削工具が開示されている。 Further, in Patent Document 5, the peak intensity ratio I (104) / I (012) between the (104) plane and the (012) plane of the aluminum oxide layer is set to be higher than that of the first plane below the aluminum oxide layer. A cutting tool that is larger in surface is disclosed.
特許平6-316758号公報Japanese Patent No. 6-316758 特開2003-025114号公報Japanese Patent Laid-Open No. 2003-025114 特開平10-204639号公報Japanese Patent Laid-Open No. 10-204639 特開2013-132717号公報JP 2013-132717 A 特開2009-202264号公報JP 2009-202264 A
 上記特許文献1~5に記載されている被覆工具では、被覆層の耐摩耗性および耐欠損性が不十分であった。特に、酸化アルミニウム層に微小チッピングが発生し、これが引き金になって摩耗が進行しやすく、酸化アルミニウム層の更なる改善が求められていた。 In the coated tools described in Patent Documents 1 to 5, the coating layer has insufficient wear resistance and fracture resistance. In particular, minute chipping occurs in the aluminum oxide layer, and this triggers the wear to easily progress, and further improvement of the aluminum oxide layer has been demanded.
 本実施形態の被覆工具は、基体と、該基体の表面に設けられた被覆層とを備え、
前記被覆層上に切刃と逃げ面とを有し、
前記被覆層は、少なくとも炭窒化チタン層とα型結晶構造の酸化アルミニウム層とを順に積層した部位を含み、
X線回折分析にて分析される前記酸化アルミニウム層のピークを基に、下記式で表される値を配向係数Tc(hkl)としたとき、
逃げ面側における前記酸化アルミニウム層の表面側から測定される配向係数Tc1(0 1 14)が1.0以上である。
配向係数Tc(hkl)={I(hkl)/I(hkl)}/〔(1/8)×Σ{I(HKL)/I(HKL)}〕
ここで、(HKL)は、(012)、(104)、(110)、(113)、(024)、(116)、(124)、(0 1 14)の結晶面、
I(HKL)およびI(hkl)は、前記酸化アルミニウム層のX線回折分析において検出される各結晶面に帰属されるピークのピーク強度
(HKL)およびI(hkl)は、JCPDSカードNo.43-1484に記載された各結晶面の標準回折強度
The coated tool of this embodiment includes a base and a coating layer provided on the surface of the base.
Having a cutting edge and a flank on the coating layer;
The coating layer includes at least a portion in which a titanium carbonitride layer and an aluminum oxide layer having an α-type crystal structure are sequentially laminated,
Based on the peak of the aluminum oxide layer analyzed by X-ray diffraction analysis, when the value represented by the following formula is the orientation coefficient Tc (hkl),
The orientation coefficient Tc1 (0 1 14) measured from the surface side of the aluminum oxide layer on the flank side is 1.0 or more.
Orientation coefficient Tc (hkl) = {I (hkl) / I 0 (hkl)} / [(1/8) × Σ {I (HKL) / I 0 (HKL)}]
Here, (HKL) is the crystal plane of (012), (104), (110), (113), (024), (116), (124), (0 1 14),
I (HKL) and I (hkl) are the peak intensities I 0 (HKL) and I 0 (hkl) of the peaks attributed to the respective crystal planes detected in the X-ray diffraction analysis of the aluminum oxide layer are JCPDS cards No. Standard diffraction intensities of crystal planes described in 43-1484
 本実施形態によれば、逃げ面における酸化アルミニウム層の表面側から測定されるピークの配向係数Tc1(0 1 14)が1.0以上と高いことによって、酸化アルミニウム層のチッピングが抑制されて耐摩耗性が向上し、長期間使用可能な被覆工具となる。 According to the present embodiment, the peak orientation coefficient Tc1 (0 1 14) measured from the surface side of the aluminum oxide layer on the flank face is as high as 1.0 or more, so that chipping of the aluminum oxide layer is suppressed and resistance to resistance is increased. Abrasion is improved and the coated tool can be used for a long time.
本実施形態に係る被覆工具の一実施例である切削工具の概略斜視図である。It is a schematic perspective view of the cutting tool which is one Example of the covering tool which concerns on this embodiment. 図1の切削工具の概略断面図である。It is a schematic sectional drawing of the cutting tool of FIG.
 本実施形態の被覆工具の一実施態様を示す切削工具(以下、単に工具と略す)1は、図1に示すように、工具1の一方の主面がすくい面2を、側面が逃げ面3を、それぞれなしており、すくい面2と逃げ面3とのなす交差稜線部が切刃4をなしている。 A cutting tool (hereinafter simply abbreviated as a tool) 1 showing one embodiment of the coated tool of the present embodiment, as shown in FIG. 1, one main surface of the tool 1 is a rake surface 2, and a side surface is a clearance surface 3. The intersecting ridge portion formed by the rake face 2 and the flank face 3 forms a cutting edge 4.
 また、図2に示すように、工具1は、基体5と、この基体5の表面に設けられた被覆層6を備えている。被覆層6は、基体5側から順に、下層7、炭窒化チタン層8、中間層9、酸化アルミニウム層10、表層11が積層されたものからなる。なお、酸化アルミニウム層10はα型結晶構造からなる。 Further, as shown in FIG. 2, the tool 1 includes a base 5 and a coating layer 6 provided on the surface of the base 5. The covering layer 6 is formed by laminating a lower layer 7, a titanium carbonitride layer 8, an intermediate layer 9, an aluminum oxide layer 10, and a surface layer 11 in this order from the substrate 5 side. The aluminum oxide layer 10 has an α-type crystal structure.
 本実施態様において、X線回折分析にて酸化アルミニウム層10のピークにおいて、下記式で表される値を配向係数Tc(hkl)と定義する。
配向係数Tc(hkl)={I(hkl)/I(hkl)}/〔(1/8)×Σ{I(HKL)/I(HKL)}〕
ここで、(HKL)は、(012)、(104)、(110)、(113)、(024)、(116)、(124)、(0 1 14)の結晶面
I(HKL)およびI(hkl)は、酸化アルミニウム層10のX線回折分析において検出される各結晶面に帰属されるピークのピーク強度
(HKL)およびI(hkl)は、JCPDSカードNo.43-1484に記載された各結晶面の標準回折強度
 そして、逃げ面3側における酸化アルミニウム層10の表面側から測定される表面側ピークの配向係数Tc1、逃げ面3側において、酸化アルミニウム層10の一部を研磨して、酸化アルミニウム層10の基体側部分のみを残した状態での測定で検出される基体側ピークにおける配向係数をTc2、すくい面2側における酸化アルミニウム層10の表面側から測定される表面側ピークの配向係数Tc3と定義する。
In the present embodiment, the value represented by the following formula is defined as the orientation coefficient Tc (hkl) at the peak of the aluminum oxide layer 10 by X-ray diffraction analysis.
Orientation coefficient Tc (hkl) = {I (hkl) / I 0 (hkl)} / [(1/8) × Σ {I (HKL) / I 0 (HKL)}]
Here, (HKL) is the crystal plane I (HKL) and I of (012), (104), (110), (113), (024), (116), (124), (0 1 14). (Hkl) is the peak intensity I 0 (HKL) and I 0 (hkl) of the peak attributed to each crystal plane detected in the X-ray diffraction analysis of the aluminum oxide layer 10 according to JCPDS card no. 43-1484, the standard diffraction intensity of each crystal plane, and the orientation coefficient Tc1 of the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side, and the aluminum oxide layer 10 on the flank 3 side. The orientation coefficient at the substrate-side peak detected by measurement in a state where only a substrate-side portion of the aluminum oxide layer 10 is left is Tc2, and from the surface side of the aluminum oxide layer 10 on the rake face 2 side. It is defined as the orientation coefficient Tc3 of the surface side peak to be measured.
 本実施形態によれば、配向係数Tc1(0 1 14)が1.0以上である。これによって、酸化アルミニウム層10の耐摩耗性が向上する。その結果、長期間使用可能な工具1となる。ここで、配向係数Tc1(0 1 14)が高くなる、すなわち(0 1 14)面のピーク強度I(0 1 14)の比率が高くなると、酸化アルミニウム層10の表面側から成膜方向(表面に垂直な方向)にかかる衝撃に対して、酸化アルミニウム層10を構成する酸化アルミニウム結晶がしなり易くなり、破壊に対する耐性が高くなると思われる。そのため、酸化アルミニウム層10の表面側においては、配向係数Tc1(0 1 14)を高くすることによって、酸化アルミニウム層10の表面に発生する微小チッピングが抑制されて、微小チッピングに起因する摩耗の進行を抑制することができるものと思われる。Tc1(0 1 14)の特に望ましい範囲は1.3~10であり、特に望ましい範囲は1.5~5であり、さらに望ましい範囲は2.0~3.5である。 According to this embodiment, the orientation coefficient Tc1 (0 1 14) is 1.0 or more. Thereby, the wear resistance of the aluminum oxide layer 10 is improved. As a result, the tool 1 can be used for a long time. Here, when the orientation coefficient Tc1 (0 1 14) increases, that is, the ratio of the peak intensity I (0 1 14) of the (0 1 14) plane increases, the film formation direction (surface) from the surface side of the aluminum oxide layer 10 increases. It is considered that the aluminum oxide crystal constituting the aluminum oxide layer 10 is easily deformed against an impact applied in a direction perpendicular to the direction, and resistance to breakage is increased. Therefore, on the surface side of the aluminum oxide layer 10, by increasing the orientation coefficient Tc1 (0 ア ル ミ ニ ウ ム 1 14), the minute chipping generated on the surface of the aluminum oxide layer 10 is suppressed, and the wear caused by the minute chipping progresses. It seems to be able to suppress this. A particularly desirable range of Tc1 (0 1 14) is 1.3 to 10, a particularly desirable range is 1.5 to 5, and a further desirable range is 2.0 to 3.5.
 ここで、本実施態様によれば、Tc1(0 1 14)とTc2(0 1 14)を比較したとき、Tc1(0 1 14)がTc2(0 1 14)よりも大きくなっている。すなわち、Tc2(0 1 14)はTc1(0 1 14)よりも小さくなっている。配向係数Tc2(0 1 14)が高くなると、酸化アルミニウム層10の表面に平行な方向への熱膨張率と、酸化アルミニウム層10の下層の中間層9や炭窒化チタン層8の表面に平行な方向への熱膨張率との差が大きくなり、酸化アルミニウム層10が中間層9や炭窒化チタン層8に対して剥離しやすくなる傾向にある。 Here, according to this embodiment, when Tc1 (0 1 14) and Tc2 (0 1 14) are compared, Tc1 (0 1 14) is larger than Tc2 (0 1 14). That is, Tc2 (0 1 14) is smaller than Tc1 (0 1 14). When the orientation coefficient Tc2 (0 1 14) increases, the coefficient of thermal expansion in the direction parallel to the surface of the aluminum oxide layer 10 and the surface of the intermediate layer 9 and the titanium carbonitride layer 8 below the aluminum oxide layer 10 are parallel. The difference from the coefficient of thermal expansion in the direction increases, and the aluminum oxide layer 10 tends to be peeled off from the intermediate layer 9 and the titanium carbonitride layer 8.
 そこで、酸化アルミニウム層10のTc2(0 1 14)は小さくすることによって、酸化アルミニウム層10の剥離を抑制することができる。Tc2(0 1 14)の望ましい範囲は、0.3~1.5である。 Therefore, peeling of the aluminum oxide layer 10 can be suppressed by reducing Tc2 (0 1 14) of the aluminum oxide layer 10. A desirable range of Tc2 (0 1 14) is 0.3 to 1.5.
 また、酸化アルミニウム層10のTc2(0 1 14)とTc1(0 1 14)の測定方法について説明する。酸化アルミニウム層10のX線回折分析は、一般的なCuKα線を用いたX線回折分析の装置を用いて測定する。X線回折チャートから酸化アルミニウム層10の各結晶面のピーク強度を求めるにあたり、JCPDSカードのNo.43-1484に記載された各結晶面の回折角を確認して、検出されたピークの結晶面を同定し、そのピーク強度を測定する。 Further, a method for measuring Tc2 (0 1 14) and Tc1 (0 1 14) of the aluminum oxide layer 10 will be described. The X-ray diffraction analysis of the aluminum oxide layer 10 is measured using an X-ray diffraction analysis apparatus using a general CuKα ray. In obtaining the peak intensity of each crystal plane of the aluminum oxide layer 10 from the X-ray diffraction chart, the JCPDS card No. The diffraction angle of each crystal face described in 43-1484 is confirmed, the crystal face of the detected peak is identified, and the peak intensity is measured.
 ここで、X線回折分析にて検出されるピークの同定はJCPDSカードを用いて行うが、被覆層6に存在する残留応力等によってピークの位置がずれることがある。そのために、検出されたピークが酸化アルミニウム層10のピークであるかどうかを確認するには、酸化アルミニウム層10を研磨した状態でX線回折分析を行い、研磨する前後で検出されるピークを比較する。この差異によって、酸化アルミニウム層10のピークであることを確認できる。 Here, the peak detected by X-ray diffraction analysis is identified using a JCPDS card, but the peak position may be shifted due to residual stress or the like present in the coating layer 6. Therefore, in order to confirm whether or not the detected peak is the peak of the aluminum oxide layer 10, an X-ray diffraction analysis is performed with the aluminum oxide layer 10 polished, and the peaks detected before and after polishing are compared. To do. From this difference, it can be confirmed that it is the peak of the aluminum oxide layer 10.
 Tc1(hkl)を測定するには、逃げ面3側における酸化アルミニウム層10の表面側から測定される表面側ピークを測定する。具体的には、酸化アルミニウム層10の表面側から酸化アルミニウム層10の基体5側を含めて、酸化アルミニウム層10のピーク強度を測定する。より詳細には、表層11を研磨除去した状態あるいは表層11を研磨しない状態で、被覆層6に対してX線回折分析を行う。得られた各ピークのピーク強度を測定して、配向係数Tc1(hkl)を算出する。なお、表層11を研磨除去する際には、酸化アルミニウム層10の厚みの20%以下の厚みが除去されていてもよい。また、表層11に対して研磨しない状態でX線回折分析を行った場合であっても、酸化アルミニウムの8本のピークが測定できれば良い。なお、表面側ピークは、酸化アルミニウム層10の基体5側の配向状態も含んで検出されるが、酸化アルミニウム層10のX線回折分析の測定面に近い位置の組織状態が、ピークにより大きく影響を及ぼすことから、表面側ピークに及ぼす基体5側の配向状態の影響は小さい。Tc3(hkl)についても、すくい面2側における酸化アルミニウム層10の表面側ピークに基づいて同様に測定する。 To measure Tc1 (hkl), the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side is measured. Specifically, the peak intensity of the aluminum oxide layer 10 is measured from the surface side of the aluminum oxide layer 10 to the base 5 side of the aluminum oxide layer 10. More specifically, X-ray diffraction analysis is performed on the coating layer 6 in a state where the surface layer 11 is removed by polishing or in a state where the surface layer 11 is not polished. The peak intensity of each peak obtained is measured to calculate the orientation coefficient Tc1 (hkl). When the surface layer 11 is polished and removed, a thickness of 20% or less of the thickness of the aluminum oxide layer 10 may be removed. Moreover, even if it is a case where X-ray-diffraction analysis is performed in the state which is not grind | polished with respect to the surface layer 11, it is sufficient if eight peaks of aluminum oxide can be measured. Although the surface side peak is detected including the orientation state of the aluminum oxide layer 10 on the substrate 5 side, the structure state of the aluminum oxide layer 10 near the measurement surface of the X-ray diffraction analysis greatly affects the peak. Therefore, the influence of the orientation state on the substrate 5 side on the surface side peak is small. Tc3 (hkl) is similarly measured based on the surface side peak of the aluminum oxide layer 10 on the rake face 2 side.
 Tc2(hkl)を測定するには、逃げ面3側の酸化アルミニウム層10の一部を研磨して、酸化アルミニウム層10の基体側部分のみを残した状態でピーク強度を測定する。具体的には、まず、被覆層6の酸化アルミニウム層10を酸化アルミニウム層10の研磨前の厚みに対して10~40%の厚みとなるまで研磨する。研磨は、ダイヤモンド砥粒を用いたブラシ加工や弾性砥石による加工、又はブラスト加工等で行う。その後、酸化アルミニウム層10の研磨された部分に対して、酸化アルミニウム層10の表面側部分における測定と同条件でX線回折分析を行い、酸化アルミニウム層10のピークを測定し、配向係数Tc2(hkl)を算出する。 In order to measure Tc2 (hkl), a part of the aluminum oxide layer 10 on the flank 3 side is polished, and the peak intensity is measured in a state where only the substrate side portion of the aluminum oxide layer 10 is left. Specifically, first, the aluminum oxide layer 10 of the coating layer 6 is polished to a thickness of 10 to 40% with respect to the thickness of the aluminum oxide layer 10 before polishing. Polishing is performed by brush processing using diamond abrasive grains, processing by an elastic grindstone, or blast processing. Thereafter, the polished portion of the aluminum oxide layer 10 is subjected to X-ray diffraction analysis under the same conditions as those in the surface side portion of the aluminum oxide layer 10, the peak of the aluminum oxide layer 10 is measured, and the orientation coefficient Tc2 ( hkl) is calculated.
 なお、配向係数TcはJCPDSカードで規定された無配向の標準データに対する比率で求められるので、各結晶面の配向度合いを表す指標である。また、Tc(hkl)の「(hkl)」は配向係数を算出する結晶面を示す。 Note that the orientation coefficient Tc is an index representing the degree of orientation of each crystal plane because it is determined by the ratio to the non-oriented standard data defined by the JCPDS card. Further, “(hkl)” of Tc (hkl) indicates a crystal plane for calculating the orientation coefficient.
 また、本実施態様によれば、逃げ面3側における酸化アルミニウム層10の表面側から測定される表面側ピークにおいて、I(104)およびI(116)が一番目と二番目に強くなっている。これによって、逃げ面3側において微小チッピングに起因するフランク摩耗が抑制される傾向にある。I(0 1 14)は八番目以内のピーク強度であり、特に望ましくは三番目から六番目のピーク強度である。 Further, according to the present embodiment, I (104) and I (116) are the first and second strongest in the surface side peak measured from the surface side of the aluminum oxide layer 10 on the flank 3 side. . As a result, flank wear due to minute chipping tends to be suppressed on the flank 3 side. I (0 1 14) is the peak intensity within the eighth, and particularly preferably the third to sixth peak intensity.
 さらに、本実施態様によれば、逃げ面3側の酸化アルミニウム層の表面側ピークにおけるTc1(104)が、逃げ面3側の酸化アルミニウム層の基体側ピークにおけるTc3(104)よりも大きい。これによって、逃げ面3におけるフランク摩耗を抑制できて、切削工具1の耐欠損性を高める効果がある。 Furthermore, according to this embodiment, Tc1 (104) at the surface side peak of the aluminum oxide layer on the flank 3 side is larger than Tc3 (104) at the substrate side peak of the aluminum oxide layer on the flank 3 side. As a result, the flank wear on the flank 3 can be suppressed, and there is an effect of improving the fracture resistance of the cutting tool 1.
 なお、試験をした結果、Tc1(104)がTc3(104)よりも大きくなるのみでは、酸化アルミニウム層10の耐チッピング性の向上が不十分であり、Tc1(0 1 14)が1.0以上であることによって、酸化アルミニウム層10の耐クレータ摩耗が大幅に向上することがわかった。 As a result of the test, if Tc1 (104) is larger than Tc3 (104), the chipping resistance of the aluminum oxide layer 10 is not sufficiently improved, and Tc1 (0 1 14) is 1.0 or more. It was found that the crater wear resistance of the aluminum oxide layer 10 is greatly improved.
 本実施形態においては、配向係数Tc3(104)がTc1(104)よりも小さい。これによって、すくい面2におけるクレータ摩耗が抑制できるとともに、逃げ面3における耐チッピング性が抑制できる。 In the present embodiment, the orientation coefficient Tc3 (104) is smaller than Tc1 (104). Thereby, crater wear on the rake face 2 can be suppressed, and chipping resistance on the flank face 3 can be suppressed.
 炭窒化チタン層8は、いわゆるMT(Moderate Temperature)-炭窒化チタン層8aと、HT-炭窒化チタン層8bとが、基体側から順に存在する積層体からなる。MT-炭窒化チタン層8aは、アセトニトリル(CHCN)ガスを原料として含み、成膜温度が780~900℃と比較的低温で成膜した柱状結晶からなる。HT(High Temperature)-炭窒化チタン層8bは、成膜温度が950~1100℃と高温で成膜した粒状結晶からなる。本実施態様によれば、HT-炭窒化チタン層8bの表面には酸化アルミニウム層10に向かって先細りする断面視で三角形形状の突起が形成され、これによって、酸化アルミニウム層10の密着力が高まり、被覆層6の剥離やチッピングを抑えることができる。 The titanium carbonitride layer 8 is a laminate in which a so-called MT (Moderate Temperature) -titanium carbonitride layer 8a and HT-titanium carbonitride layer 8b are present in this order from the substrate side. The MT-titanium carbonitride layer 8a is made of columnar crystals containing acetonitrile (CH 3 CN) gas as a raw material and formed at a relatively low film formation temperature of 780 to 900 ° C. The HT (High Temperature) -titanium carbonitride layer 8b is made of granular crystals formed at a high film formation temperature of 950 to 1100.degree. According to this embodiment, the surface of the HT-titanium carbonitride layer 8b is formed with triangular projections in a cross-sectional view that tapers toward the aluminum oxide layer 10, thereby increasing the adhesion of the aluminum oxide layer 10. Further, peeling and chipping of the coating layer 6 can be suppressed.
 また、本実施態様によれば、中間層9は、HT-炭窒化チタン層8bの表面に設けられる。中間層9は、チタンと酸素とを含有し、例えばTiAlCNO、TiCNO等からなり、図2はこれらが積層された下部中間層9aと上部中間層9bとからなっている。これによって、酸化アルミニウム層10を構成する酸化アルミニウム粒子はα型結晶構造となる。α型結晶構造からなる酸化アルミニウム層10は、硬度が高く、被覆層6の耐摩耗性を高めることができる。中間層9が、TiAlCNOからなる下部中間層9aと、TiCNOからなる上部中間層9bとの積層構造からなることによって、切削工具1の耐欠損性を高める効果がある。なお、炭窒化チタン層8は6.0~13.0μmの厚みで、また、中間層9は0.05~0.5μmの厚みで、それぞれ設けられる。 Further, according to this embodiment, the intermediate layer 9 is provided on the surface of the HT-titanium carbonitride layer 8b. The intermediate layer 9 contains titanium and oxygen, and is made of, for example, TiAlCNO, TiCNO, or the like. FIG. 2 is made up of a lower intermediate layer 9a and an upper intermediate layer 9b on which these are laminated. As a result, the aluminum oxide particles constituting the aluminum oxide layer 10 have an α-type crystal structure. The aluminum oxide layer 10 having an α-type crystal structure has high hardness, and can improve the wear resistance of the coating layer 6. Since the intermediate layer 9 has a laminated structure of the lower intermediate layer 9a made of TiAlCNO and the upper intermediate layer 9b made of TiCNO, there is an effect of improving the fracture resistance of the cutting tool 1. The titanium carbonitride layer 8 is provided with a thickness of 6.0 to 13.0 μm, and the intermediate layer 9 is provided with a thickness of 0.05 to 0.5 μm.
 さらに、下層7及び表層11は、窒化チタンにより構成されている。なお、他の実施態様においては、下層7および表層11の少なくとも一方を備えないものであっても良い。また、下層7は0.1~1.0μmの厚みで、表層11は0.1~3.0μmの厚みで設けられる。 Furthermore, the lower layer 7 and the surface layer 11 are made of titanium nitride. In other embodiments, at least one of the lower layer 7 and the surface layer 11 may not be provided. The lower layer 7 is provided with a thickness of 0.1 to 1.0 μm, and the surface layer 11 is provided with a thickness of 0.1 to 3.0 μm.
 なお、各層の厚みおよび各層を構成する結晶の性状は、工具1の断面における電子顕微鏡写真(走査型電子顕微鏡(SEM)写真または透過電子顕微鏡(TEM)写真)を観察することにより、測定することが可能である。また、本実施形態においては、被覆層6の各層を構成する結晶の結晶形態が柱状であるとは、各結晶の被覆層6の厚み方向の長さに対する前記平均結晶幅の比が平均で0.3以下の状態を指す。一方、この各結晶の被覆層の厚み方向の長さに対する前記平均結晶幅の比が平均で0.3を超えるものは、結晶形態が粒状であると定義する。 The thickness of each layer and the properties of the crystals constituting each layer should be measured by observing an electron micrograph (scanning electron microscope (SEM) photograph or transmission electron microscope (TEM) photograph) in the cross section of the tool 1. Is possible. In the present embodiment, the crystal form of the crystals constituting each layer of the coating layer 6 is columnar. The average ratio of the average crystal width to the length in the thickness direction of the coating layer 6 of each crystal is 0 on average. .3 or less states. On the other hand, when the ratio of the average crystal width to the length in the thickness direction of the coating layer of each crystal exceeds 0.3 on average, the crystal form is defined as granular.
 一方、工具1の基体5は、炭化タングステン(WC)と、所望により周期表第4、5、6族金属の炭化物、窒化物、炭窒化物の群から選ばれる少なくとも1種と、からなる硬質相を、コバルト(Co)やニッケル(Ni)等の鉄属金属からなる結合相にて結合させた超硬合金やTi基サーメット、またはSi、Al、ダイヤモンド、立方晶窒化ホウ素(cBN)等のセラミックスが挙げられる。中でも、工具1のような切削工具として用いる場合には、基体5は、超硬合金またはサーメットからなることが耐欠損性および耐摩耗性の点でよい。また、用途によっては、基体5は炭素鋼、高速度鋼、合金鋼等の金属からなるものであっても良い。 On the other hand, the base 5 of the tool 1 is a hard material composed of tungsten carbide (WC) and, if desired, at least one selected from the group consisting of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table. Cemented carbide, Ti-based cermet, or Si 3 N 4 , Al 2 O 3 , diamond, cubic nitridation in which phases are bonded with a binder phase composed of an iron group metal such as cobalt (Co) or nickel (Ni) Ceramics such as boron (cBN) can be used. Especially, when using as a cutting tool like the tool 1, the base | substrate 5 may consist of a cemented carbide or a cermet from the point of a fracture resistance and abrasion resistance. Further, depending on the application, the base 5 may be made of a metal such as carbon steel, high-speed steel, or alloy steel.
 さらに、上記切削工具は、すくい面2と逃げ面3との交差部に形成された切刃4を被切削物に当てて切削加工するものであり、上述した優れた効果を発揮することができる。また、本実施形態の被覆工具は、切削工具以外にも、掘削工具、刃物等の各種の用途へ応用可能であり、この場合にも優れた機械的信頼性を有するものである。 Furthermore, the said cutting tool applies the cutting edge 4 formed in the cross | intersection part of the rake face 2 and the flank 3 to a to-be-cut object, and can cut it, and can exhibit the outstanding effect mentioned above. . In addition to the cutting tool, the coated tool of the present embodiment can be applied to various uses such as an excavation tool and a blade, and in this case also has excellent mechanical reliability.
 次に、本発明に係る被覆工具の製造方法について、工具1の製造方法の一例を参考にして説明する。 Next, the manufacturing method of the coated tool according to the present invention will be described with reference to an example of the manufacturing method of the tool 1.
  まず、基体5となる硬質合金を焼成によって形成しうる金属炭化物、窒化物、炭窒化物、酸化物等の無機物粉末に、金属粉末、カーボン粉末等を適宜添加、混合し、プレス成形、鋳込成形、押出成形、冷間静水圧プレス成形等の公知の成形方法によって所定の工具形状に成形した後、真空中または非酸化性雰囲気中にて焼成することによって上述した硬質合金からなる基体5を作製する。そして、上記基体5の表面に所望によって研磨加工や切刃部のホーニング加工を施す。 First, metal powder, carbon powder, etc. are appropriately added to and mixed with inorganic powder such as metal carbide, nitride, carbonitride, oxide, etc. that can form a hard alloy to be the base 5 by firing, press molding, casting After forming into a predetermined tool shape by a known forming method such as forming, extrusion forming, cold isostatic pressing, etc., the substrate 5 made of the hard alloy described above is fired in a vacuum or non-oxidizing atmosphere. Make it. Then, the surface of the substrate 5 is subjected to polishing or honing of the cutting edge as desired.
 次に、その表面に化学気相蒸着(CVD)法によって被覆層を成膜する。 Next, a coating layer is formed on the surface by chemical vapor deposition (CVD).
  まず、反応ガス組成として四塩化チタン(TiCl)ガスを0.5~10体積%、窒素(N)ガスを10~60体積%、残りが水素(H)ガスからなる混合ガスを調整してチャンバ内に導入し、成膜温度を800~940℃、8~50kPaとして、下層7であるTiN層を成膜する。 First, a mixed gas composed of 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and the balance of hydrogen (H 2 ) gas is prepared as a reaction gas composition. Then, the film is introduced into the chamber, and the TiN layer as the lower layer 7 is formed at a film forming temperature of 800 to 940 ° C. and 8 to 50 kPa.
 その後、反応ガス組成として、体積%で四塩化チタン(TiCl)ガスを0.5~10体積%、窒素(N)ガスを5~60体積%、アセトニトリル(CHCN)ガスを0.1~3.0体積%、残りが水素(H)ガスからなる混合ガスを調整してチャンバ内に導入し、成膜温度を780~880℃、5~25kPaとして、MT-炭窒化チタン層を成膜する。このとき、アセトニトリル(CHCN)ガスの含有比率を成膜初期よりも成膜後期で増すことによって、炭窒化チタン層を構成する炭窒化チタン柱状結晶の平均結晶幅を基体側よりも表面側のほうが大きい構成とすることができる。 Thereafter, the reaction gas composition is 0.5 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 5 to 60% by volume of nitrogen (N 2 ) gas, and 0.1% of acetonitrile (CH 3 CN) gas as the reaction gas composition. An MT-titanium carbonitride layer is prepared by adjusting a mixed gas consisting of 1 to 3.0% by volume and the remainder of hydrogen (H 2 ) gas into the chamber and setting the film forming temperature to 780 to 880 ° C. and 5 to 25 kPa. Is deposited. At this time, by increasing the content ratio of acetonitrile (CH 3 CN) gas in the later stage of film formation than in the initial stage of film formation, the average crystal width of the titanium carbonitride columnar crystals constituting the titanium carbonitride layer is more on the surface side than on the substrate side. This can be a larger configuration.
 次に、炭窒化チタン層8の上側部分を構成するHT-炭窒化チタン層を成膜する。本実施態様によれば、HT-炭窒化チタン層の具体的な成膜条件は、四塩化チタン(TiCl)ガスを1~4体積%、窒素(N)ガスを5~20体積%、メタン(CH)ガスを0.1~10体積%、残りが水素(H)ガスからなる混合ガスを調整してチャンバ内に導入し、成膜温度を900~1050℃、5~40kPaとして成膜する。 Next, an HT-titanium carbonitride layer constituting the upper portion of the titanium carbonitride layer 8 is formed. According to this embodiment, the specific film forming conditions of the HT-titanium carbonitride layer are as follows: titanium tetrachloride (TiCl 4 ) gas is 1 to 4% by volume, nitrogen (N 2 ) gas is 5 to 20% by volume, A mixed gas composed of 0.1 to 10% by volume of methane (CH 4 ) gas and the remaining hydrogen (H 2 ) gas is prepared and introduced into the chamber, and the film forming temperature is set to 900 to 1050 ° C. and 5 to 40 kPa. Form a film.
 さらに、中間層9を作製する。本実施態様についての具体的な成膜条件は、第1段階として、四塩化チタン(TiCl)ガスを3~30体積%、メタン(CH)ガスを3~15体積%、窒素(N)ガスを5~10体積%、一酸化炭素(CO)ガスを0.5~1体積%、三塩化アルミニウム(AlCl)ガスを0.5~3体積%、残りが水素(H)ガスからなる混合ガスを調整する。これらの混合ガスを調整してチャンバ内に導入し、成膜温度を900~1050℃、5~40kPaとして成膜する。この工程によって、炭窒化チタン層8の表面に凹凸のある中間層9が成膜される。 Further, the intermediate layer 9 is produced. The specific film forming conditions for this embodiment are as follows. As a first step, titanium tetrachloride (TiCl 4 ) gas is 3 to 30% by volume, methane (CH 4 ) gas is 3 to 15% by volume, nitrogen (N 2 ) 5-10% by volume of gas, 0.5-1% by volume of carbon monoxide (CO) gas, 0.5-3% by volume of aluminum trichloride (AlCl 3 ) gas, the remainder being hydrogen (H 2 ) gas The mixed gas consisting of These mixed gases are adjusted and introduced into the chamber to form a film at a film forming temperature of 900 to 1050 ° C. and 5 to 40 kPa. By this step, an intermediate layer 9 having irregularities on the surface of the titanium carbonitride layer 8 is formed.
 続いて、中間層9の第2段階として、四塩化チタン(TiCl)ガスを3~15体積%、メタン(CH)ガスを3~10体積%、窒素(N)ガスを10~25体積%、一酸化炭素(CO)ガスを1~5体積%、残りが水素(H)ガスからなる混合ガスを調整する。これらの混合ガスを調整してチャンバ内に導入し、成膜温度を900~1050℃、5~40kPaとして成膜する。なお、本工程は上記窒素(N)ガスをアルゴン(Ar)ガスに変更してもよい。この工程によって、中間層9の表面の凹凸が微細になり、次に成膜される酸化アルミニウム層10中の酸化アルミニウム結晶の成長状態を調整することができる。 Subsequently, as the second stage of the intermediate layer 9, titanium tetrachloride (TiCl 4 ) gas is 3 to 15% by volume, methane (CH 4 ) gas is 3 to 10% by volume, and nitrogen (N 2 ) gas is 10 to 25%. A mixed gas comprising volume%, carbon monoxide (CO) gas in an amount of 1 to 5 volume%, and the remainder consisting of hydrogen (H 2 ) gas is prepared. These mixed gases are adjusted and introduced into the chamber to form a film at a film forming temperature of 900 to 1050 ° C. and 5 to 40 kPa. In this step, the nitrogen (N 2 ) gas may be changed to argon (Ar) gas. By this step, the unevenness on the surface of the intermediate layer 9 becomes fine, and the growth state of the aluminum oxide crystal in the aluminum oxide layer 10 to be formed next can be adjusted.
 そして、酸化アルミニウム層10を成膜する。まず、酸化アルミニウム結晶の核を形成する。三塩化アルミニウム(AlCl)ガスを5~10体積%、塩化水素(HCl)ガスを0.1~1.0体積%、二酸化炭素(CO)ガスを0.1~5.0体積%、残りが水素(H)ガスからなる混合ガスを用い、950~1100℃、5~10kPaとする。この第1段階の成膜によって、成膜される酸化アルミニウム結晶の成長状態を変え、酸化アルミニウム層10のTc(0 1 14)を制御する。 Then, an aluminum oxide layer 10 is formed. First, nuclei of aluminum oxide crystals are formed. 5 to 10% by volume of aluminum trichloride (AlCl 3 ) gas, 0.1 to 1.0% by volume of hydrogen chloride (HCl) gas, 0.1 to 5.0% by volume of carbon dioxide (CO 2 ) gas, A mixed gas consisting of hydrogen (H 2 ) gas is used, and the temperature is set to 950 to 1100 ° C. and 5 to 10 kPa. By the first stage film formation, the growth state of the aluminum oxide crystal to be formed is changed, and the Tc (0 1 14) of the aluminum oxide layer 10 is controlled.
 次に、三塩化アルミニウム(AlCl)ガスを0.5~5.0体積%、塩化水素(HCl)ガスを1.5~5.0体積%、二酸化炭素(CO)ガスを0.5~5.0体積%、硫化水素(HS)ガスを0~1.0体積%、残りが水素(H)ガスからなる混合ガスを用い、950~1100℃、5~20kPaに変えて成膜する。この第2段階の成膜工程によって、酸化アルミニウム層10の基体側に成膜される酸化アルミニウム結晶の成長状態を調整して、基体側Tc(0 1 14)を制御する。 Next, 0.5 to 5.0% by volume of aluminum trichloride (AlCl 3 ) gas, 1.5 to 5.0% by volume of hydrogen chloride (HCl) gas, and 0.5% of carbon dioxide (CO 2 ) gas. -5.0% by volume, hydrogen sulfide (H 2 S) gas is 0 to 1.0% by volume, and the remainder is hydrogen (H 2 ) gas mixed gas, and is changed to 950 to 1100 ° C. and 5 to 20 kPa. Form a film. By this second stage film formation process, the growth state of the aluminum oxide crystal formed on the substrate side of the aluminum oxide layer 10 is adjusted to control the substrate side Tc (0 1 14).
 続いて、三塩化アルミニウム(AlCl)ガスを5~15体積%、塩化水素(HCl)ガスを0.5~2.5体積%、二酸化炭素(CO)ガスを0.5~5.0体積%、硫化水素(HS)ガスを0.0~1.0体積%、残りが水素(H)ガスからなる混合ガスを用い、950~1100℃、5~20kPaに変更して酸化アルミニウム層10を成膜する。この第3段階の成膜工程によって、酸化アルミニウム層10の表面側に成膜される酸化アルミニウム結晶の成長状態を調整して、表面側Tc(0 1 14)を制御する。 Subsequently, 5 to 15% by volume of aluminum trichloride (AlCl 3 ) gas, 0.5 to 2.5% by volume of hydrogen chloride (HCl) gas, and 0.5 to 5.0 of carbon dioxide (CO 2 ) gas. Using a mixed gas consisting of volume%, hydrogen sulfide (H 2 S) gas of 0.0 to 1.0 volume% and the remainder of hydrogen (H 2 ) gas, the temperature is changed to 950 to 1100 ° C. and 5 to 20 kPa for oxidation. An aluminum layer 10 is formed. By this third stage film formation process, the growth state of the aluminum oxide crystal formed on the surface side of the aluminum oxide layer 10 is adjusted to control the surface side Tc (0 1 14).
 そして、所望により、表層(TiN層)11を成膜する。具体的な成膜条件は、反応ガス組成として四塩化チタン(TiCl)ガスを0.1~10体積%、窒素(N)ガスを10~60体積%、残りが水素(H)ガスからなる混合ガスを調整してチャンバ内に導入し、成膜温度を960~1100℃、10~85kPaとして成膜する。 Then, a surface layer (TiN layer) 11 is formed as desired. Specific film forming conditions are as follows: titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10% by volume, nitrogen (N 2 ) gas is 10 to 60% by volume, and the remainder is hydrogen (H 2 ) gas. A mixed gas consisting of the above is adjusted and introduced into the chamber, and the film is formed at a film forming temperature of 960 to 1100 ° C. and 10 to 85 kPa.
 その後、所望により、成膜した被覆層6の表面の少なくとも切刃部を研磨加工する。この研磨加工により、切刃部が平滑に加工され、被削材の溶着を抑制して、さらに耐欠損性に優れた工具となる。 Thereafter, if desired, at least the cutting edge portion of the surface of the formed coating layer 6 is polished. By this polishing process, the cutting edge portion is processed smoothly, the welding of the work material is suppressed, and the tool is further excellent in fracture resistance.
 まず、平均粒径1.2μmの金属コバルト粉末を6質量%、平均粒径2.0μmの炭化チタン粉末を0.5質量%、平均粒径2.0μmの炭化ニオブ粉末を5質量%、残部が平均粒径1.5μmのタングステンカーバイト粉末の割合で添加、混合し、プレス成形により工具形状(CNMG120408)に成形した。その後、脱バインダ処理を施し、1500℃、0.01Paの真空中において、1時間焼成して超硬合金からなる基体を作製した。その後、作製した基体にブラシ加工をし、切刃となる部分にRホーニングを施した。 First, 6% by mass of metallic cobalt powder having an average particle size of 1.2 μm, 0.5% by mass of titanium carbide powder having an average particle size of 2.0 μm, 5% by mass of niobium carbide powder having an average particle size of 2.0 μm, and the balance Were added and mixed at a ratio of tungsten carbide powder having an average particle size of 1.5 μm, and formed into a tool shape (CNMG120408) by press molding. Then, the binder removal process was performed, and it fired for 1 hour in the vacuum of 1500 degreeC and 0.01 Pa, and produced the base | substrate which consists of a cemented carbide. Thereafter, the fabricated substrate was subjected to brushing, and R honing was applied to the portion to be the cutting edge.
 次に、上記超硬合金の基体に対して、化学気相蒸着(CVD)法により、表1の成膜条件で被覆層を成膜して、切削工具を作製した。表1、2において、各化合物は化学記号で表記した。 Next, a coating layer was formed on the cemented carbide substrate by the chemical vapor deposition (CVD) method under the film formation conditions shown in Table 1 to produce a cutting tool. In Tables 1 and 2, each compound is represented by a chemical symbol.
 上記試料について、まず、すくい面において、被覆層に対して研磨することなくCuKα線によるX線回折分析を行い、JCPDSカードの(0 1 14)面、(104)面、(116)面の各結晶面の配向係数Tc3(hkl)を算出した。次に、逃げ面の平坦面において、被覆層に対して研磨することなく、CuKα線によるX線回折分析を行い、酸化アルミニウム層の表面側から測定した表面側ピーク(表中、表面側または表面側ピークと記載)の同定と、各ピークのピーク強度を測定した。また、表面側ピークについて、最も強度の高いピークと2番目に強度の高いピークとを確認するとともに、JCPDSカードの(0 1 14)面、(104)面、(116)面の各結晶面の配向係数Tc1(hkl)を算出した。また、逃げ面において、酸化アルミニウム層の厚みの10~40%の厚みとなるまで研磨し、同様にX線回折分析によって、酸化アルミニウム層の一部を研磨して基体側部分のみを残した状態で測定した基体側ピーク(表中、基体側と記載)の同定と、各ピークのピーク強度を測定した。得られた各ピークのピーク強度を用いて、(0 1 14)面、(104)面、(116)面の各結晶面の配向係数Tc2(hkl)を算出した。なお、上記X線回折測定は、任意の3つの試料について測定し、その平均値で評価した。また、上記工具の破断面を走査型電子顕微鏡(SEM)にて観察し、各層の厚みを測定した。結果は表2~4に示した。 For the sample, first, X-ray diffraction analysis using CuKα rays was performed on the rake face without polishing the coating layer, and each of the (0 1 14) plane, (104) plane, and (116) plane of the JCPDS card was measured. The orientation coefficient Tc3 (hkl) of the crystal plane was calculated. Next, on the flat surface of the flank, the surface side peak measured from the surface side of the aluminum oxide layer by performing X-ray diffraction analysis using CuKα rays without polishing the coating layer (in the table, the surface side or the surface) (Identified as side peak) and the peak intensity of each peak was measured. Further, regarding the surface side peak, the highest intensity peak and the second highest intensity peak were confirmed, and the (0 結晶 1 14) plane, (104) plane, and (116) plane of each crystal plane of the JCPDS card were also confirmed. An orientation coefficient Tc1 (hkl) was calculated. In addition, the flank is polished until it becomes 10 to 40% of the thickness of the aluminum oxide layer. Similarly, by X-ray diffraction analysis, a part of the aluminum oxide layer is polished to leave only the substrate side portion. The substrate-side peak (denoted as the substrate side in the table) measured in step 1 and the peak intensity of each peak were measured. Using the peak intensity of each obtained peak, the orientation coefficient Tc2 (hkl) of each crystal plane of the (0) 1 14) plane, (104) plane, and (116) plane was calculated. In addition, the said X-ray-diffraction measurement measured about three arbitrary samples, and evaluated it with the average value. Moreover, the fracture surface of the said tool was observed with the scanning electron microscope (SEM), and the thickness of each layer was measured. The results are shown in Tables 2-4.
 次に、得られた切削工具を用いて、下記の条件において、連続切削試験及び断続切削試験を行い、耐摩耗性及び耐欠損性を評価した。結果は表4に示した。
(連続切削条件)
被削材 :クロムモリブデン鋼材(SCM435)
工具形状:CNMG120408
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:1.5mm
切削時間:25分
その他 :水溶性切削液使用
評価項目:走査型電子顕微鏡にて刃先ホーニング部分を観察し、実際に摩耗している部分において、逃げ面におけるフランク摩耗幅と、すくい面におけるクレータ摩耗幅を測定。
(断続切削条件)
被削材 :クロムモリブデン鋼 4本溝入り鋼材(SCM440)
工具形状:CNMG120408
切削速度:300m/分
送り速度:0.3mm/rev
切り込み:1.5mm
その他 :水溶性切削液使用
評価項目:欠損に至る衝撃回数を測定。
Next, using the obtained cutting tool, a continuous cutting test and an intermittent cutting test were performed under the following conditions to evaluate wear resistance and fracture resistance. The results are shown in Table 4.
(Continuous cutting conditions)
Work Material: Chromium Molybdenum Steel (SCM435)
Tool shape: CNMG120408
Cutting speed: 300 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 1.5mm
Cutting time: 25 minutes Others: Use of water-soluble cutting fluid Evaluation item: Observe the honing part of the edge with a scanning electron microscope, and in the part that is actually worn, the flank wear width on the flank and the crater wear on the rake face Measure width.
(Intermittent cutting conditions)
Work Material: Chromium Molybdenum Steel Four Grooved Steel (SCM440)
Tool shape: CNMG120408
Cutting speed: 300 m / min Feeding speed: 0.3 mm / rev
Cutting depth: 1.5mm
Others: Use of water-soluble cutting fluid Evaluation item: Measures the number of impacts leading to defects.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1~4の結果によれば、逃げ面における酸化アルミニウム層の表面側ピークのTc1(0 1 14)が1.0未満の試料No.8~10は、いずれも、摩耗の進行が早く、かつ酸化アルミニウム層が衝撃によって剥離しやすいものであった。 According to the results of Tables 1 to 4, the sample No. 1 in which the Tc1 (0 1 14) of the surface side peak of the aluminum oxide layer on the flank face is less than 1.0. In all of Nos. 8 to 10, wear progressed quickly and the aluminum oxide layer was easily peeled off by impact.
 一方、Tc1(0 1 14)が1.0以上の試料No.1~7においては、酸化アルミニウム層の微小チッピングが抑制されるとともに、剥離もほとんど発生しなかった。特に、酸化アルミニウム層の表面側ピークにおいて、(104)面および(116)面が1番目と2番目に高いピークからなる試料No.1~4、6に関しては、試料No.5、7に比べてクレータ摩耗幅がより小さく、耐摩耗性について特に優れていた。また、基体側の配向係数Tc2(0 1 14)が表面側の配向係数Tc1(0 1 14)よりも小さい試料No.1~6は、特にクレータ摩耗が小さかった。さらに、すくい面における表面側ピークの配向係数Tc3(104)が、逃げ面における表面側ピークの配向係数Tc1(104)よりも小さい試料No.1~6は、特に欠損に至る衝撃回数が多くなった。 On the other hand, Sample No. Tc1 (011 14) is 1.0 or more. In Nos. 1 to 7, minute chipping of the aluminum oxide layer was suppressed, and almost no peeling occurred. In particular, in the surface side peak of the aluminum oxide layer, the sample No. 1 in which the (104) plane and (116) plane consist of the first and second highest peaks. For samples 1 to 4 and 6, sample no. Compared to 5 and 7, the crater wear width was smaller and the wear resistance was particularly excellent. In addition, the sample No. 1 in which the substrate-side orientation coefficient Tc2 (0 1 14) is smaller than the surface-side orientation coefficient Tc1 (0 1 14). Nos. 1 to 6 had particularly small crater wear. Furthermore, the sample No. 2 in which the orientation coefficient Tc3 (104) of the surface side peak on the rake face is smaller than the orientation coefficient Tc1 (104) of the surface side peak on the flank face. In Nos. 1 to 6, the number of impacts that led to defects was particularly large.
1・・・切削工具
2・・・すくい面
3・・・逃げ面
4・・・切刃
5・・・基体
6・・・被覆層
7・・・下層
8・・・炭窒化チタン層
 8a・・・MT-炭窒化チタン層
 8b・・・HT-炭窒化チタン層
9・・・中間層
 9a・・・下部中間層
 9b・・・上部中間層
10・・酸化アルミニウム層
11・・・表層
DESCRIPTION OF SYMBOLS 1 ... Cutting tool 2 ... Rake face 3 ... Flank 4 ... Cutting blade 5 ... Base body 6 ... Cover layer 7 ... Lower layer 8 ... Titanium carbonitride layer 8a ..MT-titanium carbonitride layer 8b ... HT-titanium carbonitride layer 9 ... intermediate layer 9a ... lower intermediate layer 9b ... upper intermediate layer 10 ... aluminum oxide layer 11 ... surface layer

Claims (4)

  1.  基体と、該基体の表面に設けられた被覆層とを備え、
    前記被覆層上に切刃と逃げ面とを有し、
    前記被覆層は、少なくとも炭窒化チタン層とα型結晶構造の酸化アルミニウム層とを順に積層した部位を含み、
    X線回折分析にて分析される前記酸化アルミニウム層のピークを基に、下記式で表される値を配向係数Tc(hkl)としたとき
    逃げ面側における前記酸化アルミニウム層の表面側から測定される配向係数Tc1(0 1 14)が1.0以上である被覆工具。
    配向係数Tc(hkl)={I(hkl)/I(hkl)}/〔(1/8)×Σ{I(HKL)/I(HKL)}〕
    ここで、(HKL)は、(012)、(104)、(110)、(113)、(024)、(116)、(124)、(0 1 14)の結晶面、
    I(HKL)およびI(hkl)は、前記酸化アルミニウム層のX線回折分析において検出される各結晶面に帰属されるピークのピーク強度
    (HKL)およびI(hkl)は、JCPDSカードNo.43-1484に記載された各結晶面の標準回折強度
    A substrate and a coating layer provided on the surface of the substrate;
    Having a cutting edge and a flank on the coating layer;
    The coating layer includes at least a portion in which a titanium carbonitride layer and an aluminum oxide layer having an α-type crystal structure are sequentially laminated,
    Based on the peak of the aluminum oxide layer analyzed by X-ray diffraction analysis, the value represented by the following formula is measured from the surface side of the aluminum oxide layer on the flank side when the orientation coefficient is Tc (hkl). A coated tool having an orientation coefficient Tc1 (0 1 14) of 1.0 or more.
    Orientation coefficient Tc (hkl) = {I (hkl) / I 0 (hkl)} / [(1/8) × Σ {I (HKL) / I 0 (HKL)}]
    Here, (HKL) is the crystal plane of (012), (104), (110), (113), (024), (116), (124), (0 1 14),
    I (HKL) and I (hkl) are the peak intensities I 0 (HKL) and I 0 (hkl) of the peaks attributed to the respective crystal planes detected in the X-ray diffraction analysis of the aluminum oxide layer are JCPDS cards No. Standard diffraction intensities of crystal planes described in 43-1484
  2.  前記逃げ面側の前記酸化アルミニウム層の一部を研磨して、当該酸化アルミニウム層の基体側部分のみを残した状態での測定で検出される配向係数Tc2(0 1 14)が、前記Tc1(0 1 14)よりも小さい請求項1に記載の被覆工具。 An orientation coefficient Tc2 (0 1 14) detected by measurement in a state where a part of the aluminum oxide layer on the flank side is polished and only the base portion of the aluminum oxide layer is left is Tc1 ( The coated tool according to claim 1, which is smaller than 0 1 14).
  3.  前記逃げ面側における前記酸化アルミニウム層の表面側から測定される表面側ピークにおいて、I(104)およびI(116)が一番目と二番目に強い請求項1または2に記載の被覆工具。 The coated tool according to claim 1 or 2, wherein I (104) and I (116) are the first and second strongest in the surface side peak measured from the surface side of the aluminum oxide layer on the flank side.
  4.  前記被覆層上にさらにすくい面を有し、該すくい面側における前記酸化アルミニウム層の表面側から測定される配向係数Tc3(104)が、前記逃げ面側における前記酸化アルミニウム層の表面側から測定される配向係数Tc1(104)よりも小さい請求項1乃至3のいずれかに記載の被覆工具。 An orientation coefficient Tc3 (104) measured from the surface side of the aluminum oxide layer on the rake face side is further measured from the surface side of the aluminum oxide layer on the flank face side. The coated tool according to any one of claims 1 to 3, wherein the coated tool is smaller than an orientation coefficient Tc1 (104).
PCT/JP2014/083412 2013-12-17 2014-12-17 Coated tool WO2015093530A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167015991A KR101822514B1 (en) 2013-12-17 2014-12-17 Coated tool
US15/105,110 US10174421B2 (en) 2013-12-17 2014-12-17 Coated tool
JP2015533334A JP5890594B2 (en) 2013-12-17 2014-12-17 Coated tool
CN201480068671.XA CN105828991B (en) 2013-12-17 2014-12-17 Coated tool
EP14872531.0A EP3085478B1 (en) 2013-12-17 2014-12-17 Coated tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-260273 2013-12-17
JP2013260273 2013-12-17

Publications (1)

Publication Number Publication Date
WO2015093530A1 true WO2015093530A1 (en) 2015-06-25

Family

ID=53402875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083412 WO2015093530A1 (en) 2013-12-17 2014-12-17 Coated tool

Country Status (6)

Country Link
US (1) US10174421B2 (en)
EP (1) EP3085478B1 (en)
JP (1) JP5890594B2 (en)
KR (1) KR101822514B1 (en)
CN (1) CN105828991B (en)
WO (1) WO2015093530A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool
JP6210346B1 (en) * 2016-11-02 2017-10-11 株式会社タンガロイ Coated cutting tool
JP6210347B1 (en) * 2016-11-04 2017-10-11 株式会社タンガロイ Coated cutting tool
JP6210348B1 (en) * 2016-11-08 2017-10-11 株式会社タンガロイ Coated cutting tool
JP6229911B1 (en) * 2016-10-19 2017-11-15 株式会社タンガロイ Coated cutting tool
EP3312303A1 (en) * 2016-10-21 2018-04-25 Tungaloy Corporation Coated cutting tool
EP3199277A4 (en) * 2014-09-24 2018-05-16 KYOCERA Corporation Coated tool
JP2019520225A (en) * 2016-06-21 2019-07-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ CVD coated cutting tool
JP2022170884A (en) * 2021-04-30 2022-11-11 株式会社タンガロイ Coated cutting tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019004018A1 (en) * 2017-06-29 2019-01-03 京セラ株式会社 Coated tool, cutting tool, and method for manufacturing cut workpiece
CN111902230B (en) * 2018-01-29 2023-08-11 京瓷株式会社 Coated cutting tool and cutting tool provided with same
WO2019146784A1 (en) * 2018-01-29 2019-08-01 京セラ株式会社 Coated tool, and cutting tool comprising same
CN111655410B (en) * 2018-03-16 2023-01-10 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316758A (en) 1992-12-18 1994-11-15 Sandvik Ab Coating material body
JPH10204639A (en) 1997-01-13 1998-08-04 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP2002167639A (en) * 2000-11-24 2002-06-11 Aisin Seiki Co Ltd Cermet based sintered material for tool and its production method
JP2003025114A (en) 2001-07-16 2003-01-29 Toshiba Tungaloy Co Ltd Aluminium oxide coated cutting tool
WO2009096476A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
JP2009202264A (en) 2008-02-27 2009-09-10 Kyocera Corp Cutting tool and its manufacturing method
JP2013132717A (en) 2011-12-26 2013-07-08 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance and wear resistance
JP2014121739A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high speed intermittent cutting work

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE502223C2 (en) * 1994-01-14 1995-09-18 Sandvik Ab Methods and articles when coating a cutting tool with an alumina layer
KR100983551B1 (en) * 2004-07-29 2010-09-24 쿄세라 코포레이션 Surface coated cutting tool
SE528431C2 (en) * 2004-11-05 2006-11-14 Seco Tools Ab With aluminum oxide coated cutting tool inserts and method of making this
SE531670C2 (en) * 2007-02-01 2009-06-30 Seco Tools Ab Textured alpha-alumina coated cutting for metalworking
WO2009070107A1 (en) * 2007-11-28 2009-06-04 Sandvik Intellectual Property Ab Coated cutting tool insert
CN102753290A (en) * 2010-02-24 2012-10-24 京瓷株式会社 Cutting tool
JP5483110B2 (en) * 2010-09-30 2014-05-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP2570511B1 (en) * 2011-09-16 2019-03-20 Walter AG Grain boundary engineered alpha-alumina coated cutting tool
EP2799167B1 (en) 2011-12-27 2019-03-13 NSK Ltd. Spindle device
EP2818573B1 (en) * 2013-06-27 2016-02-03 Sandvik Intellectual Property AB Coated cutting tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316758A (en) 1992-12-18 1994-11-15 Sandvik Ab Coating material body
JPH10204639A (en) 1997-01-13 1998-08-04 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide in which hard coating layer has excellent chipping resistance
JP2002167639A (en) * 2000-11-24 2002-06-11 Aisin Seiki Co Ltd Cermet based sintered material for tool and its production method
JP2003025114A (en) 2001-07-16 2003-01-29 Toshiba Tungaloy Co Ltd Aluminium oxide coated cutting tool
WO2009096476A1 (en) * 2008-01-29 2009-08-06 Kyocera Corporation Cutting tool
JP2009202264A (en) 2008-02-27 2009-09-10 Kyocera Corp Cutting tool and its manufacturing method
JP2013132717A (en) 2011-12-26 2013-07-08 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance and wear resistance
JP2014121739A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high speed intermittent cutting work

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3085478A4

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10370758B2 (en) 2014-09-24 2019-08-06 Kyocera Corporation Coated tool
EP3199277A4 (en) * 2014-09-24 2018-05-16 KYOCERA Corporation Coated tool
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool
JP2019520225A (en) * 2016-06-21 2019-07-18 サンドビック インテレクチュアル プロパティー アクティエボラーグ CVD coated cutting tool
EP3315632A1 (en) * 2016-10-19 2018-05-02 Tungaloy Corporation Coated cutting tool
JP2018065220A (en) * 2016-10-19 2018-04-26 株式会社タンガロイ Coated cutting tool
JP6229911B1 (en) * 2016-10-19 2017-11-15 株式会社タンガロイ Coated cutting tool
EP3312303A1 (en) * 2016-10-21 2018-04-25 Tungaloy Corporation Coated cutting tool
CN107971506A (en) * 2016-10-21 2018-05-01 株式会社泰珂洛 Coated cutting tool
JP2018069417A (en) * 2016-11-02 2018-05-10 株式会社タンガロイ Coated cutting tool
JP6210346B1 (en) * 2016-11-02 2017-10-11 株式会社タンガロイ Coated cutting tool
JP6210347B1 (en) * 2016-11-04 2017-10-11 株式会社タンガロイ Coated cutting tool
US10072332B2 (en) * 2016-11-04 2018-09-11 Tungaloy Corporation Coated cutting tool
JP2018069434A (en) * 2016-11-04 2018-05-10 株式会社タンガロイ Coated cutting tool
JP2018075654A (en) * 2016-11-08 2018-05-17 株式会社タンガロイ Coated cutting tool
JP6210348B1 (en) * 2016-11-08 2017-10-11 株式会社タンガロイ Coated cutting tool
JP2022170884A (en) * 2021-04-30 2022-11-11 株式会社タンガロイ Coated cutting tool
JP7253153B2 (en) 2021-04-30 2023-04-06 株式会社タンガロイ coated cutting tools

Also Published As

Publication number Publication date
US20160326641A1 (en) 2016-11-10
CN105828991B (en) 2017-12-01
KR101822514B1 (en) 2018-01-26
JP5890594B2 (en) 2016-03-22
US10174421B2 (en) 2019-01-08
JPWO2015093530A1 (en) 2017-03-23
EP3085478B1 (en) 2019-04-10
EP3085478A4 (en) 2017-08-02
KR20160088351A (en) 2016-07-25
EP3085478A1 (en) 2016-10-26
CN105828991A (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5890594B2 (en) Coated tool
JP5902865B2 (en) Coated tool
CN108290223B (en) Cutting tool
JP5918457B1 (en) Coated tool
JP6419220B2 (en) Coated tool
JP6556246B2 (en) Coated tool
JP2015085417A (en) Coated tool
JP6522985B2 (en) Coated tools
JP5898394B1 (en) Coated tool
JP6039481B2 (en) Surface covering member
JP5864826B1 (en) Coated and cutting tools

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533334

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015991

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014872531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014872531

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15105110

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE