JP2017071044A - Surface cover cutting tool - Google Patents
Surface cover cutting tool Download PDFInfo
- Publication number
- JP2017071044A JP2017071044A JP2016019747A JP2016019747A JP2017071044A JP 2017071044 A JP2017071044 A JP 2017071044A JP 2016019747 A JP2016019747 A JP 2016019747A JP 2016019747 A JP2016019747 A JP 2016019747A JP 2017071044 A JP2017071044 A JP 2017071044A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thickness
- oriented
- crystal grains
- area ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 58
- 239000013078 crystal Substances 0.000 claims abstract description 141
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 238000013507 mapping Methods 0.000 claims abstract description 30
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 201
- 239000011248 coating agent Substances 0.000 claims description 41
- 238000000576 coating method Methods 0.000 claims description 41
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 238000001887 electron backscatter diffraction Methods 0.000 abstract description 13
- 238000001816 cooling Methods 0.000 abstract description 12
- 238000005498 polishing Methods 0.000 abstract description 8
- 239000010410 layer Substances 0.000 description 260
- 230000000694 effects Effects 0.000 description 27
- 239000000463 material Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 229910010037 TiAlN Inorganic materials 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000011195 cermet Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000000992 sputter etching Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910010060 TiBN Inorganic materials 0.000 description 1
- 229910008482 TiSiN Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Milling, Broaching, Filing, Reaming, And Others (AREA)
Abstract
Description
本発明は、表面被覆切削工具に関する。 The present invention relates to a surface-coated cutting tool.
従来から、基材上に被膜を形成した表面被覆切削工具が用いられている。たとえば、特開2013−063504号公報(特許文献1)には、Ti化合物層を下部層とし、この下部層上にα型の結晶構造を有するAl2O3層からなる上部層を配設した被膜を有する表面被覆切削工具が提案されている。特に、この表面被覆切削工具では、上部層の下部層との界面における(11−20)配向を30〜70面積%とし、上部層全体における(0001)配向を45面積%以上とした構成が開示されている。その一方で、α−Al2O3層の深さ方向における(001)配向の分布については開示がない。 Conventionally, a surface-coated cutting tool in which a film is formed on a substrate has been used. For example, in JP2013-063504A (Patent Document 1), a Ti compound layer is used as a lower layer, and an upper layer made of an Al 2 O 3 layer having an α-type crystal structure is disposed on the lower layer. Surface-coated cutting tools having a coating have been proposed. In particular, this surface-coated cutting tool has a configuration in which the (11-20) orientation at the interface between the upper layer and the lower layer is 30 to 70 area%, and the (0001) orientation in the entire upper layer is 45 area% or more. Has been. On the other hand, there is no disclosure about the distribution of (001) orientation in the depth direction of the α-Al 2 O 3 layer.
特開平10−204639号公報(特許文献2)には、異なったX線回折パターンを示す2層以上のα型酸化アルミニウム単位層からなり、α型酸化アルミニウム単位層が、2θで25.5度、35.5度、37.2度、および68.4度のいずれかに最強ピークが現われ、最強ピーク高さ(H1)と同じX線回折パターンにおける2番目のピーク高さ(H2)の比(H1)/(H2)が1.5〜2.7であるX線回折パターンを示すα型酸化アルミニウム複合層で構成された硬質被覆層を備える表面被覆超硬合金製切削工具が提案されている。 Japanese Patent Application Laid-Open No. 10-204439 (Patent Document 2) is composed of two or more α-type aluminum oxide unit layers exhibiting different X-ray diffraction patterns, and the α-type aluminum oxide unit layer is 25.5 degrees at 2θ. , 35.5 degrees, 37.2 degrees, and 68.4 degrees, the strongest peak appears, and the second peak height (H 2 ) in the same X-ray diffraction pattern as the strongest peak height (H 1 ) Cutting tool made of surface-coated cemented carbide comprising a hard coating layer composed of an α-type aluminum oxide composite layer exhibiting an X-ray diffraction pattern with a ratio (H 1 ) / (H 2 ) of 1.5 to 2.7 Has been proposed.
特開2000−218410号公報(特許文献3)には、結晶配向が高い下部層と結晶配向が低い上部層からなり、上部層の層厚を、下部層との合計に占める割合で10〜40%に相当する層厚としたα型結晶構造の酸化アルミニウム層を含む硬質被覆層を備えた表面被覆超硬合金製切削工具が提案されている。 Japanese Patent Laid-Open No. 2000-218410 (Patent Document 3) is composed of a lower layer having a high crystal orientation and an upper layer having a low crystal orientation, and the thickness of the upper layer is 10 to 40 in a ratio to the total of the lower layer. A surface-coated cemented carbide cutting tool having a hard coating layer including an aluminum oxide layer having an α-type crystal structure with a layer thickness corresponding to% is proposed.
上記特許文献1〜3で提案されるように、α−Al2O3の膜質改良を図ることにより、超硬合金からなる切削工具の性能向上、特に耐クレーター摩耗性および耐チッピング性を向上させることが期待されている。しかしながら膜質改良に関し、上記特許文献1のように、Al2O3の結晶粒の特定方向への配向性に着目する限りでは、膜強度が向上する効果が得られる一方で、様々な問題を包含することとなる。 As proposed in Patent Documents 1 to 3 above, by improving the film quality of α-Al 2 O 3 , the performance of cutting tools made of cemented carbide is improved, particularly crater wear resistance and chipping resistance are improved. It is expected that. However, regarding film quality improvement, as long as attention is paid to the orientation of Al 2 O 3 crystal grains in a specific direction as in Patent Document 1, the effect of improving the film strength can be obtained, but various problems are included. Will be.
たとえば、α−Al2O3の結晶粒の(001)配向は、基材表面と平行な方向に対して熱膨張係数が高くなる傾向を示すため、成膜後の冷却時に被膜に亀裂が多数発生する恐れがある。また、(001)配向するα−Al2O3の結晶粒は、速度の速い条件下で成長が進むため、結晶粒が粗大化し耐摩耗性が低下する恐れもある。一方で、上記特許文献2、3のように配向性の異なる複数のAl2O3の結晶粒を含んだ被膜に着目する限りでは、特定方向(たとえば、(001)面方向)へ配向するα−Al2O3の結晶粒の割合が低くなるため、膜強度が向上する効果を十分に得ることが困難となる。 For example, the (001) orientation of α-Al 2 O 3 crystal grains tends to have a higher coefficient of thermal expansion in the direction parallel to the substrate surface, so that there are many cracks in the coating during cooling after film formation. May occur. In addition, (001) -oriented α-Al 2 O 3 crystal grains grow under high-speed conditions, so that the crystal grains may become coarse and wear resistance may be reduced. On the other hand, as long as the film including a plurality of crystal grains of Al 2 O 3 having different orientations is focused as in Patent Documents 2 and 3 , α oriented in a specific direction (for example, (001) plane direction) since the grain fraction of -al 2 O 3 decreases, it becomes difficult to obtain the effect of improving the film strength sufficiently.
本発明は、上記実情に鑑みてなされ、膜強度が向上する効果を十分に得た上で、結晶粒の粗大化を防ぎ、冷却時の被膜の亀裂発生を防ぐことが可能な表面被覆切削工具を提供することを目的とする。 The present invention has been made in view of the above circumstances and is a surface-coated cutting tool capable of preventing the coarsening of crystal grains and preventing the occurrence of cracks in the coating during cooling after sufficiently obtaining the effect of improving the film strength. The purpose is to provide.
本発明の一態様に係る表面被覆切削工具は、基材と該基材上に形成された被膜とを備え、該被膜は、複数のα−Al2O3の結晶粒を含んだα−Al2O3層を含み、該α−Al2O3層は、該基材側に配置された下層部と、該下層部上に配置された中間部と、該中間部上に配置された上層部とを含み、該下層部は、前記α−Al2O3層の断面研磨面に対する電子線後方散乱回折装置を用いた結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、該中間部は、該結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となり、該上層部は、該結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、該α−Al2O3層の厚みは、4〜18μmであり、該中間部の厚みは、該α−Al2O3層の厚みの50%以上を占め、該下層部および該上層部の厚みはいずれも1μm以上である。 The surface-coated cutting tool according to an aspect of the present invention includes a base material and a coating formed on the base material, and the coating includes α-Al containing a plurality of α-Al 2 O 3 crystal grains. include 2 O 3 layer, said the alpha-Al 2 O 3 layer, a lower layer portion disposed on the substrate side, and an intermediate portion disposed on the lower layer portion on the upper layer disposed on the intermediate portion In the crystal orientation mapping using an electron beam backscattering diffractometer with respect to the cross-sectional polished surface of the α-Al 2 O 3 layer, the lower layer portion is a (001) -oriented α-Al 2 O 3 crystal The area ratio of the grains is less than 35%, and the intermediate portion has an area ratio of the (001) -oriented α-Al 2 O 3 crystal grains of 35% or more in the crystal orientation mapping, In the crystal orientation mapping, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains is less than 35%, The thickness of the α-Al 2 O 3 layer is 4 to 18 μm, the thickness of the intermediate portion occupies 50% or more of the thickness of the α-Al 2 O 3 layer, and the lower layer portion and the upper layer portion Each thickness is 1 μm or more.
上記によれば、膜強度が向上する効果を十分に得た上で、結晶粒の粗大化を防ぎ、冷却時の被膜の亀裂発生を防ぐことができる。 According to the above, after sufficiently obtaining the effect of improving the film strength, it is possible to prevent the crystal grains from becoming coarse and to prevent the coating from cracking during cooling.
[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.
[1]本発明の一態様に係る表面被覆切削工具は、基材と該基材上に形成された被膜とを備え、該被膜は、複数のα−Al2O3の結晶粒を含んだα−Al2O3層を含み、該α−Al2O3層は、該基材側に配置された下層部と、該下層部上に配置された中間部と、該中間部上に配置された上層部とを含み、該下層部は、前記α−Al2O3層の断面研磨面に対する電子線後方散乱回折装置を用いた結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、該中間部は、該結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となり、該上層部は、該結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、該α−Al2O3層の厚みは、4〜18μmであり、該中間部の厚みは、該α−Al2O3層の厚みの50%以上を占め、該下層部および該上層部の厚みはいずれも1μm以上である。このような構成により表面被覆切削工具は、膜強度が向上する効果を十分に得た上で、結晶粒の粗大化を防ぎ、冷却時の被膜の亀裂発生を防ぐことができる。 [1] A surface-coated cutting tool according to an aspect of the present invention includes a base material and a coating film formed on the base material, and the coating film includes a plurality of α-Al 2 O 3 crystal grains. an α-Al 2 O 3 layer, the α-Al 2 O 3 layer being disposed on the intermediate portion, a lower layer portion disposed on the substrate side, an intermediate portion disposed on the lower layer portion, and The lower layer portion is formed of (001) -oriented α-Al 2 O in crystal orientation mapping using an electron beam backscattering diffractometer with respect to the cross-sectional polished surface of the α-Al 2 O 3 layer. 3 is less than 35%, and the intermediate portion has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 35% or more in the crystal orientation mapping. In the crystal orientation mapping, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains is less than 35%. The thickness of the α-Al 2 O 3 layer is 4 to 18 μm, the thickness of the intermediate portion occupies 50% or more of the thickness of the α-Al 2 O 3 layer, and the lower layer portion and the upper layer The thickness of each part is 1 μm or more. With such a configuration, the surface-coated cutting tool can sufficiently obtain the effect of improving the film strength, prevent coarsening of crystal grains, and prevent the coating from cracking during cooling.
[2]上記下層部は、上記結晶方位マッピングにおいて、(110)配向したα−Al2O3の結晶粒の面積比率が40%以上となることが好ましい。これにより、結晶粒の粗大化を抑制する効果を高めることができる。 [2] In the lower layer part, the area ratio of (110) -oriented α-Al 2 O 3 crystal grains is preferably 40% or more in the crystal orientation mapping. Thereby, the effect which suppresses the coarsening of a crystal grain can be heightened.
[3]上記上層部は、上記結晶方位マッピングにおいて、(110)配向したα−Al2O3の結晶粒の面積比率が40%以上となることが好ましい。これにより、冷却時の被膜の亀裂発生を抑制する効果を高めることができる。 [3] In the above-mentioned crystal orientation mapping, the upper layer part preferably has an area ratio of (110) -oriented α-Al 2 O 3 crystal grains of 40% or more. Thereby, the effect which suppresses the crack generation of the film at the time of cooling can be heightened.
[本発明の実施形態の詳細]
以下、本発明の実施形態(以下「本実施形態」とも記す)についてさらに詳細に説明する。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention (hereinafter also referred to as “present embodiments”) will be described in more detail.
<表面被覆切削工具>
本実施形態の表面被覆切削工具は、基材と該基材上に形成された被膜とを備える。被膜は、基材の全面を被覆することが好ましい。しかしながら、基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても、本発明の範囲を逸脱するものではない。
<Surface coated cutting tool>
The surface-coated cutting tool of this embodiment includes a base material and a coating film formed on the base material. The coating preferably covers the entire surface of the substrate. However, even if a part of the substrate is not coated with this coating or the configuration of the coating is partially different, it does not depart from the scope of the present invention.
本実施形態の表面被覆切削工具は、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどの切削工具として好適に使用することができる。 The surface-coated cutting tool of the present embodiment includes a drill, an end mill, a cutting edge replaceable cutting tip for a drill, a cutting edge replaceable cutting tip for an end mill, a cutting edge replaceable cutting tip for milling, a cutting edge replaceable cutting tip for turning, a metal saw, It can be suitably used as a cutting tool such as a gear cutting tool, reamer, or tap.
<基材>
基材は、この種の基材として従来公知のものであればいずれも使用することができる。たとえば、超硬合金(たとえば、WC基超硬合金、WCのほか、Coを含み、あるいはTi、Ta、Nbなどの炭窒化物を添加したものも含む)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
<Base material>
Any substrate can be used as long as it is conventionally known as this type of substrate. For example, cemented carbide (for example, WC-based cemented carbide, including WC, including Co or containing carbonitride such as Ti, Ta, Nb), cermet (TiC, TiN, TiCN, etc.) Main component), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cubic boron nitride sintered body, or diamond sintered body Is preferred.
これらの各種基材の中でも超硬合金、特にWC基超硬合金、またはサーメット(特にTiCN基サーメット)を選択することが好ましい。これらの基材は、特に高温における硬度と強度のバランスに優れ、上記用途の表面被覆切削工具の基材として優れた特性を有している。 Among these various substrates, it is preferable to select a cemented carbide, particularly a WC-based cemented carbide, or a cermet (particularly a TiCN-based cermet). These base materials are particularly excellent in the balance between hardness and strength at high temperatures, and have excellent characteristics as base materials for surface-coated cutting tools for the above applications.
表面被覆切削工具が刃先交換型切削チップなどである場合、基材はチップブレーカーを有するものも、有さないものも含まれる。また、刃先稜線部は、その形状がシャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、ホーニングとネガランドを組み合わせたものの中で、いずれのものも含まれる。 When the surface-coated cutting tool is a blade-tip-exchangeable cutting tip or the like, the substrate includes those having a chip breaker and those having no chip breaker. The edge of the edge of the blade edge is sharp edge (the ridge where the rake face and flank face intersect), honing (the sharp edge is given a radius), negative land (the chamfered), honing and negative land. Any combination of these is included.
<被膜>
被膜は、複数のα−Al2O3(結晶構造がα型である酸化アルミニウム)の結晶粒を含んだα−Al2O3層を含む。たとえば被膜は、複数のα−Al2O3の結晶粒を含んだα−Al2O3層を1層以上含み、さらに他の層を含んだ複数の層から構成することができる。α−Al2O3層は、複数のα−Al2O3の結晶粒を含んだ多結晶のα−Al2O3を含んでいる。α−Al2O3の結晶粒は通常、約0.1〜2μm程度の大きさの粒径を持つ。
<Coating>
The coating includes an α-Al 2 O 3 layer containing crystal grains of a plurality of α-Al 2 O 3 (aluminum oxide whose crystal structure is α-type). For example, the coating film may be composed of a plurality of layers including one or more α-Al 2 O 3 layers including a plurality of α-Al 2 O 3 crystal grains and further including other layers. α-Al 2 O 3 layer contains the α-Al 2 O 3 of containing crystal grains of a plurality of α-Al 2 O 3 polycrystal. The crystal grains of α-Al 2 O 3 usually have a grain size of about 0.1 to 2 μm.
被膜は、厚みが4〜45μm(4μm以上45μm以下、なお本願において数値範囲を「〜」を用いて表わす場合、その範囲は上限および下限の数値を含むものとする)である。さらに被膜の厚みは、5〜35μmであることが好適である。この厚みが4μm未満であれば、耐摩耗性が不十分となる恐れがある。この厚みが45μmを超えると、断続加工などにおいて被膜と基材との間に大きな応力が加わった際に、被膜の剥離または破壊が高頻度に発生する恐れがある。なお、本明細書において被膜、後述するα−Al2O3層、TiCN層など各種の膜および層の「厚み」とは、「平均厚み」を意味する。 The coating has a thickness of 4 to 45 μm (4 μm or more and 45 μm or less, and in the present application, when the numerical range is expressed using “˜”, the range includes upper and lower numerical values). Furthermore, the thickness of the coating is preferably 5 to 35 μm. If this thickness is less than 4 μm, the wear resistance may be insufficient. When this thickness exceeds 45 μm, when a large stress is applied between the coating and the substrate in intermittent processing or the like, peeling or destruction of the coating may occur frequently. In the present specification, “thickness” of various films and layers such as a coating, an α-Al 2 O 3 layer and a TiCN layer described later mean “average thickness”.
上記他の層として、TiCNO層、TiBN層、TiC層、TiN層、TiAlN層、TiSiN層、AlCrN層、TiAlSiN層、TiAlNO層、AlCrSiCN層、TiCN層、TiSiC層、CrSiN層、AlTiSiCO層、TiSiCN層などを例示することができる。ここで本明細書において上記のように化合物を化学式で表わすとき、原子比を特に限定しない場合は従来公知のあらゆる原子比を含み、必ずしも化学量論的範囲のものに限定されない。 As the other layers, TiCNO layer, TiBN layer, TiC layer, TiN layer, TiAlN layer, TiSiN layer, AlCrN layer, TiAlSiN layer, TiAlNO layer, AlCrSiCN layer, TiCN layer, TiSiC layer, CrSiN layer, AlTiSiCO layer, TiSiCN layer Etc. can be illustrated. Here, in the present specification, when the compound is represented by a chemical formula as described above, when the atomic ratio is not particularly limited, any conventionally known atomic ratio is included, and is not necessarily limited to the stoichiometric range.
たとえば「TiAlN」と記載されている場合、TiAlNを構成する原子数の比はTi:Al:N=0.5:0.5:1に限られず、従来公知のあらゆる原子比が含まれる。このことは、「TiAlN」以外の化合物の記載についても同様である。また、本実施形態において、Ti、Al、Si、ZrまたはCrなどの金属元素と、N(窒素)、O(酸素)またはC(炭素)などの非金属元素とは、必ずしも化学量論的な組成を構成している必要がない。 For example, when “TiAlN” is described, the ratio of the number of atoms constituting TiAlN is not limited to Ti: Al: N = 0.5: 0.5: 1, and any conventionally known atomic ratio is included. The same applies to the description of compounds other than “TiAlN”. In the present embodiment, a metal element such as Ti, Al, Si, Zr, or Cr and a non-metal element such as N (nitrogen), O (oxygen), or C (carbon) are not necessarily stoichiometric. There is no need to constitute the composition.
他の層の例示としてたとえば、TiCN層は、α−Al2O3層と基材との間に配置される。このTiCN層は耐摩耗性に優れるため、被膜により好適な耐摩耗性を付与することができる。TiCN層は、とりわけMT−CVD(medium temperature CVD)法により形成することが好ましい。MT−CVD法は約850〜900℃という比較的低温で成膜することができ、成膜時の加熱による基材のダメージを低減することができる。 As an example of another layer, for example, a TiCN layer is disposed between the α-Al 2 O 3 layer and the substrate. Since this TiCN layer is excellent in wear resistance, it is possible to impart suitable wear resistance to the coating. The TiCN layer is particularly preferably formed by MT-CVD (medium temperature CVD). The MT-CVD method can form a film at a relatively low temperature of about 850 to 900 ° C., and can reduce damage to the substrate due to heating during film formation.
TiCN層は、その厚みが2〜20μmであることが望ましい。この厚みを2μm未満とすれば摩耗が進みやすくなる恐れがある。この厚みが20μmを超えると耐チッピング性が低下する恐れがある。 The TiCN layer desirably has a thickness of 2 to 20 μm. If this thickness is less than 2 μm, the wear may be likely to proceed. If this thickness exceeds 20 μm, chipping resistance may be reduced.
なお他の層として、最表面層および中間層なども被膜に含むことができる。最表面層は、被膜の最も表面側に配置される層である。中間層は、この最表面層とα−Al2O3層との間、α−Al2O3層とTiCN層の間またはTiCN層と基材との間などに配置される層である。最表面層としてたとえば、TiN層を例示することができる。中間層としてたとえば、TiCNO層を例示することができる。 As other layers, an outermost surface layer, an intermediate layer, and the like can be included in the coating. The outermost surface layer is a layer disposed on the outermost surface side of the coating. The intermediate layer is a layer disposed between the outermost surface layer and the α-Al 2 O 3 layer, between the α-Al 2 O 3 layer and the TiCN layer, or between the TiCN layer and the substrate. For example, a TiN layer can be exemplified as the outermost surface layer. For example, a TiCNO layer can be exemplified as the intermediate layer.
<α−Al2O3層>
α−Al2O3層は、基材側に配置された下層部と、下層部上に配置された中間部と、中間部上に配置された上層部とを含む。
<Α-Al 2 O 3 layer>
The α-Al 2 O 3 layer includes a lower layer portion disposed on the base material side, an intermediate portion disposed on the lower layer portion, and an upper layer portion disposed on the intermediate portion.
下層部は、α−Al2O3層の断面研磨面に対する電子線後方散乱回折(EBSD:Electron BackScatter Diffraction)装置を用いた結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となる。 Lower section, electron backscatter diffraction to its section polishing surface of the α-Al 2 O 3 layer (EBSD: Electron Backscatter Diffraction) in the crystal orientation mapping using the apparatus, (001) crystal oriented α-Al 2 O 3 The area ratio of the grains is less than 35%.
中間部は、上記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となる。上層部は、上記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となる。 In the intermediate part, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains is 35% or more in the crystal orientation mapping. In the upper layer portion, the area ratio of (001) -oriented α-Al 2 O 3 crystal grains is less than 35% in the above-described crystal orientation mapping.
本実施形態の表面被覆切削工具は、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となる中間部により、α−Al2O3層の特定方向((001)面方向)への配向性によって膜強度が向上する効果を十分に得ることができる。さらに、下層部の(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となるので、α−Al2O3の結晶粒の粗大化を防ぐことができ、耐摩耗性の低下を抑制することができる。また、上層部の(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となるので、冷却時の被膜の亀裂発生を防ぐことができ、耐チッピング性の低下を抑制することができる。すなわち、このような下層部および上層部を備えることにより、α−Al2O3層の(001)面方向への配向性が高すぎることのデメリットであるα−Al2O3の結晶粒の粗大化および冷却時の被膜の亀裂発生を抑制することができる。 The surface-coated cutting tool of the present embodiment has a specific direction of the α-Al 2 O 3 layer ((001) due to the intermediate portion in which the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains is 35% or more. The effect of improving the film strength due to the orientation in the () -plane direction) can be sufficiently obtained. Furthermore, since the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the lower layer is less than 35%, the α-Al 2 O 3 crystal grains can be prevented from becoming coarse and wear-resistant. Deterioration can be suppressed. In addition, since the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the upper layer portion is less than 35%, it is possible to prevent cracking of the coating during cooling and to suppress a reduction in chipping resistance. can do. That is, by providing such a lower layer portion and an upper layer portion, the α-Al 2 O 3 crystal grains, which is a disadvantage that the orientation in the (001) plane direction of the α-Al 2 O 3 layer is too high, Generation of cracks in the coating during coarsening and cooling can be suppressed.
ここで、「(001)配向したα−Al2O3の結晶粒」とは、基材表面(被膜表面側に位置する表面とする)の法線に対し、(001)面の傾斜角(基材表面の法線と(001)面の法線とがなす角度)が0〜10°となるα−Al2O3の結晶粒をいう。α−Al2O3層において、任意のα−Al2O3の結晶粒が(001)配向しているか否かは、EBSD装置を備えた電界放出型走査型電子顕微鏡(FE−SEM)を用いて確認することができる。EBSDとは、後方散乱電子によって発生する菊池回折パターンの自動分析に基づくものである。 Here, “(001) -oriented α-Al 2 O 3 crystal grains” refers to the inclination angle of the (001) plane with respect to the normal of the substrate surface (the surface located on the coating surface side) ( An α-Al 2 O 3 crystal grain having an angle between the normal of the substrate surface and the (001) plane normal) of 0 to 10 °. Whether or not any α-Al 2 O 3 crystal grains are (001) -oriented in the α-Al 2 O 3 layer is determined by using a field emission scanning electron microscope (FE-SEM) equipped with an EBSD device. Can be confirmed. EBSD is based on automatic analysis of Kikuchi diffraction patterns generated by backscattered electrons.
たとえば、EBSD装置を備えたFE−SEMを用い、基材表面の法線を含む平面でα−Al2O3層を切断した切断面(α−Al2O3層の垂直断面)である断面研磨面(断面研磨面が、該切断面の研磨されてなる面であることは後述する)を撮影する。次に、撮影画像の各ピクセルの(001)面の法線方向と、基材表面の法線方向(すなわち断面研磨面におけるα−Al2O3層の厚み方向に平行となる直線方向)とのなす角度を算出する。そして、その角度が0〜10°以内となるピクセルを選択する。この選択されたピクセルが、基材表面に対して(001)面の傾斜角が0〜10°となるα−Al2O3の結晶粒、すなわち(001)配向したα−Al2O3の結晶粒に対応する。 For example, using FE-SEM equipped with the EBSD apparatus, a cut surface obtained by cutting the α-Al 2 O 3 layer a plane including the normal of the substrate surface (a vertical cross section of the α-Al 2 O 3 layer) section A polished surface (the cross-section polished surface is a surface obtained by polishing the cut surface will be described later) is photographed. Next, the normal direction of the (001) plane of each pixel of the photographed image and the normal direction of the substrate surface (that is, a linear direction parallel to the thickness direction of the α-Al 2 O 3 layer on the cross-section polished surface) The angle formed by is calculated. Then, a pixel whose angle is within 0 to 10 ° is selected. The selected pixel has α-Al 2 O 3 crystal grains with an inclination angle of (001) plane of 0 to 10 ° with respect to the substrate surface, that is, (001) -oriented α-Al 2 O 3 . Corresponds to crystal grains.
そして、α−Al2O3層の断面研磨面の所定領域における(001)配向したα−Al2O3の結晶粒の面積比率は、結晶方位マッピングとして、断面研磨面のα−Al2O3層に対し、上記選択されたピクセルを色分けすることで作成されるカラーマップに基づいて算出される。結晶方位マッピングでは、上記選択されたピクセルに予め定められた色が付与されているため、所定領域における(001)配向したα−Al2O3の結晶粒の面積比率を、その付与された色を指標にして算出することができる。上記なす角度の算出、該角度が0〜10°以内であるピクセルの選択、および上記面積比率の算出は、市販のソフトウェア(商品名:「Orientation Imaging Microscopy Ver 6.2」、EDAX社製)を用いて行なうことができる。 Then, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in a predetermined region of the cross-sectional polished surface of the α-Al 2 O 3 layer is expressed as α-Al 2 O of the cross-sectional polished surface as crystal orientation mapping. It is calculated based on a color map created by color-coding the selected pixels for the three layers. In the crystal orientation mapping, since a predetermined color is given to the selected pixel, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in a predetermined region is set to the given color. It can be calculated using as an index. Calculation of the angle formed above, selection of a pixel whose angle is within 0 to 10 °, and calculation of the area ratio are performed using commercially available software (trade name: “Orientation Imaging Microscopy Ver 6.2”, manufactured by EDAX). Can be used.
上記結晶方位マッピングから、本実施形態においてα−Al2O3層は、その断面研磨面において基材側に配置され、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となる下層部を含むことが特定される。また、この下層部上に配置され、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となる中間部を含むことが特定される。さらに、この中間部上に配置され、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満の上層部を含むことが特定される。なお、(001)配向したα−Al2O3の結晶粒の面積比率を算出するにあたり、FE−SEMの観察倍率を2000〜20000倍の範囲から適宜選択することができる。また観察面積も200〜10000μm2、たとえば250μm2となるように視野数(1〜10程度)を調整することができる。 From the above crystal orientation mapping, in this embodiment, the α-Al 2 O 3 layer is disposed on the substrate side in the cross-sectional polished surface, and the (001) -oriented α-Al 2 O 3 crystal grain area ratio is 35. It is specified that the lower layer part which becomes less than% is included. Further, it is specified to include an intermediate portion that is disposed on this lower layer portion and has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 35% or more. Furthermore, it is specified that the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains disposed on the intermediate portion includes an upper layer portion of less than 35%. In calculating the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains, the FE-SEM observation magnification can be appropriately selected from the range of 2000 to 20000 times. In addition, the number of fields of view (about 1 to 10) can be adjusted so that the observation area is 200 to 10,000 μm 2 , for example, 250 μm 2 .
下層部は、上記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が30%以下となることが好ましい。α−Al2O3の結晶粒の粗大化を効果的に防ぐことができるからである。中間部は、上記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が40%以上となることが好ましい。(001)面方向へ配向することによって膜強度が向上する効果を十分有利に得ることができるからである。上層部は、上記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が30%以下となることが好ましい。冷却時並びに使用時の被膜の亀裂発生を効果的に防ぐことができるからである。 The lower layer portion preferably has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 30% or less in the crystal orientation mapping. This is because the coarsening of α-Al 2 O 3 crystal grains can be effectively prevented. The intermediate portion preferably has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 40% or more in the crystal orientation mapping. This is because the effect of improving the film strength can be obtained sufficiently advantageously by orienting in the (001) plane direction. In the above crystal orientation mapping, the upper layer portion preferably has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 30% or less. This is because cracks in the coating during cooling and use can be effectively prevented.
なお、上記結晶方位マッピングにおいて、下層部の(001)配向したα−Al2O3の結晶粒の面積比率の下限値は0%であることが好ましい。中間部の(001)配向したα−Al2O3の結晶粒の面積比率の上限値は100%であることが好ましい。上層部の(001)配向したα−Al2O3の結晶粒の面積比率の下限値は0%であることが好ましい。各層部は、このような面積比率の範囲において、それぞれ上記効果を得ることができる。 In the crystal orientation mapping, the lower limit of the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the lower layer is preferably 0%. The upper limit of the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the middle is preferably 100%. The lower limit of the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the upper layer portion is preferably 0%. Each layer portion can obtain the above-described effects within such an area ratio range.
<α−Al2O3層の厚み>
α−Al2O3層は、厚みが4〜18μmである。このような厚みとすることにより、耐摩耗性、耐チッピング性を向上させることができる。被削材の溶着を抑制する効果を得ることもできる。特に、α−Al2O3層の厚みは、5〜15μmであることが好ましい。α−Al2O3層の厚みを4μm未満とすれば薄すぎて、耐摩耗性の向上効果および被削材の溶着を抑制する効果が得られない恐れがある。α−Al2O3層の厚みが18μmを超えると、厚すぎて被膜が剥離しやすくなり、耐チッピング性が低下する恐れがある。
<Thickness of α-Al 2 O 3 layer>
The α-Al 2 O 3 layer has a thickness of 4 to 18 μm. By setting it as such thickness, abrasion resistance and chipping resistance can be improved. An effect of suppressing welding of the work material can also be obtained. In particular, the thickness of the α-Al 2 O 3 layer is preferably 5 to 15 μm. If the thickness of the α-Al 2 O 3 layer is less than 4 μm, it is too thin, and there is a possibility that the effect of improving the wear resistance and the effect of suppressing the welding of the work material cannot be obtained. If the thickness of the α-Al 2 O 3 layer exceeds 18 μm, the coating is easily peeled off and the chipping resistance may be lowered.
<中間部の厚みがα−Al2O3層の厚みにおいて占める比率>
中間部の厚みは、α−Al2O3層の厚みの50%以上を占める。これにより、α−Al2O3層全体における(001)配向したα−Al2O3の結晶粒の面積比率が高まり、膜強度が向上する効果を十分に得ることができる。中間部の厚みが占める比率の上限値は、80%である。上限値である80%を超えると、上層部または下層部の厚みが薄すぎることとなり、α−Al2O3の結晶粒の粗大化を抑制する効果または亀裂発生を抑制する効果が十分に得られなくなる恐れがある。中間部の最適な厚みは、α−Al2O3層の厚みの55〜65%である。
<Ratio of the thickness of the intermediate portion in the thickness of the α-Al 2 O 3 layer>
The thickness of the intermediate portion occupies 50% or more of the thickness of the α-Al 2 O 3 layer. Thereby, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the entire α-Al 2 O 3 layer is increased, and the effect of improving the film strength can be sufficiently obtained. The upper limit of the ratio occupied by the thickness of the intermediate portion is 80%. When the upper limit of 80% is exceeded, the thickness of the upper layer portion or the lower layer portion is too thin, and the effect of suppressing the coarsening of the α-Al 2 O 3 crystal grains or the effect of suppressing crack generation is sufficiently obtained. There is a risk of being lost. The optimum thickness of the intermediate part is 55 to 65% of the thickness of the α-Al 2 O 3 layer.
ここで、下層部、中間部および上層部の厚みは、次のようにして算出することができる。すなわち、上記断面研磨面に対し、基材表面の法線方向に沿って、α−Al2O3層の表面(被膜表面側に位置する表面とする)から基材へ向けて順に、EBSD装置を備えたFE−SEMで1×1μmの範囲を撮影し、(001)配向したα−Al2O3の結晶粒の面積比率を算出していく。まず、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となる領域を上層部として特定する。続けて、35%以上となる領域が現れたら中間部と特定し、その後再び35%未満となる領域が現れたら下層部と特定する。下層部、中間部および上層部が特定されたら、続けて断面研磨面上の特定した各部の偏らない5か所で、上記FE−SEMによる1×1μmの範囲の撮影を再び行なうことにより、各層部の厚みを決定することができる。 Here, the thickness of the lower layer portion, the middle portion, and the upper layer portion can be calculated as follows. That is, the EBSD device sequentially from the surface of the α-Al 2 O 3 layer (the surface located on the coating surface side) to the substrate along the normal direction of the substrate surface with respect to the cross-section polished surface. The area of 1 × 1 μm is photographed with an FE-SEM equipped with a (001) -oriented α-Al 2 O 3 crystal grain area ratio. First, a region where the area ratio of (001) -oriented α-Al 2 O 3 crystal grains is less than 35% is specified as an upper layer portion. Subsequently, when a region that is 35% or more appears, the intermediate portion is specified, and when a region that is less than 35% appears again, the lower portion is specified. When the lower layer portion, the middle portion, and the upper layer portion are specified, each of the specified layers on the cross-sectional polished surface is continuously imaged in the 1 × 1 μm range by the above-mentioned FE-SEM at five locations where the specified portions are not biased. The thickness of the part can be determined.
その結果、本実施形態において中間部の厚みは、α−Al2O3層の厚みの50%以上を占めるようになる。さらに、下層部および上層部の厚みはいずれも1μm以上となる。 As a result, in the present embodiment, the thickness of the intermediate portion occupies 50% or more of the thickness of the α-Al 2 O 3 layer. Furthermore, the thickness of both the lower layer part and the upper layer part is 1 μm or more.
また、α−Al2O3層の厚みは、上記断面研磨面を観察することにより測定することができる。たとえば、α−Al2O3層の厚みは、エネルギー分散型X線分析装置(EDS:Energy Dispersive X−ray Spectroscpy)を備えた電界放出型走査電子顕微鏡(FE−SEM)を用い、α−Al2O3層の断面研磨面を観察することにより測定することができる。複数箇所のα−Al2O3層の断面研磨面を観察し、その厚みの平均値を算出することによって決定すればよい。そして、本実施形態では、α−Al2O3層は、厚みが4〜18μmとなる。 Further, the thickness of the α-Al 2 O 3 layer can be measured by observing the cross-section polished surface. For example, the thickness of the α-Al 2 O 3 layer is determined using a field emission scanning electron microscope (FE-SEM) equipped with an energy dispersive X-ray spectroscopy (EDS). It can be measured by observing the cross-section polished surface of the 2 O 3 layer. Observing the cross section polishing surface of the α-Al 2 O 3 layer at a plurality of locations may be determined by calculating the average value of the thickness. In the present embodiment, the α-Al 2 O 3 layer has a thickness of 4 to 18 μm.
<下層部および上層部における(110)配向したα−Al2O3の結晶粒>
上記α−Al2O3層の下層部は、上記結晶方位マッピングにおいて、(110)配向したα−Al2O3の結晶粒の面積比率が40%以上となることが好ましい。α−Al2O3の熱膨張率は(110)面の法線方向で高く、平行な方向では低い。そのために下層部の熱膨張率を相対的に低くすることで、冷却時の被膜の亀裂発生を効果的に防ぐことができ、耐チッピング性の低下を有利に抑制することができるからである。また、(001)配向を得るための成膜条件下において、α−Al2O3の結晶粒は粗大化しやすいことから、(001)配向ではないα−Al2O3層を配置し、これを抑制しようとするからである。これにより、α−Al2O3の結晶粒の粗大化による硬度低下を効果的に防ぐことができ、耐摩耗性の低下を有利に抑制することができる。
<Crystal grains of (110) -oriented α-Al 2 O 3 in the lower layer and the upper layer>
In the lower layer portion of the α-Al 2 O 3 layer, the area ratio of (110) -oriented α-Al 2 O 3 crystal grains is preferably 40% or more in the crystal orientation mapping. The coefficient of thermal expansion of α-Al 2 O 3 is high in the normal direction of the (110) plane and low in the parallel direction. For this reason, by making the coefficient of thermal expansion of the lower layer portion relatively low, it is possible to effectively prevent cracking of the coating during cooling, and to advantageously suppress a reduction in chipping resistance. Further, since the α-Al 2 O 3 crystal grains are likely to be coarsened under the film forming conditions for obtaining the (001) orientation, an α-Al 2 O 3 layer not having the (001) orientation is disposed. It is because it tries to suppress. Thus, the hardness decreases due to crystal grain coarsening of α-Al 2 O 3 it is possible to effectively prevent, can be advantageously suppress a decrease in wear resistance.
また、上記α−Al2O3層の上層部は、上記結晶方位マッピングにおいて、(110)配向したα−Al2O3の結晶粒の面積比率が40%以上となることが好ましい。これにより、使用時の被膜の亀裂発生を効果的に防ぐことができ、耐チッピング性の低下を有利に抑制することができる。 The upper layer part of the α-Al 2 O 3 layer preferably has an area ratio of (110) -oriented α-Al 2 O 3 crystal grains of 40% or more in the crystal orientation mapping. Thereby, the crack generation | occurrence | production of the film at the time of use can be prevented effectively, and the fall of chipping resistance can be suppressed advantageously.
配向する結晶面同士のなす角度(方位差)が大きいほど、亀裂が進展しにくくなって刃先のチッピングを抑制する効果が得られると考えられる。そのため、配向する結晶面同士のなす角度が90°前後である結晶粒が層中で共存するとき、亀裂発生と進展の抑制効果を効果的に得ることができる可能性がある。 It is considered that as the angle (orientation difference) formed between the crystal planes to be oriented is larger, the crack is less likely to progress and the effect of suppressing chipping of the blade edge can be obtained. Therefore, when crystal grains having an angle between oriented crystal planes of around 90 ° coexist in the layer, there is a possibility that the effect of suppressing crack generation and propagation can be effectively obtained.
そして、α−Al2O3の結晶粒の(110)面は、(001)面とのなす角度が90°となる。このため、本実施形態では、(001)配向したα−Al2O3の結晶粒を有する下層部および上層部において、(110)配向するα−Al2O3の結晶粒を有するように制御し、亀裂発生の抑制効果と結晶粒の粗大化の抑制効果とを得ることができるようにした。 The angle formed between the (110) plane of the α-Al 2 O 3 crystal grains and the (001) plane is 90 °. Therefore, in the present embodiment, (001) in the lower portion and an upper portion having a grain oriented α-Al 2 O 3, controlled to have a crystal grain of α-Al 2 O 3 oriented (110) Thus, it is possible to obtain the effect of suppressing the generation of cracks and the effect of suppressing the coarsening of crystal grains.
その一方で、α−Al2O3層の中間部は、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上である。このような中間部の(001)面方向への配向性によって本実施形態の表面被覆切削工具は、膜強度が向上する効果を十分に得ることができる。 On the other hand, in the middle part of the α-Al 2 O 3 layer, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains is 35% or more. The surface-coated cutting tool of this embodiment can sufficiently obtain the effect of improving the film strength due to the orientation of the intermediate portion in the (001) plane direction.
なお、下層部および上層部の(110)配向したα−Al2O3の結晶粒の面積比率が40%以上であることについても、上述したα−Al2O3層の断面研磨面に対する電子線後方散乱回折装置を用いた結晶方位マッピングから測定することができる。「(110)配向したα−Al2O3の結晶粒」とは、基材表面の法線に対し、(110)面の傾斜角(基材表面の法線と(110)面の法線とがなす角度)が0〜10°となるα−Al2O3の結晶粒をいう。 It should be noted that the fact that the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains in the lower layer portion and the upper layer portion is 40% or more also indicates that the electrons with respect to the cross-sectional polished surface of the α-Al 2 O 3 layer described above It can be measured from crystal orientation mapping using a line backscattering diffractometer. “(110) -oriented α-Al 2 O 3 crystal grains” refers to the inclination angle of the (110) plane relative to the normal of the substrate surface (the normal of the substrate surface and the normal of the (110) plane) Α-Al 2 O 3 crystal grains having an angle between 0 and 10 °.
すなわち、EBSD装置を備えたFE−SEMを用い、α−Al2O3層の断面研磨面を撮影し、上記市販のソフトウェアを用いて、撮影画像の各ピクセルの(110)面の法線方向と、基材表面の法線方向とのなす角度の算出、およびその角度が0〜10°以内となるピクセルの選択を行なう。続いて、結晶方位マッピングとして、選択されたピクセルを色分けしてカラーマップを作成する。そのカラーマップの色を指標にすることで、α−Al2O3層の下層部および上層部における(110)配向したα−Al2O3の結晶粒の面積比率を算出することができる。 That is, using a FE-SEM equipped with an EBSD device, the cross-sectional polished surface of the α-Al 2 O 3 layer was photographed, and the normal direction of the (110) plane of each pixel of the photographed image using the above-mentioned commercially available software And calculation of an angle formed by the normal direction of the substrate surface and selection of a pixel whose angle is within 0 to 10 °. Subsequently, as a crystal orientation mapping, the selected pixel is color-coded to create a color map. By using the color of the color map as an index, the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains in the lower layer portion and the upper layer portion of the α-Al 2 O 3 layer can be calculated.
上記結晶方位マッピングから、下層部および上層部の(110)配向したα−Al2O3の結晶粒の面積比率は、それぞれ40%以上であることが特定される。なお、(110)配向したα−Al2O3の結晶粒の面積比率を算出するにあたっても、上述のようにFE−SEMの観察倍率を適宜選択することが好ましく、観察面積が適切となるように視野数を調整することが好ましい。 From the crystal orientation mapping, the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains in the lower layer portion and the upper layer portion is specified to be 40% or more, respectively. In calculating the area ratio of (110) -oriented α-Al 2 O 3 crystal grains, it is preferable to appropriately select the observation magnification of the FE-SEM as described above so that the observation area is appropriate. It is preferable to adjust the number of fields of view.
なお、下層部および上層部の(110)配向したα−Al2O3の結晶粒の面積比率は高ければ高いほど好ましく、その上限は理想的には100%である。(110)配向したα−Al2O3の結晶粒の面積比率が高いほど、下層部において結晶粒の粗大化の抑制効果を得ることができ、上層部において亀裂発生の抑制効果を得ることができる。 Note that the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains in the lower layer and the upper layer is preferably as high as possible, and the upper limit is ideally 100%. As the area ratio of the (110) oriented α-Al 2 O 3 crystal grains is higher, the effect of suppressing the coarsening of the crystal grains can be obtained in the lower layer portion, and the effect of suppressing the occurrence of cracks can be obtained in the upper layer portion. it can.
<α−Al2O3層の切断面の研磨加工>
以下、(001)配向したα−Al2O3の結晶粒および(110)配向したα−Al2O3の結晶粒の面積比率を算出するために必要な、あるいは、α−Al2O3層および中間部の厚みを測定するために必要なα−Al2O3層の切断面(断面研磨面)を準備するための研磨加工方法について説明する。
<Polishing of cut surface of α-Al 2 O 3 layer>
Hereinafter, it is necessary to calculate the area ratio between the (001) -oriented α-Al 2 O 3 crystal grains and the (110) -oriented α-Al 2 O 3 crystal grains, or α-Al 2 O 3 A polishing method for preparing a cut surface (cross-sectional polished surface) of the α-Al 2 O 3 layer necessary for measuring the thickness of the layer and the intermediate portion will be described.
まずα−Al2O3層を後述の製造方法に基づき形成する。形成されたα−Al2O3層を、α−Al2O3層に垂直な断面が得られるように切断する(すなわち、基材表面の法線を含む平面でα−Al2O3層を切断し、その切断面を露出させる)。その後、その切断面を耐水研磨紙(研磨剤としてSiC砥粒研磨剤を含むもの)で研磨する。 First, an α-Al 2 O 3 layer is formed based on the manufacturing method described later. The formed α-Al 2 O 3 layer is cut so as to obtain a cross section perpendicular to the α-Al 2 O 3 layer (that is, the α-Al 2 O 3 layer in a plane including the normal of the substrate surface) To expose the cut surface). Thereafter, the cut surface is polished with water-resistant abrasive paper (containing a SiC abrasive abrasive as an abrasive).
上記の切断は、たとえばα−Al2O3層の表面(α−Al2O3層上に他の層が形成されている場合は被膜表面とする)を、十分に大きな保持用の平板上にワックス等を用いて密着固定した後、回転刃の切断機でその平板に対して垂直方向に切断する(該回転刃と該平板とが可能な限り垂直となるように切断する)。この切断は、このような垂直方向に対して行なわれる限り、α−Al2O3層の任意の部位で行なうことができる。 For example, the above-described cutting may be performed by using the α-Al 2 O 3 layer surface (if another layer is formed on the α-Al 2 O 3 layer, the coating surface) on a sufficiently large holding plate. After being fixed in close contact with wax or the like, it is cut in a direction perpendicular to the flat plate with a rotary blade cutter (cut so that the rotary blade and the flat plate are as vertical as possible). This cutting can be performed at any part of the α-Al 2 O 3 layer as long as it is performed in such a vertical direction.
また、上記の研磨は、当該耐水研磨紙#400、#800、#1500を順に用いて行なう(耐水研磨紙の番号(#)は研磨剤の粒径の違いを意味し、数字が大きくなるほど研磨剤の粒径は小さくなる)。 The above polishing is performed using the water-resistant abrasive papers # 400, # 800, and # 1500 in order (the number (#) of the water-resistant abrasive paper means a difference in the particle size of the abrasive, and the larger the number, the more abrasive The particle size of the agent is small).
引続き、上記の断面研磨面をArイオンによるイオンミーリング処理によりさらに平滑化する。イオンミーリング処理の条件は以下の通りである。 Subsequently, the above-mentioned cross-section polished surface is further smoothed by ion milling with Ar ions. The conditions for the ion milling treatment are as follows.
加速電圧: 6kV
照射角度: 基材表面の法線方向から0°
照射時間: 6時間。
Accelerating voltage: 6kV
Irradiation angle: 0 ° from the normal direction of the substrate surface
Irradiation time: 6 hours.
その後、上記の平滑化されたα−Al2O3層の断面研磨面を、EBSD装置を備えたFE−SEMによって観察すればよい。たとえば、HKL NL02 EBSD検出器を備えたZeiss Supra 35 VP(CARL ZEISS社製)を用いることができる。EBSDデータは、集束電子ビームを各ピクセル上へ個別に位置させることによって順に収集することができる。 Thereafter, the cross-section polished surface of the smoothed α-Al 2 O 3 layer, may be observed by FE-SEM equipped with the EBSD apparatus. For example, a Zeiss Supra 35 VP (manufactured by CARL ZEISS) equipped with an HKL NL02 EBSD detector can be used. EBSD data can be collected sequentially by placing the focused electron beam on each pixel individually.
<表面被覆切削工具の製造方法>
本実施形態の表面被覆切削工具は、次のようにして製造することができる。
<Method for manufacturing surface-coated cutting tool>
The surface-coated cutting tool of this embodiment can be manufactured as follows.
まず、原料を焼結することにより、たとえば、超硬合金からなる基材を準備する。続いて、必要に応じてブラシまたはプラスチックメディアなどの一般的な手法を用い、基材の刃先稜線部の近傍領域に対してホーニング処理を施す。 First, by sintering the raw material, for example, a base material made of a cemented carbide is prepared. Subsequently, a honing process is performed on a region in the vicinity of the edge portion of the edge of the base material using a general method such as a brush or a plastic medium as necessary.
次いで、上記の基材上に被膜を、化学気相蒸着(CVD)法により形成することによって好適に製造することができる。CVD法を用いると、成膜温度が800〜1200℃となる。この温度は物理蒸着法と比較して高く、これにより基材との密着性が向上する。被膜のうち、Al2O3層以外の他の層としての各層が形成される場合、それらの層は従来公知の条件で形成することができる。 Subsequently, it can manufacture suitably by forming a film by said chemical vapor deposition (CVD) method on said base material. When the CVD method is used, the film forming temperature becomes 800 to 1200 ° C. This temperature is higher than that of physical vapor deposition, which improves the adhesion to the substrate. When each layer as a layer other than the Al 2 O 3 layer is formed, these layers can be formed under conventionally known conditions.
α−Al2O3層を形成するには、原料ガスとしてたとえば、AlCl3、HCl、CO2、H2SおよびH2を用いればよい。配合量は、AlCl3を0.5〜5体積%、HClを1〜5体積%、CO2を0.3〜3体積%、H2Sを0.05〜1.5体積%とし、残部をH2とする。さらにCVD装置の諸条件は、温度が950〜1050℃であり、圧力が1〜20kPaであり、ガス流量(全ガス量)が10〜150L/minである。 In order to form the α-Al 2 O 3 layer, for example, AlCl 3 , HCl, CO 2 , H 2 S and H 2 may be used as the source gas. The blending amount is 0.5 to 5% by volume of AlCl 3 , 1 to 5% by volume of HCl, 0.3 to 3 % by volume of CO 2 , 0.05 to 1.5% by volume of H 2 S, and the balance Is H 2 . Furthermore, various conditions of the CVD apparatus are a temperature of 950 to 1050 ° C., a pressure of 1 to 20 kPa, and a gas flow rate (total gas amount) of 10 to 150 L / min.
なお、α−Al2O3層およびα−Al2O3層以外の各層の厚みは、成膜時間を適宜調節することにより調整することができる(各層の成膜速度は、約0.5〜2.0μm/時間である)。 The thickness of each layer other than the α-Al 2 O 3 layer and the α-Al 2 O 3 layer can be adjusted by appropriately adjusting the film formation time (the film formation rate of each layer is about 0.5 ˜2.0 μm / hour).
被膜を形成した後に、必要に応じてブラシ処理、またはサンドブラスト処理、ウエットブラスト処理、ショットピーニング処理などのブラスト処理、あるいはPVDのボンバード処理などの各種手法を用いて表面処理をすることができる。これにより被膜に対して圧縮応力を付与することができる。 After the coating is formed, surface treatment can be performed using various methods such as brush treatment, blast treatment such as sand blast treatment, wet blast treatment, and shot peening treatment, or PVD bombard treatment as necessary. Thereby, compressive stress can be applied to the coating.
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these.
<基材の調製>
6.5質量%のCoと、1.2質量%のTaCと、0.5質量%のZrCと、残部のWCとからなる組成比で配合した原料粉末をアトライタ(湿式メディア攪拌型微粉砕機、商品名(型番):「湿式アトライタ100S」、日本コークス工業株式会社製)で10時間湿式混合した後、乾燥させた。その後100MPaの圧力で圧粉体にプレス成形し、この圧粉体を真空容器に入れて2Paの真空中で1440℃、1時間保持した。
<Preparation of substrate>
Attritor (wet media agitation type pulverizer) was prepared by mixing a raw material powder composed of 6.5% by mass of Co, 1.2% by mass of TaC, 0.5% by mass of ZrC and the balance of WC. , Trade name (model number): “wet attritor 100S” (manufactured by Nippon Coke Kogyo Co., Ltd.) for 10 hours and then dried. Thereafter, the green compact was press-molded into a green compact at a pressure of 100 MPa, and the green compact was put in a vacuum container and held at 1440 ° C. in a vacuum of 2 Pa for 1 hour.
次に、この圧粉体を真空容器から取り出し、底面を平面研磨した後、刃先処理としてSiCブラシですくい面から見て0.6mmのホーニングを行なってJIS(Japanese Industrial Standard) B 4120(2013)に規定されるCNMA120408の形状のWC超硬合金製の基材(住友電気工業製)を調製した。調製した基材は、後述するα−Al2O3層の形成条件の組み合わせに対応するため、複数個準備した。 Next, the green compact is taken out from the vacuum container, and the bottom surface is flat-polished, and then 0.6 mm honing is performed as a cutting edge treatment when viewed from the scooping surface with a SiC brush, and JIS (Japan Industrial Standard) B 4120 (2013) A base material (manufactured by Sumitomo Electric Industries, Ltd.) made of WC cemented carbide having the shape of CNMA120408 defined in the above. A plurality of prepared substrates were prepared in order to correspond to combinations of formation conditions of an α-Al 2 O 3 layer described later.
<被膜の形成>
上記で得られた各基材に対し、その表面に被膜を形成した。具体的には、基材をCVD装置内にセットすることにより、CVD法により基材上に被膜を形成した。被膜の形成条件は、以下の表1、表2、表3および表4に記載したとおりである。表1には、α−Al2O3層以外の各層を形成するための条件(温度条件、圧力条件および厚み)を示した。表2には、α−Al2O3層以外の各層を形成するための原料ガスの組成比(単位は、体積%)を示した。なお、α−Al2O3層以外の各層を形成するための条件および原料ガスの組成比は、各基材に対し共通である。
<Formation of coating>
A film was formed on the surface of each substrate obtained above. Specifically, a film was formed on the base material by the CVD method by setting the base material in a CVD apparatus. The film forming conditions are as described in Table 1, Table 2, Table 3, and Table 4 below. Table 1 shows conditions (temperature conditions, pressure conditions, and thickness) for forming each layer other than the α-Al 2 O 3 layer. Table 2 shows the composition ratio (unit: volume%) of the source gas for forming each layer other than the α-Al 2 O 3 layer. In addition, the conditions for forming each layer other than the α-Al 2 O 3 layer and the composition ratio of the source gas are common to the respective base materials.
また表3には、α−Al2O3層を形成するための原料ガスの組成比(単位は、体積%)および当該原料ガスの温度条件、圧力条件を示した。表3に示すように、α−Al2O3層を形成する原料ガスのガス条件は、a〜dの4とおり存在する。本実施例では、下層部、中間部および上層部の各層部の作成に際し、これら4とおりのガス条件を組み合わせるなどして適用することで、全15とおり(試料1〜15)のα−Al2O3層を形成した。表4には、各試料に対して下層部、中間部および上層部の各層部を形成するのに適用した原料ガスのガス条件(a〜d)、および各層部の厚みを示した。表1および表4に記載したα−Al2O3層の厚み、およびそれ以外の各層部の厚みの測定方法は上述したとおりであり、測定された5箇所の厚みの平均値がそれぞれ表示されている。 Table 3 shows the composition ratio (unit: volume%) of the raw material gas for forming the α-Al 2 O 3 layer, and the temperature condition and pressure condition of the raw material gas. As shown in Table 3, there are four gas conditions a to d for the raw material gas for forming the α-Al 2 O 3 layer. In this example, when creating each layer part of the lower layer part, the middle part and the upper layer part, a total of 15 (samples 1 to 15) α-Al 2 are applied by combining these four gas conditions. An O 3 layer was formed. Table 4 shows the gas conditions (a to d) of the raw material gas applied to form each layer part of the lower layer part, the middle part and the upper layer part for each sample, and the thickness of each layer part. The method for measuring the thickness of the α-Al 2 O 3 layer described in Table 1 and Table 4 and the thickness of each of the other layer portions is as described above, and the average values of the measured thicknesses at the five locations are respectively displayed. ing.
各層部の成膜方法は、例えば試料5であればガス条件「d」で一定時間、下層部の成膜を行なった後、ガス条件(配合比率)を「a」に切り替えて中間部を成膜し、その後ガス条件を「d」に切り替えて、上層部を成膜するという方法である。 For example, in the case of the sample 5, the film formation method for each layer part is that the lower layer part is formed for a certain period of time under the gas condition “d”, and then the gas condition (mixing ratio) is switched to “a” to form the intermediate part. Then, the gas condition is changed to “d” and the upper layer is formed.
また、表4中、試料12はα−Al2O3層が1層からなり、この1層が後述するように、(001)配向したα−Al2O3の結晶粒の面積比率が80%である層となるため、試料12の中間部の欄に、α−Al2O3層を形成したガス条件および層の厚みを記載することとした。試料13はα−Al2O3層が2層からなり、この2層が後述するように、基材側から(001)配向したα−Al2O3の結晶粒の面積比率が15%である層、(001)配向したα−Al2O3の結晶粒の面積比率が75%である層となる。このため、試料13の下層部および中間部の欄に、それぞれガス条件および層の厚みを記載することとした。 In Table 4, Sample 12 has one α-Al 2 O 3 layer, and as will be described later, the area ratio of (001) -oriented α-Al 2 O 3 crystal grains is 80. %, The gas conditions under which the α-Al 2 O 3 layer was formed and the thickness of the layer were described in the middle column of the sample 12. Sample 13 is composed of two α-Al 2 O 3 layers, and as will be described later, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains from the substrate side is 15%. One layer is a layer in which the area ratio of (001) -oriented α-Al 2 O 3 crystal grains is 75%. For this reason, the gas conditions and the layer thicknesses are described in the lower and middle columns of the sample 13, respectively.
α−Al2O3層およびα−Al2O3層以外の各層の厚みは、成膜時間を適宜調節することにより調整することができる。また、表1および表2中、MT−TiCNとは、MT−CVD法により形成するTiCN層を意味し、HT−TiCNとは、HT−CVD(High temperature CVD)法により形成するTiCN層を意味する。TiN(第1層)とは、基材上にまずTiN層が成膜されたことを意味する。本実施例において被膜の構成は、基材側からTiN層、MT−TiCN層、HT−TiCN層、TiCNO層およびα−Al2O3層の順である。そしてα−Al2O3層は、基材側から下層部、中間部、上層部の順で構成される。本実施例は、Al2O3層の上層部が、被膜の最表面に配置される。 The thickness of each layer other than the α-Al 2 O 3 layer and the α-Al 2 O 3 layer can be adjusted by appropriately adjusting the film formation time. In Tables 1 and 2, MT-TiCN means a TiCN layer formed by MT-CVD, and HT-TiCN means a TiCN layer formed by HT-CVD (High temperature CVD). To do. TiN (first layer) means that a TiN layer is first formed on a substrate. In the present example, the configuration of the coating is in the order of the TiN layer, MT-TiCN layer, HT-TiCN layer, TiCNO layer, and α-Al 2 O 3 layer from the substrate side. The α-Al 2 O 3 layer is composed of the base layer side, the lower layer part, the intermediate part, and the upper layer part in this order. In this embodiment, the upper layer portion of the Al 2 O 3 layer is disposed on the outermost surface of the coating.
<表面処理>
被膜を形成した各試料に対してブラスト処理を行ない、圧縮応力を付与した。
<Surface treatment>
Blasting was performed on each sample on which a film was formed, and compressive stress was applied.
<α−Al2O3層の配向性測定>
以上から得られた各試料に関し、基材表面の法線を含む平面でα−Al2O3層を切断し、その切断面(α−Al2O3層の垂直断面)に対して上述したような研磨加工を行った。さらに、得られたα−Al2O3層の断面研磨面について、上述のようにしてEBSD装置を備えたFE−SEM(商品名(型番):「SU6600」、日立ハイテクノロジーズ社製)を用いて観察し、α−Al2O3の結晶粒の結晶方位を測定した。具体的には、上述した結晶方位マッピングにより、α−Al2O3層の下層部、中間部および上層部における(001)配向したα−Al2O3の結晶粒の面積比率、および(110)配向したα−Al2O3の面積比率を算出した。(001)配向したα−Al2O3の結晶粒であるか否か、および(110)配向したα−Al2O3の結晶粒であるか否かの判断は、上述の定義のとおりに行なった。(001)配向したα−Al2O3の結晶粒の面積比率、および(110)配向したα−Al2O3の結晶粒の面積比率の算出にあたって行なう観察倍率を20000倍とし、観察面積は200μm2となるように視野数を調整した。
<Measurement of orientation of α-Al 2 O 3 layer>
Regarding each sample obtained from the above, the α-Al 2 O 3 layer was cut along a plane including the normal line of the base material surface, and the cut surface (vertical cross section of the α-Al 2 O 3 layer) was described above. Polishing processing was performed. Further, for the cross-sectional polished surface of the obtained α-Al 2 O 3 layer, an FE-SEM (trade name (model number): “SU6600”, manufactured by Hitachi High-Technologies Corporation) equipped with an EBSD device as described above was used. The crystal orientation of the α-Al 2 O 3 crystal grains was measured. Specifically, the crystal orientation mapping described above, alpha-Al 2 lower part of the O 3 layer, an intermediate portion and (001) of the upper part oriented alpha-Al 2 O 3 crystal grains of area ratio, and (110 ) The area ratio of oriented α-Al 2 O 3 was calculated. Whether or not it is a (001) -oriented α-Al 2 O 3 crystal grain and whether or not it is a (110) -oriented α-Al 2 O 3 crystal grain are as defined above. I did it. The observation magnification for the calculation of the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains and the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains was 20000, and the observation area was The number of fields of view was adjusted to 200 μm 2 .
上記配向性測定から得られた(001)配向したα−Al2O3の結晶粒の面積比率、(110)配向したα−Al2O3の結晶粒の面積比率をそれぞれ、以下の表5に示す。表5には、α−Al2O3層の厚み(μm)、およびα−Al2O3層の厚みのうち中間部の厚みが占める比率(中間部の厚み/α−Al2O3層の厚み)(%)も記載した。 The area ratio of the (001) -oriented α-Al 2 O 3 crystal grains and the area ratio of the (110) -oriented α-Al 2 O 3 crystal grains obtained from the orientation measurement are shown in Table 5 below. Shown in Table 5, α-Al 2 O 3 layer thickness ([mu] m), and α-Al 2 O 3 layer thickness / α-Al 2 O 3 layer ratio (middle portion occupied by the thickness of the intermediate portion of the thickness of (Thickness) (%).
<切削試験>
また各試料に対し、以下の条件により切削試験を行なった。
<Cutting test>
Each sample was subjected to a cutting test under the following conditions.
被削材 : FCD450丸棒
切削速度: 250m/min
送り : 0.30mm/rev
切込み : 1.5mm
切削油 : 湿式(水溶性油)
評価 : 逃げ面摩耗幅≧0.3mmを寿命として測定。
Work material: FCD450 round bar Cutting speed: 250m / min
Feeding: 0.30mm / rev
Cutting depth: 1.5mm
Cutting oil: Wet (water-soluble oil)
Evaluation: Measured with the flank wear width ≧ 0.3 mm as the life.
切削試験では、切削工具を切削機にセットして切削した。30秒ごとに切削機から切削工具を取り外し、逃げ面摩耗量を測定し、これが0.3mmを超えるまでの時間を寿命として評価した。この時間が長いほど寿命が長いといえ、膜強度が向上する効果とともに、結晶粒の粗大化、亀裂発生などを防ぐことができる切削工具であると評価することができる。この結果についても以下の表5に示す。 In the cutting test, the cutting tool was set on a cutting machine and cut. The cutting tool was removed from the cutting machine every 30 seconds, the amount of flank wear was measured, and the time until this exceeded 0.3 mm was evaluated as the life. The longer this time, the longer the life, and it can be evaluated that the cutting tool can prevent the coarsening of crystal grains and the occurrence of cracks as well as the effect of improving the film strength. The results are also shown in Table 5 below.
なお、表5における備考の欄には、切削試験中および切削試験終了後に各試料を観察することで認められた工具の形状変化について記載した。表5の備考の欄中、「性能良好」とは、寿命が8分以上であり、この寿命が到来するまで、チッピングの発生、摩耗が大きく進んだことなどが認められるような形状変化がなかったことを意味する。 In the remarks column in Table 5, the shape change of the tool observed by observing each sample during the cutting test and after the cutting test is described. In the remarks column of Table 5, “Performance is good” means that the service life is 8 minutes or more, and there is no shape change that can be recognized as the occurrence of chipping or wear has greatly advanced until this service life is reached. Means that.
また、「チッピング発生」とは、切削試験中にチッピングが発生して寿命が到来したことを意味する。「摩耗大」とは、切削試験中に摩耗が大きく進んで寿命が到来したことを意味する。「被膜剥離発生」とは、切削試験中に被膜の剥離が発生して寿命が到来したことを意味する。 Further, “chipping” means that chipping has occurred during the cutting test and the lifetime has come. “Large wear” means that wear has greatly advanced during the cutting test and the life has come. “Occurrence of film peeling” means that the film has peeled off during the cutting test and has reached its end of life.
<試験結果および考察>
表5に示すように、実施例(試料1、2、5、6、7、8、10および14)のα−Al2O3層は、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満の下層部および上層部と、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上の中間部とからなっていた。また、α−Al2O3層の厚みは4〜18μmであり、中間部の厚みがα−Al2O3層の厚みにおいて占める比率は、50%以上だった。なお、下層部および上層部の厚みはいずれも1μm以上である。これらの試料は、「性能良好」であると評価することができた。
<Test results and discussion>
As shown in Table 5, the α-Al 2 O 3 layers of the examples (Samples 1, 2, 5, 6, 7, 8, 10, and 14) were formed of (001) -oriented α-Al 2 O 3 crystals. It consisted of a lower layer portion and an upper layer portion having an area ratio of grains of less than 35%, and an intermediate section having an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 35% or more. The thickness of the α-Al 2 O 3 layer is 4~18Myuemu, ratio of thickness of the intermediate portion occupies in the thickness of the α-Al 2 O 3 layer, was more than 50%. Note that the thickness of each of the lower layer portion and the upper layer portion is 1 μm or more. These samples could be evaluated as “good performance”.
特に、試料5、6、7は、下層部、中間部および上層部における(001)配向したα−Al2O3の結晶粒の上述した特徴に加え、少なくとも上層部または下層部において(110)配向したα−Al2O3の結晶粒の面積比率が40%以上となった。これらの試料では、寿命が11分以上であり、さらに良好な性能を有していた。 In particular, Samples 5, 6, and 7 have (110) at least in the upper layer portion or the lower layer portion in addition to the above-described characteristics of the (001) -oriented α-Al 2 O 3 crystal grains in the lower layer portion, the middle portion, and the upper layer portion. The area ratio of the oriented α-Al 2 O 3 crystal grains was 40% or more. These samples had a lifespan of 11 minutes or longer and had better performance.
一方、比較例(試料3、4、9、11、12、13および15)のα−Al2O3層を考察する。試料3は、上層部の(001)配向したα−Al2O3の結晶粒の面積比率が40%となり、「チッピング発生」と評価され、寿命は6分だった。工具の冷却時に被膜に亀裂が発生したものと考えられる。試料4は、上層部の(001)配向したα−Al2O3の結晶粒の面積比率が40%となり、「摩耗大」と評価され、寿命は6分だった。被膜の形成過程でα−Al2O3の結晶粒の粗大化が起きたものと考えられる。 On the other hand, the α-Al 2 O 3 layer of Comparative Examples (Samples 3, 4, 9, 11, 12, 13 and 15) will be considered. In the sample 3, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the upper layer portion was 40%, which was evaluated as “chipping”, and the lifetime was 6 minutes. It is thought that cracks occurred in the coating during cooling of the tool. In Sample 4, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the upper layer portion was 40%, which was evaluated as “large wear”, and the lifetime was 6 minutes. It is considered that the coarsening of the α-Al 2 O 3 crystal grains occurred during the film formation process.
試料9は、α−Al2O3層の厚みのうち中間部の厚みが占める比率が50%未満となり、「摩耗大」と評価され、寿命は5分だった。α−Al2O3層における(001)配向したα−Al2O3の結晶粒の面積比率が低く、膜強度が向上する効果が十分に得られなかったものと考えられる。試料11は、α−Al2O3層の厚みが20μmとなり、「被膜剥離発生」と評価され、寿命は3分だった。α−Al2O3層の厚みが厚すぎたと考えられる。 In Sample 9, the ratio of the thickness of the middle portion to the thickness of the α-Al 2 O 3 layer was less than 50%, which was evaluated as “high wear”, and the lifetime was 5 minutes. α-Al 2 O 3 layer in the (001) -oriented α-Al 2 O 3 crystal grains of area ratio is low is considered that the effect of improving the film strength is not obtained sufficiently. In Sample 11, the thickness of the α-Al 2 O 3 layer was 20 μm, and it was evaluated that “film peeling occurred”, and the lifetime was 3 minutes. It is considered that the thickness of the α-Al 2 O 3 layer was too thick.
試料12、13は、α−Al2O3層が1層または2層からなり、「チッピング発生」と評価され、かつ「摩耗大」と評価される場合があった。寿命は5または6分だった。α−Al2O3層において下層部、中間部、上層部のいずれかが存在しなかったことによる不都合が生じたものと考えられる。試料15は、中間部の(001)配向したα−Al2O3の結晶粒の面積比率が30%となり、すくい面の「摩耗大」と評価され、寿命は6分だった。α−Al2O3層における(001)配向したα−Al2O3の結晶粒の面積比率が低く、膜強度が向上する効果が十分に得られなかったことが考えられる。 In Samples 12 and 13, the α-Al 2 O 3 layer was composed of one or two layers, and it was evaluated as “chipping” and “wearing out” in some cases. Lifespan was 5 or 6 minutes. It is considered that inconvenience occurred due to the absence of any of the lower layer portion, the middle portion, and the upper layer portion in the α-Al 2 O 3 layer. In the sample 15, the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the middle part was 30%, and it was evaluated as “high wear” on the rake face, and the lifetime was 6 minutes. It is considered that the area ratio of the (001) -oriented α-Al 2 O 3 crystal grains in the α-Al 2 O 3 layer was low, and the effect of improving the film strength was not sufficiently obtained.
したがって、実施例の表面被覆切削工具は、比較例の表面被覆切削工具に比べ、(001)面方向へ配向することで膜強度が向上する効果を十分に得た上で、(001)面方向への配向性が高すぎることのデメリットである結晶粒の粗大化、および冷却時の被膜の亀裂発生を抑制することができる点で優れているといえる。 Therefore, the surface-coated cutting tool of the example obtained the effect of improving the film strength by being oriented in the (001) plane direction as compared with the surface-coated cutting tool of the comparative example, and then the (001) plane direction. It can be said that it is excellent in that it can suppress the coarsening of crystal grains, which are disadvantages of being too high in orientation, and the occurrence of cracks in the coating during cooling.
以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形したりすることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning that the configurations of the above-described embodiments and examples may be appropriately combined and variously modified. .
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.
Claims (3)
前記被膜は、複数のα−Al2O3の結晶粒を含んだα−Al2O3層を含み、
前記α−Al2O3層は、前記基材側に配置された下層部と、該下層部上に配置された中間部と、該中間部上に配置された上層部とを含み、
前記下層部は、前記α−Al2O3層の断面研磨面に対する電子線後方散乱回折装置を用いた結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、
前記中間部は、前記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%以上となり、
前記上層部は、前記結晶方位マッピングにおいて、(001)配向したα−Al2O3の結晶粒の面積比率が35%未満となり、
前記α−Al2O3層の厚みは、4〜18μmであり、
前記中間部の厚みは、前記α−Al2O3層の厚みの50%以上を占め、
前記下層部および前記上層部の厚みはいずれも1μm以上である、表面被覆切削工具。 A surface-coated cutting tool comprising a substrate and a coating formed on the substrate,
The coating includes an α-Al 2 O 3 layer including a plurality of α-Al 2 O 3 crystal grains,
The α-Al 2 O 3 layer includes a lower layer portion disposed on the substrate side, an intermediate portion disposed on the lower layer portion, and an upper layer portion disposed on the intermediate portion,
In the lower layer portion, in the crystal orientation mapping using an electron beam backscattering diffractometer with respect to the cross-sectional polished surface of the α-Al 2 O 3 layer, the area ratio of (001) -oriented α-Al 2 O 3 crystal grains is Less than 35%,
The intermediate portion has an area ratio of (001) -oriented α-Al 2 O 3 crystal grains of 35% or more in the crystal orientation mapping,
The upper layer portion has a (001) -oriented α-Al 2 O 3 crystal grain area ratio of less than 35% in the crystal orientation mapping,
The α-Al 2 O 3 layer has a thickness of 4 to 18 μm,
The thickness of the intermediate portion occupies 50% or more of the thickness of the α-Al 2 O 3 layer,
The surface-coated cutting tool, wherein the lower layer part and the upper layer part each have a thickness of 1 μm or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019747A JP6550661B2 (en) | 2016-02-04 | 2016-02-04 | Method of manufacturing surface coated cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016019747A JP6550661B2 (en) | 2016-02-04 | 2016-02-04 | Method of manufacturing surface coated cutting tool |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015558289A Division JP5884004B1 (en) | 2015-10-09 | 2015-10-09 | Surface coated cutting tool |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017071044A true JP2017071044A (en) | 2017-04-13 |
JP2017071044A5 JP2017071044A5 (en) | 2018-06-07 |
JP6550661B2 JP6550661B2 (en) | 2019-07-31 |
Family
ID=58538076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016019747A Active JP6550661B2 (en) | 2016-02-04 | 2016-02-04 | Method of manufacturing surface coated cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6550661B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020050262A1 (en) * | 2018-09-05 | 2020-03-12 | 京セラ株式会社 | Coated tool and cutting tool |
WO2020170571A1 (en) * | 2019-02-19 | 2020-08-27 | 住友電工ハードメタル株式会社 | Cutting tool |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334754A (en) * | 2005-06-06 | 2006-12-14 | Mitsubishi Materials Corp | Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting |
JP2007061922A (en) * | 2005-08-29 | 2007-03-15 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting |
JP2007152491A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting |
JP2009202264A (en) * | 2008-02-27 | 2009-09-10 | Kyocera Corp | Cutting tool and its manufacturing method |
JP2012061537A (en) * | 2010-09-15 | 2012-03-29 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coat layer exhibiting excellent peeling resistance and wear resistance |
JP2013146843A (en) * | 2012-01-23 | 2013-08-01 | Mitsubishi Materials Corp | Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in high-speed and heavy cutting work |
WO2015093530A1 (en) * | 2013-12-17 | 2015-06-25 | 京セラ株式会社 | Coated tool |
JP2017506163A (en) * | 2014-01-30 | 2017-03-02 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Alumina coated cutting tool |
-
2016
- 2016-02-04 JP JP2016019747A patent/JP6550661B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334754A (en) * | 2005-06-06 | 2006-12-14 | Mitsubishi Materials Corp | Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting |
JP2007061922A (en) * | 2005-08-29 | 2007-03-15 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting |
JP2007152491A (en) * | 2005-12-05 | 2007-06-21 | Mitsubishi Materials Corp | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting |
JP2009202264A (en) * | 2008-02-27 | 2009-09-10 | Kyocera Corp | Cutting tool and its manufacturing method |
JP2012061537A (en) * | 2010-09-15 | 2012-03-29 | Mitsubishi Materials Corp | Surface-coated cutting tool with hard coat layer exhibiting excellent peeling resistance and wear resistance |
JP2013146843A (en) * | 2012-01-23 | 2013-08-01 | Mitsubishi Materials Corp | Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in high-speed and heavy cutting work |
WO2015093530A1 (en) * | 2013-12-17 | 2015-06-25 | 京セラ株式会社 | Coated tool |
JP2017506163A (en) * | 2014-01-30 | 2017-03-02 | サンドビック インテレクチュアル プロパティー アクティエボラーグ | Alumina coated cutting tool |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020050262A1 (en) * | 2018-09-05 | 2020-03-12 | 京セラ株式会社 | Coated tool and cutting tool |
CN112638564A (en) * | 2018-09-05 | 2021-04-09 | 京瓷株式会社 | Coated cutting tool and cutting tool |
JPWO2020050262A1 (en) * | 2018-09-05 | 2021-09-02 | 京セラ株式会社 | Covering tools and cutting tools |
JP7089038B2 (en) | 2018-09-05 | 2022-06-21 | 京セラ株式会社 | Covering tools and cutting tools |
CN112638564B (en) * | 2018-09-05 | 2023-05-12 | 京瓷株式会社 | Coated cutting tool and cutting tool |
WO2020170571A1 (en) * | 2019-02-19 | 2020-08-27 | 住友電工ハードメタル株式会社 | Cutting tool |
JPWO2020170571A1 (en) * | 2019-02-19 | 2021-03-11 | 住友電工ハードメタル株式会社 | Cutting tools |
US11998993B2 (en) | 2019-02-19 | 2024-06-04 | Sumitomo Electric Hardmetal Corp. | Cutting tool |
Also Published As
Publication number | Publication date |
---|---|
JP6550661B2 (en) | 2019-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5884004B1 (en) | Surface coated cutting tool | |
JP5872747B1 (en) | Surface coated cutting tool | |
JP5872748B1 (en) | Surface coated cutting tool | |
JP6507456B2 (en) | Method of manufacturing surface coated cutting tool | |
JP6507457B2 (en) | Method of manufacturing surface coated cutting tool | |
JP6045010B1 (en) | Surface-coated cutting tool and manufacturing method thereof | |
WO2017061144A1 (en) | Surface-coated cutting tool | |
CN105916617A (en) | Coated cutting tool | |
WO2018216256A1 (en) | Coating and cutting tool | |
JP6912032B2 (en) | Cutting tools | |
JP6784345B1 (en) | Cutting tools | |
JP7453613B2 (en) | surface coated cutting tools | |
JP6550661B2 (en) | Method of manufacturing surface coated cutting tool | |
WO2022230363A1 (en) | Cutting tool and method for manufacturing same | |
CN112839761B (en) | cutting tool | |
JP6641661B1 (en) | Cutting tools | |
JP6641660B1 (en) | Cutting tools | |
CN112839760B (en) | Cutting tool | |
JP5835305B2 (en) | Cemented carbide and surface-coated cutting tool using the same | |
JP6926387B2 (en) | Cutting tools |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180417 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190115 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190613 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6550661 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |