JP2007061922A - Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting - Google Patents

Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting Download PDF

Info

Publication number
JP2007061922A
JP2007061922A JP2005247681A JP2005247681A JP2007061922A JP 2007061922 A JP2007061922 A JP 2007061922A JP 2005247681 A JP2005247681 A JP 2005247681A JP 2005247681 A JP2005247681 A JP 2005247681A JP 2007061922 A JP2007061922 A JP 2007061922A
Authority
JP
Japan
Prior art keywords
layer
inclination angle
degrees
unit
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005247681A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kono
和弘 河野
Hiroshi Hara
央 原
Tetsuhiko Honma
哲彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005247681A priority Critical patent/JP2007061922A/en
Publication of JP2007061922A publication Critical patent/JP2007061922A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exhibiting excellent chipping resistance in high-speed hard cutting. <P>SOLUTION: In the surface coated cutting tool, the hard coating layer formed as follows is formed on the surface of a tool base by deposition. The lower layer is a Ti compound layer having the total average layer thickness of 3 to 20 μm, and an upper layer is a deposition α-type Al<SB>2</SB>O<SB>3</SB>layer having the average layer thickness of 6 to 30 μm. The deposition α-type Al<SB>2</SB>O<SB>3</SB>layer has a stacked structure composed of a first unit layer, a second unit layer and a distortion relaxing layer interposed between the unit layer and the second unit layer. A field emission type scan electronic microscope is used to measure the angles of inclination made by a normal of the (0001) face, which is the crystal face of the crystal grain to the normal of the polishing surface. Among the measured angles of inclination, concerning the respective layers of the first unit layer, the second unit layer and the distortion relaxing layer, the measured angle of inclination which ranges from 0 to 90 degrees is divided by pitch of 0.25 degrees each, and when the frequencies in the respective divisions are tabulated, the respective layers are formed by the deposition α-type Al<SB>2</SB>O<SB>3</SB>layer showing a specified inclination angle frequency distribution graph. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に硬質被覆層の構成層である酸化アルミニウム層(以下、Al23層で示す)を厚膜化した状態で、各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴なう高切り込みや高送りなどの重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を示し、したがってチッピング(微少欠け)などの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 In the present invention, particularly in a state in which an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer) that is a constituent layer of a hard coating layer is thickened, various kinds of cutting work such as steel and cast iron can be performed at high speed. Even under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer exhibits excellent chipping resistance, and therefore, no chipping (small chipping) occurs, and long-term The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、厚膜化した状態も含めると、1〜12μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、蒸着α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) An aluminum oxide layer having an average layer thickness of 1 to 12 μm and having an α-type crystal structure in a state of chemical vapor deposition (hereinafter referred to as vapor deposition α-type Al) indicated by 2 O 3 layer),
A coated tool formed by vapor-depositing the hard coating layer constituted by (a) and (b) above is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. That is well known.

また、一般に、上記の被覆工具の硬質被覆層を構成するTi化合物層や蒸着α型Al23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer and the vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above-mentioned coated tool have a granular crystal structure, and the TiCN layer constituting the Ti compound layer is further divided into the layer itself. For the purpose of improving the strength of the crystal, a vertically grown crystal formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an organic carbonitride as a reaction gas in a normal chemical vapor deposition apparatus. It is also known to have an organization.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削加工の省力化および省エネ化に対する要求は強く、これに伴い、蒸着α型Al23層は最大層厚で20μmの厚膜化を必要とされ、さらに切削加工は一段と高速化すると共に、高切り込みや高送りなどの重切削条件での切削加工が強く求められている。上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合すぐれた耐摩耗性を発揮することができる。しかし、これを高速重切削条件で用いた場合、特に硬質被覆層を構成する蒸着α型Al23層の高温硬さおよび高温強度が不十分であるために、摩耗が急速に進行し、かつチッピングも発生し易くなり、さらに前記蒸着α型Al23層の厚膜化によってチッピングは一段と発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving and energy saving of cutting work, and with this, the deposited α-type Al 2 O 3 layer is required to have a maximum thickness of 20 μm, and the cutting work is further speeded up. At the same time, there is a strong demand for cutting under heavy cutting conditions such as high cutting and high feed. In the above-mentioned conventional coated tool, excellent wear resistance can be exhibited when it is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. However, when this is used under high-speed heavy cutting conditions, wear progresses rapidly because the high-temperature hardness and high-temperature strength of the vapor-deposited α-type Al 2 O 3 layer that constitutes the hard coating layer is insufficient, In addition, chipping is likely to occur, and further, chipping is more likely to occur by increasing the thickness of the deposited α-type Al 2 O 3 layer, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の蒸着α型Al23層が硬質被覆層の上部層を構成する被覆工具に着目し、特に前記蒸着α型Al23層の高速重切削における耐チッピング性を向上させるべく研究を行った結果、
(a)上記の従来被覆工具の硬質被覆層としての蒸着α型Al23層は、一般に、通常の化学蒸着装置にて、

反応ガス組成(容量%):

AlCl3 1〜5%、CO2 3〜7%、HCl 0.3〜3%、H2S 0.02〜0.4%、H2 残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成の蒸着α型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)に概略説明図で示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、それぞれ0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図5に例示される通り、(0001)面の測定傾斜角の分布がいずれの範囲(例えば、0〜20度および70〜90度および30〜60度)でも不偏的な傾斜角度数分布グラフを示すこと。
In view of the above, the present inventors paid attention to the coated tool in which the vapor-deposited α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and in particular, the vapor-deposited α-type Al 2 O 3. As a result of research to improve chipping resistance in high-speed heavy cutting of layers,
(A) Vapor deposition α-type Al 2 O 3 layer as a hard coating layer of the above-mentioned conventional coated tool is generally a normal chemical vapor deposition apparatus,

Reaction gas composition (volume%):

AlCl 3 1~5%, CO 2 3~7 %, HCl 0.3~3%, H 2 S 0.02~0.4%, H 2 remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
1 (hereinafter referred to as normal conditions), the evaporated α-type Al 2 O 3 layer formed under normal conditions is schematically shown in FIGS. 1A and 1B using a field emission scanning electron microscope. As shown in the explanatory diagram, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polishing surface parallel to the tool base surface is irradiated with an electron beam, and the normal to the polishing surface is The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angles within the range of 0 to 90 degrees are measured at a pitch of 0.25 degrees. When the inclination angle number distribution graph is formed by counting the frequencies existing in each section, the distribution of measured inclination angles on the (0001) plane is in any range (for example, 0-20 degrees and 70-90 degrees and 30-60 degrees) Show an unbiased inclination angle distribution graph.


(b)一方、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、

反応ガス組成(容量%):

AlCl3 6〜10%、CO2 1.0〜1.5%、HCl 0.3〜3.0%、H2S 0.5〜1.0%、Ar 5〜10%、H2 残り、

反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5〜8kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とした条件(反応雰囲気の温度および圧力は上記の通常条件と同じ。以下、反応ガス組成調整条件という)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図2に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り5〜8kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の0〜20度の範囲内で変化すると共に、前記0〜20度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて0〜20度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的にすぐれた高温強度を有すること。

(B) On the other hand, the vapor-deposited α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition device,

Reaction gas composition (volume%):

AlCl 3 6-10%, CO 2 1.0-1.5%, HCl 0.3-3.0%, H 2 S 0.5-1.0%, Ar 5-10%, H 2 remaining,

Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
The reaction gas composition was adjusted to a reaction gas composition different from the reaction gas composition of the above normal conditions (the temperature and pressure of the reaction atmosphere were the same as the above normal conditions. The vapor-deposited α-type Al 2 O 3 layer formed as a result of using the field emission scanning electron microscope, as shown in FIGS. 1 (a) and 1 (b), A crystal grain having a hexagonal crystal lattice existing in the measurement range of the parallel polished surface is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal of the polished surface (0001) plane The inclination angle formed by the normal line is measured, and among the measurement inclination angles, the measurement inclination angle within the range of 0 to 90 degrees is divided for each pitch of 0.25 degrees, and the frequency existing in each division When the graph is shown in the distribution graph of the tilt angle In this case, as illustrated in FIG. 2, a sharp maximum peak appears at a specific position of the inclination angle section, and according to the test result, the reaction atmosphere pressure in the chemical vapor deposition apparatus changes within the range of 5 to 8 kPa as described above. Then, the position at which the sharpest peak appears changes within the range of 0 to 20 degrees of the tilt angle section, and the sum of the frequencies existing within the range of 0 to 20 degrees is represented in the tilt angle number distribution graph. The vapor deposition α-type Al 2 O 3 layer that accounts for 55 to 75% of the entire frequency, and in which the highest peak of the inclination angle section appears in the range of 0 to 20 degrees in the inclination angle distribution graph as a result, Compared with the above-mentioned vapor deposition α-type Al 2 O 3 layer formed under normal conditions, it has relatively high temperature strength.

(c)さらに、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、

反応ガス組成(容量%):

AlCl3 1〜5%、CO2 2〜4%、HCl 0.3〜3%、H2S 0.02〜0.4%、H2 残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:30〜40kPa、
の相対的に低温高圧条件(反応ガス組成は上記の通常条件と同じ。以下、低温高圧条件という)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記縦断研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の70〜90度の範囲内で変化すると共に、前記70〜90度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて70〜90度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的に高い高温硬さを有すること。
(C) Furthermore, the vapor-deposited α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,

Reaction gas composition (volume%):

AlCl 3 1~5%, CO 2 2~4 %, HCl 0.3~3%, H 2 S 0.02~0.4%, H 2 remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 30-40 kPa,
When formed under relatively low temperature and high pressure conditions (reaction gas composition is the same as the above normal conditions, hereinafter referred to as low temperature and high pressure conditions), the deposited α-type Al 2 O 3 layer formed as a result is similarly subjected to field emission scanning. Using an electron microscope, as shown in FIGS. 1A and 1B, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool base surface is irradiated with an electron beam. Then, the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is measured with respect to the normal line of the longitudinally polished surface, and within the range of 0 to 90 degrees of the measured inclination angle When the measured tilt angle is divided into pitches of 0.25 degrees and the frequency existing in each section is tabulated, the tilt angle distribution graph is obtained as shown in FIG. A sharp peak appears at a specific position in the category, and according to the test results When the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 20 to 30 kPa as described above, the position where the sharpest peak appears changes within the range of 70 to 90 degrees of the inclination angle section, and The sum of the frequencies existing in the range of 70 to 90 degrees occupies a ratio of 55 to 75% of the entire frequencies in the tilt angle frequency distribution graph. In the resulting tilt angle frequency distribution graph, 70 to 90 degrees The vapor-deposited α-type Al 2 O 3 layer in which the highest peak of the tilt angle section appears in the range has a relatively high high-temperature hardness as compared with the vapor-deposited α-type Al 2 O 3 layer formed under the normal conditions described above. .

(d)さらに、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、

反応ガス組成(容量%):

AlCl3 1〜5%、CO2 1.5〜2.5%、HCl 0.3〜3.0%、H2S 0.05〜0.3%、Ar 1〜5%、H2 残り、

反応雰囲気温度:900〜1000℃、
反応雰囲気圧力:10〜15kPa、
の条件、即ち、通常条件と比較すると反応ガス組成を調整し相対的に低温高圧化した条件(以下、低温高圧反応ガス組成調整条件という)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記縦断研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り10〜15kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の30〜60度の範囲内で変化すると共に、前記30〜60度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占めるようになる。そして、この結果の傾斜角度数分布グラフにおいて30〜60度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、所定の高温強度と高温硬さをバランス良く兼ね備えること。
(D) Furthermore, the vapor-deposited α-type Al 2 O 3 layer was similarly used using a normal chemical vapor deposition apparatus,

Reaction gas composition (volume%):

AlCl 3 1-5%, CO 2 1.5-2.5%, HCl 0.3-3.0%, H 2 S 0.05-0.3%, Ar 1-5%, H 2 remaining,

Reaction atmosphere temperature: 900-1000 ° C.
Reaction atmosphere pressure: 10-15 kPa,
Conditions, i.e., to adjust the reaction gas composition as compared to the normal condition relatively cool high pressure criteria (hereinafter, referred to as low-temperature high-pressure reaction gas composition adjustment condition) to form, the results formed deposited α-type Al 2 For the O 3 layer, a field emission scanning electron microscope is used, and as shown in FIGS. 1A and 1B, a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is formed. Each crystal grain is irradiated with an electron beam, an inclination angle formed by a normal line of a (0001) plane that is a crystal face of the crystal grain is measured with respect to a normal line of the longitudinally polished surface, and the measurement inclination angle is measured When the measured inclination angle within the range of 0 to 90 degrees is divided for each pitch of 0.25 degrees, and the frequency existing in each division is represented by an inclination angle number distribution graph, As illustrated in FIG. 4, the shear is placed at a specific position in the inclination angle section. According to the test results, when the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 10 to 15 kPa as described above, the position where the sharp maximum peak appears is the inclination angle section 30. While changing within the range of -60 degrees, the total of the frequencies existing within the range of 30-60 degrees occupies a ratio of 55-75% of the total degrees in the inclination angle frequency distribution graph. The vapor deposition α-type Al 2 O 3 layer in which the highest peak of the tilt angle section appears in the range of 30 to 60 degrees in the tilt angle number distribution graph as a result has a predetermined high-temperature strength and high-temperature hardness in a well-balanced manner. .

(e)上記(b)の反応ガス組成調整条件の蒸着α型Al23層を第1単位層、上記(c)の低温高圧条件の蒸着α型Al23層を第2単位層、上記(d)の低温高圧反応ガス組成調整条件の蒸着α型Al23層を歪緩和層とすると共に、第1単位層及び第2単位層のそれぞれの平均層厚を1.5〜5μmとし、歪緩和層の平均層厚を3〜6μmとし、第1単位層及び第2単位層の間に歪緩和層を介在させて層積層構造となし、かつ全体平均層厚を6〜30μmとしてなる蒸着α型Al23層を、下部層がTi化合物層からなる硬質被覆層の上部層として構成してなる被覆工具は、すぐれた高温硬さと高温強度を具備するようになり、特に最大で30μmに厚膜化した状態で、高速重切削条件で切削加工を行っても、上記の硬質被覆層の上部層が、(0001)面の測定傾斜角の分布がそれぞれ0〜90度の範囲内で不偏的な傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆工具に比して、硬質被覆層にチッピングの発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) The vapor deposition α-type Al 2 O 3 layer under the reaction gas composition adjustment conditions in (b) above is the first unit layer, and the vapor deposition α-type Al 2 O 3 layer under the low temperature and high pressure conditions in (c) above is the second unit layer. The vapor deposition α-type Al 2 O 3 layer under the low-temperature and high-pressure reaction gas composition adjustment condition of (d) above is used as a strain relaxation layer, and the average layer thickness of each of the first unit layer and the second unit layer is 1.5 to 5 μm, the average thickness of the strain relaxation layer is 3 to 6 μm, the strain relaxation layer is interposed between the first unit layer and the second unit layer to form a layer laminated structure, and the overall average layer thickness is 6 to 30 μm. The coated tool formed by forming the deposited α-type Al 2 O 3 layer as the upper layer of the hard coating layer whose lower layer is a Ti compound layer, has excellent high-temperature hardness and high-temperature strength. Even if cutting is performed under high-speed heavy cutting conditions with a maximum film thickness of 30 μm, the upper part of the hard coating layer above But compared with the conventional coated tool made of a (0001) plane unbiased inclination angle frequency distribution shows a graph deposition α type the Al 2 O 3 layer distribution measurement inclination angle within the range of each 0-90 ° Thus, the hard coating layer should exhibit excellent wear resistance over a long period of time without the occurrence of chipping.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、

(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ6〜30μmの全体平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具において、

上記酸化アルミニウム層を、1.5〜5μmの平均層厚を有する第1単位層と、1.5〜5μmの平均層厚を有する第2単位層と、第1単位層と第2単位層との間に介在する歪緩和層とからなる積層構造となし、該積層構造は、第1単位層と第2単位層との間に歪緩和層を介在させた状態で、複数層の第1単位層と複数層の第2単位層とが交互に積層される交互積層構造であって、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、上記第1単位層、第2単位層および歪緩和層の各層について、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記第1単位層は、0〜20度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示し、
(B)上記第2単位層は、70〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記70〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示すこと、

(C)上記歪緩和層は、30〜60度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜60度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示してなる、
硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する被覆工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,

(B) an aluminum oxide layer in which the upper layer has an α-type crystal structure in the state of chemical vapor deposition and has an overall average layer thickness of 6 to 30 μm;
In the surface-coated cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,

The aluminum oxide layer includes a first unit layer having an average layer thickness of 1.5 to 5 μm, a second unit layer having an average layer thickness of 1.5 to 5 μm, a first unit layer and a second unit layer, A multilayer structure composed of a strain relaxation layer interposed between the first unit layer and the multilayer unit in a state where the strain relaxation layer is interposed between the first unit layer and the second unit layer. A hexagonal structure in which layers and a plurality of second unit layers are alternately stacked, and further within a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope Irradiating each crystal grain having a crystal lattice with an electron beam, and measuring an inclination angle formed by a normal of a (0001) plane which is a crystal plane of the crystal grain with respect to a normal of the polished surface, Of the measured inclination angles, the first unit layer, the second unit layer, and the strain relaxation layer have a range of 0 to 90 degrees. When the measured inclination angle in the enclosure is divided into pitches of 0.25 degrees, and the frequency distribution in each division is represented by an inclination angle number distribution graph,
(A) In the first unit layer, the highest peak exists in the inclination angle section in the range of 0 to 20 degrees, and the total of the frequencies existing in the range of 0 to 20 degrees is an inclination angle distribution graph. The inclination angle frequency distribution graph which occupies the ratio of 55 to 75% of the whole frequency in is shown,
(B) In the second unit layer, the highest peak exists in the inclination angle section in the range of 70 to 90 degrees, and the total of the frequencies existing in the range of 70 to 90 degrees is an inclination angle number distribution graph. Showing an inclination angle frequency distribution graph occupying a proportion of 55 to 75% of the entire frequency in

(C) In the strain relaxation layer, the highest peak exists in the inclination angle section within the range of 30 to 60 degrees, and the total of the frequencies existing within the range of 30 to 60 degrees is in the inclination angle number distribution graph. An inclination angle frequency distribution graph occupying a proportion of 55 to 75% of the entire frequency is shown.
The hard coating layer is characterized by a coated tool that exhibits excellent chipping resistance in high-speed heavy cutting.

以下に、この発明の被覆工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、基本的には蒸着α型Al23層の下部層として存在し、自身の具備する優れた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と蒸着α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速重切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer basically exists as a lower layer of the vapor-deposited α-type Al 2 O 3 layer, and allows the hard coating layer to have high-temperature strength by its excellent high-temperature strength, It adheres firmly to any of the vapor-deposited α-type Al 2 O 3 layers, and thus has the effect of contributing to the improvement of the adhesion of the hard coating layer to the tool substrate. On the other hand, if the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation especially in high-speed heavy cutting with high heat generation, which causes uneven wear. The thickness was determined to be 3 to 20 μm.

(b)蒸着α型Al23層(上部層)
上記の通り、第1、第2単位層および歪緩和層のそれぞれの傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、いずれも化学蒸着装置における反応雰囲気温度・圧力や反応ガス組成を変化させることによって変化するが、試験結果によれば、前記反応雰囲気圧力を、第1単位層では5〜8kpa、第2単位層では20〜30kPa、また歪緩和層では10〜15kPaとすると、最高ピークが、上記第1単位層では0〜20度、上記第2単位層では70〜90度、上記歪緩和層では30〜60度の範囲内の傾斜角区分に現れると共に、前記0〜20度、70〜90度および30〜60度の範囲内に存在する度数の合計が、いずれの場合も傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、所定の反応雰囲気温度・圧力および反応ガス組成から外れてしまうと、測定傾斜角の最高ピーク位置はそれぞれ0〜20度、70〜90度および30〜60度の範囲から外れてしまい、このような場合には第1単位層であれば所望の高温強度、第2単位層であれば同じく高温硬さを具備することができず、さらに、歪緩和層であればバランスのとれた所定の高温強度と高温硬さを有するとともに、第1単位層と第2単位層間の歪緩和作用を発揮することができない。

また、第1、第2単位層および歪緩和層のもつそれぞれの特性、すなわち高温強度、高温硬さおよび歪緩和作用を上部層に十分に、かつ層厚全体に亘って均一に具備させるには、前記単位層のそれぞれの平均層厚を1.5〜5μmにし、歪緩和層の平均層厚を3〜6μmにして、第1単位層と第2単位層との間に歪緩和層を介在させ積層構造とする必要があり、したがって平均層厚が前記範囲から外れた場合、前記特性のうちの少なくともいずれかの特性が不十分であり、所望のすぐれた高温強度、高温硬さおよび歪緩和作用を発揮せしめることができない。

第1単位層と第2単位層とでは、それぞれ優勢となる結晶成長方向が相異なるために、第1単位層と第2単位層との界面(境界領域)には成長方向の乱れによる歪が発生しやすくなり、第1単位層と第2単位層との間の密着性の低下を招きかねない。
特に、上部層の厚膜化を図った場合には、各単位層間の密着性を確保し、内部歪のない品質の高い健全な上部層を形成することが重要である。そこで、第1単位層と第2単位層との間に歪緩和作用を有する歪緩和層を介在させることにより、第1単位層と第2単位層との界面(境界領域)に生じる内部応力の発生を抑え、もって,第1単位層と第2単位層に発生する内部歪、或いは、上部層全体に発生する内部歪の低減を図る必要がある。

歪緩和層としては、第1単位層と第2単位層の双方に対して、結晶成長方向が大きく異なるものであってはいけないことから、すでに述べたような低温高圧反応ガス組成調整条件の化学蒸着によって形成される蒸着α型Al23層(歪緩和層)を用いることができる。低温高圧反応ガス組成調整条件の化学蒸着によって形成される蒸着α型Al23層を歪緩和層として用いることにより、第1単位層と第2単位層間に発生する内部応力を抑え、第1単位層と第2単位層間の密着性を十分に確保することができるとともに、上部層全体としても、内部応力、内部歪が極めて少ない、品質の高い健全な上部層を形成することができ、さらに、所望の高温強度、高温硬さの両者をバランス良く具備した上部層を得ることができる。
中間層の厚さとしては、第1単位層と第2単位層との間の歪緩和作用を発揮することができる程度の厚みが最小限必要とされ、一方、厚すぎては、第1単位層と第2単位層がそれぞれに有する特性を十分に生かすことができず、上部層全体の特性として、必要とされる所望の高温強度、高温硬さの両者をバランス良く確保することができないことから、歪緩和層の平均層厚は、3〜6μmであることが望ましい。
また、第1単位層、第2単位層、歪緩和層の積層構造からなる上部層(蒸着α型Al23層)全体の平均層厚が6μm未満では、これのもつすぐれた特性を長期に亘って十分に発揮することができず、一方その平均層厚が30μmを越えて厚くなりすぎると、切刃部にチッピング(微少欠け)が発生し易くなることから、その全体平均層厚を6〜30μmと定めた。
(B) Evaporated α-type Al 2 O 3 layer (upper layer)
As described above, the highest peak position of the measured inclination angle in each of the inclination angle number distribution graphs of the first and second unit layers and the strain relaxation layer changes the reaction atmosphere temperature / pressure and reaction gas composition in the chemical vapor deposition apparatus. According to the test results, the maximum peak is obtained when the reaction atmosphere pressure is 5 to 8 kpa for the first unit layer, 20 to 30 kPa for the second unit layer, and 10 to 15 kPa for the strain relaxation layer. However, the first unit layer is 0 to 20 degrees, the second unit layer is 70 to 90 degrees, the strain relaxation layer is 30 to 60 degrees, and the angle is in the range of 0 to 20 degrees. The inclination angle distribution graph in which the sum of the frequencies existing in the ranges of 70 to 90 degrees and 30 to 60 degrees occupies a ratio of 55 to 75% of the entire frequencies in the inclination angle distribution graph in any case. Therefore, if it deviates from the predetermined reaction atmosphere temperature / pressure and reaction gas composition, the maximum peak positions of the measurement tilt angles are 0 to 20 degrees, 70 to 90 degrees, and 30 to 60, respectively. In such a case, the first unit layer cannot have the desired high-temperature strength, and the second unit layer cannot have the same high-temperature hardness. If so, it has a predetermined high-temperature strength and high-temperature hardness that are well balanced, and cannot exert a strain relaxation action between the first unit layer and the second unit layer.

In order to provide the upper layer with sufficient properties of the first and second unit layers and the strain relaxation layer, that is, high temperature strength, high temperature hardness and strain relaxation, uniformly throughout the entire layer thickness. The average layer thickness of each of the unit layers is 1.5 to 5 μm, the average layer thickness of the strain relaxation layer is 3 to 6 μm, and the strain relaxation layer is interposed between the first unit layer and the second unit layer. If the average layer thickness deviates from the above range, at least one of the above characteristics is insufficient, and the desired excellent high temperature strength, high temperature hardness and strain relaxation. The effect cannot be demonstrated.

Since the dominant crystal growth directions of the first unit layer and the second unit layer are different from each other, the interface (boundary region) between the first unit layer and the second unit layer has distortion due to the disorder of the growth direction. It becomes easy to generate | occur | produce and may cause the fall of the adhesiveness between a 1st unit layer and a 2nd unit layer.
In particular, when the upper layer is made thicker, it is important to ensure adhesion between the unit layers and to form a high-quality, healthy upper layer free from internal distortion. Therefore, by interposing a strain relaxation layer having a strain relaxation action between the first unit layer and the second unit layer, the internal stress generated at the interface (boundary region) between the first unit layer and the second unit layer is reduced. Therefore, it is necessary to reduce the internal strain generated in the first unit layer and the second unit layer, or the internal strain generated in the entire upper layer.

As the strain relaxation layer, the crystal growth direction should not be significantly different for both the first unit layer and the second unit layer. A vapor deposition α-type Al 2 O 3 layer (strain relaxation layer) formed by vapor deposition can be used. By using a deposited α-type Al 2 O 3 layer formed by chemical vapor deposition under conditions of adjusting the composition of the low-temperature and high-pressure reaction gas as the strain relaxation layer, the internal stress generated between the first unit layer and the second unit layer is suppressed, and the first Adhesiveness between the unit layer and the second unit layer can be sufficiently secured, and the upper layer as a whole can form a high-quality, healthy upper layer with extremely low internal stress and internal strain. An upper layer having a desired balance between high temperature strength and high temperature hardness can be obtained.
As the thickness of the intermediate layer, a minimum thickness that can exert a strain relaxation effect between the first unit layer and the second unit layer is required. On the other hand, if the thickness is too thick, the first unit The characteristics of the layer and the second unit layer cannot be fully utilized, and the desired properties of the high temperature strength and the high temperature hardness cannot be secured in a well-balanced manner as the characteristics of the entire upper layer. Therefore, the average thickness of the strain relaxation layer is preferably 3 to 6 μm.
Moreover, if the average layer thickness of the entire upper layer (deposited α-type Al 2 O 3 layer) composed of the laminated structure of the first unit layer, the second unit layer, and the strain relaxation layer is less than 6 μm, this excellent characteristic is maintained for a long time. On the other hand, if the average layer thickness exceeds 30 μm and becomes too thick, chipping (slight chipping) is likely to occur at the cutting edge portion. It was determined to be 6 to 30 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆工具は、硬質被覆層の上部層を構成する蒸着α型Al23層の層厚を厚膜化した状態で、各種の鋼や鋳鉄などの切削加工を高速で、かつ高い機械的衝撃を伴なう高切り込みや高送りなどの重切削条件で行っても、前記蒸着α型Al23層が、内部歪が小さく密着性にすぐれ、かつ、すぐれた高温強度と高温硬さを有することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated tool of the present invention is capable of high-speed and high cutting of various types of steel and cast iron in a state where the thickness of the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is increased. Even when performed under heavy cutting conditions such as high depth of cut and high feed accompanied by mechanical impact, the vapor-deposited α-type Al 2 O 3 layer has low internal strain and excellent adhesion, and excellent high-temperature strength and high-temperature. Since it has hardness, it exhibits excellent wear resistance without occurrence of chipping in the hard coating layer, and it is possible to further extend the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工することによりISO・CNMG120408に規定するスローアウェイチップ形状をもったWC基超硬合金製工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the blending composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact was sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Thus, WC-based cemented carbide tool bases A to F having a throw-away tip shape specified in ISO · CNMG120408 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定の形状の圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工することによりISO・CNMG120412に規定するスローアェイチップ形状をもったTiCN基サーメット製工具基体a〜fをそれぞれ製造した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder were prepared, and these raw material powders were blended into the blending composition shown in Table 2. Further, a wax was added, and the mixture was ball milled in acetone for 24 hours, dried under reduced pressure, and then at a pressure of 98 MPa. The green compact is press-molded into a predetermined shape, and the green compact is sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, R: TiCN-based cermet tool bases a to f having a throw-away tip shape defined in ISO · CNMG120212 were manufactured by performing a honing process of 0.07 mm.

ついで、これらの超硬製工具基体A〜Fおよびサーメット製工具基体a〜fの表面に、通常の化学蒸着装置を用いて、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成(容量%)で、

AlCl3 8.0%、CO2 1.2%、HCl 1.5%、H2S 0.8%、Ar 7%、H2 残り、
反応雰囲気温度:1010℃、
反応雰囲気圧力:5〜8kPaの範囲内の所定の圧力、
の反応ガス組成調整条件で第1単位層、
(c)また、反応ガス組成(容量%)で、

AlCl3 2.2%、CO2 2.5%、HCl 2.0%、H2S 0.15%、H2 残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:30〜40kPaの範囲内の所定の圧力、
の低温高圧条件で第2単位層、

(d)さらに、反応ガス組成(容量%)で、

AlCl3 3.0%、CO2 2.0%、HCl 2.0%、H2S 0.1%、Ar 3%、H2 残り、

反応雰囲気温度:930℃、
反応雰囲気圧力:10〜15kPaの範囲内の所定の圧力、
の低圧高温反応ガス組成調整条件で歪緩和層、
をそれぞれ表4に示される目標層厚の蒸着α型Al23層となるように上部層を蒸着形成することにより、本発明被覆工具1〜13をそれぞれ製造した。
Then, using a normal chemical vapor deposition apparatus on the surfaces of these carbide tool bases A to F and cermet tool bases a to f,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4), the Ti compound layer having the target layer thickness shown in Table 4 is deposited as a lower layer of the hard coating layer.
(B) Next, with the reaction gas composition (volume%),

AlCl 3 8.0%, CO 2 1.2%, HCl 1.5%, H 2 S 0.8%, Ar 7%, H 2 remaining,
Reaction atmosphere temperature: 1010 ° C.
Reaction atmosphere pressure: a predetermined pressure within a range of 5 to 8 kPa,
The first unit layer under the reaction gas composition adjustment conditions of
(C) Also, the reaction gas composition (volume%),

AlCl 3 2.2%, CO 2 2.5%, HCl 2.0%, H 2 S 0.15%, H 2 remaining,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 30-40 kPa,
The second unit layer under low temperature and high pressure conditions of

(D) Further, with the reaction gas composition (volume%),

AlCl 3 3.0%, CO 2 2.0%, HCl 2.0%, H 2 S 0.1%, Ar 3%, H 2 remaining,

Reaction atmosphere temperature: 930 ° C.
Reaction atmosphere pressure: a predetermined pressure within a range of 10 to 15 kPa,
The strain relaxation layer under the low pressure and high temperature reaction gas composition adjustment conditions of
The By so each a table 4 to the target layer thickness deposited α-type the Al 2 O 3 layer as indicated upper layer formed by evaporation, the present invention coated tool 1 to 13 were prepared, respectively.

また、比較の目的で、硬質被覆層の上部層を構成する蒸着α型Al23層の形成を、
反応ガス組成(容量%)で、

AlCl3 2.2%、CO2 5.0%、HCl 2.0%、H2S 0.15%、H2 残り、
反応雰囲気温度:1020℃、
反応雰囲気圧力:6〜13kPaの範囲内の所定の圧力、
の通常条件で、表5に示される通りの目標層厚で形成する以外は、上記の本発明被覆工具1〜13と同一の条件で従来被覆工具1〜13をそれぞれ作製した。
For the purpose of comparison, the formation of a vapor-deposited α-type Al 2 O 3 layer that constitutes the upper layer of the hard coating layer,
Reactant gas composition (volume%)

AlCl 3 2.2%, CO 2 5.0%, HCl 2.0%, H 2 S 0.15%, H 2 remaining,
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 13 kPa,
The conventional coated tools 1 to 13 were respectively produced under the same conditions as the present invention coated tools 1 to 13 except that they were formed with the target layer thickness as shown in Table 5 under the normal conditions.

ついで、上記の本発明被覆工具1〜13の硬質被覆層の上部層を構成する第1、第2単位層および歪緩和層と、従来被覆工具1〜13の上部層を構成する蒸着α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆工具1〜13の上部層の第1単位層、第2単位層および歪緩和層については、工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、上記第1単位層、第2単位層および歪緩和層の各層について、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆工具1〜13の蒸着α型Al23層についても、工具基体表面と平行な任意研磨面を同一の条件で観察し、同一の条件で傾斜角度数分布グラフを作成した。
Next, the first and second unit layers and the strain relaxation layer constituting the upper layer of the hard coating layer of the present invention coated tools 1 to 13, and the vapor deposition α-type Al constituting the upper layer of the conventional coated tool 1 to 13 With respect to the 2 O 3 layer, an inclination angle number distribution graph was prepared using a field emission scanning electron microscope.
That is, the inclination angle number distribution graph shows that the first unit layer, the second unit layer, and the strain relaxation layer of the upper layer of the above-described coated tools 1 to 13 of the present invention are polished surfaces parallel to the tool base surface. In this state, each polishing surface is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polishing surface with an irradiation current of 1 nA. Irradiate each crystal grain having a hexagonal crystal lattice existing in the range, and use an electron backscatter diffraction image apparatus to make a region of 30 × 50 μm normal to the polished surface at an interval of 0.1 μm / step. On the other hand, the inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured, and based on the measurement result, the first unit layer and the second unit layer among the measurement inclination angles. And 0 to 90 for each layer of the strain relaxation layer With dividing the measured tilt angle within a range of each pitch of 0.25 degrees, it was created by aggregating the frequencies present in each segment.
As for the conventional coated tools 1 to 13 deposited α-type the Al 2 O 3 layer of, by observing the tool substrate parallel to the surface optionally polished surface under the same conditions to prepare a tilt angle frequency distribution graph in the same conditions.

この結果得られた各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、表4、5にそれぞれ示される通り、本発明被覆工具1〜13の上部層を構成する第1、第2単位層および歪緩和層は、いずれも(0001)面の測定傾斜角の分布が、前記第1単位層では0〜20度、第2単位層では70〜90度、歪緩和層では30〜60度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示した。これに対して、従来被覆工具1〜13の蒸着α型Al23層は、(0001)面の測定傾斜角の分布が、0〜90度のいずれの範囲内でも不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表5には、上記の各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、それぞれ0〜20度、70〜90度および30〜60度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図2は、本発明被覆工具1の上部層を構成する第1単位層の傾斜角度数分布グラフ、図3は同第2単位層の傾斜角度数分布グラフ、図4は歪緩和層の傾斜角度数分布グラフ、図5は従来被覆工具1の上部層を構成する蒸着α型Al23層のそれぞれ0〜90度の傾斜角区分を示す傾斜角度数分布グラフである。
In the inclination angle number distribution graphs of the various deposited α-type Al 2 O 3 layers obtained as a result, as shown in Tables 4 and 5, respectively, the first and the first constituting the upper layer of the coated tools 1 to 13 of the present invention. Each of the two unit layers and the strain relaxation layer has a distribution of measured inclination angles on the (0001) plane of 0 to 20 degrees in the first unit layer, 70 to 90 degrees in the second unit layer, and 30 to 30 in the strain relaxation layer. An inclination angle number distribution graph in which the highest peak appears in the inclination angle section within the range of 60 degrees is shown. On the other hand, the deposition α-type Al 2 O 3 layer of the conventional coated tools 1 to 13 has the highest peak in the distribution of the measured inclination angle on the (0001) plane even in any range of 0 to 90 degrees. It was a graph showing the distribution of the number of tilt angles in which there is no.
Table 5 shows the inclination angle number distribution graphs of the various deposited α-type Al 2 O 3 layers, which are present in the inclination angle sections within the ranges of 0 to 20 degrees, 70 to 90 degrees, and 30 to 60 degrees, respectively. The ratio of the total number of tilt angles to the entire tilt angle number distribution graph is shown.
2 is an inclination angle number distribution graph of the first unit layer constituting the upper layer of the coated tool 1 of the present invention, FIG. 3 is an inclination angle number distribution graph of the second unit layer, and FIG. 4 is an illustration of the strain relaxation layer. Inclination angle number distribution graph, FIG. 5 is an inclination angle number distribution graph showing inclination angle segments of 0 to 90 degrees for each of the deposited α-type Al 2 O 3 layers constituting the upper layer of the conventional coated tool 1.

また、この結果得られた本発明被覆工具1〜13および従来被覆工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement), Also showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆工具1〜13および従来被覆工具1〜13からなる各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材: JIS−S45C 、
切削速度:500 m/min.、
切り込み:1.5 mm、
送り: 0.30mm/rev.、
切削時間: 5 分、
の条件(切削条件Aという)での炭素鋼の乾式連続高速高送り切削試験(通常の切削速度および送りは200m/min.および0.15mm/rev.)、
被削材: JIS−SNCM439 、
切削速度:450 m/min.、
切り込み:3.5 mm、
送り: 0.40mm/rev.、
切削時間: 6 分、
の条件(切削条件Bという)での合金鋼の乾式断続高速高切込み切削試験(通常の切削速度および切り込みは200m/min.および1.5mm)、さらに、
被削材: JIS−FCD450 、
切削速度:400 m/min.、
切り込み:4.0 mm、
送り: 0.35mm/rev.、
切削時間: 7 分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速高切り込み切削試験(通常の切削速度および切り込みは200m/min.および1.5mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, for the various coated tools consisting of the present invention coated tools 1 to 13 and the conventional coated tools 1 to 13, all are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS-S45C
Cutting speed: 500 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 5 minutes,
Dry continuous high-speed high-feed cutting test of carbon steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 200 m / min. And 0.15 mm / rev.),
Work material: JIS-SNCM439,
Cutting speed: 450 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.40 mm / rev. ,
Cutting time: 6 minutes,
A dry intermittent high-speed high-cut cutting test (normal cutting speed and cutting is 200 m / min. And 1.5 mm) of alloy steel under the following conditions (referred to as cutting conditions B),
Work material: JIS-FCD450
Cutting speed: 400 m / min. ,
Incision: 4.0 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 7 minutes,
The dry continuous high-speed, high-cut cutting test (normal cutting speed and cutting is 200 m / min. And 1.5 mm) of cast iron under the above conditions (referred to as cutting condition C). The width was measured. The measurement results are shown in Table 6.

Figure 2007061922
Figure 2007061922

Figure 2007061922
Figure 2007061922

Figure 2007061922
Figure 2007061922

Figure 2007061922
Figure 2007061922

Figure 2007061922
Figure 2007061922

Figure 2007061922
Figure 2007061922

表6に示される結果から、本発明被覆工具1〜13は、いずれも硬質被覆層の上部層が第1単位層、第2単位層および歪緩和層の積層構造を有し、かつ前記第1、第2単位層および歪緩和層のそれぞれが、(0001)面の傾斜角度数分布グラフで前記第1単位層では0〜20度、第2単位層では70〜90度、歪緩和層では30〜60度の範囲内の傾斜角区分で最高ピークを示し、また、第1単位層と第2単位層間には、(0001)面の傾斜角度数分布グラフで30〜60度の範囲内の傾斜角区分で最高ピークを示す歪緩和層が介在することにより、上部層の内部応力、内部歪が極めて小さく密着性にもすぐれ、品質が良好で健全な上部層を形成することができ、かつ、該上部層はすぐれた高温強度と高温硬さを具備するようになることから、硬質被覆層の上部層を構成する蒸着α型Al23層の層厚を厚膜化した状態で、各種の鋼や鋳鉄の切削加工を、高速で、かつ高い機械的衝撃を伴う高速重切削条件で行っても、チッピングの発生なく、すぐれた耐摩耗性を示す。一方、従来被覆工具1〜13は、硬質被覆層の上部層全体が、(0001)面の測定傾斜角の分布が0〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α型Al23層の高温強度および高温硬さ不足が原因で、高速重切削条件では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Table 6, all of the coated tools 1 to 13 of the present invention have a laminated structure in which the upper layer of the hard coating layer is a first unit layer, a second unit layer, and a strain relaxation layer, and the first Each of the second unit layer and the strain relaxation layer has a (0001) plane inclination angle distribution graph of 0 to 20 degrees for the first unit layer, 70 to 90 degrees for the second unit layer, and 30 for the strain relaxation layer. It shows the highest peak in the inclination angle section within the range of ˜60 degrees, and between the first unit layer and the second unit layer, the inclination within the range of 30-60 degrees in the (0001) plane inclination angle number distribution graph. By interposing the strain relaxation layer showing the highest peak in the corner section, the internal stress of the upper layer, the internal strain is extremely small and excellent in adhesion, it is possible to form a good and healthy upper layer, and The upper layer should have excellent high temperature strength and hardness Accompanied al, the layer thickness of the deposited α-type the Al 2 O 3 layer constituting the upper layer of the hard coating layer in a state of being thickened, the cutting of various steels and cast iron, at high speed, and high mechanical shock Even under high-speed heavy cutting conditions, it exhibits excellent wear resistance without chipping. On the other hand, in the conventional coated tools 1 to 13, the entire upper layer of the hard coating layer is unbiased in the distribution of the measured inclination angle of the (0001) plane within the range of 0 to 90 degrees, and the number of inclination angles at which the highest peak does not exist. It is clear that chipping occurs in the hard coating layer under high-speed heavy cutting conditions due to the lack of high-temperature strength and high-temperature hardness of the deposited α-type Al 2 O 3 layer showing the distribution graph, and the service life is reached in a relatively short time. It is.

上述のように、この発明の被覆工具は、硬質被覆層の上部層を構成する蒸着α型Al23層の層厚を厚膜化した状態で、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高速重切削加工でも硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool according to the present invention is in a state where the thickness of the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is increased under normal conditions such as various steels and cast iron. In addition to continuous cutting and intermittent cutting of the above, especially in high-speed heavy cutting, the hard coating layer does not generate chipping, exhibits excellent wear resistance, and exhibits excellent cutting performance over a long period of time. It can cope with high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

硬質被覆層の上部層を構成する蒸着α型Al23層の第1、第2単位層および歪緩和層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。Schematic showing the measurement range of the tilt angle when measuring the (0001) plane of crystal grains in the first and second unit layers and the strain relaxation layer of the vapor-deposited α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer It is explanatory drawing. 本発明被覆工具1の硬質被覆層の上部層を構成する第1単位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the 1st unit layer which comprises the upper layer of the hard coating layer of this invention coated tool 1. 本発明被覆工具1の硬質被覆層の上部層を構成する第2単位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the 2nd unit layer which constitutes the upper layer of the hard coating layer of this invention coated tool 1. 本発明被覆工具1の硬質被覆層の上部層を構成する歪緩和層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the strain relaxation layer which comprises the upper layer of the hard coating layer of this invention coated tool 1. 従来被覆工具1の硬質被覆層の上部層を構成する蒸着α型Al23層の(0001)面の傾斜角度数分布グラフである。The inclination angle frequency distribution graph of the conventional coated tool 1 of the hard coating layer deposited α-type constituting the upper layer the Al 2 O 3 layer of (0001) plane.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)第1単位層と第2単位層と歪緩和層との積層構造からなり、かつ6〜30μmの全体平均層厚を有する酸化アルミニウム層からなる上部層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具において、
上記酸化アルミニウム層からなる上部層を、1.5〜5μmの平均層厚を有する第1単位層と、1.5〜5μmの平均層厚を有する第2単位層と、第1単位層と第2単位層との間に介在する3〜6μmの平均層厚を有する歪緩和層とからなる積層構造となし、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、上記第1単位層、第2単位層および歪緩和層の各層について、0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記第1単位層は、0〜20度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜20度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示し、
(B)上記第2単位層は、70〜90度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記70〜90度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示すこと、
(C)上記歪緩和層は、30〜60度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記30〜60度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の55〜75%の割合を占める傾斜角度数分布グラフを示すこと、
を特徴とする硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する表面被覆切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It consists of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride layer, and has an overall average layer thickness of 3 to 20 μm. A lower layer composed of a Ti compound layer,
(B) an upper layer comprising an aluminum oxide layer having a laminated structure of a first unit layer, a second unit layer, and a strain relaxation layer, and having an overall average layer thickness of 6 to 30 μm;
In the surface-coated cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
The upper layer made of the aluminum oxide layer includes a first unit layer having an average layer thickness of 1.5 to 5 μm, a second unit layer having an average layer thickness of 1.5 to 5 μm, a first unit layer, Measurement of a polished surface parallel to the surface of the tool substrate using a field emission scanning electron microscope with a laminated structure comprising a strain relaxation layer having an average layer thickness of 3 to 6 μm interposed between two unit layers Inclination made by irradiating an electron beam to each crystal grain having a hexagonal crystal lattice existing in the range and a normal line of the (0001) plane being the crystal plane of the crystal grain with respect to the normal line of the polished surface An angle is measured, and the measurement inclination angle within the range of 0 to 90 degrees for each of the first unit layer, the second unit layer, and the strain relaxation layer among the measurement inclination angles is set to a pitch of 0.25 degrees. Inclination angle number distribution by counting the frequencies existing in each division If it was expressed in the rough,
(A) In the first unit layer, the highest peak exists in the inclination angle section in the range of 0 to 20 degrees, and the total of the frequencies existing in the range of 0 to 20 degrees is an inclination angle distribution graph. The inclination angle frequency distribution graph which occupies the ratio of 55 to 75% of the whole frequency in is shown,
(B) In the second unit layer, the highest peak exists in the inclination angle section in the range of 70 to 90 degrees, and the total of the frequencies existing in the range of 70 to 90 degrees is an inclination angle number distribution graph. Showing an inclination angle frequency distribution graph occupying a proportion of 55 to 75% of the entire frequency in
(C) In the strain relaxation layer, the highest peak exists in the inclination angle section within the range of 30 to 60 degrees, and the total of the frequencies existing within the range of 30 to 60 degrees is in the inclination angle number distribution graph. Showing an inclination angle frequency distribution graph occupying a proportion of 55 to 75% of the entire frequency,
A surface-coated cutting tool with a hard coating layer featuring excellent chipping resistance in high-speed heavy cutting.
JP2005247681A 2005-08-29 2005-08-29 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting Withdrawn JP2007061922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247681A JP2007061922A (en) 2005-08-29 2005-08-29 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247681A JP2007061922A (en) 2005-08-29 2005-08-29 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting

Publications (1)

Publication Number Publication Date
JP2007061922A true JP2007061922A (en) 2007-03-15

Family

ID=37924724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247681A Withdrawn JP2007061922A (en) 2005-08-29 2005-08-29 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP2007061922A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool

Similar Documents

Publication Publication Date Title
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176659B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP4512989B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP2007167987A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006043853A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and multiple cutting
JP5029099B2 (en) Surface coated cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2006334754A (en) Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2007061922A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting
JP2006334758A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4747386B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high speed cutting
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2006334759A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting
JP2006334755A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104