JP2006334754A - Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting - Google Patents

Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting Download PDF

Info

Publication number
JP2006334754A
JP2006334754A JP2005165366A JP2005165366A JP2006334754A JP 2006334754 A JP2006334754 A JP 2006334754A JP 2005165366 A JP2005165366 A JP 2005165366A JP 2005165366 A JP2005165366 A JP 2005165366A JP 2006334754 A JP2006334754 A JP 2006334754A
Authority
JP
Japan
Prior art keywords
layer
degrees
inclination angle
unit
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005165366A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Hiroshi Hara
央 原
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005165366A priority Critical patent/JP2006334754A/en
Publication of JP2006334754A publication Critical patent/JP2006334754A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cermet cutting tool a hard coated layer of which exhibits excellent chipping resistance in high speed deep cutting. <P>SOLUTION: This coated cermet tool is constituted by vapor-depositing the hard covered layer (a) a lower part layer of which is constituted of a Ti compound layer having total average layer thickness of 3 to 20 μm and (b) an upper part layer of which is constituted of a deposited α type Al<SB>2</SB>O<SB>3</SB>layer having average layer thickness of 3.5 to 11 μm, the deposited α type Al<SB>2</SB>O<SB>3</SB>layer is made into a three layer laminated structure made of a first unit layer and a second unit layer respectively having average layer thickness of 1.5 to 5 μm and an intermediate layer interposed between the first unit layer and the second unit layer and it is constituted of the deposited α type Al<SB>2</SB>O<SB>3</SB>layer an inclination of which made by a normal of a surface (0001) which is a crystal surface of crystal grains shows an inclination frequency distribution graph by irradiating each of the crystal grains having a hexagonal crystal lattice existing in a measured range of a polishing surface in parallel with the tool base body surface with an electron beam by using a field emission type scanning electronic microscope. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に硬質被覆層の構成層である酸化アルミニウム層(以下、Al23層で示す)を厚膜化した状態で、各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い機械的衝撃を伴なう高切り込みや高送りなどの重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を示し、したがってチッピング(微少欠け)などの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具(以下、被覆サーメット工具という)に関するものである。 In the present invention, particularly in a state in which an aluminum oxide layer (hereinafter referred to as an Al 2 O 3 layer) that is a constituent layer of a hard coating layer is thickened, various kinds of cutting work such as steel and cast iron can be performed at high speed. Even under heavy cutting conditions such as high cutting and high feed with high mechanical impact, the hard coating layer exhibits excellent chipping resistance, and therefore, no chipping (small chipping) occurs, and long-term The present invention relates to a surface-coated cermet cutting tool (hereinafter referred to as a coated cermet tool) that exhibits excellent wear resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、厚膜化した状態も含めると、1〜12μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、蒸着α型Al23層で示す)、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具が知られており、この被覆サーメット工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more layers of carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
(B) An aluminum oxide layer having an average layer thickness of 1 to 12 μm and having an α-type crystal structure in a state of chemical vapor deposition (hereinafter referred to as vapor deposition α-type Al) 2 O 3 layer)
There is known a coated cermet tool formed by vapor-depositing a hard coating layer composed of (a) and (b) above, and this coated cermet tool can be used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used.

また、一般に、上記の被覆サーメット工具の硬質被覆層を構成するTi化合物層や蒸着α型Al23層が粒状結晶組織を有し、さらに、前記Ti化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
特開平6−31503号公報 特開平6−8010号公報
In general, the Ti compound layer and vapor-deposited α-type Al 2 O 3 layer constituting the hard coating layer of the above coated cermet tool have a granular crystal structure, and the TiCN layer constituting the Ti compound layer is For the purpose of improving its own strength, it is formed by chemical vapor deposition in a medium temperature range of 700 to 950 ° C using a mixed gas containing organic carbonitrides as a reaction gas in a normal chemical vapor deposition apparatus, and vertically grown. It is also known to have a crystal structure.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、さらに切削加工は一段と高速化すると共に、高切り込みや高送りなどの重切削条件での切削加工が強く求められる傾向にあるが、上記の従来被覆サーメット工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速重切削条件で用いた場合には、特に硬質被覆層を構成する蒸着α型Al23層の高温硬さおよび高温強度が不十分であるために、摩耗が急速に進行し、かつチッピングも発生し易くなり、さらに前記蒸着α型Al23層の厚膜化によってチッピングは一段と発生し易くなることから、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. Further, cutting speed is further increased, and heavy cutting such as high cutting and high feed. Although there is a tendency that cutting under conditions is strongly demanded, in the above-mentioned conventional coated cermet tool, there is no problem when it is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. Especially when this is used under high-speed heavy cutting conditions, wear progresses rapidly because the high-temperature hardness and high-temperature strength of the vapor-deposited α-type Al 2 O 3 layer that constitutes the hard coating layer is insufficient. In addition, chipping is likely to occur, and further chipping is more likely to occur due to the thickening of the deposited α-type Al 2 O 3 layer, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の蒸着α型Al23層が硬質被覆層の上部層を構成する被覆サーメット工具に着目し、特に前記蒸着α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆サーメット工具の硬質被覆層としての蒸着α型Al23層は、一般に、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されるが、この通常条件形成の蒸着α型Al23層について、電界放出型走査電子顕微鏡を用い、図1(a),(b)および図2(a),(b)に概略説明図で示される通り、工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、それぞれ0〜45度および45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成すると、図5,6に例示される通り、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的な傾斜角度数分布グラフを示すこと。
In view of the above, the present inventors paid attention to a coated cermet tool in which the vapor-deposited α-type Al 2 O 3 layer constitutes the upper layer of the hard coating layer, and particularly the vapor-deposited α-type Al 2 O 3. As a result of research to improve chipping resistance of three layers,
(A) The vapor-deposited α-type Al 2 O 3 layer as a hard coating layer of the above-described conventional coated cermet tool is generally used in a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
1 (a), (b) and FIG. 1 using the field emission scanning electron microscope for the deposited α-type Al 2 O 3 layer formed under the normal conditions. 2 (a) and (b), as schematically shown in the drawing, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the polished surface parallel to the tool substrate surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. Of the measured inclination angles, 0 to 45 degrees and 45 to 90 degrees, respectively. As shown in FIGS. 5 and 6, when the measured inclination angle within the range is divided into pitches of 0.25 degrees, and an inclination angle number distribution graph is created by summing up the frequencies existing in each division. , (0001) plane measured tilt angle distribution is 0 to 45 degrees and 45 to 90 degrees An unbiased inclination angle number distribution graph within the range of.


(b)一方、α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:6〜10%、CO2:0.1〜1%、HCl:0.3〜3%、H2S:0.5〜1%、Ar:10〜35%、H2:残り、
反応雰囲気温度:1000〜1050℃、
反応雰囲気圧力:5〜8kPa、
の条件、すなわち反応ガス組成を調整して上記の通常条件の反応ガス組成とは異なった反応ガス組成とした条件(反応雰囲気の温度および圧力は上記の通常条件と同じ)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図1(a),(b)に示される通り、同じく工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図3に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り5〜8kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の0〜10度の範囲内で変化すると共に、前記0〜10度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて0〜10度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的にすぐれた高温強度を有すること。

(B) On the other hand, the α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition: volume%, AlCl 3 : 6 to 10%, CO 2 : 0.1 to 1%, HCl: 0.3 to 3%, H 2 S: 0.5 to 1%, Ar: 10 to 10% 35%, H 2 : remaining,
Reaction atmosphere temperature: 1000 to 1050 ° C.
Reaction atmosphere pressure: 5 to 8 kPa,
If the reaction gas composition is adjusted to the reaction gas composition different from the reaction gas composition of the above normal conditions (the temperature and pressure of the reaction atmosphere are the same as the above normal conditions), this result is obtained. The deposited α-type Al 2 O 3 layer formed was similarly measured using a field emission scanning electron microscope, as shown in FIGS. 1 (a) and 1 (b), within the measurement range of a polished surface parallel to the tool substrate surface. Each of the crystal grains having a hexagonal crystal lattice existing in the substrate is irradiated with an electron beam, and the inclination angle formed by the normal line of the (0001) plane that is the crystal plane of the crystal grain is made relative to the normal line of the polished surface. Measured and divided the measured inclination angle within the range of 0 to 45 degrees among the measured inclination angles for each pitch of 0.25 degrees, and the number of inclination angles obtained by totalizing the frequencies existing in each section When shown in the distribution graph, as illustrated in FIG. A sharp maximum peak appears at a specific position in the oblique section. According to the test results, when the reaction atmosphere pressure in the chemical vapor deposition apparatus is changed within the range of 5 to 8 kPa as described above, the sharp maximum peak appears. While the position changes within the range of 0 to 10 degrees of the inclination angle section, the total of the frequencies existing within the range of 0 to 10 degrees is a ratio of 45 to 65% of the total degrees in the inclination angle frequency distribution graph. The deposited α-type Al 2 O 3 layer in which the highest peak of the tilt angle section appears in the range of 0 to 10 degrees in the resulting tilt angle number distribution graph is the deposited α-type Al of the above-mentioned normal conditions. Compared to the 2 O 3 layer, it has relatively high temperature strength.

(c)さらに、蒸着α型Al23層を、同じく通常の化学蒸着装置を用い、
反応ガス組成:容量%で、AlCl3:1〜5%、CO2:3〜7%、HCl:0.3〜3%、H2S:0.02〜0.4%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:20〜30kPa、
の相対的に低温高圧条件(反応ガス組成は上記の通常条件と同じ)で形成すると、この結果形成された蒸着α型Al23層は、同じく電界放出型走査電子顕微鏡を用い、図2(a),(b)に示される通り、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記縦断研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、45〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、図4に例示される通り、傾斜角区分の特定位置にシャープな最高ピークが現れ、試験結果によれば、化学蒸着装置における反応雰囲気圧力を、上記の通り20〜30kPaの範囲内で変化させると、上記シャープな最高ピークの現れる位置が傾斜角区分の75〜85度の範囲内で変化すると共に、前記75〜85度の範囲内に存在する度数の合計は、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占めるようになり、この結果の傾斜角度数分布グラフにおいて75〜85度の範囲内に傾斜角区分の最高ピークが現れる蒸着α型Al23層は、上記の通常条件形成の蒸着α型Al23層に比して、相対的に高い高温硬さを有すること。
(C) Furthermore, the vapor-deposited α-type Al 2 O 3 layer was similarly used with a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 20-30 kPa,
2 formed under the relatively low temperature and high pressure conditions (reaction gas composition is the same as the above normal conditions), the deposited α-type Al 2 O 3 layer formed as a result is also shown in FIG. As shown in (a) and (b), each crystal grain having a hexagonal crystal lattice existing in the measurement range of the polishing surface parallel to the tool base surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line, and the measurement inclination angle within the range of 45 to 90 degrees out of the measurement inclination angles is set to 0. .When divided into 25-degree pitches and represented by an inclination angle number distribution graph in which the frequencies existing in each area are aggregated, as shown in FIG. The highest peak appears and the test results show that When the atmospheric pressure is changed within the range of 20 to 30 kPa as described above, the position at which the sharpest peak appears changes within the range of 75 to 85 degrees of the inclination angle section, and the 75 to 85 degrees The sum of the frequencies existing in the range occupies a ratio of 45 to 65% of the entire frequency in the tilt angle frequency distribution graph, and the tilt angle falls within the range of 75 to 85 degrees in the resulting tilt angle frequency distribution graph. The vapor-deposited α-type Al 2 O 3 layer in which the highest peak of the section appears has a relatively high high-temperature hardness as compared with the vapor-deposited α-type Al 2 O 3 layer formed under normal conditions.

(d)上記(b)の反応ガス組成調整条件の蒸着α型Al23層を第1単位層、上記(c)の低温高圧条件の蒸着α型Al23層を第2単位層、上記(a)の通常条件の蒸着α型Al23層を中間層とすると共に、第1単位層及び第2単位層のそれぞれの平均層厚を1.5〜5μmとし、第1単位層及び第2単位層の間に中間層を介在させて3層積層構造とし、かつ全体平均層厚を3.5〜11μmとしてなる蒸着α型Al23層を、下部層がTi化合物層からなる硬質被覆層の上部層として構成してなる被覆サーメット工具は、すぐれた高温硬さと高温強度を具備するようになり、特に最大層厚で11μmに厚膜化した状態で、高速重切削条件で切削加工を行っても、上記の硬質被覆層の上部層が、(0001)面の測定傾斜角の分布がそれぞれ
0〜45度および45〜90度の範囲内で不偏的な傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆サーメット工具に比して、硬質被覆層にチッピングの発生なく、一段とすぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) The vapor deposition α-type Al 2 O 3 layer under the reaction gas composition adjustment conditions in (b) above is the first unit layer, and the vapor deposition α-type Al 2 O 3 layer under the low-temperature and high-pressure conditions in (c) above is the second unit layer. The vapor deposition α-type Al 2 O 3 layer under the normal conditions (a) is used as an intermediate layer, and the average thickness of each of the first unit layer and the second unit layer is set to 1.5 to 5 μm. The intermediate layer is interposed between the layer and the second unit layer to form a three-layer structure, and the deposited α-type Al 2 O 3 layer having an overall average layer thickness of 3.5 to 11 μm, and the lower layer is a Ti compound layer A coated cermet tool configured as an upper layer of a hard coating layer made of a material having excellent high-temperature hardness and high-temperature strength, particularly in a state in which the maximum layer thickness is increased to 11 μm, high-speed heavy cutting conditions Even when the cutting process is performed with the upper layer of the hard coating layer, the distribution of the measured inclination angle of the (0001) plane is the same. Hard coating layer compared to conventional coated cermet tools composed of vapor-deposited α-type Al 2 O 3 layers showing unbiased gradient angle distribution graphs in the range of 0 to 45 degrees and 45 to 90 degrees, respectively In addition, there is no need for chipping and the wear resistance is improved over a long period of time.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、
(a)下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、3.5〜11μmの平均層厚を有する蒸着α型Al23層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆サーメット工具において、

上記酸化アルミニウム層を、1.5〜5μmの平均層厚を有する第1単位層と、1.5〜5μmの平均層厚を有する第2単位層と、第1単位層と第2単位層との間に介在する中間層とからなる3層積層構造とし、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、上記第1単位層については0〜45度、上記第2単位層については45〜90度、上記中間層については0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記第1単位層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、
(B)上記第2単位層は、75〜85度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜85度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すこと、
(C)上記中間層は、0〜90度の範囲の測定傾斜角区分全体に亘ってピークが存在せず、測定傾斜角の分布が不偏的な傾斜角度数分布グラフを示してなる、
硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する被覆サーメット工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the tool base,
(A) a Ti compound layer in which the lower layer is composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer, and has an overall average layer thickness of 3 to 20 μm,
(B) a vapor-deposited α-type Al 2 O 3 layer whose upper layer has an average layer thickness of 3.5 to 11 μm;
In the coated cermet tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,

The aluminum oxide layer includes a first unit layer having an average layer thickness of 1.5 to 5 μm, a second unit layer having an average layer thickness of 1.5 to 5 μm, a first unit layer and a second unit layer, A crystal grain having a hexagonal crystal lattice existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope, and having a three-layer laminated structure including an intermediate layer interposed therebetween Individually irradiated with an electron beam, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. The first unit layer is 0 to 45 degrees, the second unit layer is 45 to 90 degrees, and the intermediate layer is divided into 0 to 90 degrees for each inclination angle of 0.25 degrees. In addition, the inclination angle frequency distribution graph is formed by counting the frequencies existing in each category. When it appears in
(A) In the first unit layer, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is an inclination angle number distribution graph. The inclination angle frequency distribution graph which occupies the ratio of 45-65% of the whole frequency in is shown,
(B) In the second unit layer, the highest peak exists in the inclination angle section in the range of 75 to 85 degrees, and the total of the frequencies existing in the range of 75 to 85 degrees is an inclination angle number distribution graph. Showing an inclination angle frequency distribution graph occupying a proportion of 45 to 65% of the entire frequency in
(C) The intermediate layer has an inclination angle number distribution graph in which no peak exists over the entire measurement inclination angle section in the range of 0 to 90 degrees, and the distribution of the measurement inclination angle is unbiased.
The hard coating layer is characterized by a coated cermet tool that exhibits excellent chipping resistance in high-speed heavy cutting.

以下に、この発明の被覆サーメット工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層(Ti化合物層)
Ti化合物層は、基本的には上部層の蒸着α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようにするほか、工具基体と蒸着α型Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
The reason why the numerical values of the constituent layers of the hard coating layer of the coated cermet tool of the present invention are limited as described above will be described below.
(A) Lower layer (Ti compound layer)
The Ti compound layer basically exists as the lower layer of the vapor deposition α-type Al 2 O 3 layer of the upper layer, and in addition to allowing the hard coating layer to have high temperature strength due to its excellent high temperature strength, The tool substrate and the deposited α-type Al 2 O 3 layer are firmly adhered to each other, and thus have an effect of improving the adhesion of the hard coating layer to the tool substrate. However, when the average layer thickness is less than 3 μm, On the other hand, when the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting with high heat generation, which causes uneven wear. The average layer thickness was determined to be 3-20 μm.

(b)上部層(第1単位層、第2単位層および中間層)
上記の通り、第1および第2単位層のそれぞれの傾斜角度数分布グラフにおける測定傾斜角の最高ピーク位置は、いずれも化学蒸着装置における反応雰囲気圧力を変化させることによって変化するが、試験結果によれば、前記反応雰囲気圧力を、第1単位層では5〜8kpa、また第2単位層では20〜30kPaとすると、最高ピークが、上記第1単位層では0〜10度、上記第2単位層では75〜85度の範囲内の傾斜角区分に現れると共に、前記0〜10度および75〜85度の範囲内に存在する度数の合計が、いずれの場合も傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すようになるものであり、したがって、前記反応雰囲気圧力がそれぞれ前記範囲から低い方に外れても、また高い方に外れても、測定傾斜角の最高ピーク位置はそれぞれ0〜10度および75〜85度の範囲から外れてしまい、このような場合には第1単位層であれば所望のすぐれた高温強度、さらに第2単位層であれば同じく高温硬さを具備することができないものである。
また、第1および第2単位層のもつそれぞれの特性、すなわち高温強度および高温硬さを上部層に十分に、かつ層厚全体に亘って均一に具備させるには、前記単位層のそれぞれの平均層厚を1.5〜5μmにする必要がある。しかし、第1単位層と第2単位層の平均層厚をこのような数値範囲に定めた場合であっても、第1単位層と第2単位層とでは、それぞれ優勢となる結晶成長方向が相異なるために、第1単位層と第2単位層との界面(境界領域)には成長方向の乱れによる歪が発生しやすくなり、第1単位層と第2単位層との間の密着性の低下を招きかねない。そこで、第1単位層と第2単位層との間にひずみ緩和作用を有する中間層を介在させて、第1単位層と第2単位層との界面(境界領域)に生じる内部応力の発生を抑え、もって,第1単位層と第2単位層に発生する内部歪、或いは、上部層全体に発生する内部歪の低減を図る。

中間層としては、第1単位層と第2単位層の双方に対して、結晶成長方向が大きく異なるものであってはいけないことから、すでに述べたような通常条件の化学蒸着によって形成される蒸着α型Al23層を用いることができる。通常条件の化学蒸着によって形成される蒸着α型Al23層を中間層として用いることにより、第1単位層と第2単位層間に発生する内部応力を抑え、第1単位層と第2単位層間の密着性を十分に確保することができるとともに、上部層全体としても、内部応力、内部歪が極めて少ない、品質の高い健全な上部層を形成することができ、さらに、所望の高温強度と高温硬さの両者をバランス良く具備した上部層を得ることができる。
中間層の厚さとしては、第1単位層と第2単位層との間のひずみ緩和作用を発揮することができる程度の厚みが最小限必要とされ、一方、厚すぎては、上部層全体の特性として、必要とされる所望の高温強度と高温硬さの両者をバランス良く確保することができないことから、中間層の平均層厚は、0.5〜1.0μmであることが望ましい。
また、第1単位層と第2単位層と中間層の3層積層構造からなる上部層(蒸着α型Al23層)全体の平均層厚が3.5μm未満では、これのもつすぐれた特性を長期に亘って十分に発揮させることができず、一方その平均層厚が11μmを越えて厚くなりすぎると、切刃部にチッピング(微少欠け)が発生し易くなることから、その全体平均層厚を3.5〜11μmと定めた。
(B) Upper layer (first unit layer, second unit layer and intermediate layer)
As described above, the highest peak position of the measured inclination angle in each of the inclination angle number distribution graphs of the first and second unit layers is changed by changing the reaction atmosphere pressure in the chemical vapor deposition apparatus. Accordingly, when the reaction atmosphere pressure is 5 to 8 kpa in the first unit layer and 20 to 30 kPa in the second unit layer, the highest peak is 0 to 10 degrees in the first unit layer and the second unit layer. In this case, it appears in the inclination angle section in the range of 75 to 85 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees and 75 to 85 degrees is the total of the degrees in the inclination angle number distribution graph in any case. An inclination angle number distribution graph occupying a ratio of 45 to 65% is shown. Therefore, even if the reaction atmosphere pressure deviates from the above range, However, the maximum peak position of the measured tilt angle is out of the range of 0 to 10 degrees and 75 to 85 degrees, respectively. In such a case, the first unit layer has the desired excellent high temperature. If it is the strength and further the second unit layer, it cannot have high temperature hardness.
In addition, in order to provide the upper layer with sufficient properties of the first and second unit layers, that is, high temperature strength and high temperature hardness, and uniformly throughout the entire layer thickness, the average of each of the unit layers It is necessary to make the layer thickness 1.5 to 5 μm. However, even when the average thickness of the first unit layer and the second unit layer is set in such a numerical range, the dominant crystal growth direction is obtained in each of the first unit layer and the second unit layer. Due to the difference, the interface (boundary region) between the first unit layer and the second unit layer is likely to be distorted due to the disorder of the growth direction, and the adhesion between the first unit layer and the second unit layer. May lead to a decline. Therefore, an internal layer having a strain relaxation action is interposed between the first unit layer and the second unit layer, thereby generating internal stress generated at the interface (boundary region) between the first unit layer and the second unit layer. Therefore, the internal strain generated in the first unit layer and the second unit layer or the internal strain generated in the entire upper layer is reduced.

As the intermediate layer, the first unit layer and the second unit layer should not be greatly different in crystal growth direction, so that the vapor deposition formed by the chemical vapor deposition under the normal conditions as described above. An α-type Al 2 O 3 layer can be used. By using a vapor-deposited α-type Al 2 O 3 layer formed by chemical vapor deposition under normal conditions as an intermediate layer, the internal stress generated between the first unit layer and the second unit layer is suppressed, and the first unit layer and the second unit are suppressed. The adhesion between the layers can be sufficiently secured, and the upper layer as a whole can form a high-quality, sound upper layer with extremely low internal stress and internal strain. An upper layer having both high-temperature hardness and a good balance can be obtained.
As the thickness of the intermediate layer, a minimum thickness that can exert a strain relaxation effect between the first unit layer and the second unit layer is required. On the other hand, if the thickness is too thick, the entire upper layer is required. Since the required high-temperature strength and high-temperature hardness that are required cannot be ensured in a well-balanced manner, the average layer thickness of the intermediate layer is preferably 0.5 to 1.0 μm.
Moreover, when the average layer thickness of the entire upper layer (deposited α-type Al 2 O 3 layer) composed of a three-layer structure of the first unit layer, the second unit layer, and the intermediate layer was less than 3.5 μm, this was excellent. The characteristics cannot be fully exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 11 μm, chipping (small chipping) is likely to occur at the cutting edge, so the overall average The layer thickness was determined to be 3.5 to 11 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて硬質被覆層の最表面層として蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as the outermost surface layer of the hard coating layer as necessary, but the average layer thickness in this case is It may be 0.1 to 1 μm, and if it is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.

この発明の被覆サーメット工具は、各種の鋼や鋳鉄などの切削加工を高速で、かつ高い機械的衝撃を伴なう高切り込みや高送りなどの重切削条件で行っても、前記蒸着α型Al23層が、内部歪が小さく密着性にすぐれ、かつ、すぐれた高温強度と高温硬さを有することから、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cermet tool of the present invention is capable of performing the above-described vapor deposition α-type Al even when cutting various steels and cast irons at high speeds and under heavy cutting conditions such as high cutting and high feed with high mechanical impact. 2 O 3 layer has low internal strain, excellent adhesion, and excellent high-temperature strength and high-temperature hardness. This makes it possible to further extend the life.

つぎに、この発明の被覆サーメット工具を実施例により具体的に説明する。   Next, the coated cermet tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape specified in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having a standard / CNMG12041 chip shape were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表4,5に示される目標層厚のTi化合物層を硬質被覆層の下部層として蒸着形成し、
(b)ついで、反応ガス組成:容量%で、AlCl3:7.4%、CO2:0.3%、HCl:2.5%、H2S:0.7%、Ar:30%、H2:残り、
反応雰囲気温度:1020 ℃、
反応雰囲気圧力:5〜8kPaの範囲内の所定の圧力、
の反応ガス組成調整条件で第1単位層、
(c)さらに、反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:850℃、
反応雰囲気圧力:20〜30kPaの範囲内の所定の圧力、
の低温高圧条件で第2単位層、

(d)反応ガス組成:容量%で、AlCl3:1.5%、CO2:6.5%、HCl:2.0%、H2S:0.25%、H2:残り、
反応雰囲気温度:1000 ℃、
反応雰囲気圧力:10 kPa、
の通常条件で中間層、
をそれぞれ表4,5に示される目標層厚で上部層を蒸着形成することにより本発明被覆サーメット工具1〜13をそれぞれ製造した。
Then, each of these tool bases A to F and tool bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity. Under the conditions shown in Table 4 and 5), the Ti compound layer having the target layer thickness shown in Tables 4 and 5 is deposited as the lower layer of the hard coating layer.
(B) Next, the reaction gas composition: volume%, AlCl 3 : 7.4%, CO 2 : 0.3%, HCl: 2.5%, H 2 S: 0.7%, Ar: 30%, H 2 : Remaining
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure within a range of 5 to 8 kPa,
The first unit layer under the reaction gas composition adjustment conditions of
(C) Furthermore, the reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : the rest,
Reaction atmosphere temperature: 850 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 20-30 kPa,
The second unit layer under low temperature and high pressure conditions of

(D) Reaction gas composition: volume%, AlCl 3 : 1.5%, CO 2 : 6.5%, HCl: 2.0%, H 2 S: 0.25%, H 2 : remaining,
Reaction atmosphere temperature: 1000 ° C.,
Reaction atmosphere pressure: 10 kPa,
Middle layer in normal conditions,
Were coated with the target layer thicknesses shown in Tables 4 and 5, respectively, to produce the coated cermet tools 1 to 13 of the present invention.

また、比較の目的で、硬質被覆層の上部層を構成する蒸着α型Al23層の形成を、
反応ガス組成:容量%で、AlCl3:2.2%、CO2:5%、HCl:2%、H2S:0.15%、H2:残り、
反応雰囲気温度:1020℃、
反応雰囲気圧力:6〜13kPaの範囲内の所定の圧力、
の通常条件で、表6,7に示される通りの目標層厚で形成する以外は、上記の本発明被覆サーメット工具1〜13と同一の条件で従来被覆サーメット工具1〜13をそれぞれ製造した。
For the purpose of comparison, the formation of a vapor-deposited α-type Al 2 O 3 layer that constitutes the upper layer of the hard coating layer,
Reaction gas composition: volume%, AlCl 3 : 2.2%, CO 2 : 5%, HCl: 2%, H 2 S: 0.15%, H 2 : remaining,
Reaction atmosphere temperature: 1020 ° C.
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 13 kPa,
The conventional coated cermet tools 1 to 13 were produced under the same conditions as those of the present invention coated cermet tools 1 to 13 except that the target layer thicknesses shown in Tables 6 and 7 were used.

ついで、上記の本発明被覆サーメット工具1〜13の硬質被覆層の上部層を構成する第1、第2単位層および中間層と、従来被覆サーメット工具1〜13の上部層を構成する蒸着α型Al23層について、電界放出型走査電子顕微鏡を用いて、傾斜角度数分布グラフをそれぞれ作成した。
すなわち、上記傾斜角度数分布グラフは、上記の本発明被覆サーメット工具1〜13の上部層の第1単位層、第2単位層および中間層については、工具基体表面と平行な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、上記第1単位層については0〜45度、上記第2単位層については45〜90度、上記中間層については0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
また、従来被覆サーメット工具1〜13の蒸着α型Al23層についても、工具基体表面と平行な任意研磨面を同一の条件で観察し、同一の条件で傾斜角度数分布グラフを作成した。
Next, the first and second unit layers and the intermediate layer constituting the upper layer of the hard coating layer of the above-described coated cermet tool 1-13 of the present invention, and the vapor deposition α type constituting the upper layer of the conventional coated cermet tool 1-13. With respect to the Al 2 O 3 layer, an inclination angle number distribution graph was prepared using a field emission scanning electron microscope.
That is, the above-mentioned inclination angle number distribution graph shows that the first unit layer, the second unit layer, and the intermediate layer of the upper layers of the above-described coated cermet tools 1 to 13 of the present invention are polished surfaces that are parallel to the tool base surface. In this state, each polishing surface is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polishing surface with an irradiation current of 1 nA. Irradiate each crystal grain having a hexagonal crystal lattice existing in the range, and use an electron backscatter diffraction image apparatus to make a region of 30 × 50 μm normal to the polished surface at an interval of 0.1 μm / step. On the other hand, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured. Based on the measurement result, the first unit layer of the measurement inclination angle is 0-45. The second unit layer Was created by dividing the measured inclination angle within the range of 0 to 90 degrees for each of the above-mentioned intermediate layers into pitches of 0.25 degrees and counting the frequencies existing in each section. .
As for the conventional coated cermet tools 1 to 13 deposited α-type the Al 2 O 3 layer of, by observing the tool substrate parallel to the surface optionally polished surface under the same conditions to prepare a tilt angle frequency distribution graph in the same conditions .

この結果得られた各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、表4〜7にそれぞれ示される通り、本発明被覆サーメット工具1〜13の上部層を構成する第1および第2単位層は、いずれも(0001)面の測定傾斜角の分布が、前記記第1単位層では0〜10度、前記記第2単位層では75〜85度の範囲内の傾斜角区分に最高ピークが現れる傾斜角度数分布グラフを示した。これに対して、本発明被覆サーメット工具1〜13の中間層、従来被覆サーメット工具1〜13の蒸着α型Al23層は、(0001)面の測定傾斜角の分布が0〜90度のいずれの範囲内でも不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示すものであった。
また表4〜7には、上記の各種の蒸着α型Al23層の傾斜角度数分布グラフにおいて、それぞれ0〜10度および75〜85度の範囲内の傾斜角区分に存在する全傾斜角度数の傾斜角度数分布グラフ全体に占める割合を示した。
なお、図3は、本発明被覆サーメット工具1の上部層を構成する第1単位層の傾斜角度数分布グラフ、図4は同第2単位層の傾斜角度数分布グラフ、図5,6は従来被覆サーメット工具1の上部層を構成する蒸着α型Al23層のそれぞれ0〜45度および45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。
In the inclination angle number distribution graphs of the various deposited α-type Al 2 O 3 layers obtained as a result, as shown in Tables 4 to 7, the first and the first layers constituting the upper layers of the coated cermet tools 1 to 13 of the present invention are shown. Each of the second unit layers has a distribution of measured inclination angles on the (0001) plane within the range of 0 to 10 degrees for the first unit layer and 75 to 85 degrees for the second unit layer. An inclination angle distribution graph in which the highest peak appears is shown. On the other hand, the intermediate layer of the coated cermet tools 1 to 13 of the present invention and the deposited α-type Al 2 O 3 layer of the conventional coated cermet tools 1 to 13 have a measured inclination angle distribution on the (0001) plane of 0 to 90 degrees. The inclination angle number distribution graph in which the highest peak is not present in any range is shown.
Tables 4 to 7 show the total inclinations existing in the inclination angle sections in the range of 0 to 10 degrees and 75 to 85 degrees in the inclination angle number distribution graphs of the various deposited α-type Al 2 O 3 layers. The ratio of the number of angles to the entire gradient number distribution graph is shown.
3 is an inclination angle number distribution graph of the first unit layer constituting the upper layer of the coated cermet tool 1 of the present invention, FIG. 4 is an inclination angle number distribution graph of the second unit layer, and FIGS. the inclination angle frequency distribution graph, respectively showing the inclination angle segment of 0 to 45 degrees and 45-90 degrees coated cermet constituting the upper layer of the tool 1 deposited α-type the Al 2 O 3 layer.

また、この結果得られた本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the constituent layer of the hard coating layer of the present invention coated cermet tools 1 to 13 and the conventional coated cermet tools 1 to 13 obtained as a result was measured using a scanning electron microscope (longitudinal section measurement) , Each showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

つぎに、上記の本発明被覆サーメット工具1〜13および従来被覆サーメット工具1〜13各種の被覆サーメット工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材: JIS−S50C 、
切削速度:350 m/min.、
切り込み:2.0 mm、
送り: 0.4 mm/rev.、
切削時間: 7 分、
の条件(切削条件Aという)での炭素鋼の乾式連続高速高送り切削試験(通常の切削速度および送りは200m/min.および0.2mm/rev.)、
被削材: JIS−SCM440 、
切削速度:400 m/min.、
切り込み:4.0 mm、
送り: 0.3 mm/rev.、
切削時間: 8 分、
の条件(切削条件Bという)での合金鋼の乾式断続高速高切り込み切削試験(通常の切削速度および切り込みは200m/min.および1.5mm)、さらに、
被削材: JIS−FC300 、
切削速度:500 m/min.、
切り込み:4.5 mm、
送り: 0.3 mm/rev.、
切削時間: 7 分、
の条件(切削条件Cという)での鋳鉄の乾式連続高速高切り込み切削試験(通常の切削速度および切り込みは250m/min.および1.5mm)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cermet tools of the present invention coated cermet tool 1-13 and the conventional coated cermet tool 1-13, all of them are screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS-S50C
Cutting speed: 350 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 7 minutes,
Dry continuous high-speed high-feed cutting test of carbon steel under the following conditions (referred to as cutting condition A) (normal cutting speed and feed are 200 m / min. And 0.2 mm / rev.),
Work material: JIS-SCM440,
Cutting speed: 400 m / min. ,
Incision: 4.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes,
In a dry interrupted high-speed high-cutting test of the alloy steel under the conditions (cutting condition B) (normal cutting speed and cutting is 200 m / min. And 1.5 mm),
Work material: JIS-FC300
Cutting speed: 500 m / min. ,
Cutting depth: 4.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 7 minutes,
The dry continuous high-speed, high-cut cutting test (normal cutting speed and cutting is 250 m / min. And 1.5 mm) of cast iron under the above conditions (referred to as cutting condition C). The width was measured. The measurement results are shown in Table 8.

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

Figure 2006334754
Figure 2006334754

表4〜8に示される結果から、本発明被覆サーメット工具1〜13は、いずれも硬質被覆層の上部層が第1単位層、第2単位層および中間層の3層積層構造を有し、かつ前記第1および第2単位層のそれぞれが、(0001)面の傾斜角度数分布グラフで前記第1単位層では0〜10度、前記第2単位層では75〜85度の範囲内の傾斜角区分で最高ピークを示し、また、第1単位層と第2単位層間には、(0001)面の測定傾斜角の分布が0〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す中間層が介在していることから、上部層の内部応力、内部歪が極めて小さく密着性にもすぐれ、品質の良好な健全な上部層を形成することができ、かつ、該上部層はすぐれた高温強度と高温硬さを具備するようになることから、鋼や鋳鉄の切削加工を、高速で、かつ高い機械的衝撃を伴なう高速重切削条件で行っても、チッピングの発生なく、すぐれた耐摩耗性を示す。一方、硬質被覆層の上部層全体が、(0001)面の測定傾斜角の分布が0〜45度および45〜90度の範囲内で不偏的で、最高ピークが存在しない傾斜角度数分布グラフを示す蒸着α型Al23層で構成された従来被覆サーメット工具1〜13においては、いずれも前記蒸着α型Al23層の高温強度および高温硬さ不足が原因で、高速重切削条件では硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 4 to 8, each of the coated cermet tools 1 to 13 of the present invention has a three-layer laminated structure in which the upper layer of the hard coating layer is a first unit layer, a second unit layer, and an intermediate layer, Each of the first and second unit layers has an inclination angle number distribution graph of (0001) plane within the range of 0 to 10 degrees for the first unit layer and 75 to 85 degrees for the second unit layer. The highest peak is shown in the corner section, and the distribution of the measured inclination angle on the (0001) plane is unbiased within the range of 0 to 90 degrees, and there is no highest peak between the first unit layer and the second unit layer. Since the intermediate layer showing the inclination angle number distribution graph is interposed, the internal stress and internal strain of the upper layer are extremely small, and the adhesiveness is excellent, and a good quality upper layer can be formed, and The upper layer has excellent high temperature strength and hardness. From Rukoto, the cutting of steel and cast iron, be carried out in a high speed, and high mechanical shock accompanied by Nau fast heavy cutting conditions, without chipping, exhibit excellent wear resistance. On the other hand, the entire upper layer of the hard coating layer has an inclination angle number distribution graph in which the distribution of measured inclination angles on the (0001) plane is unbiased within the range of 0 to 45 degrees and 45 to 90 degrees, and the highest peak does not exist. In the conventional coated cermet tools 1 to 13 composed of the vapor-deposited α-type Al 2 O 3 layer shown, all of the high-speed heavy cutting conditions were caused by the lack of high-temperature strength and high-temperature hardness of the vapor-deposited α-type Al 2 O 3 layer. Then, it is clear that chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆サーメット工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に高速重切削加工でも硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cermet tool of the present invention is excellent in that there is no chipping in the hard coating layer even in continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, especially in high-speed heavy cutting. High wear resistance and excellent cutting performance over a long period of time can be fully satisfied with the high performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction It is.

硬質被覆層の上部層を構成する蒸着α型Al23層の第1単位層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。It is a schematic diagram illustrating a measurement range of the inclination angle of the case of measuring the crystal grains in the first unit layer deposition α type the Al 2 O 3 layer constituting the upper layer of the hard coating layer (0001) plane. 硬質被覆層の上部層を構成する蒸着α型Al23層の第2単位層における結晶粒の(0001)面を測定する場合の傾斜角の測定範囲を示す概略説明図である。Is a schematic diagram illustrating a measurement range of the inclination angle of the case of measuring the crystal grains in the second unit layer deposition α type the Al 2 O 3 layer constituting the upper layer of the hard coating layer (0001) plane. 本発明被覆サーメット工具1の硬質被覆層の上部層を構成する第1単位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the first unit layer constituting the upper layer of the hard coating layer of the coated cermet tool 1 of the present invention. 本発明被覆サーメット工具1の硬質被覆層の上部層を構成する第2単位層の(0001)面の傾斜角度数分布グラフである。It is an inclination angle number distribution graph of the (0001) plane of the 2nd unit layer which constitutes the upper layer of the hard covering layer of the present covering cermet tool 1. 従来被覆サーメット工具1の硬質被覆層を構成する蒸着α型Al23層の(0001)面の0〜45度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 0 to 45 degrees of conventional coated cermet deposited α-type constituting the hard layer of the tool 1 Al 2 O 3 layer (0001) plane. 従来被覆サーメット工具1の硬質被覆層を構成する蒸着α型Al23層の(0001)面の45〜90度の傾斜角区分を示す傾斜角度数分布グラフである。The inclination angle frequency distribution graph showing the tilt angle sections of 45 to 90 degrees prior coated cermet deposited α-type constituting the hard layer of the tool 1 Al 2 O 3 layer (0001) plane.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有し、かつ3.5〜11μmの全体平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を蒸着形成してなる表面被覆サーメット製切削工具において、
上記酸化アルミニウム層を、1.5〜5μmの平均層厚を有する第1単位層と、1.5〜5μmの平均層厚を有する第2単位層と、第1単位層と第2単位層との間に介在する中間層とからなる3層積層構造とし、さらに電界放出型走査電子顕微鏡を用い、上記工具基体表面と平行な研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記研磨面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、上記第1単位層については0〜45度、上記第2単位層については45〜90度、上記中間層については0〜90度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、
(A)上記第1単位層は、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示し、
(B)上記第2単位層は、75〜85度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記75〜85度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45〜65%の割合を占める傾斜角度数分布グラフを示すこと、
(C)上記中間層は、0〜90度の範囲の測定傾斜角区分全体に亘ってピークが存在せず、測定傾斜角の分布が不偏的な傾斜角度数分布グラフを示すこと、
を特徴とする硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具。
On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has an overall average of 3 to 20 μm. A Ti compound layer having a layer thickness,
(B) an aluminum oxide layer in which the upper layer has an α-type crystal structure in the state of chemical vapor deposition and has an overall average layer thickness of 3.5 to 11 μm;
In the surface-coated cermet cutting tool formed by vapor-depositing the hard coating layer composed of (a) and (b) above,
The aluminum oxide layer includes a first unit layer having an average layer thickness of 1.5 to 5 μm, a second unit layer having an average layer thickness of 1.5 to 5 μm, a first unit layer and a second unit layer, A crystal grain having a hexagonal crystal lattice existing in a measurement range of a polished surface parallel to the tool substrate surface using a field emission scanning electron microscope, and having a three-layer laminated structure including an intermediate layer interposed therebetween Individually irradiated with an electron beam, the inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the polished surface. The first unit layer is 0 to 45 degrees, the second unit layer is 45 to 90 degrees, and the intermediate layer is divided into 0 to 90 degrees for each inclination angle of 0.25 degrees. In addition, the inclination angle frequency distribution graph is formed by counting the frequencies existing in each category. When it appears in
(A) In the first unit layer, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the total of the frequencies existing in the range of 0 to 10 degrees is an inclination angle number distribution graph. The inclination angle frequency distribution graph which occupies the ratio of 45-65% of the whole frequency in is shown,
(B) In the second unit layer, the highest peak exists in the inclination angle section in the range of 75 to 85 degrees, and the total of the frequencies existing in the range of 75 to 85 degrees is an inclination angle number distribution graph. Showing an inclination angle frequency distribution graph occupying a proportion of 45 to 65% of the entire frequency in
(C) The intermediate layer shows a gradient angle distribution graph in which there is no peak over the entire measurement gradient segment in the range of 0 to 90 degrees, and the distribution of measurement gradients is unbiased.
A surface-coated cermet cutting tool that features a hard coating layer that exhibits excellent chipping resistance in high-speed heavy cutting.
JP2005165366A 2005-06-06 2005-06-06 Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting Withdrawn JP2006334754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165366A JP2006334754A (en) 2005-06-06 2005-06-06 Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165366A JP2006334754A (en) 2005-06-06 2005-06-06 Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting

Publications (1)

Publication Number Publication Date
JP2006334754A true JP2006334754A (en) 2006-12-14

Family

ID=37555720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165366A Withdrawn JP2006334754A (en) 2005-06-06 2005-06-06 Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting

Country Status (1)

Country Link
JP (1) JP2006334754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006425A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009006425A (en) * 2007-06-27 2009-01-15 Mitsubishi Materials Corp Surface coated cutting tool
JP2010149235A (en) * 2008-12-25 2010-07-08 Mitsubishi Materials Corp Surface coated cutting tool
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool

Similar Documents

Publication Publication Date Title
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4730522B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance thanks to thick α-type aluminum oxide layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP4720418B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2006043853A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and multiple cutting
JP2006334754A (en) Surface coated cermet cutting tool with hard coated layer exhibiting excellent chipping resistance in high speed deep cutting
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2014000634A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent peeling resistance and chipping resistance in high speed intermittent cutting work
JP2006116621A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting
JP2006334758A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP2006000970A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent abrasion resistance in high-speed cutting
JP5892335B2 (en) Surface coated cutting tool with excellent chipping resistance with hard coating layer
JP2005238437A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior abrasion resistance in high speed cutting
JP2013184230A (en) Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4747338B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4529578B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP2006334759A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP2007061922A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting
JP2006334755A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed and deep cutting
JP2006043802A (en) Surface coated cermet cutting tool having hard coated layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902