JP2013146843A - Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in high-speed and heavy cutting work - Google Patents

Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in high-speed and heavy cutting work Download PDF

Info

Publication number
JP2013146843A
JP2013146843A JP2012011083A JP2012011083A JP2013146843A JP 2013146843 A JP2013146843 A JP 2013146843A JP 2012011083 A JP2012011083 A JP 2012011083A JP 2012011083 A JP2012011083 A JP 2012011083A JP 2013146843 A JP2013146843 A JP 2013146843A
Authority
JP
Japan
Prior art keywords
layer
modified
plane
measured
gbla
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012011083A
Other languages
Japanese (ja)
Other versions
JP5783061B2 (en
Inventor
Kazuhiro Kono
和弘 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012011083A priority Critical patent/JP5783061B2/en
Publication of JP2013146843A publication Critical patent/JP2013146843A/en
Application granted granted Critical
Publication of JP5783061B2 publication Critical patent/JP5783061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool in which a hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in the high-speed and heavy cutting work of a large black thickness-deviated component or the like.SOLUTION: In a surface-coated cutting tool, a lower layer composed of a Ti compound layer (here, a modified TiCN layer is essential), and an upper layer composed of a modified AlOlayer are coated on a surface of a tool base body. A ratio GBLa/Ta of a grain boundary length GBLa (μm) measured on the TiCN layer having a longitudinally-grown crystalline structure to the measured layer thickness Ta (μm) of the modified TiCN layer is 275-520. Furthermore, a ratio GBLb/Tb of a grain boundary length GBLb (μm) measured on the modified AlOlayer having a columnar structure to the measured layer thickness Tb (μm) of the modified AlOlayer is 40-165. Still furthermore, a value (GBLb/Tb)/(GBLa/Ta) is in a range of 0.1 to 0.6.

Description

この発明は、高熱発生を伴うとともに、切刃部に対して、特に高い熱的・機械的負荷が作用する高速重切削加工、特に、加工時に切削応力が大きく変動する高速重切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is accompanied by high heat generation and high-speed heavy cutting with a particularly high thermal and mechanical load acting on the cutting edge, particularly high-speed heavy cutting in which the cutting stress varies greatly during processing. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which a coating layer exhibits excellent wear resistance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有するα型酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an α-type aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of the above (a) and (b) is known, and this coated tool is also used for cutting various steels and cast irons, for example. Are known.

例えば、特許文献1に示すように、工具基体表面に、Ti化合物層とAl層を被覆形成した被覆工具において、Al層の配向性指数TCについて、TC(006)を2より大きくし、さらに、二番目に大きい配向性指数TC(104)を2>TC(104)>0.5とした被覆工具が提案されている。
しかし、この被覆工具においては、被膜の耐摩耗性は高まるものの、耐チッピング性、耐欠損性が劣るという問題点があった。
For example, as shown in Patent Document 1, in a coated tool in which a Ti compound layer and an Al 2 O 3 layer are formed on the surface of a tool base, TC (006) is 2 for the orientation index TC of the Al 2 O 3 layer. A coated tool having a larger orientation index TC (104) of 2> TC (104)> 0.5 has been proposed.
However, in this coated tool, although the wear resistance of the coating is increased, there is a problem that chipping resistance and fracture resistance are inferior.

特開2009−28894号公報JP 2009-28894 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化するとともに、切削時の工具への熱的・機械的負荷も益々増加する傾向にある。
上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、例えば、これを、風力発電部品のフランジ荒加工に代表される大型の黒皮偏肉部品の高速重切削加工に用いた場合には、切刃部には大きな熱的・機械的負荷がかかるためチッピング、欠損等が発生しやすく、また、被削材の切削箇所によって切削時の切削応力も大きく変化するため、切削応力が急激に高まったような場合には、硬質被覆層であるAl層が塑性変形をおこし、そのため、早期に逃げ面摩耗が進行し、比較的短時間で使用寿命に至るのが現状である。
In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work.Accordingly, cutting speed has been further increased, and cutting tools have been improved. Thermal and mechanical loads are also increasing.
In the above-mentioned conventional coated tool, there is no problem when it is used for continuous cutting and intermittent cutting under normal conditions such as steel and cast iron. When used for high-speed heavy cutting of large black skin uneven parts, chipping, chipping, etc. are likely to occur because the cutting edge is subject to large thermal and mechanical loads. Since the cutting stress at the time of cutting greatly varies depending on the cutting location of the metal, the Al 2 O 3 layer, which is a hard coating layer, undergoes plastic deformation when the cutting stress suddenly increases. At present, wear progresses and the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の被覆工具の硬質被覆層の耐チッピング性、耐摩耗性の改善をはかるべく、硬質被覆層の下部層であるTi化合物層、ならびに、硬質被覆層の上部層であるAl層の層構造について鋭意研究を行った結果、切刃部に大きな熱的・機械的負荷がかかり、切削応力の大きな変動を伴う高速重切削加工、例えば、前記大型の黒皮偏肉部品の高速重切削加工、に用いた場合でも、チッピング、欠損等の発生の恐れがなく、しかも、長期の使用に亘ってすぐれた耐摩耗性を発揮する硬質被覆層の層構造についての知見を得たのである。 Therefore, the present inventors, from the above viewpoint, in order to improve the chipping resistance and wear resistance of the hard coating layer of the above-mentioned coated tool, the Ti compound layer as the lower layer of the hard coating layer, and As a result of earnest research on the layer structure of the Al 2 O 3 layer, which is the upper layer of the hard coating layer, a large thermal and mechanical load is applied to the cutting edge and high speed heavy cutting with large fluctuations in cutting stress For example, even when used for high-speed heavy cutting of the above-mentioned large black skinned parts, there is no risk of chipping, chipping, etc., and excellent wear resistance is demonstrated over a long period of use. The knowledge about the layer structure of the hard coating layer was obtained.

つまり、大型の黒皮偏肉部品の高速重切削加工のように、切刃部に大きな熱的・機械的負荷がかかり、切削応力の大きな変化を伴う高速重切削加工に用いられる被覆工具としては、下部層、特に、縦長成長結晶組織の改質TiCN層において、大きな熱的・機械的負荷を伴う切削時に発生した粒界に沿うクラックを分散させ、その伝播・進展を抑制することによるチッピング、欠損の発生抑制が重要であり、一方、上部層については、切削時の切削応力の大きな変化により発生する粒界すべりを抑制することにより偏摩耗の発生を抑制し、ひいては耐摩耗性の劣化防止を図ることが重要であることを見出したのである。   In other words, as a coated tool used for high-speed heavy cutting with a large change in cutting stress, a large thermal and mechanical load is applied to the cutting edge as in high-speed heavy cutting of large black skinned parts. In the lower layer, in particular, the modified TiCN layer of the vertically grown crystal structure, chipping by dispersing cracks along the grain boundaries generated during cutting with a large thermal and mechanical load, and suppressing the propagation and progress thereof, On the other hand, it is important to suppress the occurrence of defects. On the other hand, in the upper layer, the occurrence of uneven wear is suppressed by suppressing grain boundary sliding that occurs due to a large change in cutting stress during cutting, which in turn prevents deterioration of wear resistance. It was found that it is important to plan.

まず、下部層に関する知見であるが、次のとおりである。
図1(a)には、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造(なお、図1(b)は(011)面で切断した状態を示す)を有する縦長成長結晶組織をもつTiCN層(以下、l−TiCN層という)を模式図として示しているが、
従来被覆工具の硬質被覆層を構成する下部層としてのl−TiCN層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、TiCl:2〜10%、CHCN:0.5〜3%、N:10〜30%、H2:残り、
反応雰囲気温度:800〜900℃、
反応雰囲気圧力:6〜20kPa、
の条件(通常条件という)で蒸着形成されている。
ところで、本発明者らは、この蒸着条件を変更し、
まず、第1段階として、
反応ガス組成:容量%で、TiCl:5〜20%、CN:0.5〜3.0%、N:7〜20%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、蒸着層の層厚が目標層厚の約20%の層厚となるまで蒸着し、
その後、第2段階として、
反応ガス組成:容量%で、TiCl:3〜12%、CHCN:0.2〜2%、CN:0.1〜0.5%、Ar:10〜30%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、目標層厚になるまで蒸着形成したところ、このような第1段階及び第2段階の条件で順次形成されたl−TiCN層(以下、このl−TiCN層を「改質TiCN層」という)は、切削加工時に層に発生する応力を緩和・吸収する作用を有し、高温強度が一段と向上することから、硬質被覆層の上部層が前記Al層で構成され、また、下部層が、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上のTi化合物層と、前記改質TiCN層で構成された被覆工具は、特に大きな熱的・機械的負荷がかかり、さらに切削応力が大きく変動するような高速重切削加工でも、前記改質TiCN層がすぐれた耐チッピング性、耐欠損性を発揮することを見出したのである。
First, the knowledge about the lower layer is as follows.
In FIG. 1 (a), a crystal structure of NaCl face-centered cubic crystal in which constituent atoms consisting of Ti, carbon, and nitrogen are present at lattice points (FIG. 1 (b) is cut along the (011) plane. A TiCN layer having a vertically long crystal structure (hereinafter referred to as an l-TiCN layer) having a state) is shown as a schematic diagram.
The l-TiCN layer as the lower layer constituting the hard coating layer of the conventional coated tool is, for example, a normal chemical vapor deposition apparatus.
Reaction gas composition: by volume%, TiCl 4: 2~10%, CH 3 CN: 0.5~3%, N 2: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 800 to 900 ° C.
Reaction atmosphere pressure: 6-20 kPa,
It is formed by vapor deposition under the conditions (referred to as normal conditions).
By the way, the inventors changed this deposition condition,
First, as the first stage,
Reaction gas composition: by volume%, TiCl 4: 5~20%, C 3 H 3 N: 0.5~3.0%, N 2: 7~20%, H 2: remainder,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the conditions, vapor deposition is performed until the layer thickness of the vapor deposition layer is about 20% of the target layer thickness,
Then, as the second stage,
Reaction gas composition: by volume%, TiCl 4: 3~12%, CH 3 CN: 0.2~2%, C 3 H 3 N: 0.1~0.5%, Ar: 10~30%, H 2 : The rest,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
In this condition, vapor deposition was performed until the target layer thickness was reached. As a result, an l-TiCN layer (hereinafter referred to as a “modified TiCN layer”) formed sequentially under the conditions of the first and second stages. ”) Has the function of relaxing and absorbing the stress generated in the layer during the cutting process, and the high temperature strength is further improved. Therefore, the upper layer of the hard coating layer is composed of the Al 2 O 3 layer, and The coating tool in which the lower layer is composed of one or more of the TiC layer, the TiN layer, the TiCN layer, the TiCO layer, and the TiCNO layer, and the modified TiCN layer, is particularly large. It has been found that the modified TiCN layer exhibits excellent chipping resistance and fracture resistance even in high-speed heavy cutting where thermal and mechanical loads are applied and the cutting stress varies greatly.

ついで、上部層についての知見であるが、従来被覆工具の硬質被覆層の上部層を構成する柱状組織のAl層は、例えば、通常の化学蒸着装置にて、
反応ガス組成:容量%で、AlCl:1〜5%、CO:3〜7%、HCl:0.3〜3%、HS:0.02〜0.4%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:6〜13kPa、
の条件(以下、通常条件という)で形成されている。
しかし、本発明者らは、この蒸着条件を変更し、
まず、第1段階として、
反応ガス組成:容量%で、AlCl:1〜5%、CO:10〜15%、HCl:0.3〜3%、SF:0.1〜1%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:20〜40kPa、
の条件(通常条件に比して、COガス含有割合が相対的に高く、反応雰囲気圧が相対的に高く、反応ガス成分として、HSに代えてSFを添加している)で、蒸着層の層厚が目標層厚の約5〜20%の層厚となるまで蒸着し、
その後、第2段階として、
反応ガス組成:容量%で、AlCl:6〜10%、CO:3〜7%、HCl:0.3〜3%、HS:0.5〜1%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:10〜20kPa、
の条件(通常条件に比して、AlClとH2Sガスの含有割合が相対的に高く、また、反応雰囲気も相対的に高圧である)で、目標層厚になるまで蒸着形成すると、このような第1段階及び第2段階の条件で順次形成された柱状組織のAl層(以下、このAl層を「改質Al層」という)は、粒界すべりに起因する耐塑性変形性に優れるため、切削応力に大きな変動が生じるような高速重切削加工でも、偏摩耗等の発生もなくすぐれた耐摩耗性を発揮することを見出したのである。
Next, although it is knowledge about the upper layer, the Al 2 O 3 layer of the columnar structure constituting the upper layer of the hard coating layer of the conventional coated tool is, for example, in a normal chemical vapor deposition apparatus,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 3~7%, HCl: 0.3~3%, H 2 S: 0.02~0.4%, H 2: remainder ,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 6-13 kPa,
(Hereinafter referred to as normal conditions).
However, the inventors changed this deposition condition,
First, as the first stage,
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 10~15%, HCl: 0.3~3%, SF 6: 0.1~1%, H 2: remainder,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 20-40 kPa,
(The CO 2 gas content ratio is relatively high compared to normal conditions, the reaction atmosphere pressure is relatively high, and SF 6 is added as a reaction gas component instead of H 2 S) Vapor deposition until the layer thickness of the deposited layer is about 5-20% of the target layer thickness,
Then, as the second stage,
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CO 2 : 3 to 7%, HCl: 0.3 to 3%, H 2 S: 0.5 to 1%, H 2 : remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 10-20 kPa,
Under the above conditions (the content ratio of AlCl 3 and H 2 S gas is relatively high compared to the normal conditions, and the reaction atmosphere is also a relatively high pressure). The Al 2 O 3 layer having a columnar structure sequentially formed under the conditions of the first stage and the second stage (hereinafter, this Al 2 O 3 layer is referred to as “modified Al 2 O 3 layer”) has a grain boundary. It has been found that since it is excellent in plastic deformation resistance due to slipping, it exhibits excellent wear resistance without occurrence of uneven wear or the like even in high-speed heavy cutting where large fluctuations in cutting stress occur.

本発明の被覆工具は、下部層として少なくとも前記改質TiCN層を備え、また、上部層として、前記改質Al層を備えることにより、耐チッピング性、耐欠損性とともに耐摩耗性が改善されるが、これに加えてさらに、下部層、上部層それぞれにおける単位層厚当たりの結晶粒界長さを所定の適正範囲に維持するとともに、それぞれの単位層厚当たりの結晶粒界長さの比の値を所定の適正範囲とすることによって、切刃部に大きな熱的・機械的負荷がかかり、切削応力の大きな変動を伴う高速重切削加工、例えば、前記大型の黒皮偏肉部品の高速重切削加工に用いた場合でも、チッピング、欠損等の発生の恐れがなく、しかも、長期の使用に亘ってすぐれた耐摩耗性を発揮するようになることを見出したのである。 The coated tool of the present invention includes at least the modified TiCN layer as a lower layer, and the modified Al 2 O 3 layer as an upper layer, thereby providing wear resistance as well as chipping resistance and fracture resistance. In addition to this, the grain boundary length per unit layer thickness in each of the lower layer and the upper layer is maintained within a predetermined appropriate range, and the grain boundary length per unit layer thickness is further improved. By making the ratio value within a predetermined appropriate range, a large thermal and mechanical load is applied to the cutting edge, and high-speed heavy cutting with large fluctuations in cutting stress, for example, the large black skinned parts The present inventors have found that even when used in high-speed heavy cutting, there is no risk of chipping, chipping, etc., and excellent wear resistance is exhibited over a long period of use.

この発明は、上記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金で構成された工具基体の表面に、
(a)3〜15μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層において、前記Ti化合物層のうち少なくとも1層以上が2.5〜14μmの平均層厚を有する縦長成長結晶組織の改質Ti炭窒化物層(以下、「改質TiCN層」で示す)で構成される下部層、
(b)(006)面の配向性指数TC(006)の値が1.5以上の5〜20μmの平均層厚を有する柱状組織のAl層で構成される上部層、
以上(a)および(b)からなる硬質被覆層が、8〜30μmの全体平均層厚で被覆形成されてなる表面被覆切削工具において、
(c)上記(a)の改質TiCN層には、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、該層の縦断面研磨面の幅30μmの測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が5度以上の場合を粒界であると識別した上で、電界放出型走査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さGBLa(μm)を求めた場合、この粒界の長さGBLa(μm)と測定した改質Ti化合物層の層厚Ta(μm)との比の値GBLa/Taは275〜520の範囲内にある縦長成長結晶組織を有する改質TiCN層であり、
(d)上記(b)の(006)面の配向性指数TC(006)の値が1.5以上であるAl層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、縦断面研磨面の幅30μmの測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士、および(10−10)面の法線同士の交わる角度を求め、また、前記(0001)面の法線同士、および(10−10)面の法線同士の交わる角度が5度以上である隣接する結晶格子相互の界面を粒界であると識別し、電界放出型走査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分の結晶粒界の長さGBLb(μm)を求めた場合、測定した上記Al層の層厚Tb(μm)との比の値GBLb/Tbは40〜165の範囲内にある柱状組織のAl層であり、
(e)さらに、前記(c)で求めたGBLa/Taの値と、前記(d)で求めたGBLb/Tbの値の比(GBLb/Tb)/(GBLa/Ta)が、0.1〜0.6の範囲内にあることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
`` On the surface of the tool base made of tungsten carbide base cemented carbide,
(A) Ti compound comprising one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having a total average layer thickness of 3 to 15 μm In the layer, at least one of the Ti compound layers is a modified Ti carbonitride layer (hereinafter referred to as “modified TiCN layer”) having a vertically grown crystal structure having an average layer thickness of 2.5 to 14 μm. Lower layer composed,
(B) an upper layer composed of an Al 2 O 3 layer of a columnar structure having an average layer thickness of 5 to 20 μm with an orientation index TC (006) value of (006) of 1.5 or more,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is coated with an overall average layer thickness of 8 to 30 μm,
(C) For the modified TiCN layer of (a) above, a cubic crystal existing in a measurement range of 30 μm in width of the polished surface of the longitudinal section of the layer using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus Inclination formed by normalizing (001) plane and (011) plane, which are crystal planes of the crystal grains, with respect to the normal lines of the vertical cross-section polished surface by irradiating each crystal grain having a crystal lattice with an electron beam The angle is measured, and the angle at which the normal lines of the (001) plane and the normal lines of the (011) plane intersect each other at the interface between adjacent crystal grains is obtained from the measured inclination angle. The vertical cross-section polishing of the layer using a field emission scanning electron microscope after identifying the case where the angle between the normals of the surface) and the normals of the (011) surface is 5 degrees or more as a grain boundary The part of the measurement area on the surface that is identified as the grain boundary When the grain boundary length GBLa (μm) at which the angle between the normal lines of the (001) plane and the normal lines of the (011) plane intersects is 15 degrees or more, the grain boundary length GBLa (μm) ) And the measured thickness Ti (μm) of the modified Ti compound layer, the value GBLa / Ta is a modified TiCN layer having a vertically grown crystal structure in the range of 275 to 520,
(D) The Al 2 O 3 layer having an orientation index TC (006) value of (006) in (b) of 1.5 or more is obtained by using a field emission scanning electron microscope and an electron backscatter diffraction image device. The crystal grains having a hexagonal crystal lattice existing within a measurement range of 30 μm in width of the longitudinally polished surface are irradiated with an electron beam, and the (0001) plane and (10-10) which are crystal planes of the crystal grains are used. ) Surface normals are measured, and from these measured angles, the (0001) plane normals and the (10-10) normals at the interface between adjacent crystal grains are measured. The intersecting angle is obtained, and the interface between adjacent crystal lattices in which the normals of the (0001) planes and the (10-10) planes intersect is 5 degrees or more is a grain boundary. Identify and use a field emission scanning electron microscope to study the longitudinal section of the layer. The measurement area in the plane, if the calculated length of the grain boundaries of the portion identified as intergranular GBLB ([mu] m), the ratio of the layer thickness Tb of the measured above the Al 2 O 3 layer ([mu] m) values GBLB / Tb is a columnar Al 2 O 3 layer in the range of 40 to 165,
(E) Furthermore, the ratio (GBLb / Tb) / (GBLa / Ta) of the value of GBLa / Ta obtained in (c) and the value of GBLb / Tb obtained in (d) is 0.1 to A surface-coated cutting tool characterized by being in the range of 0.6. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層の構成層について、詳細に説明する。
(a)下部層
TiC層、TiN層、TiCN層(改質TiCN層を含む)、TiCO層、TiCNO層のうちの1層または2層以上からなるTi化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が15μmを越えると、特に高熱発生を伴うとともに熱的・機械的負荷が大きく、さらに、急激な切削応力の変動を伴う高速重切削でチッピングを起し易くなることから、その合計平均層厚を3〜15μmと定めた。
Next, the constituent layers of the hard coating layer of the coated tool of the present invention will be described in detail.
(A) Lower layer A Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer (including a modified TiCN layer), a TiCO layer, and a TiCNO layer itself has high-temperature strength. In addition to the fact that the hard coating layer has high-temperature strength due to the presence of this, the tool base and the Al 2 O 3 layer, which is the upper layer, are firmly adhered to each other, so that the hard coating layer adheres to the tool base. Although it has the effect of contributing to the improvement, if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be exhibited sufficiently. On the other hand, if the total average layer thickness exceeds 15 μm, the heat generation is particularly accompanied by high heat generation. The total average layer thickness is determined to be 3 to 15 μm because the mechanical and mechanical load is large and the chipping is easily caused by high-speed heavy cutting accompanied by a sudden change in cutting stress.

(b)下部層の改質TiCN層
下部層の改質TiCN層は、既に述べたように、例えば、以下の方法によって成膜することができる。
まず、通常の化学蒸着装置にて、
≪第1段階≫
反応ガス組成:容量%で、TiCl:5〜20%、CN:0.5〜3.0%、N:7〜20%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、蒸着層の層厚が目標層厚の約20%の層厚となるまで蒸着する。
その後、
≪第2段階≫
反応ガス組成:容量%で、TiCl:3〜12%、CHCN:0.2〜2%、CN:0.1〜0.5%、Ar:10〜30%、H2:残り、
反応雰囲気温度:700〜850℃、
反応雰囲気圧力:6〜20kPa、
の条件で、目標層厚になるまで蒸着する。
上記第1段階及び第2段階の条件で順次成膜することによって、改質TiCN層を成膜することができる。
(B) Modified TiCN Layer of Lower Layer As described above, the modified TiCN layer of the lower layer can be formed by the following method, for example.
First, with a normal chemical vapor deposition system,
≪First stage≫
Reaction gas composition: by volume%, TiCl 4: 5~20%, C 3 H 3 N: 0.5~3.0%, N 2: 7~20%, H 2: remainder,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
Under the conditions, vapor deposition is performed until the thickness of the vapor deposition layer reaches about 20% of the target layer thickness.
after that,
≪Second stage≫
Reaction gas composition: by volume%, TiCl 4: 3~12%, CH 3 CN: 0.2~2%, C 3 H 3 N: 0.1~0.5%, Ar: 10~30%, H 2 : The rest,
Reaction atmosphere temperature: 700-850 ° C.
Reaction atmosphere pressure: 6-20 kPa,
In this condition, vapor deposition is performed until the target layer thickness is reached.
By sequentially forming the film under the conditions of the first stage and the second stage, the modified TiCN layer can be formed.

上記改質TiCN層を構成する結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有している(図1参照)が、改質TiCN層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、縦断面研磨面の測定範囲内に存在する改質TiCN層の結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角(図2(a)には前記結晶面のうち(001)面の傾斜角が0度、(011)面の傾斜角が45度の場合、同(b)には(001)面の傾斜角が45度、(011)面の傾斜角が0度の場合を示しているが、これらの角度を含めて前記結晶粒個々のすべての傾斜角)を測定し、この場合前記結晶粒は、上記の通り格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が5度以上の場合を粒界であると識別した上で、電界放出型走査電子顕微鏡により、改質TiCN層の縦断面研磨面を、改質TiCN層厚(μm)×幅30(μm)の範囲、で測定し、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界についてその粒界の長さGBLa(μm)を求め、そして、GBLa(μm)と、改質TiCN層の層厚Ta(μm)との比を求めると、GBLa/Taの値は275〜520という値を示す。
なお、このGBLa/Taの値は、成膜時の反応ガス組成、反応雰囲気温度、反応雰囲気圧力の組み合わせによって変化する。
The crystal grains constituting the modified TiCN layer have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points (see FIG. 1). For the modified TiCN layer, using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, the crystal grains of the modified TiCN layer existing within the measurement range of the vertical cross-section polished surface were irradiated with an electron beam, The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are crystal planes of the crystal grains, with respect to the normal line of the longitudinally polished surface (FIG. 2A shows (001 among the crystal planes). ) When the tilt angle of the plane is 0 degree and the tilt angle of the (011) plane is 45 degrees, the tilt angle of the (001) plane is 45 degrees and the tilt angle of the (011) plane is 0 degree. Shows the case, but measure the inclination angle of each crystal grain including these angles) In this case, the crystal grains have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points as described above. Based on the angle between the normal lines of the (001) plane and the normal lines of the (011) plane at the interface between adjacent crystal grains, and the normal lines of the (001) plane, and The case where the angle at which the normals of the (011) plane intersect is 5 degrees or more is identified as a grain boundary, and then the vertical cross-section polished surface of the modified TiCN layer is modified with the modified TiCN by a field emission scanning electron microscope. Measured in the range of layer thickness (μm) × width 30 (μm), and the angle between the normal lines of the (001) plane and the normal lines of the (011) plane among the parts identified as grain boundaries The grain boundary length for grain boundaries of 15 degrees or more When GBLa (μm) is obtained and the ratio of GBLa (μm) to the layer thickness Ta (μm) of the modified TiCN layer is obtained, the value of GBLa / Ta shows a value of 275 to 520.
Note that the value of GBLa / Ta varies depending on the combination of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during film formation.

GBLa/Taが275〜520という大きな値を示す改質TiCN層は、高速重切削加工において、切刃部に大きな熱的・機械的負荷が加わったとしても、また、切削応力に大きな変動があったとしても、その際に生じる応力を緩和・吸収する作用を有し、一段とすぐれた高温強度を備えるようになり、さらに、層中にクラックが発生したとしても、これを粒界に沿って分散させ、クラックの伝播・進展を抑制する作用を有するため、チッピングの発生を大幅に低減することができる。
しかし、GBLa/Ta値が275未満の小さな値では、上記応力の緩和・吸収作用を期待することはできず、耐チッピング性も不十分であり、一方、GBLa/Ta値が520を超えるものについては、改質TiCN層自体に脆化傾向がみられるようになるため、GBLa/Taの値を275〜520と定めた。
なお、従来TiCN層におけるGBLa/Taの値は、100〜200程度の小さな値(表8参照)であって、応力の緩和・吸収作用を有さないTiCN層であるため、高速重切削加工においては硬質被覆層にチッピングの発生が見られた。
また、前記改質TiCN層は、通常のTiCN層自体のもつ高温硬さと高温強度に加えて、さらに一段とすぐれた高温強度を有するようになるが、その平均層厚が2.5μm未満では所望のすぐれた応力の緩和・吸収作用、高温強度向上効果を硬質被覆層に十分に具備せしめることができず、一方その平均層厚が14μmを越えると、チッピングが発生し易くなることから、その平均層厚を2.5〜14μmと定めた。
なお、上記改質TiCN層は、1層である必要はなく、これを複数層設けることも可能である。
The modified TiCN layer, which has a large value of GBLa / Ta of 275 to 520, has a large fluctuation in cutting stress even when a large thermal and mechanical load is applied to the cutting edge in high speed heavy cutting. Even so, it has the action of relaxing and absorbing the stress generated at that time, and it has a higher temperature strength, and even if cracks occur in the layer, it is distributed along the grain boundaries. Therefore, the occurrence of chipping can be greatly reduced because of the effect of suppressing the propagation / progress of cracks.
However, when the GBLa / Ta value is less than 275, the stress relaxation / absorption action cannot be expected and the chipping resistance is insufficient. On the other hand, the GBLa / Ta value exceeds 520. Since the modified TiCN layer itself tends to become brittle, the GBLa / Ta value was set to 275 to 520.
In addition, the value of GBLa / Ta in the conventional TiCN layer is a small value of about 100 to 200 (see Table 8) and is a TiCN layer having no stress relaxation / absorption action. Generation of chipping was observed in the hard coating layer.
In addition to the high temperature hardness and high temperature strength of the normal TiCN layer itself, the modified TiCN layer has a further excellent high temperature strength. However, if the average layer thickness is less than 2.5 μm, it is desirable. Since the hard coating layer cannot be sufficiently provided with excellent stress relaxation / absorption action and high-temperature strength improvement effect, on the other hand, if the average layer thickness exceeds 14 μm, chipping tends to occur. The thickness was determined to be 2.5-14 μm.
Note that the modified TiCN layer does not have to be a single layer, and a plurality of layers can be provided.

(c)上部層(改質Al層)
改質Al層からなる上部層は、すぐれた高温硬さと耐熱性を有し、さらに、すぐれた耐塑性変形性を有することによって、硬質被覆層の耐摩耗性向上に寄与する。
改質Al層は、既に述べたように、例えば、以下の方法によって成膜することができる。
例えば、通常の化学蒸着装置にて、
≪第1段階≫
反応ガス組成:容量%で、AlCl:1〜5%、CO:10〜15%、HCl:0.3〜3%、SF:0.1〜1%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:20〜40kPa、
の条件(通常条件に比して、COガス含有割合が相対的に高く、反応雰囲気圧が相対的に高く、反応ガス成分として、HSに代えてSFを添加し、蒸着層の層厚が目標層厚の約5〜20%の層厚となるまで蒸着し、
≪第2段階≫
反応ガス組成:容量%で、AlCl:6〜10%、CO:3〜7%、HCl:0.3〜3%、HS:0.5〜1%、H:残り、
反応雰囲気温度:950〜1100℃、
反応雰囲気圧力:10〜20kPa、
の条件(通常条件に比して、AlClとH2Sガスの含有割合が相対的に高く、また、反応雰囲気も相対的に高圧である)で、目標層厚になるまで蒸着形成すると、このような第1段階及び第2段階の条件で順次形成された柱状組織の改質Al層は、すぐれた高温硬さと耐熱性を示すばかりでなく、粒界すべりに起因する耐塑性変形性に優れるため、切削応力に大きな変動が生じるような高速重切削加工でも、偏摩耗等の発生もなくすぐれた耐摩耗性を発揮する。
(C) Upper layer (modified Al 2 O 3 layer)
The upper layer composed of the modified Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and further has excellent plastic deformation resistance, thereby contributing to improvement in wear resistance of the hard coating layer.
As described above, the modified Al 2 O 3 layer can be formed by the following method, for example.
For example, in a normal chemical vapor deposition system,
≪First stage≫
Reaction gas composition: by volume%, AlCl 3: 1~5%, CO 2: 10~15%, HCl: 0.3~3%, SF 6: 0.1~1%, H 2: remainder,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 20-40 kPa,
(The CO 2 gas content ratio is relatively high compared to the normal conditions, the reaction atmosphere pressure is relatively high, SF 6 is added instead of H 2 S as a reaction gas component, Vapor deposition until the layer thickness is about 5-20% of the target layer thickness,
≪Second stage≫
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CO 2 : 3 to 7%, HCl: 0.3 to 3%, H 2 S: 0.5 to 1%, H 2 : remaining,
Reaction atmosphere temperature: 950-1100 ° C.
Reaction atmosphere pressure: 10-20 kPa,
Under the above conditions (the content ratio of AlCl 3 and H 2 S gas is relatively high compared to the normal conditions, and the reaction atmosphere is also a relatively high pressure). The modified Al 2 O 3 layer having a columnar structure sequentially formed under the conditions of the first stage and the second stage not only exhibits excellent high-temperature hardness and heat resistance, but also exhibits plastic resistance due to grain boundary sliding. Because of its excellent deformability, it exhibits excellent wear resistance without the occurrence of uneven wear even in high-speed heavy cutting where large fluctuations in cutting stress occur.

また、上記改質Al層について、X線回折により、(012)面、(104)面、(110)面、(006)面、(113)面、(202)面、(024)面及び(116)面の反射強度を求め、これらの値から、(006)面の配向性指数TC(006)の値を求めたところ、改質Al層ではTC(006)は1.5以上であった。
なお、従来Al層では、TC(006)は1.0以上であった(表9参照)。
なお、本発明でいう(006)面配指数TC(006)は、上部層を構成するAl層についてX線回折を行った際の(hkl)面から得られるX線回折のピーク強度値をI(hkl)、JCPDSカードNo.46−1212記載の(hkl)面の標準回折強度をI(hkl)とした場合、


であるとして定義される。ここで、(hkl)は(012)、(104)、(110)、(006)、(113)、(202)、(024)、(116)の8面である。
Further, the modified Al 2 O 3 layer was subjected to (012) plane, (104) plane, (110) plane, (006) plane, (113) plane, (202) plane, (024) by X-ray diffraction. The reflection intensity of the surface and the (116) surface was obtained, and from these values, the value of the orientation index TC (006) of the (006) surface was obtained. In the modified Al 2 O 3 layer, TC (006) was 1 .5 or more.
In the conventional Al 2 O 3 layer, TC (006) was 1.0 or more (see Table 9).
The (006) plane orientation index TC (006) in the present invention is the peak intensity of X-ray diffraction obtained from the (hkl) plane when X-ray diffraction is performed on the Al 2 O 3 layer constituting the upper layer. The value is I (hkl), JCPDS card No. When the standard diffraction intensity of the (hkl) plane described in 46-1212 is I 0 (hkl),


Is defined as Here, (hkl) is the eight faces (012), (104), (110), (006), (113), (202), (024), and (116).

次に、上記改質Al層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、縦断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、図3に示す前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角(図4におけるc,c’,a,a’に相当)を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士、および(10−10)面の法線同士の交わる角度を求め、また、前記(0001)面の法線同士、および(10−10)面の法線同士の交わる角度が5度以上(即ち、a−a’≧0°かつc−c’≧5°、または、a−a’≧5°かつc−c’≧0°)である隣接する結晶格子相互の界面を粒界であると識別し、電界放出型走査電子顕微鏡により、改質Al層の縦断面研磨面を、改質Al層厚(μm)×幅30(μm)の範囲、で測定し、粒界として識別される部分の結晶粒界の長さGBLb(μm)を求め、測定した上記改質Al層の層厚Tb(μm)との比を求めると、GBLb/Tbの値は40〜165の範囲内であった。
なお、このGBLb/Tbの値は、成膜時の反応ガス組成、反応雰囲気温度、反応雰囲気圧力の組み合わせによって変化する。
Next, with respect to the modified Al 2 O 3 layer, by using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the vertical cross-section polished surface is used. Inclination angles (c, c ′, a, a ′ in FIG. 4) formed by normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains shown in FIG. And the angle at which the normal lines of the (0001) plane and the normal lines of the (10-10) plane intersect each other at the interface between the adjacent crystal grains is obtained from the measured inclination angle. The angle between the normals of the (0001) planes and the normals of the (10-10) planes is 5 degrees or more (that is, aa ′ ≧ 0 ° and cc ′ ≧ 5 °, or a−a ′ ≧ 5 ° and cc ′ ≧ 0 °) is an interface between adjacent crystal lattices. Identified by field emission scanning electron microscope, a longitudinal section polished surface reforming the Al 2 O 3 layer, a range of modified Al 2 O 3 layer thickness ([mu] m) × width 30 ([mu] m), in measured particle When the grain boundary length GBLb (μm) of the portion identified as the boundary is obtained and the ratio with the measured layer thickness Tb (μm) of the modified Al 2 O 3 layer is obtained, the value of GBLb / Tb is It was within the range of 40-165.
The value of GBLb / Tb varies depending on the combination of the reaction gas composition, the reaction atmosphere temperature, and the reaction atmosphere pressure during film formation.

GBLb/Tbが40〜165という値を示す改質Al層は、高速重切削加工において、切刃部に大きな熱的・機械的負荷が加わったとしても、また、切削応力に大きな変動があったとしても、すぐれた高温硬さと耐熱性に加え、粒界すべりに起因する耐塑性変形性に優れるため、切削応力に大きな変動が生じるような高速重切削加工でも、偏摩耗等の発生もなくすぐれた耐摩耗性を発揮する。
しかし、GBLb/Tb値が40未満の小さな値では、耐チッピング性が不十分となり、一方、GBLb/Tb値が165を超えるものについては、改質Al層自体の耐塑性変形性の低下により、十分な耐摩耗性が発揮できなくなることから、GBLb/Tbの値を40〜165と定めた。
なお、従来Al層におけるGBLb/Tbの値は、200〜300程度(表7参照)であって、十分な耐塑性変形性を示さない層であるため、高速重切削加工、特に、切削応力変動の大きな高速重切削加工においては、偏摩耗の発生がみられ耐摩耗性が劣るものであった。
なお、上部層としての改質Al層の層厚は、5μm未満では長期の使用に亘って十分な耐摩耗性を発揮することはできず、一方、20μmを超えると耐チッピング性が低下するため、改質Al層の層厚は5〜20μmと定めた。
The modified Al 2 O 3 layer having a GBLb / Tb value of 40 to 165 has a large fluctuation in cutting stress even when a large thermal / mechanical load is applied to the cutting edge in high speed heavy cutting. Even with high-temperature hardness and heat resistance, in addition to excellent plastic deformation resistance due to intergranular sliding, even in high-speed heavy cutting that causes large fluctuations in cutting stress, uneven wear, etc. occurs. Excellent wear resistance.
However, when the GBLb / Tb value is less than 40, the chipping resistance is insufficient. On the other hand, when the GBLb / Tb value exceeds 165, the plastic deformation resistance of the modified Al 2 O 3 layer itself is low. Since sufficient wear resistance cannot be exhibited due to the decrease, the value of GBLb / Tb was determined to be 40 to 165.
In addition, since the value of GBLb / Tb in the conventional Al 2 O 3 layer is about 200 to 300 (see Table 7) and is a layer that does not exhibit sufficient plastic deformation resistance, In high-speed heavy cutting with large fluctuations in cutting stress, the occurrence of uneven wear was observed and the wear resistance was poor.
Note that if the thickness of the modified Al 2 O 3 layer as the upper layer is less than 5 μm, sufficient wear resistance cannot be exhibited over a long period of use, while if it exceeds 20 μm, chipping resistance is not obtained. In order to decrease, the thickness of the modified Al 2 O 3 layer was determined to be 5 to 20 μm.

本発明では、上記した下部層のGBLa/Taの値と、上部層のGBLb/Tbの値の間に、0.6≧(GBLb/Tb)/(GBLa/Ta)≧0.1という関係を維持することが必要である。
これは、(GBLb/Tb)/(GBLa/Ta)の比の値が0.1未満であると、長期の使用に亘って十分な耐摩耗性を発揮することはできず、一方、この比の値が0.6を超えると耐チッピング性が低下するという理由による。
また、本発明は、下部層と上部層の全体平均層厚を8〜30μmと定めているが、これは、8μm未満では長期の使用に亘って十分な耐摩耗性を発揮することはできず、一方、30μmを超えると耐チッピング性が低下するという理由による。
In the present invention, there is a relationship of 0.6 ≧ (GBLb / Tb) / (GBLa / Ta) ≧ 0.1 between the value of GBLa / Ta in the lower layer and the value of GBLb / Tb in the upper layer. It is necessary to maintain.
This is because when the value of the ratio (GBLb / Tb) / (GBLa / Ta) is less than 0.1, sufficient wear resistance cannot be exhibited over a long period of use. If the value of exceeds 0.6, the chipping resistance is lowered.
In the present invention, the overall average layer thickness of the lower layer and the upper layer is set to 8 to 30 μm. However, when the thickness is less than 8 μm, sufficient wear resistance cannot be exhibited over a long period of use. On the other hand, if it exceeds 30 μm, the chipping resistance is lowered.

また、本発明は、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。
さらに、本発明は、改質Al層の表面に、表面の平滑化等の目的で、機械的処理(例えば、ウエットブラスト処理、ブラシ処理、弾性砥石処理)等を施すことを何ら制限するものではない。
Further, in the present invention, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case is 0.1 to 1 μm may be sufficient, and if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient for an average layer thickness of up to 1 μm.
Furthermore, the present invention is not limited to subjecting the surface of the modified Al 2 O 3 layer to mechanical treatment (for example, wet blast treatment, brush treatment, elastic grindstone treatment) or the like for the purpose of smoothing the surface. Not what you want.

この発明の被覆工具は、大きな発熱を伴うとともに、切刃部に対して大きな熱的・機械的負荷がかかり、さらに、切削応力の大きな変動を伴う、例えば、風力発電部品のフランジ荒加工における大型の黒皮偏肉部品の高速重切削加工に供した場合でも、硬質被覆層の下部層のうちの改質TiCN層が、応力の緩和・吸収作用、クラックの伝播・進展抑制作用を有し、高温強度とともに一段とすぐれた耐チッピング性を示し、また、硬質被覆層の上部層の改質Al層が、すぐれた硬度と耐熱性に加え、すぐれた耐塑性変形性を示すことから、偏摩耗の発生等もなく、長期の使用に亘って、すぐれた耐チッピング性と耐摩耗性を発揮するものである。 The coated tool of the present invention is accompanied by a large heat generation, a large thermal and mechanical load on the cutting edge, and a large variation in cutting stress. Even when subjected to high-speed heavy cutting of black skin uneven thickness parts, the modified TiCN layer of the lower layer of the hard coating layer has a stress relaxation / absorption action, a crack propagation / propagation suppression action, Excellent resistance to chipping with high-temperature strength, and the modified Al 2 O 3 layer as the upper layer of the hard coating layer exhibits excellent plastic deformation resistance in addition to excellent hardness and heat resistance. There is no occurrence of uneven wear and the like, and excellent chipping resistance and wear resistance are exhibited over a long period of use.

硬質被覆層の下部層を構成するTiCN層が有するNaCl型面心立方晶の結晶構造を示す模式図である。It is a schematic diagram which shows the crystal structure of the NaCl type face centered cubic crystal which the TiCN layer which comprises the lower layer of a hard coating layer has. 硬質被覆層の下部層を構成する改質TiCN層における結晶粒の(001)面および(011)面の法線の傾斜角の測定態様を示す概略説明図である。It is a schematic explanatory drawing which shows the measurement aspect of the inclination angle of the normal line of the (001) plane of a crystal grain and the (011) plane in the modified TiCN layer which comprises the lower layer of a hard coating layer. 縦断面研磨面の法線と、上部層(改質Al層)における結晶粒の(0001)面、{10−10}面およびそれらの法線との関係を示す概略説明図である。The normal of the longitudinal section polishing surface, crystal grains of the (0001) plane in the upper layer (reforming the Al 2 O 3 layer), is a schematic diagram showing the relationship between the {10-10} plane and their normal . 上部層(改質Al層)における結晶粒の(0001)面と(10−10)面の法線の傾斜角の測定態様を示す概略説明図である。It is a schematic diagram showing the measurement mode of the crystal grains (0001) plane and (10-10) plane normal to the tilt angle of the upper layer (reforming the Al 2 O 3 layer).

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜5μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部に幅0.2mm、角度20度のホーニング加工を施すことによりISO・SNMM250924に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder each having an average particle diameter of 2 to 5 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is vacuum-sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion has a width of 0.2 mm and an angle of 20 degrees. By processing, tool bases A to F made of WC-based cemented carbide having an insert shape specified in ISO · SNMM250924 were manufactured.

(a) つぎに、これらの工具基体A〜Fの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、改質TiCN層を除くTi化合物層を表2に示される条件で蒸着形成し、
(b)ついで、前記改質TiCN層を、表3に示す条件、即ち、
まず、第1段階として、
反応ガス組成:容量%で、TiCl:5〜20%の範囲内の所定量、CN:0.5〜3.0%の範囲内の所定量、N:7〜20%の範囲内の所定量、H2:残り、
反応雰囲気温度:700〜850℃の範囲内の所定温度、
反応雰囲気圧力:6〜20kPaの範囲内の所定圧力、
の条件で、目標層厚の約20%の層厚となるまで蒸着成膜し、
その後、第2段階として、
反応ガス組成:容量%で、TiCl:3〜12%の範囲内の所定量、CHCN:0.2〜2%の範囲内の所定量、CN:0.1〜0.5%の範囲内の所定量、Ar:10〜30%の範囲内の所定量、H2:残り、
反応雰囲気温度:700〜850℃の範囲内の所定温度、
反応雰囲気圧力:6〜20kPaの範囲内の所定圧力、
の条件で、表6に示される組み合わせで、かつ同じく表6に示される目標層厚で蒸着形成し、
(c)ついで、改質Al層を、表4に示す条件、即ち、
まず、第1段階として、
反応ガス組成:容量%で、AlCl:1〜5%の範囲内の所定量、CO:10〜15%の範囲内の所定量、HCl:0.3〜3%の範囲内の所定量、SF:0.1〜1%の範囲内の所定量、H:残り、
反応雰囲気温度:950〜1100℃の範囲内の所定温度、
反応雰囲気圧力:20〜40kPaの範囲内の所定圧力、
の条件で、目標層厚の約5〜20%の層厚となるまで蒸着し、
その後、第2段階として、
反応ガス組成:容量%で、AlCl:6〜10%の範囲内の所定量、CO:3〜7%の範囲内の所定量、HCl:0.3〜3%の範囲内の所定量、HS:0.5〜1%の範囲内の所定量、H:残り、
反応雰囲気温度:950〜1100℃の範囲内の所定温度、
反応雰囲気圧力:10〜20kPaの範囲内の所定圧力、
の条件で、表7に示される目標層厚で蒸着形成することにより、本発明被覆工具1〜10をそれぞれ製造した。
(A) Next, on the surface of these tool bases A to F, a Ti chemical layer excluding the modified TiCN layer is used as a lower layer of the hard coating layer under the conditions shown in Table 2 using a normal chemical vapor deposition apparatus. Vapor deposition,
(B) Next, the modified TiCN layer is subjected to the conditions shown in Table 3, that is,
First, as the first stage,
Reaction gas composition:% by volume, TiCl 4 : predetermined amount in the range of 5-20%, C 3 H 3 N: predetermined amount in the range of 0.5-3.0%, N 2 : 7-20% A predetermined amount within the range, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 700 to 850 ° C.,
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 20 kPa,
Under the conditions, vapor deposition is performed until the layer thickness reaches about 20% of the target layer thickness,
Then, as the second stage,
Reaction gas composition:% by volume, TiCl 4 : predetermined amount in the range of 3-12%, CH 3 CN: predetermined amount in the range of 0.2-2%, C 3 H 3 N: 0.1-0 A predetermined amount within a range of 5%, Ar: a predetermined amount within a range of 10 to 30%, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 700 to 850 ° C.,
Reaction atmosphere pressure: a predetermined pressure in the range of 6 to 20 kPa,
Under the conditions, the vapor deposition is performed with the combination shown in Table 6 and the target layer thickness also shown in Table 6,
(C) Next, the modified Al 2 O 3 layer was subjected to the conditions shown in Table 4, that is,
First, as the first stage,
By volume%, AlCl 3:: Reaction gas composition predetermined amount within a range of 1~5%, CO 2: the predetermined amount in the range 10-15%, HCl: a predetermined amount in the 0.3 to 3% range , SF 6 : a predetermined amount within a range of 0.1 to 1%, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 950 to 1100 ° C.,
Reaction atmosphere pressure: a predetermined pressure within a range of 20 to 40 kPa,
Under the conditions, vapor deposition until reaching a layer thickness of about 5-20% of the target layer thickness,
Then, as the second stage,
Reaction gas composition: volume%, AlCl 3 : predetermined amount in the range of 6-10%, CO 2 : predetermined amount in the range of 3-7%, HCl: predetermined amount in the range of 0.3-3% , H 2 S: a predetermined amount within the range of 0.5 to 1%, H 2 : remaining,
Reaction atmosphere temperature: a predetermined temperature within a range of 950 to 1100 ° C.,
Reaction atmosphere pressure: a predetermined pressure within a range of 10 to 20 kPa,
Under the conditions, the present coated tools 1 to 10 were produced by vapor deposition with the target layer thicknesses shown in Table 7, respectively.

また、比較の目的で、硬質被覆層の下部層として、Ti化合物層を表2に示される条件で、表8に示される組み合わせで、かつ同じく表8に示される目標層厚で蒸着形成し、さらに上部層としてのAl層を、表5に示される条件で、かつ表9に示される目標層厚で蒸着形成することにより、従来被覆工具1〜10をそれぞれ製造した。 For the purpose of comparison, as a lower layer of the hard coating layer, a Ti compound layer is formed by vapor deposition in the combination shown in Table 8 and with the target layer thickness shown in Table 8 under the conditions shown in Table 2. Further, Al 2 O 3 layers as upper layers were formed by vapor deposition under the conditions shown in Table 5 and with the target layer thicknesses shown in Table 9, thereby producing conventional coated tools 1 to 10 respectively.

上記本発明被覆工具および従来被覆工具のAl層についてX線回折を行い、(012),(104),(110),(006),(113),(202),(024),(116)の各面からのX線回折強度を測定することにより、TC(006)を求めた。表7,9にこれの値を示す。 X-ray diffraction was performed on the Al 2 O 3 layer of the present invention coated tool and the conventional coated tool, and (012), (104), (110), (006), (113), (202), (024), TC (006) was determined by measuring the X-ray diffraction intensity from each surface of (116). Tables 7 and 9 show these values.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質TiCN層および従来TiCN層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて、上記各層の縦断面研磨面のGBLa(μm)を測定し、そして、GBLa(μm)と、改質TiCN層および従来TiCN層の層厚Ta(μm)の比を求めた。
すなわち、上記の改質TiCN層および従来TiCN層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、所定測定領域を0.1μm/stepの間隔で、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が5度以上の場合を粒界であるとして設定した上で、電界放出型走査電子顕微鏡により、改質TiCN層、従来TiCN層の縦断面研磨面の測定領域(TiCN層厚(μm)×幅30(μm)の範囲の領域)を走査し、該測定領域内で、粒界として識別される部分のうちで前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界についてその粒界の長さGBLa(μm)を求めた。そして、GBLa(μm)と、改質TiCN層、従来TiCN層の層厚Ta(μm)との比の値(TiCN層の単位層厚当たりの粒界の長さに相当)を求めた。
Next, with respect to the modified TiCN layer and the conventional TiCN layer constituting the hard coating layer of the present invention coated tool and the conventional coated tool, a longitudinal section of each of the above layers is obtained using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus. GBLa (μm) of the polished surface was measured, and the ratio of GBLa (μm) to the layer thickness Ta (μm) of the modified TiCN layer and the conventional TiCN layer was determined.
That is, the modified TiCN layer and the conventional TiCN layer are set in a lens barrel of a field emission scanning electron microscope in a state where the vertical cross section of the TiCN layer is a polished surface, and accelerated to 15 kV at an incident angle of 70 degrees on the polished surface. A voltage electron beam is irradiated at an irradiation current of 1 nA to individual crystal grains existing within the measurement range of the vertical cross-section polished surface, and a predetermined measurement region is set to 0.1 μm / step using an electron backscatter diffraction image apparatus. At an interval, the inclination angle formed by the normal lines of the (001) plane and (011) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface, and the measured inclination obtained as a result Based on the angles, the angles at which the (001) plane normal lines and the (011) plane normal lines intersect each other at the interface between adjacent crystal grains are obtained. , And (011) plane normals The case where the intersecting angle is 5 degrees or more is set as a grain boundary, and the measurement area (TiCN layer thickness (μm)) of the polished surface of the modified TiCN layer and the conventional TiCN layer is measured by a field emission scanning electron microscope. X region having a width of 30 (μm)), and the (001) plane normals and the (011) plane normals among the parts identified as grain boundaries in the measurement region The grain boundary length GBLa (μm) was determined for a grain boundary having an angle of 15 ° or more. Then, the value of the ratio of GBLa (μm) to the layer thickness Ta (μm) of the modified TiCN layer and the conventional TiCN layer (corresponding to the length of the grain boundary per unit layer thickness of the TiCN layer) was obtained.

この結果得られた各種の改質TiCN層および従来TiCN層についてのGBLa,GBLa/Taの値を、それぞれ表6、8に示した。   The values of GBLa and GBLa / Ta for the various modified TiCN layers and conventional TiCN layers obtained as a result are shown in Tables 6 and 8, respectively.

表6、8にそれぞれ示される通り、本発明被覆工具の改質TiCN層は、いずれもGBLa/Taの値が275〜520の範囲内の数値であるのに対して、従来被覆工具の従来TiCN層は、いずれもGBLa/Taの値が275未満であった。   As shown in Tables 6 and 8, respectively, the modified TiCN layer of the coated tool of the present invention has a GBLa / Ta value in the range of 275 to 520, whereas the conventional TiCN of the conventional coated tool. All the layers had a GBLa / Ta value of less than 275.

ついで、上記の本発明被覆工具と従来被覆工具の硬質被覆層を構成する改質Al層および従来Al層について、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用いて、上記各層の縦断面研磨面のGBLb(μm)を測定し、そして、GBLb(μm)と、改質Al層および従来Al層の層厚Tb(μm)の比を求めた。
すなわち、上記の改質Al層および従来Al層の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記縦断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、所定測定領域を0.1μm/stepの間隔で、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士、および(10−10)面の法線同士の交わる角度を求め、さらに、前記(0001)面の法線同士、および(10−10)面の法線同士の交わる角度が5度以上の場合を粒界であるとして設定した上で、電界放出型走査電子顕微鏡により、改質Al層、従来Al層の縦断面研磨面の測定領域(Al層厚(μm)×幅30μmの範囲の領域)を走査し、該測定領域内で、粒界として識別される部分の粒界の長さGBLb(μm)を求めた。そして、GBLb(μm)と、改質Al層、従来Al層の層厚Tb(μm)との比の値(Al層の単位層厚当たりの粒界の長さに相当)を求めた。
Next, a field emission scanning electron microscope and an electron backscatter diffraction image apparatus were used for the modified Al 2 O 3 layer and the conventional Al 2 O 3 layer constituting the hard coating layer of the present invention coated tool and the conventional coated tool. Then, GBLb (μm) of the vertical cross-section polished surface of each layer is measured, and the ratio of GBLb (μm) to the layer thickness Tb (μm) of the modified Al 2 O 3 layer and the conventional Al 2 O 3 layer is determined. Asked.
That is, in a state where the vertical cross section of the modified Al 2 O 3 layer and the conventional Al 2 O 3 layer is a polished surface, it is set in a lens barrel of a field emission scanning electron microscope, and the polished surface is set to 70 degrees. An electron beam with an acceleration voltage of 15 kV at an incident angle is irradiated at an irradiation current of 1 nA to each crystal grain existing within the measurement range of the vertical cross-section polished surface, and a predetermined measurement region is formed using an electron backscatter diffraction image apparatus. At an interval of 0.1 μm / step, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the vertical cross-section polished surface. Then, based on the measured tilt angle obtained as a result, the angles at which the (0001) plane normal lines and the (10-10) plane normal lines cross each other at the interface between adjacent crystal grains are obtained, and , Normals of the (0001) plane, and On the angle of intersection of the normal line between the 10-10) plane was set not less than 5 degrees a grain boundary, by field emission scanning electron microscope, reforming the Al 2 O 3 layer, a conventional Al 2 O 3 The measurement area (Al 2 O 3 layer thickness (μm) × width of 30 μm range) of the polished surface of the longitudinal section of the layer is scanned, and the length of the grain boundary of the portion identified as the grain boundary in the measurement area GBLb (μm) was determined. Then, the value of the ratio of GBLb (μm) to the layer thickness Tb (μm) of the modified Al 2 O 3 layer and the conventional Al 2 O 3 layer (the length of the grain boundary per unit layer thickness of the Al 2 O 3 layer) Equivalent).

この結果得られた各種の改質Al層および従来Al層についてのGBLb,GBLb/Tbの値を、それぞれ表7、9に示した。 Tables 7 and 9 show the values of GBLb and GBLb / Tb for the various modified Al 2 O 3 layers and the conventional Al 2 O 3 layers obtained as a result.

表7、9にそれぞれ示される通り、本発明被覆工具の改質Al層は、いずれもGBLb/Tbの値が40〜165の範囲内の数値であるのに対して、従来被覆工具の従来Al層は、いずれもGBLb/Tbの値が200を超える値であった。 As shown in Tables 7 and 9, respectively, the modified Al 2 O 3 layer of the coated tool of the present invention has a GBLb / Tb value in the range of 40 to 165, whereas the conventional coated tool All of the conventional Al 2 O 3 layers had a GBLb / Tb value exceeding 200.

さらに、上記の本発明被覆工具1〜10および従来被覆工具1〜10について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl層からなることが確認された。
また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Further, for the above-described coated tools 1 to 10 of the present invention and the conventional coated tools 1 to 10, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal section of the layer) As a result, it was confirmed that both the former and the latter were composed of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition.
Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.

つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜10および従来被覆工具1〜10について、
被削材と加工部位:外径4,300mm、内径3,900mm、厚み110mmの低炭
素鋼製大型黒皮偏肉部品の厚み110mmの面、
切削速度:220m/min、
切り込み:10mm、
送り:1mm/rev、
の条件(切削条件A)での外径湿式高速重切削試験、(通常の切削速度は、120m/min)
被削材と加工部位:外径3,800mm、内径3,500mm、厚み300mmの低炭
素鋼製大型黒皮偏肉部品の外径−内径の幅300mmの面、
切削速度:150m/min、
切り込み:13mm、
送り:1mm/rev、
の条件(切削条件B)での端面湿式高速重切削試験、(通常の切削速度は、80m/min)
を行い、いずれの切削試験でも加工パス数をカウントした。(加工する面を1回切削することを1パスとしている)
加工パス数のカウントは、切れ刃逃げ面の摩耗量が基準摩耗量である1mmに達した時点における、加工パス数を基本とするが、加工の途中で切れ刃の欠損が生じた場合、切り屑を分断できなくなる切り屑処理不良状態となった場合には、その時点で、終了している加工パス数をカウントすることとする。なお、加工途中については、加工パス数としてカウントしない。
この結果を表10に示した。
Next, in the state where all the above-mentioned various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 10 and the conventional coated tools 1 to 10,
Work material and processing part: low charcoal with outer diameter 4,300mm, inner diameter 3,900mm, thickness 110mm
110mm thick surface of large black skin uneven parts made of steel,
Cutting speed: 220 m / min,
Cutting depth: 10mm,
Feed: 1mm / rev,
Outer diameter wet high speed heavy cutting test under the above conditions (cutting condition A) (normal cutting speed is 120 m / min)
Work material and processing part: Low charcoal with outer diameter 3,800mm, inner diameter 3,500mm, thickness 300mm
The surface of the outer diameter-inner diameter width of 300 mm of a large black skin uneven part made of steel,
Cutting speed: 150 m / min,
Incision: 13mm,
Feed: 1mm / rev,
End face wet high speed heavy cutting test under the above conditions (cutting condition B) (normal cutting speed is 80 m / min)
In each cutting test, the number of machining passes was counted. (Cutting the surface to be processed once is one pass)
The number of machining passes is based on the number of machining passes when the wear amount on the cutting edge flank reaches the standard wear amount of 1 mm. When a chip disposal failure state in which the chips cannot be divided is reached, the number of finished machining passes is counted at that time. Note that the number of machining passes is not counted during machining.
The results are shown in Table 10.











表6〜10に示される結果から、本発明被覆工具1〜10は、硬質被覆層の下部層の少なくとも一層として、GBLa/Ta=275〜520である改質TiCN層で構成され、また、硬質被覆層の上部層が、GBLb/Tb=40〜165である改質Al層で構成されていることから、熱的・機械的負荷がきわめて高く、切削応力が大きく変動する高速重切削加工でも、前記改質TiCN層が切削時に発生した粒界に沿うクラックを分散させ、その伝播・進展を抑制するとともに応力の緩和・吸収作用を有し、また、前記改質Al層が粒界すべりの発生に起因する塑性変形による偏摩耗の発生を抑制することから、すぐれた耐チッピング性、耐欠損性を発揮し、長期の使用に亘って、すぐれた耐摩耗性を発揮する。
これに対して、硬質被覆層の下部層のうちのTiCN層が、GBLa/Ta値が275未満である従来TiCN層、あるいは、上部層のAl層のGBLb/Tb値が200を超える値である従来Al層、あるいはさらに、(GBLb/Tb)/(GBLa/Ta)の値が0.1〜0.6の範囲外である硬質被覆層で構成された従来被覆工具1〜10においては、硬質被覆層の熱的・機械的負荷に対する耐性および切削応力の大きな変動に対する耐性がいずれも不十分であるために、大型の黒皮偏肉部品等の高速重切削加工では硬質被覆層にチッピングが発生し、また、耐摩耗性も劣り、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 10, the coated tools 1 to 10 of the present invention are composed of a modified TiCN layer having GBLa / Ta = 275 to 520 as at least one of the lower layers of the hard coating layer, and hard. Since the upper layer of the coating layer is composed of a modified Al 2 O 3 layer with GBLb / Tb = 40 to 165, the thermal and mechanical load is extremely high, and the high-speed heavy cutting in which the cutting stress varies greatly. Also in the processing, the modified TiCN layer disperses cracks along grain boundaries generated during cutting, suppresses propagation / progress, and has a stress relaxation / absorption function. The modified Al 2 O 3 layer Suppresses the occurrence of uneven wear due to plastic deformation due to the occurrence of intergranular slip, thus providing excellent chipping resistance and fracture resistance, and excellent wear resistance over a long period of use. .
On the other hand, the TiCN layer of the lower layer of the hard coating layer has a conventional BLCN layer with a GBLa / Ta value of less than 275, or the GBLb / Tb value of the upper Al 2 O 3 layer exceeds 200. Conventional Al 2 O 3 layer, which is a value, or, further, a conventional coated tool 1 composed of a hard coating layer whose (GBLb / Tb) / (GBLa / Ta) value is outside the range of 0.1 to 0.6. No. 10 to 10 are insufficient in resistance to thermal and mechanical loads of the hard coating layer and resistance to large fluctuations in cutting stress. It is clear that chipping occurs in the coating layer, and the wear resistance is inferior, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、風力発電部品のフランジ荒加工に代表される大型の黒皮偏肉部品等の高速重切削加工に好適に用いられるものであるが、工具基体に炭窒化チタン基サーメット基体を用いること、他の各種鋼や鋳鉄などの通常の条件での連続切削、断続切削、重切削にも適用可能であることは勿論であり、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

























As described above, the coated tool of the present invention is suitably used for high-speed heavy cutting such as large black skin uneven parts represented by rough flange processing of wind power generation parts. Of course, it can be applied to continuous cutting, interrupted cutting, and heavy cutting under normal conditions such as using various types of steel and cast iron, as well as excellent cutting performance over a long period of time. Therefore, it is possible to satisfactorily meet the demands for higher performance of the cutting device, labor saving and energy saving of cutting, and cost reduction.

























Claims (1)

炭化タングステン基超硬合金で構成された工具基体の表面に、
(a)3〜15μmの合計平均層厚を有するTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層において、前記Ti化合物層のうち少なくとも1層以上が2.5〜14μmの平均層厚を有する縦長成長結晶組織の改質Ti炭窒化物層(以下、「改質TiCN層」で示す)で構成される下部層、
(b)(006)面の配向性指数TC(006)の値が1.5以上の5〜20μmの平均層厚を有する柱状組織の改質Al層で構成される上部層、
以上(a)および(b)からなる硬質被覆層が、8〜30μmの全体平均層厚で被覆形成されてなる表面被覆切削工具において、
(c)上記(a)の改質TiCN層には、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、該層の縦断面研磨面の幅30μmの測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に電子線を照射して、前記縦断面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、また、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が5度以上の場合を粒界であると識別した上で、電界放出型走査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分のうち前記(001)面の法線同士、および(011)面の法線同士の交わる角度が15度以上の粒界の長さGBLa(μm)を求めた場合、この粒界の長さGBLa(μm)と測定した改質TiCN層の層厚Ta(μm)との比の値GBLa/Taは275〜520の範囲内にある縦長成長結晶組織を有する改質TiCN層であり、
(d)上記(b)の(006)面の配向性指数TC(006)の値が1.5以上である改質Al層は、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、縦断面研磨面の幅30μmの測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士、および(10−10)面の法線同士の交わる角度を求め、また、前記(0001)面の法線同士、および(10−10)面の法線同士の交わる角度が5度以上である隣接する結晶格子相互の界面を粒界であると識別し、電界放出型走査電子顕微鏡を用い、層の縦断面研磨面における測定領域について、粒界として識別される部分の結晶粒界の長さGBLb(μm)を求めた場合、測定した上記改質Al層の層厚Tb(μm)との比の値GBLb/Tbは40〜165の範囲内にある柱状組織の改質Al層であり、
(e)さらに、前記(c)で求めたGBLa/Taの値と、前記(d)で求めたGBLb/Tbの値の比(GBLb/Tb)/(GBLa/Ta)が、0.1〜0.6の範囲内にあることを特徴とする表面被覆切削工具。








On the surface of the tool base made of tungsten carbide base cemented carbide,
(A) Ti compound comprising one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer having a total average layer thickness of 3 to 15 μm In the layer, at least one of the Ti compound layers is a modified Ti carbonitride layer (hereinafter referred to as “modified TiCN layer”) having a vertically grown crystal structure having an average layer thickness of 2.5 to 14 μm. Lower layer composed,
(B) an upper layer composed of a columnar textured modified Al 2 O 3 layer having an average layer thickness of 5 to 20 μm with a value of (006) plane orientation index TC (006) of 1.5 or more;
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is coated with an overall average layer thickness of 8 to 30 μm,
(C) For the modified TiCN layer of (a) above, a cubic crystal existing in a measurement range of 30 μm in width of the polished surface of the longitudinal section of the layer using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus Inclination formed by normalizing (001) plane and (011) plane, which are crystal planes of the crystal grains, with respect to the normal lines of the vertical cross-section polished surface by irradiating each crystal grain having a crystal lattice with an electron beam The angle is measured, and the angle at which the normal lines of the (001) plane and the normal lines of the (011) plane intersect each other at the interface between adjacent crystal grains is obtained from the measured inclination angle. The vertical cross-section polishing of the layer using a field emission scanning electron microscope after identifying the case where the angle between the normals of the surface) and the normals of the (011) surface is 5 degrees or more as a grain boundary The part of the measurement area on the surface that is identified as the grain boundary When the grain boundary length GBLa (μm) at which the angle between the normal lines of the (001) plane and the normal lines of the (011) plane intersects is 15 degrees or more, the grain boundary length GBLa (μm) ) And the measured thickness Ti (μm) of the modified TiCN layer, GBLa / Ta is a modified TiCN layer having a vertically grown crystal structure in the range of 275 to 520,
(D) The modified Al 2 O 3 layer having the (006) plane orientation index TC (006) of (b) above is 1.5 or more, using a field emission scanning electron microscope and an electron backscatter diffraction image. Using an apparatus, each crystal grain having a hexagonal crystal lattice existing in a measurement range with a width of 30 μm on the polished surface of the longitudinal cross section is irradiated with an electron beam, and the (0001) plane and (10 −10) The inclination angle formed by the normals of the planes is measured, and the normals of the (0001) planes and the normal lines of the (10-10) planes at the interfaces between adjacent crystal grains are measured from the measured inclination angles. The angle at which the two intersect each other is obtained, and the interface between adjacent crystal lattices at which the normal between the (0001) planes and the (10-10) planes intersect each other is 5 degrees or more Identify the layer and use a field emission scanning electron microscope to The ratio of the measurement area in the polished surface, if determined the length of the crystal grain boundary of the portion identified as intergranular GBLB ([mu] m), the measured the modified the Al 2 O 3 layer thickness Tb ([mu] m) The value GBLb / Tb is a columnar textured modified Al 2 O 3 layer in the range of 40-165,
(E) Furthermore, the ratio (GBLb / Tb) / (GBLa / Ta) of the value of GBLa / Ta obtained in (c) and the value of GBLb / Tb obtained in (d) is 0.1 to A surface-coated cutting tool characterized by being in the range of 0.6.








JP2012011083A 2012-01-23 2012-01-23 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer Active JP5783061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011083A JP5783061B2 (en) 2012-01-23 2012-01-23 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011083A JP5783061B2 (en) 2012-01-23 2012-01-23 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Publications (2)

Publication Number Publication Date
JP2013146843A true JP2013146843A (en) 2013-08-01
JP5783061B2 JP5783061B2 (en) 2015-09-24

Family

ID=49044890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011083A Active JP5783061B2 (en) 2012-01-23 2012-01-23 A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer

Country Status (1)

Country Link
JP (1) JP5783061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool
EP3124144A4 (en) * 2014-03-22 2017-10-25 KYOCERA Corporation Coated tool and cutting tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015707A (en) * 1996-07-02 1998-01-20 Sumitomo Electric Ind Ltd Silicon nitride coated tool
US20070104945A1 (en) * 2005-09-27 2007-05-10 Seco Tools Ab Alumina layer with enhanced texture
JP2008168419A (en) * 2006-12-14 2008-07-24 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2009184046A (en) * 2008-02-05 2009-08-20 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting
JP2009279693A (en) * 2008-05-21 2009-12-03 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed heavy cutting
US20120144965A1 (en) * 2009-07-27 2012-06-14 Seco Tools Ab Coated cutting tool insert for turning of steels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1015707A (en) * 1996-07-02 1998-01-20 Sumitomo Electric Ind Ltd Silicon nitride coated tool
US20070104945A1 (en) * 2005-09-27 2007-05-10 Seco Tools Ab Alumina layer with enhanced texture
JP2007125686A (en) * 2005-09-27 2007-05-24 Seco Tools Ab Aluminum layer having reinforced structure
US20120015148A1 (en) * 2005-09-27 2012-01-19 Seco Tools Ab Alumina layer with enhanced texture
JP2008168419A (en) * 2006-12-14 2008-07-24 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP2009184046A (en) * 2008-02-05 2009-08-20 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting
JP2009279693A (en) * 2008-05-21 2009-12-03 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed heavy cutting
US20120144965A1 (en) * 2009-07-27 2012-06-14 Seco Tools Ab Coated cutting tool insert for turning of steels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124144A4 (en) * 2014-03-22 2017-10-25 KYOCERA Corporation Coated tool and cutting tool
JP2017071044A (en) * 2016-02-04 2017-04-13 住友電工ハードメタル株式会社 Surface cover cutting tool

Also Published As

Publication number Publication date
JP5783061B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
CN106536102B (en) Surface-coated cutting tool
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP4822120B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP2017013223A (en) Surface coating and cutting tool
JP2019051565A (en) Coated cutting tool
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2019217579A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent fracture resistance and chipping resistance
JP5263572B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5783061B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance with a high-speed heavy-cutting hard coating layer
JP2018144138A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2018144139A (en) Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance
JP2019119045A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP2020131424A (en) Surface-coated cutting tool
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2020138301A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP6048669B2 (en) Surface-coated cutting tool with a hard coating layer that exhibits excellent wear resistance in high-speed cutting of ductile cast iron, etc.
JP5594574B2 (en) Surface-coated cutting tool with excellent peeling resistance and wear resistance due to its hard coating layer
JP4822119B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed heavy cutting
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5783061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150