JP2019119045A - Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance - Google Patents

Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2019119045A
JP2019119045A JP2018240650A JP2018240650A JP2019119045A JP 2019119045 A JP2019119045 A JP 2019119045A JP 2018240650 A JP2018240650 A JP 2018240650A JP 2018240650 A JP2018240650 A JP 2018240650A JP 2019119045 A JP2019119045 A JP 2019119045A
Authority
JP
Japan
Prior art keywords
layer
tialcn
average
avg
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018240650A
Other languages
Japanese (ja)
Other versions
JP7183522B2 (en
Inventor
光亮 柳澤
Mitsuaki Yanagisawa
光亮 柳澤
卓也 石垣
Takuya Ishigaki
卓也 石垣
佐藤 賢一
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2019119045A publication Critical patent/JP2019119045A/en
Application granted granted Critical
Publication of JP7183522B2 publication Critical patent/JP7183522B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a surface-coated cutting tool exerting a long-term excellent cutting performance even in the high-speed cutting work of a difficult-to-machine material.SOLUTION: The surface-coated cutting tool is provided in which a TiAlCN layer is provided, the TiAlCN layer having an NaCl type face-centered cubic structure with an average layer thickness of 1 to 20 μm and having a pore in a grain boundary. The TiAlCN layer is prepared by laminating three or more of a TiAlCN layer α having a high-pore area ratio and having an average layer thickness of 0.1 to 5 μm, and a layer β with a low-pore area ratio. The TiAlCN layer α represented by a composition formula (TiAl)(CN) satisfies 0.6≤X≤0.95 and 0≤Y≤0.0050, the layer α further satisfies 0.2 area%≤average pore area, Aα≤5.0 area%, 4 nm≤average pore size, Dα≤50 nm, and a maximum pore size, Dα≤200 nm. The TiAlCN layer β represented by a composition formula (TiAl)(CN) satisfies 0.6≤X≤0.95 and 0≤Y≤0.0050, the layer β further satisfies, the average pore area, Aβ<0.2 area%; and the maximum pore size, Dβ≤100 nm.SELECTED DRAWING: Figure 2

Description

本発明は、熱伝導性が低い難削材等に対して高負荷が作用する高速切削加工であっても、硬質被覆層が優れた耐チッピング性・耐欠損性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a high-speed cutting process in which a high load acts on a hard-to-cut material or the like having low thermal conductivity, but the hard coating layer has excellent chipping resistance and fracture resistance so that long-term use can be achieved. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over the entire surface.

従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, a Ti—Al-based composite carbonitride layer as a hard coating layer on the surface of a tool substrate (hereinafter, these are collectively referred to as a tool substrate) such as tungsten carbide (hereinafter referred to as WC) -based cemented carbide There are coated tools coated by vapor deposition, and these are known to exhibit excellent wear resistance.
However, although the coated tool on which the conventional Ti-Al composite carbonitride layer is coated is relatively excellent in wear resistance, it tends to generate abnormal wear such as chipping when used under high-speed cutting conditions. Thus, various proposals have been made for improvement of the hard coating layer.

例えば、特許文献1には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが記載されている。 For example, in Patent Document 1, a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a (Ti 1 -x Al x ) of a cubic crystal structure including a cubic crystal structure or a hexagonal crystal structure is formed thereon by chemical vapor deposition. The heat resistance and the fatigue strength of the coated tool are improved by coating the N layer (where the atomic ratio, x is 0.65 to 0.90) as the outer layer and applying a compressive stress of 100 to 1100 MPa to the outer layer. It has been described that.

また、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成し、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることが記載されている。 Further, in Patent Document 2, the chemical deposition is performed in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 and NH 3 so that the content ratio x of Al is 0.65 to 65. a 0.95 (Ti 1-x Al x ) N layer were vapor deposited, the (Ti 1-x Al x) further coated with the Al 2 O 3 layer on top of the N layer, thereby enhancing the heat insulating effect It is described.

特許文献3には、硬質被覆層が、(Ti1−XAl)(C1−Y)で表される複合窒化物層または複合炭窒化物層であって、Alの平均含有割合XおよびCの平均含有割合Yが0.60≦X≦0.95、0≦Y≦0.005を満足し、前記複合窒化物層または複合炭窒化物層を構成する結晶粒の粒界にはポアが存在し、該複合窒化物層または複合炭窒化物層の断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察し、ポアの面積割合とポアの平均孔径を算出したとき、ポアが占める面積割合が1%以上20%未満であるとともにポアの平均孔径が2〜50nmである被覆工具が記載されている。 Patent Document 3, the hard coating layer, a (Ti 1-X Al X) (C Y N 1-Y) composite nitride layer or a composite carbonitride layer represented by an average content of Al At the grain boundaries of the crystal grains constituting the composite nitride layer or composite carbonitride layer, the average content ratio Y of X and C satisfies 0.60 ≦ X ≦ 0.95, 0 ≦ Y ≦ 0.005. There are pores, and the cross section of the composite nitride layer or composite carbonitride layer is observed with a scanning electron microscope in the range of 1 μm × 1 μm at a magnification of 50000 times to calculate the area ratio of the pores and the average pore diameter of the pores The coated tool is described in which the area ratio occupied by the pores is 1% or more and less than 20% and the average pore diameter of the pores is 2 to 50 nm.

特表2011−513594号公報JP 2011-513594 gazette 特表2011−516722号公報Japanese Patent Application Publication No. 2011-516722 特開2017−30076号公報JP, 2017-30076, A

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。   In recent years, there is a strong demand for labor saving and energy saving in cutting processing, and along with this, cutting processing tends to be faster and more efficient, and the coated tools are more resistant to chipping, chipping, While the abnormal damage resistance such as peeling resistance is required, excellent wear resistance is required over a long period of use.

しかし、前記特許文献1に記載されている被覆工具は、所定の硬さを有し耐摩耗性には優れるものの、靭性に劣ることから、難削材の高速切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。   However, although the coated tool described in Patent Document 1 has a predetermined hardness and is excellent in wear resistance, it is inferior in toughness, and therefore, when used for high-speed cutting of a difficult-to-cut material or the like. There is a problem that abnormal damage such as chipping, chipping and peeling is easily generated, and satisfactory cutting performance can not be exhibited.

また、前記特許文献2に記載されている化学蒸着法で蒸着形成した(Ti1−xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性に優れた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、さらに、靭性に劣るという課題があった。 Moreover, the the Patent Document 2 is formed deposited by chemical vapor deposition as described in (Ti 1-x Al x) N layer, it is possible to increase the content ratio x of Al, also to form a cubic structure As a result, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool substrate is not sufficient, and furthermore, the toughness is inferior.

加えて、前記特許文献3に記載されている被覆工具は、所定の面積割合、平均孔径を有するポアが存在することにより、高速断続加工における耐チッピング性、耐欠損性を改善するが、難削材であるインコネル(登録商標、以下、インコネルが登録商標である旨の記載を省略する)等のNi基耐熱合金の高速連続切削加工やステンレス鋼等刃先温度がより高くなるような、より高負荷の高速断続切削加工に供したときには必ずしも十分な耐チッピング性、耐欠損性を発揮するとはいえなかった。   In addition, the coated tool described in Patent Document 3 improves chipping resistance and fracture resistance in high-speed interrupted machining due to the presence of pores having a predetermined area ratio and average pore diameter, but it is difficult to cut Materials such as Inconel (registered trademark, hereinafter, the description that Inconel is a registered trademark is omitted) is high-speed continuous cutting of Ni-base heat-resistant alloys such as stainless steel etc. When subjected to high-speed interrupted cutting, the chipping resistance and chipping resistance can not always be exhibited.

そこで、本発明は、難削材であるインコネル等のNi基耐熱合金やステンレス鋼等に対して、高負荷が作用する高速切削加工に供したときであっても、優れた耐チッピング性、耐欠損性を備え、長期の使用にわたって優れた切削性能を発揮する被覆工具を提供することを目的とする。   Therefore, the present invention has excellent chipping resistance and resistance even when subjected to high-speed cutting with high load acting on Ni-based heat-resistant alloys such as Inconel, which are hard-to-cut materials, and stainless steel. An object of the present invention is to provide a coated tool which is defective and exhibits excellent cutting performance over long-term use.

本発明者らは、少なくともTiとAlの複合窒化物層または複合炭窒化物層(以下、複合窒化物層または複合炭窒化物層を「TiAlCN」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具を用いた、特に、インコネル等のNi基耐熱合金やステンレス鋼等の熱伝導率の低い等の難削材の切削加工において、切削時の損耗メカニズムの調査を行った結果、被削材の熱伝導率が低いため、切削時の刃先温度が高くなり逃げ面摩耗が進行し、さらに、断続切削に供した場合には熱衝撃にともなう熱応力の発生によってクラックが発生、進展し、短時間で工具寿命に至ることが解り、鋭意研究を重ねた結果、次のような知見を得た。   The present inventors at least have a hard covering layer including a composite nitride layer or composite carbonitride layer of Ti and Al (hereinafter, the composite nitride layer or composite carbonitride layer may be indicated as "TiAlCN"). In cutting of difficult-to-cut materials with low thermal conductivity such as Ni-based heat-resistant alloys such as Inconel etc. and stainless steel etc. using coated tools deposited by chemical vapor deposition, investigation of the wear mechanism at the time of cutting was conducted. As a result, since the thermal conductivity of the work material is low, the cutting edge temperature during cutting becomes high and flank wear progresses, and further, when it is used for intermittent cutting, cracks are generated due to the generation of thermal stress accompanying thermal shock. It was found that the development and development progressed to the tool life in a short time, and as a result of intensive research, the following findings were obtained.

すなわち、TiAlCN層の粒界に沿って所定の大きさの微孔径のポア(微小空孔)を数多く形成した層(ポアの面積率が高い層)と、ポアの数が少ない層(ポアの面積率が低い層)とを交互に積層することによって、前記インコネル等のNi基耐熱合金やステンレス鋼等の難削材について、より高負荷の高速切削加工に供したときであっても、高温での耐摩耗性を維持するとともに、硬質被覆層に作用する機械的応力、あるいは熱衝撃に伴う熱的応力を緩和し、耐チッピング性、耐欠損性が向上するという、新規な知見を得た。   That is, a layer (layer having a high area ratio of pores) in which a large number of pores (microvoids) having a predetermined size are formed along the grain boundaries of the TiAlCN layer, and a layer having a small number of pores (pore areas) (Layers with a low ratio) are alternately laminated to make it difficult to cut hard materials such as Ni-based heat-resistant alloys such as Inconel etc. and stainless steel at high temperatures even when subjected to high-load high-speed cutting In addition to maintaining the wear resistance of the steel, it is possible to obtain new findings that chipping resistance and fracture resistance are improved by relieving mechanical stress acting on the hard coating layer or thermal stress accompanying thermal shock.

本発明は、前記知見に基づいてなされたものであって、
「(1)工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を少なくとも含み、
(c)前記複合窒化物層または複合炭窒化物層は、結晶粒の粒界にポアが存在しており、
ポア面積率が高いTiAlCN層αとポア面積率が低いTiAlCN層βとが交互に3層以上積層された多層構造を含み、
(d)前記TiAlCN層αとTiAlCN層βは、それぞれの平均層厚をLα、Lβとして、0.1μm≦Lα≦5.0μm、0.1μm≦Lβ≦5.0μmを満たし、
(e)前記TiAlCN層αは、
組成式:(Ti1−XαAlXα)(CYα1−Yα)で表した場合、
AlのTiとAlの合量に占める平均含有割合XαavgおよびCのCとNの合量に占める平均含有割合Yαavg(但し、Xαavg、Yαavgはいずれも原子比)が、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.0050を満足し、
(f)前記TiAlCN層βは、
組成式:(Ti1−XβAlXβ)(CYβ1−Yβ)で表した場合、
AlのTiとAlの合量に占める平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)が、それぞれ、0.60≦Xβavg≦0.95、0≦Yβavg≦0.0050を満足し、
(g)前記TiAlCN層αにおいて、前記ポアが占める平均面積割合Aαavgと前記ポアの平均孔径Dαavgおよび前記ポアの最大孔径Dαmaxがそれぞれ、0.20面積%≦Aαavg≦5.00面積%、4nm≦Dαavg≦50nm、Dαmax≦200nmを満足し
(h)前記TiAlCN層βにおいて、前記ポアが占める平均面積割合Aβavgが、Aβavg<0.20面積%と前記ポアの最大孔径DβmaxがDβmax≦100nmを満足する、
ことを特徴とする表面被覆切削工具。
(2)前記TiAlCN層α内のNaCl型の面心立方構造を有するTiとAlとの複合窒化物層または複合炭窒化物層の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面から観察した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占め、
前記TiAlCN層β内のNaCl型の面心立方構造を有するTiとAlとの複合窒化物層または複合炭窒化物層の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面から観察した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占めることを特徴とする(1)に記載の表面被覆切削工具。
(3)TiAlCN層αおよびTiAlCN層βを含む前記複合窒化物層または複合炭窒化物層に対し、前記ポアが占める平均面積割合AtotはAtot≦1.00面積%であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention was made based on the above findings, and
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate,
(A) The hard coating layer at least includes a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) The composite nitride layer or the composite carbonitride layer contains at least crystal grains of a composite nitride or composite carbonitride having a face-centered cubic structure of NaCl type,
(C) In the composite nitride layer or composite carbonitride layer, pores exist at grain boundaries of crystal grains,
Including a multilayer structure in which three or more layers of TiAlCN layer α with high pore area ratio and TiAlCN layer β with low pore area ratio are alternately laminated,
(D) The TiAlCN layer α and the TiAlCN layer β satisfy 0.1 μm ≦ L α ≦ 5.0 μm and 0.1 μm ≦ L β ≦ 5.0 μm, where L α and L β are the average layer thicknesses of the respective layers.
(E) The TiAlCN layer α is
When represented by a composition formula: (Ti 1−Xα Al ) (C N 1−Yα ),
The average content ratio X αavg in the total content of Ti and Al of Al and the average content ratio Y αavg in the total content of C and N of C (where both X αavg and Y αavg are atomic ratios) are each 0. 60 ≦ X αavg ≦ 0.95, 0 ≦ Y αavg0.0050 ,
(F) The TiAlCN layer β is
When represented by a composition formula: (Ti 1−Xβ Al Xβ 2 ) (C N 1−Yβ 2 ),
The average content ratio X β avg in the total content of Ti and Al of Al and the average content ratio Y β avg in the total content of C and N of C (where both X β avg and Y β avg are atomic ratios) are each 0. 60 ≦ X βavg ≦ 0.95, 0 ≦ Y βavg0.0050 ,
(G) In the TiAlCN layer alpha, average area ratio A.alpha avg and average pore size D.alpha avg and maximum pore size D.alpha max of the pores of the pores, respectively, 0.20 area% ≦ Aα avg ≦ 5.00 area the pore occupies %, 4 nm ≦ Dα avg ≦ 50 nm, Dα max ≦ 200 nm (h) In the TiAlCN layer β, the average area ratio Aβ avg occupied by the pores is Aβ avg <0.20 area%, and the maximum pore diameter of the pores Dβ max satisfies Dβ max ≦ 100 nm,
A surface coated cutting tool characterized in that.
(2) The crystal orientation of the crystal grains of the composite nitride layer or composite carbonitride layer of Ti and Al having a face-centered cubic structure of the NaCl type in the TiAlCN layer α using an electron beam backscattering diffraction apparatus When observed from the longitudinal cross-section, the inclination angle formed by the normal to the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool substrate surface is measured. In contrast, when the measured inclination angles in the range of 0 to 45 degrees are divided into pitches of 0.25 degrees and the frequencies existing in each division are summed up to obtain the distribution of the number of inclination angles, the 0 to 10 degrees The highest peak exists in the inclination angle section in the range of 0 to 40%, and the total of the frequencies existing in the range of 0 to 10 degrees accounts for 40% or more of the entire frequency in the distribution of the inclination angle number,
The crystal orientation of the crystal grains of the composite nitride layer or composite carbonitride layer of Ti and Al having a face-centered cubic structure of the NaCl type in the TiAlCN layer β, from the longitudinal cross section using the electron beam backscattering diffraction device When observed, the inclination angle formed by the normal to the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool substrate surface is measured, and 0 of the measured inclination angles with respect to the normal direction. When the measured inclination angles in the range of ~ 45 degrees are divided into pitches of 0.25 degrees, the frequencies present in each section are summed up, and the distribution of the number of inclined angles is determined, the range of 0 ~ 10 degrees The highest peak exists in the inclination angle section of, and the total of the frequencies present in the range of 0 to 10 degrees is characterized in that it accounts for 40% or more of the total frequencies in the inclination angle number distribution ( The surface-coated cutting tool according to 1).
(3) The average area ratio A tot occupied by the pores is A tot ≦ 1.00 area% with respect to the composite nitride layer or composite carbonitride layer including the TiAlCN layer α and the TiAlCN layer β. The surface-coated cutting tool according to (1) or (2). "
It is characterized by

本発明は、TiAlCN層の粒界に沿って適正な平均面積割合を有し、平均孔径のポアを多く形成した層と当該ポアが少ない層とを3層以上交互に積層することによって、熱伝導率の低い難削材に対して高負荷が作用する高速切削加工に供したときであっても高温での耐摩耗性を維持するとともに、硬質被覆層にかかる機械的応力、あるいは熱衝撃に伴う熱的応力を緩和し、耐チッピング性、耐欠損性が向上するという、優れた効果を発揮する。   In the present invention, the heat conduction is achieved by alternately laminating three or more layers of a layer having a proper average area ratio along the grain boundaries of the TiAlCN layer and having many pores having an average pore diameter and a layer having few such pores. While maintaining high-temperature wear resistance even when subjected to high-speed cutting where a high load acts on low-hardness materials with low rates, mechanical stress or thermal shock applied to the hard coating layer It exerts an excellent effect of relieving thermal stress and improving chipping resistance and chipping resistance.

本発明のTiAlCN層の部分拡大図であって、ポアの存在形態を説明する模式図である。It is the elements on larger scale of the TiAlCN layer of the present invention, and is a mimetic diagram explaining the existence form of a pore. TiAlCN層αとTiAlCN層βとの交互積層を下部層の上に設けた一例を示す概略模式図である。It is a schematic diagram which shows an example which provided alternate lamination of TiAlCN layer (alpha) and TiAlCN layer (beta) on the lower layer. TiAlCN層αの傾斜角度数分布の一例である。It is an example of inclination angle number distribution of TiAlCN layer alpha. TiAlCN層βの傾斜角度数分布の一例である。It is an example of inclination angle number distribution of TiAlCN layer (beta).

次に、本発明の被覆工具の硬質被覆層について、より詳細に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described in more detail.

硬質被覆層の平均層厚:
本発明の硬質被覆層は、組成式:(Ti1−xiAlxi)(Cyi1−yi)(iはαまたはβ)で表されるTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含む。このTiAlCN層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
Average layer thickness of hard coating layer:
Hard layer of the present invention, the composition formula: (Ti 1-xi Al xi ) (C yi N 1-yi) (i is α or beta) Ti composite nitride layer or composite carbonitride of Al represented by At least an object layer. The TiAlCN layer has high hardness and excellent abrasion resistance, but the effect is particularly exhibited when the average layer thickness is 1.0 to 20.0 μm. The reason is that if the average layer thickness is less than 1.0 μm, the wear resistance over a long period of use can not be sufficiently secured because the layer thickness is thin, while if the average layer thickness exceeds 20.0 μm, This is because the crystal grains of the TiAlCN layer tend to be coarsened and chipping tends to occur.

TiAlCN層内のNaCl型の面心立方晶構造を有する結晶粒:
前記TiAlCN層におけるNaCl型の面心立方晶構造を有する結晶粒が存在することが必要であり、その面積割合として60面積%以上であることが好ましい。これにより、高硬度であるNaCl型の面心立方晶構造を有する結晶粒の面積比率が六方晶構造の結晶粒に比べて相対的に高くなり、硬さが向上するという効果を得ることができる。この面積率は、75面積%以上がより好ましい。
Grains with face-centered cubic crystal structure of NaCl type in TiAlCN layer:
It is necessary that crystal grains having a face-centered cubic crystal structure of NaCl type be present in the TiAlCN layer, and the area ratio is preferably 60 area% or more. Thereby, the area ratio of crystal grains having a face-centered cubic crystal structure of NaCl type, which is high hardness, becomes relatively high compared to the crystal grains of hexagonal crystal structure, and an effect of improving the hardness can be obtained. . The area ratio is more preferably 75 area% or more.

結晶粒の粒界にポアが存在し、ポア面積率が高いTiAlCN層αとポア面積率が低いTiAlCN層βとが交互に3層以上積層された多層構造:
前記TiAlCN層は、結晶粒の粒界にポアが存在しており、ポア面積率が高いTiAlCN層αとポア面積率が低いTiAlCN層βとが交互に3層以上積層された多層構造である。ここで、TiAlCN層αとTiAlCN層βとが交互に3層以上積層された多層構造とは、TiAlCN層αとTiAlCN層βとが接して交互に積層するものに限らず、TiAlCN層αとTiAlCN層βとの間にこれらTiAlCN層αとTiAlCN層βとは異なる層や組織が存在してもよい。また、TiAlCN層αとTiAlCN層βの積層順序により、耐チッピング性、耐欠損性の向上は変わらない。
ただし、TiAlCN層αとTiAlCN層βの積層構造であっても、これらの層が交互に3層以上積層していないものは、本発明でいう多層構造に含まれない。
Multilayer structure in which three or more layers of TiAlCN layer α with high pore area ratio and TiAlCN layer β with low pore area ratio are alternately stacked, with pores existing at grain boundaries of crystal grains:
The TiAlCN layer has a multilayer structure in which pores are present at grain boundaries of crystal grains, and a TiAlCN layer α having a high pore area ratio and a TiAlCN layer β having a low pore area ratio are alternately stacked in three or more layers. Here, the multilayer structure in which three or more TiAlCN layers α and TiAlCN layers β are alternately stacked is not limited to one in which TiAlCN layers α and TiAlCN layers β are alternately stacked, but TiAlCN layers α and TiAlCN are not limited. There may be different layers or structures between the TiAlCN layer α and the TiAlCN layer β between the layer β and the layer β. Further, the improvement in chipping resistance and defect resistance does not change depending on the stacking order of the TiAlCN layer α and the TiAlCN layer β.
However, even in the laminated structure of the TiAlCN layer α and the TiAlCN layer β, those in which three or more layers of these layers are not alternately laminated are not included in the multilayer structure in the present invention.

TiAlCN層αとTiAlCN層βの平均層厚Lα、Lβ:
TiAlCN層αの平均層厚Lα、TiAlCN層βの平均層厚Lβは、それぞれ、0.1μm≦Lα≦5.0μm、0.1μm≦Lβ≦5.0μmを満足することが好ましい。その理由は、LαおよびLβがこの範囲にないと、TiAlCN層αとTiAlCN層βを交互に積層することによる耐チッピング性の向上、耐欠損性の向上が達成できないためである。
Average layer thicknesses Lα and Lβ of TiAlCN layer α and TiAlCN layer β:
The average layer thickness Lα of the TiAlCN layer α and the average layer thickness Lβ of the TiAlCN layer β preferably satisfy 0.1 μm ≦ L α ≦ 5.0 μm and 0.1 μm ≦ L β ≦ 5.0 μm, respectively. The reason is that if Lα and Lβ do not fall within this range, improvement in chipping resistance and improvement in defect resistance can not be achieved by alternately laminating TiAlCN layers α and TiAlCN layers β.

TiAlCN層αおよびTiAlCN層βの組成:
前記TiAlCN層αは、
組成式:(Ti1−XαAlXα)(CYα1−Yα)で表した場合、
AlのTiとAlの合量に占める平均含有割合XαavgおよびCのCとNの合量に占める平均含有割合Yαavg(但し、Xαavg、Yαavgはいずれも原子比)が、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.0050を満足し、
前記TiAlCN層βは、
組成式:(Ti1−XβAlXβ)(CYβ1−Yβ)で表した場合、
AlのTiとAlの合量に占める平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)が、それぞれ、0.60≦Xβavg≦0.95、0≦Yβavg≦0.0050を満足している。
その理由は、各々のAlの平均含有割合が0.60未満であると、TiAlCN層は高温硬さに劣るため、インコネル等のNi基耐熱合金やステンレス鋼等の難削材の高速切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合が0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下するためである。
また、TiAlCN層に含まれるCの平均含有割合は前記範囲の微量であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の摩耗や衝撃を緩和し、結果としてTiAlCN層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合が前記範囲を外れると、TiAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。
Composition of TiAlCN Layer α and TiAlCN Layer β:
The TiAlCN layer α is
When represented by a composition formula: (Ti 1−Xα Al ) (C N 1−Yα ),
The average content ratio X αavg in the total content of Ti and Al of Al and the average content ratio Y αavg in the total content of C and N of C (where both X αavg and Y αavg are atomic ratios) are each 0. 60 ≦ X αavg ≦ 0.95, 0 ≦ Y αavg0.0050 ,
The TiAlCN layer β is
When represented by a composition formula: (Ti 1−Xβ Al Xβ 2 ) (C N 1−Yβ 2 ),
The average content ratio X β avg in the total content of Ti and Al of Al and the average content ratio Y β avg in the total content of C and N of C (where both X β avg and Y β avg are atomic ratios) are each 0. 60 ≦ X βavg ≦ 0.95, 0 ≦ Y βavg0.0050 are satisfied.
The reason is that the TiAlCN layer is inferior in high temperature hardness when the average content ratio of each Al is less than 0.60, so high speed cutting of difficult-to-cut materials such as Ni-based heat-resistant alloys such as Inconel and stainless steel is performed. If it does, the abrasion resistance is not sufficient. On the other hand, when the average content ratio of Al exceeds 0.95, the precipitation amount of hexagonal crystals inferior to the hardness increases and the hardness decreases, so that the wear resistance decreases.
In addition, when the average content of C contained in the TiAlCN layer is a slight amount in the above range, the adhesion between the TiAlCN layer and the tool substrate or the lower layer is improved, and the lubricity is improved, thereby causing wear during cutting. And impact resistance, and as a result, the chip resistance and chipping resistance of the TiAlCN layer are improved. On the other hand, when the average content ratio of C is out of the above range, the toughness of the TiAlCN layer is lowered, so that the chipping resistance and the chipping resistance are unfavorably lowered.

TiAlCN層に存在するポア:
図1に、本発明のTiAlCN層の部分拡大模式図を示す。図1に示されるように、本発明のTiAlCN層は、該層の粒界に沿って、所定の平均孔径のポアが形成されており、切削加工時の高負荷によって層中にクラックが発生した場合であっても、このようなポアの存在によって、クラックが粒界に沿って進展することが抑制され、その結果、インコネル等のNi基耐熱合金やステンレス鋼等の難削材の高速切削加工条件においても優れた耐チッピング性を発揮するようになる。
本発明は、このポアの面積率が高い層(TiAlCN層α)と低い層(TiAlCN層β)が交互に3層以上積層していることにより、切削時に硬質被覆層に作用する機械的応力、あるいは熱衝撃に伴う熱的応力を緩和し、耐チッピング性、耐熱亀裂性が向上する。すなわち、ポアの面積率が高い層(TiAlCN層α)によりTiAlCN層に作用する機械的・熱的応力に起因するクラックの発生・進展を抑制し、ポアの面積率が低い層(TiAlCN層β)によりTiAlCN層全体の強度が向上する。ポアの面積率が高い層(TiAlCN層α)は耐熱亀裂性に優れるものの、TiAlCN層全体としてみたときにポアの面積割合が多くなり過ぎると(例えば、TiAlCN層αのみであると)硬質被覆層の強度が損なわれるとともに、硬さが低下し、耐チッピング性が低下する。また、3層積層以上の積層によりクラックの進展抑制の効果が発揮される。その理由はポアの疎密界面に沿ってクラック進展が抑制されるためと推定している。さらに、TiAlCN層の平均ポア率が同じであっても、単純に膜に均一にポアが分散しているときよりも、ポアの面積率の高い層と低い層とが積層されているときの方がクラックの発生・進展を抑制され、TiAlCN層の強度が向上する。
Pores present in the TiAlCN layer:
FIG. 1 shows a partially enlarged schematic view of the TiAlCN layer of the present invention. As shown in FIG. 1, in the TiAlCN layer of the present invention, pores with a predetermined average pore diameter were formed along the grain boundaries of the layer, and a crack was generated in the layer due to high load during cutting Even in such a case, the presence of such pores suppresses the development of cracks along grain boundaries, and as a result, high-speed cutting of difficult-to-cut materials such as Ni-based heat-resistant alloys such as Inconel and stainless steel. Excellent chipping resistance will be exhibited even under the conditions.
In the present invention, the mechanical stress acting on the hard coating layer at the time of cutting is obtained by stacking three or more layers of the layer having a high area ratio of pores (TiAlCN layer α) and the low layer (TiAlCN layer β) alternately. Alternatively, the thermal stress associated with the thermal shock is relieved, and the chipping resistance and the heat crack resistance are improved. That is, a layer with a high area ratio of pores (TiAlCN layer α) suppresses the generation and propagation of cracks caused by mechanical and thermal stress acting on the TiAlCN layer, and a layer with a low area ratio of pores (TiAlCN layer β) By this, the strength of the whole TiAlCN layer is improved. A layer with a high area ratio of pores (TiAlCN layer α) is excellent in thermal crack resistance, but when the area ratio of pores is too large when viewed as the whole TiAlCN layer (for example, when it is only TiAlCN layer α) hard covering layer As a result, the hardness is lowered and the chipping resistance is lowered. Moreover, the effect of crack progress suppression is exhibited by the lamination of three or more layers. The reason is presumed to be that crack propagation is suppressed along the dense / dense interface of the pore. Furthermore, even when the average porosity of the TiAlCN layer is the same, a layer with a high area ratio of pores and a low layer are stacked, rather than simply when the pores are dispersed uniformly in the film. In addition, the generation and propagation of cracks are suppressed, and the strength of the TiAlCN layer is improved.

TiAlCN層αにおけるポアの平均面積割合(Aαavg)と平均孔径(Dαavg)、最大孔径(Dαmax):
TiAlCN層αにおけるポアの平均面積割合Aαavgは、0.20面積%以上5.00面積%以下とする。その理由は、TiAlCN層αにおけるポアの平均面積割合Aαavgが0.20面積%未満となるとクラックの進展抑制の効果を十分に引き出すことができず、5.00面積%超えるとTiAlCN層全体においてポアによる硬さ、強度の低下が生じ、クラック起点の増加および耐摩耗性の低下による耐チッピング性および耐欠損性の低下を招くためである。
また、TiAlCN層αの粒界に沿って形成されるポアの平均孔径Dαavgは4nm以上50nm以下とする。その理由は、前記ポアの平均孔径Dαavgは、4nm未満であるとクラック進展抑制効果が十分でなく、一方、平均孔径Dαavgが50nmより大きいと、TiAlCN層αの硬さが局所的に低下し、クラックの起点となりやすく、耐チッピング性、耐欠損性が低下するためである。
さらに、TiAlCN層αの粒界に沿って形成されるポアの最大孔径Dαmaxは200nm以下とする。その理由は、ポアの最大孔径Dαmaxが200nmを超えると、同様に強度や硬さが局所的に低下し、クラックの起点となりやすく、耐チッピング性、耐欠損性が低下するためである。
The average area ratio (Aα avg ) of pores in the TiAlCN layer α, the average pore size (Dα avg ), and the maximum pore size (Dα max ):
The average area ratio Aα avg of the pores in the TiAlCN layer α is 0.20 area% or more and 5.00 area% or less. The reason is that if the average area ratio Aα avg of the pores in the TiAlCN layer α is less than 0.20 area%, the effect of suppressing the growth of the crack can not be sufficiently extracted, and if it exceeds 5.00 area%, the whole TiAlCN layer This is because the hardness and the strength decrease due to the pores, and the chipping resistance and the defect resistance decrease due to the increase of the crack origin and the decrease in the wear resistance.
Further, the average pore diameter Dα avg of the pores formed along the grain boundaries of the TiAlCN layer α is 4 nm or more and 50 nm or less. The reason is that when the average pore diameter Dα avg of the pores is less than 4 nm, the crack growth suppressing effect is not sufficient, while when the average pore diameter D α avg is larger than 50 nm, the hardness of the TiAlCN layer α locally decreases It is easy to be a starting point of the crack, and the chipping resistance and the chipping resistance are lowered.
Furthermore, the maximum pore size Dα max of the pores formed along the grain boundaries of the TiAlCN layer α is set to 200 nm or less. The reason is that if the maximum pore diameter Dα max of the pore exceeds 200 nm, the strength and hardness decrease locally as well, which tends to be the starting point of the crack, and the chipping resistance and the defect resistance decrease.

TiAlCN層βにおいて、ポアが占める平均面積割合(Aβavg)と最大孔径(Dβmax):
ポアが占める平均面積割合Aβavgは0.20面積%未満とする(0面積%であってもよい)。このように規定する理由は、0.20面積%以上となると、TiAlCN層βの皮膜強度の向上効果が不十分となり、TiAlCN層全体において、耐摩耗性の低下と皮膜の耐塑性変形性低下により、耐チッピング性および耐欠損性の低下を招くからである。
また、ポアの最大孔径Dβmaxが100nmを超えると、TiAlCN層βの同様に強度が局所的に低下し、TiAlCN層全体の強度が担保出来ず、クラックの起点となって、耐チッピング性、耐欠損性が低下する。そのため、TiAlCN層βの粒界に沿って形成されるポアの最大孔径Dβmaxは100nm以下とした(0nmであってもよい)。
In the TiAlCN layer β, the average area ratio (Aβ avg ) occupied by the pores and the maximum pore size (Dβ max ):
The average area ratio Aβ avg occupied by the pores is less than 0.20 area% (may be 0 area%). The reason for specifying in this way is that when it becomes 0.20 area% or more, the improvement effect of the film strength of the TiAlCN layer β becomes insufficient, and the wear resistance decreases and the plastic deformation resistance of the film decreases in the whole TiAlCN layer. And chipping resistance and chipping resistance decrease.
In addition, when the maximum pore diameter Dβ max of the pore exceeds 100 nm, the strength locally decreases similarly to the TiAlCN layer β, and the strength of the whole TiAlCN layer can not be secured, and becomes a crack starting point, chipping resistance, and resistance Defectiveness is reduced. Therefore, the maximum pore diameter Dβ max of the pores formed along the grain boundaries of the TiAlCN layer β is 100 nm or less (may be 0 nm).

TiAlCN層αとTiAlCN層βの区別、ポアの平均面積割合、平均孔径、最大孔径および層厚Lα、Lβの算出:
研磨したTiAlCN層の縦断面を倍率50000倍〜100000倍の走査型電子顕微鏡あるいは透過型電子顕微鏡で観察し、工具基体表面と水平な100.0μmの長さの直線(間隔線)を100nmごとに引き、該直線の両端をそれぞれ結ぶTiAlCN層の厚さ方向の直線(両端線)を引く。ここで、隣り合う間隔線と両端線により挟まれる長方形の領域それぞれに対して、例えば、アドビ システムズ インコーポレイテッド社のアドビ フォトショップ エレメンツ(登録商標)やその他公知のソフトウェアを用いて、画像処理を行って、ポアとポアでない領域を特定しポアに色をつける(図2に示された概略模式図を参照)。そして、着色された部分の面積割合を各長方形の領域ごとについて測定してポアの平均面積割合を求め、TiAlCN層αとTiAlCN層βのそれぞれの候補となる領域を決める。次に、この候補となる領域のそれぞれに対して、ポアの平均孔径を算出する。ポアの平均孔径の算出は、ポアと同定された領域の数をカウントし、その総数でポアの総面積を割ることで、ポア1個あたりの平均面積を算出し、その面積を有するような円の直径を算出し、その値をポアの平均孔径とする。
なお、TiAlCN層αの領域の境界にその他の層をまたがって存在するポアについては、TiAlCN層αのポアであるとして処理を行う。また、TiAlCN層βの領域の境界において、TiAlCN層α以外の層に対して境界をまたがって存在するポアについては、TiAlCN層βのポアであるとして処理を行う。TiAlCN層αとTiAlCN層βが隣接し、その境界をまたがって存在するポアについてはTiAlCN層αのポアであるとして処理を行う。
次に、この候補となる領域のそれぞれに対して、ポアの最大孔径を算出する。ポアの最大孔径の算出は、ポアと同定された箇所(領域)の中で最大の面積を有するものについて、その面積を有するような円の直径を算出し、その値をポアの最大孔径Dmaxとする。
最後に、前記各候補となる領域を基にしてTiAlCN層αの領域、TiAlCN層βの領域を画定する。
続いて、TiAlCN層αとTiAlCN層βのそれぞれの平均層厚Lα、Lβは、各層の積層数をカウントし、各層の膜厚の総和を各々の積層数で割り平均した値として算出する。例えば、TiAlCN層αの層厚が、それぞれ、Lα1、Lα2、Lα3のとき、α層の平均層厚LαはLα=(Lα1+Lα2+Lα3)/3で表される。
なお、粒界や結晶粒は以下のような方法で判別することが出来る。まず、硬質被覆層の縦断面における、工具基体に平行な方向に幅10μm、縦は層厚(平均層厚)分の観察視野において、高分解能電子線後方散乱回折装置を用いて前記観察視野面内を0.02μm間隔で解析し、観察視野面内の立方晶もしくは六方晶に帰属される測定点を求める。立方晶(NaCl型の面心立方構造)あるいは六方晶に帰属される測定点の中で隣接する測定点(以下、ピクセルという)の間で5度以上の方位差がある場合、あるいは隣接する同一結晶相の測定点がない場合はそこを粒界と定義する。そして、粒界で囲まれた領域で立方晶あるいは六方晶に帰属される測定点を含むものを1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある、あるいは、隣接するNaCl型の面心立方構造を有する測定点がないような、単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。
Discrimination between TiAlCN layer α and TiAlCN layer β, calculation of average area ratio of pores, average pore diameter, maximum pore diameter and layer thickness L α , L β :
The vertical cross section of the polished TiAlCN layer is observed with a scanning electron microscope or a transmission electron microscope with a magnification of 50000 to 100 000 times, and a straight line (spacing line) of 100.0 μm length horizontal to the tool substrate surface every 100 nm. Draw a straight line (both end lines) in the thickness direction of the TiAlCN layer respectively connecting the two ends of the straight line. Here, image processing is performed on each of the rectangular regions sandwiched by adjacent spacing lines and both end lines using, for example, Adobe Photoshop Elements (registered trademark) of Adobe Systems Incorporated, and other known software. Then, identify the pores and non-pore regions and color the pores (see the schematic diagram shown in FIG. 2). Then, the area ratio of the colored part is measured for each rectangular area to obtain the average area ratio of the pores, and the candidate areas of the TiAlCN layer α and the TiAlCN layer β are determined. Next, the average pore diameter of the pores is calculated for each of the candidate regions. The calculation of the average pore diameter of the pores is performed by counting the number of regions identified as the pores and dividing the total area of the pores by the total number to calculate the average area per pore, and such a circle having the area The diameter of the pore is calculated and the value is taken as the average pore diameter of the pore.
In addition, about the pore which exists over the other layer on the boundary of the area | region of TiAlCN layer (alpha), it processes as a pore of TiAlCN layer (alpha). Further, in the boundary of the region of the TiAlCN layer β, the pores existing across the boundary with respect to the layers other than the TiAlCN layer α are treated as pores of the TiAlCN layer β. The TiAlCN layer α and the TiAlCN layer β are adjacent to each other, and the pores existing across the boundary are treated as the pores of the TiAlCN layer α.
Next, the maximum pore diameter of the pore is calculated for each of the candidate regions. The calculation of the maximum pore diameter of the pore is carried out by calculating the diameter of the circle having the largest area among the areas (areas) identified as the pore, and the value as the maximum pore diameter Dmax of the pore Do.
Finally, the region of the TiAlCN layer α and the region of the TiAlCN layer β are defined on the basis of the respective candidate regions.
Subsequently, TiAlCN layer alpha and TiAlCN layer respective average layer thickness of the beta L alpha, is L beta, counts the number of stacked layers, to calculate the total film thickness of each layer as dividing the average value in each of the lamination number . For example, when the layer thickness of the TiAlCN layer α is L α1 , L α2 , and L α3 , respectively, the average layer thickness L α of the α layer is represented by L α = (L α1 + L α2 + L α3 ) / 3.
Grain boundaries and crystal grains can be determined by the following method. First, in the observation view of a width 10 μm in the direction parallel to the tool substrate and the layer thickness (average layer thickness) in the longitudinal cross section of the hard coating layer, the observation view plane using the high resolution electron beam backscattering diffraction device The inside is analyzed at intervals of 0.02 μm, and measurement points assigned to cubic crystals or hexagonal crystals in the observation field plane are determined. When there is a misorientation of 5 degrees or more between adjacent measurement points (hereinafter referred to as "pixels") among measurement points belonging to cubic (NaCI type face-centered cubic structure) or hexagonal, or adjacent identical points When there is no measurement point of the crystal phase, it is defined as a grain boundary. Then, in a region surrounded by grain boundaries, one including a measurement point attributed to a cubic crystal or a hexagonal crystal is defined as one crystal grain. However, if there is no misaligned point with all adjacent pixels by 5 degrees or more, or there is no measurement point with a face-centered cubic structure of adjacent NaCl type, a single existing pixel is not a crystal grain and 2 pixels or more Treat as what is connected as a crystal grain. Thus, grain boundary determination is performed to identify crystal grains.

前述の手順にて区別されたTiAlCN層αおよびTiAlCN層βに対して、そのAlの平均含有割合Xavgを、走査型電子顕微鏡あるいは透過型電子顕微鏡(倍率10000倍あるいは50000倍)のエネルギー分散型X線分光法(EDS)を用いて、前述の各長方形領域に対して面分析を実施した結果の平均値から算出した。
Cの平均含有割合Yavgについては、二次イオン質量分析(SIMS、Secondary−Ion−Mass−Spectrometry)により求めた。
イオンビームを試料表面側から70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の濃度測定を行った。
ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
With respect to the TiAlCN layer α and the TiAlCN layer β distinguished by the above-mentioned procedure, the average content ratio X avg of Al thereof is energy dispersive type with a scanning electron microscope or a transmission electron microscope (magnification of 10000 or 50000) X-ray spectroscopy (EDS) was used to calculate the average value of the results of the surface analysis performed on each of the rectangular regions described above.
About the average content rate Yavg of C, it calculated | required by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectrometry).
The ion beam was irradiated from the sample surface side to a range of 70 μm × 70 μm, and concentration measurement in the depth direction was performed by alternately repeating surface analysis by the ion beam and etching by the sputter ion beam.
However, the content ratio of C excludes the inevitable content ratio of C which is contained even if the gas containing C is not intentionally used as the gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is obtained as the unavoidable C content ratio, and C 2 H 4 is intentionally used. A value obtained by subtracting the above-mentioned unavoidable C content ratio from the content ratio (atomic ratio) of the C component contained in the TiAlCN layer obtained when supplied, was determined as Y avg .

TiAlCN層αが{100}面の法線方向に配向:
TiAlCN層αについて、NaCl型の面心立方構造のTiとAlの複合窒化物層または複合炭窒化物層を含む硬質被覆層の工具基体表面に垂直な断面(縦断面)を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットした。前記研磨面(断面研磨面)において、工具基体表面と水平方向に長さ100.0μm、層厚方向Lαμmの領域(LαはTiAlCN層αの厚さ)を測定範囲とし、この測定範囲の研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に0.01μm/stepの間隔で照射し、得られた電子線後方散乱回折像に基づき、複合窒化物層または複合炭窒化物層の工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定点毎にそれぞれ測定した。本発明では、前記測定点の傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占めるような、{100}面の法線方向に配向していることが望ましい。
この傾斜角度数分布の例として、後述する実施例12の配向を図3に示す。
なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化している。
TiAlCN layer α is oriented normal to {100} plane:
With respect to the TiAlCN layer α, a state in which the cross section (longitudinal cross section) perpendicular to the tool base surface of the hard covering layer including the composite nitride layer of Ti and Al of a face-centered cubic structure of NaCl type or composite carbonitride layer Then, it was set in the column of a field emission scanning electron microscope. In the above-mentioned polished surface (cross-sectional polished surface), the measurement range is a region (L α is the thickness of TiAlCN layer α) with a length of 100.0 μm in the layer thickness direction L α μm in the horizontal direction with the tool substrate surface. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees to the polished surface of the surface and an irradiation current of 1 nA, and each of the crystal grains having a cubic crystal lattice present in the measurement range of the cross-section polished surface 0.01 μm / step According to the electron beam backscattered diffraction image obtained by irradiating at intervals of, the {100} plane of the crystal plane of the composite nitride layer or composite carbonitride layer with respect to the normal direction of the tool substrate surface. The inclination angle made by the normal was measured at each measurement point. In the present invention, among the inclination angles of the measurement points, the measurement inclination angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees and exist in each section. When the angles are summed to obtain the distribution of inclination angles, the highest peak exists in the inclination angle category within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is the above It is desirable to be oriented in the normal direction of the {100} plane so as to occupy 40% or more of the whole frequency in the tilt angle number distribution.
As an example of this inclination angle number distribution, the orientation of Example 12 described later is shown in FIG.
In order to obtain the tilt angle number distribution, in the case of ideal random orientation, the tilt angle number has a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the tool substrate surface. It is standardized to

TiAlCN層βが{111}面の法線方向に配向:
TiAlCN層βについて、NaCl型の面心立方構造のTiとAlの複合窒化物層または複合炭窒化物層を含む硬質被覆層の工具基体表面に垂直な断面(縦断面)を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットした。前記研磨面(断面研磨面)において、工具基体表面と水平方向に長さ100.0μm、層厚方向Lβμmの領域(LβはTiAlCN層βの厚さ)を測定範囲とし、この測定範囲の研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に0.01μm/stepの間隔で照射し、得られた電子線後方散乱回折像に基づき、複合窒化物層または複合炭窒化物層の工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定点毎にそれぞれ測定した。本発明では、前記測定傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占めるような、{111}面の法線方向に配向していることが望ましい。
この傾斜角度数分布の例として、後述する実施例9の配向を図4に示す。
なお、傾斜角度数分布を求めるに当たり、理想的なランダム配向の場合、傾斜角度数は工具基体表面の法線方向に対するある結晶面の法線方向がなす傾斜角によらず一定の値になるように規格化している。
TiAlCN layer β is oriented normal to the {111} plane:
Regarding the TiAlCN layer β, a state in which the cross section (longitudinal cross section) perpendicular to the tool substrate surface of the hard covering layer including the composite nitride layer of Ti and Al of a face-centered cubic structure of NaCl type or composite carbonitride layer Then, it was set in the column of a field emission scanning electron microscope. In the above-mentioned polished surface (cross-sectional polished surface), the measurement range is a region (L β is the thickness of TiAlCN layer β) with a length of 100.0 μm in the layer thickness direction L β μm in the horizontal direction with the tool substrate surface. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees to the polished surface of the surface and an irradiation current of 1 nA, and each of the crystal grains having a cubic crystal lattice present in the measurement range of the cross-section polished surface 0.01 μm / step According to the electron beam backscattered diffraction image obtained by irradiating at intervals of, the {111} plane of the crystal plane of the composite nitride layer or composite carbonitride layer with respect to the normal direction of the tool substrate surface. The inclination angle made by the normal was measured at each measurement point. In the present invention, among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees, and the frequencies existing in each division are When the angle distribution of inclination angles is calculated, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the sum of the frequencies existing in the range of 0 to 10 degrees is the inclination angle It is desirable to be oriented in the normal direction of the {111} plane so as to occupy 40% or more of the entire frequency in the number distribution.
As an example of this inclination angle number distribution, the orientation of Example 9 described later is shown in FIG.
In order to obtain the tilt angle number distribution, in the case of ideal random orientation, the tilt angle number has a constant value regardless of the tilt angle formed by the normal direction of a certain crystal plane with respect to the normal direction of the tool substrate surface. It is standardized to

このように、TiAlCN層αが{100}面の法線方向に配向し、TiAlCN層βが{111}面の法線方向に配向に配向することにより、本発明のTiAlCN層は、インコネル等のNi基耐熱合金やステンレス鋼等の熱伝導率の低い難削材に対して高負荷が作用する高速切削加工に供したときであっても、高温での耐摩耗性を維持するとともに硬質被覆層にかかる機械的応力、あるいは熱衝撃に伴う熱的応力を緩和し、耐チッピング性、耐熱亀裂性がより一層向上する。これは、TiAlCN層αが{100}面の法線方向へ配向の割合が高いことにより低摩擦係数あるいは、優れた耐溶着性を与え、TiAlCN層βが{111}面の法線方向へ配向の割合が高いことにより高硬度を与えるためと推定している。   Thus, the TiAlCN layer of the present invention can be made of inconel or the like by orienting the TiAlCN layer α in the normal direction of the {100} plane and orienting the TiAlCN layer β in the normal direction of the {111} plane. Even when subjected to high-speed cutting where a high load acts on hard-to-cut materials with low thermal conductivity such as Ni-based heat-resistant alloys and stainless steel, the wear resistance at high temperatures is maintained and the hard coating layer is maintained. It relieves mechanical stress or thermal stress associated with thermal shock, and chipping resistance and heat crack resistance are further improved. This is because the TiAlCN layer α has a high coefficient of orientation in the normal direction of the {100} plane, which gives a low friction coefficient or excellent welding resistance, and the TiAlCN layer β is oriented in the normal direction of the {111} plane. It is estimated that high hardness is given by the high proportion of

ポアが占める平均面積割合AtotはAtot≦1.00面積%:
ポアが占める平均面積割合AtotはAtot≦1.00面積%であることが望ましい。その理由は、1.00面積%を超える面積割合になると皮膜全体の強度が担保出来ず、耐チッピング性および耐欠損性の低下を招くことがあるためである。
また、ポアが占める平均面積割合Atotは以下の方法により求められる。TiAlCN層αとTiAlCN層βの各々の総膜厚をそれぞれLαtotとLβtotと表した場合にそれぞれのポアの平均面積割合AαavgとAβavgを用いて下記のように算出される。
The average area ratio A tot occupied by the pores is A tot ≦ 1.00 area%:
The average area ratio A tot occupied by the pores is preferably A tot ≦ 1.00 area%. The reason is that when the area ratio exceeds 1.00 area%, the strength of the whole film can not be secured, and the chipping resistance and the chipping resistance may be lowered.
Further, the average area ratio A tot occupied by the pores can be obtained by the following method. When the total film thickness of each of the TiAlCN layer α and the TiAlCN layer β is represented as L αtot and L βtot , respectively, calculation is performed as follows using the average area ratio Aα avg and Aβ avg of the respective pores.

その他の層:
本発明は、硬質被覆層として前記TiAlCN層は十分な耐チッピング性、耐摩耗性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム層を含む1.0〜25.0μmの合計平均層厚で上部層として前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、一層優れた耐摩耗性および熱的安定性を発揮することができる。
ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
Other layers:
According to the present invention, the TiAlCN layer has sufficient chipping resistance and abrasion resistance as a hard covering layer, but among the carbide layer, the nitride layer, the carbonitride layer, the carbooxide layer and the carbonitride layer of Ti. A lower layer comprising a Ti compound layer consisting of one or two or more layers and having a total average layer thickness of 0.1 to 20.0 μm adjacent to the tool substrate, and / or at least an aluminum oxide layer When the TiAlCN layer is provided on the TiAlCN layer as the upper layer with a total average layer thickness of 1.0 to 25.0 μm including, further excellent wear resistance and the effect exerted by these layers Thermal stability can be exhibited.
Here, when the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited. On the other hand, when it exceeds 20.0 μm, the crystal grains of the lower layer are easily coarsened and chipping occurs It becomes easy to do. Also, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25.0 μm, the crystal grains of the upper layer are easily coarsened. , Prone to chipping.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool base:
Any tool substrate may be used as long as it is a substrate conventionally known as this kind of tool substrate, as long as it does not inhibit achieving the object of the present invention. For example, cemented carbides (such as WC base cemented carbides, WCs, those containing Co, or those to which carbonitrides such as Ti, Ta, Nb are added), cermets (TiC, TiN, etc.) Or high speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body Is preferred.

製造方法:
本発明で規定する成分組成、ポアの面積割合・平均孔径、傾斜角度数分布を備えたTiAlCN層は、以下に示す成膜条件の化学蒸着法によって成膜することができる。なお、本発明のTiAlCN層中に存在するポアの形成は原料ガスの供給量および供給速度によって変化し、ポアの面積割合および平均孔径は、原料ガスの割合および供給周期を変化させることによって、制御することができる。
成膜条件として、以下に一例を挙げる。
1.TiAlCN層α:
反応ガス組成(以下の%はガス群Aとガス群Bの和を100容量%としたときの容量%である):
ガス群A:NH:4.0〜5.0%、H:60〜75%、
ガス群B:AlCl:0.9〜1.2%、TiCl:0.12〜0.60%、
:0.0〜12.0%、C:0.0〜0.5%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜900℃、
供給周期10.0〜30.0秒、
1周期当たりのガス供給時間0.5〜2.0秒、
ガス群Aとガス群Bの供給の位相差0.3〜1.0秒
2.TiAlCN層β:
反応ガス組成(以下の%はガス群Aとガス群Bの和を100容量%としたときの容量%である):
ガス群A:NH:1.0〜2.5%、H:60〜75%、
ガス群B:AlCl:0.6〜0.9%、TiCl:0.12〜0.40%、
:0.0〜12.0%、C:0.0〜0.5%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜900℃、
供給周期1.0〜5.0秒、
1周期当たりのガス供給時間0.15〜0.25秒、
ガス群Aとガス群Bの供給の位相差0.1〜0.2秒
Production method:
The TiAlCN layer provided with the component composition, the area ratio and average pore diameter of the pores, and the distribution of the inclination angle number specified in the present invention can be formed by the chemical vapor deposition under the film forming conditions shown below. The formation of the pores present in the TiAlCN layer of the present invention changes depending on the supply amount and supply rate of the source gas, and the area ratio and average pore diameter of the pores are controlled by changing the ratio of the source gas and the supply cycle. can do.
An example is given below as film-forming conditions.
1. TiAlCN layer α:
Reactive gas composition (% below is% by volume when the sum of gas group A and gas group B is 100% by volume):
Gas group A: NH 3 : 4.0 to 5.0%, H 2 : 60 to 75%,
Gas group B: AlCl 3 : 0.9 to 1.2%, TiCl 4 : 0.12 to 0.60%,
N 2: 0.0~12.0%, C 2 H 4: 0.0~0.5%, H 2: remainder,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700 to 900 ° C.
Supply cycle 10.0 to 30.0 seconds,
Gas supply time per cycle 0.5 to 2.0 seconds,
Phase difference between supply of gas group A and gas group B: 0.3 to 1.0 second TiAlCN layer β:
Reactive gas composition (% below is% by volume when the sum of gas group A and gas group B is 100% by volume):
Gas Group A: NH 3: 1.0~2.5%, H 2: 60~75%,
Gas group B: AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.12 to 0.40%,
N 2: 0.0~12.0%, C 2 H 4: 0.0~0.5%, H 2: remainder,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700 to 900 ° C.
Supply cycle 1.0 to 5.0 seconds,
Gas supply time per cycle 0.15 to 0.25 seconds,
Phase difference between supply of gas group A and gas group B 0.1 to 0.2 seconds

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、TiCN基サーメット、cBN基超高圧焼結体等を用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, an example will be described.
Here, as a specific example of the coated tool according to the present invention, the one applied to an insert cutting tool using WC base cemented carbide as a tool base will be described, but as a tool base, TiCN based cermet, cBN base ultra high pressure sintered body, etc. The same is true even in the case where is used, and the same applies when applied to drills and end mills.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNもしくはISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powders, TiC powders, TaC powders, NbC powders, Cr 3 C 2 powders and Co powders each having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are compounded as shown in Table 1 Add to the composition, add a wax, mix in a ball mill in acetone for 24 hours, dry under reduced pressure, press-mold into a green compact of a predetermined shape at a pressure of 98 MPa, and press the green compact in a vacuum of 5 Pa 1370 Vacuum sintering under a condition of holding for 1 hour at a predetermined temperature in the range of 1470 ° C., and after sintering, a tool base A made of WC base cemented carbide having an insert shape of ISO standard SEEN 1203 AFSN or ISO standard CNMG 120 412 Each C was manufactured.

次に、これら工具基体A〜Cの表面に、CVD装置を用いて、ポア面積率の高いTiAlCN層αとポア面積率の低いTiAlCN層βとを3層以上積層した層を含む被覆層をCVDにより蒸着形成し、表6に示される本発明被覆工具1〜16を得た。
成膜条件は、表2、表3に記載したとおりであるが、概ね、次のとおりである。
1.TiAlCN層α:
反応ガス組成(以下の%は容量%である):
ガス群A:NH:4.0〜5.0%、H:60〜75%、
ガス群B:AlCl:0.9〜1.2%、TiCl:0.12〜0.60%、
:0.0〜12.0%、C:0.0〜0.5%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜900℃、
供給周期10.0〜30.0秒、
1周期当たりのガス供給時間0.5〜2.0秒、
ガス群Aとガス群Bの供給の位相差0.3〜1.0秒
2.TiAlCN層β:
反応ガス組成(以下の%は容量%である):
ガス群A:NH:1.0〜2.5%、H:60〜75%、
ガス群B:AlCl:0.6〜0.9%、TiCl:0.12〜0.40%、
:0.0〜12.0%、C:0.0〜0.5%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜900℃、
供給周期1.0〜5.0秒、
1周期当たりのガス供給時間0.15〜0.25秒、
ガス群Aとガス群Bの供給の位相差0.1〜0.2秒
なお、本発明被覆工具1〜16は、表4に示される形成条件により、表5に示された下部層および/または上部層を形成した。なお、本発明被覆工具1〜16は、全てTiAlCN層αを先に成膜した後、TiAlCN層βを成膜した。
Next, a CVD layer is used to deposit a coating layer including three or more TiAlCN layer α having a high pore area ratio and TiAlCN layer β having a low pore area ratio on the surface of the tool substrates A to C. The present invention coated tools 1 to 16 shown in Table 6 were obtained by vapor deposition.
The film formation conditions are as described in Table 2 and Table 3, but are generally as follows.
1. TiAlCN layer α:
Reaction gas composition (% below is% by volume):
Gas group A: NH 3 : 4.0 to 5.0%, H 2 : 60 to 75%,
Gas group B: AlCl 3 : 0.9 to 1.2%, TiCl 4 : 0.12 to 0.60%,
N 2: 0.0~12.0%, C 2 H 4: 0.0~0.5%, H 2: remainder,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700 to 900 ° C.
Supply cycle 10.0 to 30.0 seconds,
Gas supply time per cycle 0.5 to 2.0 seconds,
Phase difference between supply of gas group A and gas group B: 0.3 to 1.0 second TiAlCN layer β:
Reaction gas composition (% below is% by volume):
Gas Group A: NH 3: 1.0~2.5%, H 2: 60~75%,
Gas group B: AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.12 to 0.40%,
N 2: 0.0~12.0%, C 2 H 4: 0.0~0.5%, H 2: remainder,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700 to 900 ° C.
Supply cycle 1.0 to 5.0 seconds,
Gas supply time per cycle 0.15 to 0.25 seconds,
The phase difference between the supply of gas group A and gas group B: 0.1 to 0.2 seconds The coated tools 1 to 16 according to the present invention have lower layers and / or lower layers shown in Table 5 under the forming conditions shown in Table 4. Or formed the upper layer. In the coated tools 1 to 16 of the present invention, the TiAlCN layer α was formed first, and then the TiAlCN layer β was formed.

また、比較の目的で、工具基体A〜Cの表面に、表2、表3に示される条件によりCVDによる成膜を行うことにより、表6に示されるTiAlCN層αを含む硬質被覆層を蒸着形成して比較被覆工具1〜16を製造した。なお、比較のためTiAlCN形成記号(条件)A´、B´については積層構造とせずにそれぞれTiAlCN層αまたはTiAlCN層βの単層で蒸着形成した。
なお、比較被覆工具1〜16については、表4に示される形成条件により、表5に示された下部層および/または上部層を形成した。なお、比較被覆工具3〜8、11〜16は、全てTiAlCN層αを先に成膜した後、TiAlCN層βを成膜した。
In addition, a hard coating layer including TiAlCN layer α shown in Table 6 is deposited on the surfaces of the tool substrates A to C by performing film formation by CVD under the conditions shown in Table 2 and Table 3 for the purpose of comparison. It formed and manufactured comparison coating tools 1-16. For comparison, TiAlCN formation symbols (conditions) A 'and B' were formed by vapor deposition with a single layer of TiAlCN layer α or TiAlCN layer β, respectively, without a laminated structure.
In addition, about the comparison coating tools 1-16, the lower layer and / or upper layer which were shown by Table 5 according to the formation conditions shown by Table 4 were formed. In all of the comparative coated tools 3 to 8 and 11 to 16, TiAlCN layer α was formed first, and then TiAlCN layer β was formed.

さらに、前記本発明被覆工具1〜16および比較被覆工具1〜16の硬質被覆層について、工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡(倍率10000倍)を用いて測定し観察視野内の5点の層厚をすべての積層にわたり測定し、平均したものをそれぞれ硬質被覆層全体の平均層厚として求めた。
前述の手順にて区別されたTiAlCN層αおよびTiAlCN層βのAlの平均含有割合Xαavg、Xβavgについて、走査型電子顕微鏡あるいは透過型電子顕微鏡(倍率10000倍あるいは50000倍)のエネルギー分散型X線分光法(EDS)を用い、前述の各長方形領域に対して面分析を実施した結果の平均値から算出した。
Cの平均含有割合Yαavg、Yβavgについては、前記のとおり、二次イオン質量分析(SIMS)により求めた。ただしCの含有割合には、Cの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
加えて、前述した方法を用いて、前述の各長方形領域に対してポアの平均面積割合AαavgおよびAβavg、平均孔径Dαavg、TiAlCN層におけるポアの平均面積割合Atotを求め、さらに、{100}面および{111}面の法線がなすそれぞれの傾斜角度数分布において、傾斜角が0〜10度の範囲内に存在する度数の割合を求めた。
これらの結果を表6にまとめた。
なお前記本発明被覆工具1〜16はNaCl型の面心立方晶構造を有する結晶粒が面積率で60面積%以上存在することを確認している。
Furthermore, for the hard coating layers of the coated tools 1 to 16 of the present invention and the comparative coated tools 1 to 16, the cross section (longitudinal section) in the direction perpendicular to the tool substrate is measured using a scanning electron microscope The layer thicknesses at five points in the observation field of view were measured over all the layers, and the average was determined as the average layer thickness of the entire hard coating layer.
The energy dispersive type X of the scanning electron microscope or transmission electron microscope (magnification of 10000 times or 50000 times) for the average content ratio X αavg and X βavg of Al in TiAlCN layer α and TiAlCN layer β distinguished by the above-mentioned procedure It calculated from the average value of the result of having implemented surface analysis with respect to each above-mentioned rectangular area using line spectroscopy (EDS).
About the average content rates Y αavg and Y β avg of C, as described above, they were determined by secondary ion mass spectrometry (SIMS). However, for the content ratio of C, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is obtained as the inevitable content ratio of C, C 2 H 4 A value obtained by subtracting the above-mentioned unavoidable C content ratio from the content ratio (atomic ratio) of the C component contained in the TiAlCN layer obtained when the Al is intentionally supplied was determined as Y avg .
In addition, using the methods described above, the average area ratio A.alpha avg and A [beta] avg pore for each rectangular area described above, the average pore size D.alpha avg, determine the average area ratio A tot of pores in TiAlCN layer, further, { The ratio of the frequency in which the inclination angle is in the range of 0 to 10 degrees was determined in each of the inclination angle number distributions formed by the normal lines of the 100} and {111} planes.
These results are summarized in Table 6.
In the coated tools 1 to 16 of the present invention, it is confirmed that crystal grains having a face-centered cubic crystal structure of NaCl type are present in an area ratio of 60 area% or more.


続いて、前記本発明被覆工具1〜8および比較被覆工具1〜8(ISO規格SEEN1203AFSN形状)について、いずれもカッタ径80mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、マルテンサイト系析出硬化型ステンレス鋼の湿式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
<切削条件A>
切削試験:湿式高速正面フライス、センターカット切削加工
カッタ径: 80mm
被削材: JIS・SUS630幅60mm、長さ250mmのブロック材
回転速度: 1400min−1
切削速度: 350m/min
切り込み: 1.0mm
一刃送り量: 0.1mm/刃
切削時間: 18分
(通常切削速度は、150〜200m/min)
表7に切削試験の結果を示す。なお、比較被覆工具1〜8については、切削時間終了前にチッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Subsequently, all the coated tools according to the present invention 1 to 8 and the comparative coated tools 1 to 8 (ISO standard SEEN 1203 AF SN shape) are clamped by a fixing jig at a tool steel cutter tip with a cutter diameter of 80 mm. The wet high-speed face milling of a martensitic precipitation hardened stainless steel shown in and a center cut cutting test were conducted to measure the flank wear width of the cutting edge.
<Cutting condition A>
Cutting test: wet high-speed face milling, center cut cutting diameter of cutter: 80 mm
Work material: JIS · SUS 630 width 60 mm, block material of length 250 mm Rotational speed: 1400 min -1
Cutting speed: 350m / min
Notch: 1.0 mm
Single blade feed amount: 0.1 mm / blade Cutting time: 18 minutes (usually cutting speed is 150 to 200 m / min)
Table 7 shows the results of the cutting test. The comparative coated tools 1 to 8 have reached the end of their life due to the occurrence of chipping before the end of the cutting time, so the time to the end of the life is shown.

次に、前記各種の被覆工具(ISO規格CNMG120412形状)をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具9〜16、比較被覆工具9〜16について、以下に示す、インコネル718に相当するNi−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の乾式高速連続旋削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
<切削条件B>
切削試験: 乾式高速連続旋削加工
被削材: Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金丸棒
切削速度: 100m/min
切り込み: 0.5mm
送り: 0.2mm/rev
切削時間: 10分
(通常切削速度は、60m/min)
結果を表8に示す。なお、比較被覆工具9〜16については、切削時間終了前に摩滅し、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Next, in a state in which the above-mentioned various coated tools (ISO standard CNMG120412 shape) are screwed to the tip of the tool steel tool with a fixing jig, coated tools 9 to 16 of the present invention, comparative coated tools 9 to 16 Conducted a dry high-speed continuous turning test of the Ni-19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy corresponding to Inconel 718 shown below, and all were relief of the cutting edge The surface wear width was measured.
<Cutting condition B>
Cutting test: Dry high speed continuous turning Work material: Ni-19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy round bar Cutting speed: 100 m / min
Notch: 0.5mm
Feeding: 0.2mm / rev
Cutting time: 10 minutes (usually cutting speed is 60m / min)
The results are shown in Table 8. The comparative coated tools 9 to 16 are worn away before the end of the cutting time, and the life is reached due to the occurrence of chipping, so the time until the life is shown.

表7に示される結果から、本発明被覆工具1〜8は、いずれも硬質被覆層が優れた耐チッピング性を有しているため、ステンレス鋼等の熱伝導性が低い等の難削材に対して高速切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。また、表8に示される結果から、本発明被覆工具9〜16ではインコネル等のNi基耐熱合金に対して高速連続切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1〜16は、前記高速切削加工に用いた場合には早期にチッピングが発生し、短時間で使用寿命に至っている。   From the results shown in Table 7, all of the coated tools 1 to 8 of the present invention are hard-to-cut materials having low thermal conductivity such as stainless steel since the hard coating layer has excellent chipping resistance. On the other hand, no chipping occurs even when used for high-speed cutting and exhibits excellent wear resistance over a long period of time. Moreover, according to the results shown in Table 8, in the coated tools 9 to 16 of the present invention, chipping does not occur even when used for high-speed continuous cutting with a Ni-based heat-resistant alloy such as Inconel, and is excellent over a long period Demonstrates wear resistance. On the other hand, comparative coated tools 1 to 16 which do not satisfy at least one of the items specified in the coated tool of the present invention, when used for the high-speed cutting, chipping occurs early and a short time Has reached the end of its useful life.

前述のように、本発明の被覆工具は、ステンレス鋼等の難削材に対する高速断続切削加工やインコネル等のNi基耐熱合金の高速連続切削加工等の被覆工具として用いることができ、しかも、長期にわたって優れた耐摩耗性を発揮するから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらには低コスト化に十分に満足できる対応ができるものである。   As described above, the coated tool of the present invention can be used as a coated tool for high-speed interrupted cutting of difficult-to-cut materials such as stainless steel and high-speed continuous cutting of Ni-based heat-resistant alloys such as Inconel. Since it exhibits excellent wear resistance over the above, it is possible to sufficiently satisfy the demand for higher performance of the cutting device, labor saving and energy saving of the cutting process, and cost reduction.

Claims (3)

工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物層または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の結晶粒を少なくとも含み、
(c)前記複合窒化物層または複合炭窒化物層は、結晶粒の粒界にポアが存在しており、
ポア面積率が高いTiAlCN層αとポア面積率が低いTiAlCN層βとが交互に3層以上積層された多層構造を含み、
(d)前記TiAlCN層αとTiAlCN層βは、それぞれの平均層厚をLα、Lβとして、0.1μm≦Lα≦5.0μm、0.1μm≦Lβ≦5.0μmを満たし、
(e)前記TiAlCN層αは、
組成式:(Ti1−XαAlXα)(CYα1−Yα)で表した場合、
AlのTiとAlの合量に占める平均含有割合XαavgおよびCのCとNの合量に占める平均含有割合Yαavg(但し、Xαavg、Yαavgはいずれも原子比)が、それぞれ、0.60≦Xαavg≦0.95、0≦Yαavg≦0.0050を満足し、
(f)前記TiAlCN層βは、
組成式:(Ti1−XβAlXβ)(CYβ1−Yβ)で表した場合、
AlのTiとAlの合量に占める平均含有割合XβavgおよびCのCとNの合量に占める平均含有割合Yβavg(但し、Xβavg、Yβavgはいずれも原子比)が、それぞれ、0.60≦Xβavg≦0.95、0≦Yβavg≦0.005を満足し、
(g)前記TiAlCN層αにおいて、前記ポアが占める平均面積割合Aαavgと前記ポアの平均孔径Dαavgおよび前記ポアの最大孔径Dαmaxがそれぞれ、0.20面積%≦Aαavg≦5.00面積%、4nm≦Dαavg≦50nm、Dαmax≦200nmを満足し
(h)前記TiAlCN層βにおいて、前記ポアが占める平均面積割合Aβavgが、Aβavg<0.20面積%と前記ポアの最大孔径DβmaxがDβmax≦100nmを満足する、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate,
(A) The hard coating layer at least includes a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) The composite nitride layer or the composite carbonitride layer contains at least crystal grains of a composite nitride or composite carbonitride having a face-centered cubic structure of NaCl type,
(C) In the composite nitride layer or composite carbonitride layer, pores exist at grain boundaries of crystal grains,
Including a multilayer structure in which three or more layers of TiAlCN layer α with high pore area ratio and TiAlCN layer β with low pore area ratio are alternately laminated,
(D) The TiAlCN layer α and the TiAlCN layer β satisfy 0.1 μm ≦ L α ≦ 5.0 μm and 0.1 μm ≦ L β ≦ 5.0 μm, where L α and L β are the average layer thicknesses of the respective layers.
(E) The TiAlCN layer α is
When represented by a composition formula: (Ti 1−Xα Al ) (C N 1−Yα ),
The average content ratio X αavg in the total content of Ti and Al of Al and the average content ratio Y αavg in the total content of C and N of C (where both X αavg and Y αavg are atomic ratios) are each 0. 60 ≦ X αavg ≦ 0.95, 0 ≦ Y αavg0.0050 ,
(F) The TiAlCN layer β is
When represented by a composition formula: (Ti 1−Xβ Al Xβ 2 ) (C N 1−Yβ 2 ),
The average content ratio X β avg in the total content of Ti and Al of Al and the average content ratio Y β avg in the total content of C and N of C (where both X β avg and Y β avg are atomic ratios) are each 0. 60 ≦ X βavg ≦ 0.95, 0 ≦ Y βavg ≦ 0.005,
(G) In the TiAlCN layer alpha, average area ratio A.alpha avg and average pore size D.alpha avg and maximum pore size D.alpha max of the pores of the pores, respectively, 0.20 area% ≦ Aα avg ≦ 5.00 area the pore occupies %, 4 nm ≦ Dα avg ≦ 50 nm, Dα max ≦ 200 nm (h) In the TiAlCN layer β, the average area ratio Aβ avg occupied by the pores is Aβ avg <0.20 area%, and the maximum pore diameter of the pores Dβ max satisfies Dβ max ≦ 100 nm,
A surface coated cutting tool characterized in that.
前記TiAlCN層α内のNaCl型の面心立方構造を有するTiとAlとの複合窒化物層または複合炭窒化物層の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面から観察した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占め、
前記TiAlCN層β内のNaCl型の面心立方構造を有するTiとAlとの複合窒化物層または複合炭窒化物層の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面から観察した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、前記法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の40%以上の割合を占めることを特徴とする請求項1に記載の表面被覆切削工具。
The crystal orientation of the crystal grains of the composite nitride layer or composite carbonitride layer of Ti and Al having a face-centered cubic structure of the NaCl type in the TiAlCN layer α is obtained from the longitudinal cross section using an electron beam backscattering diffractometer When observed, the inclination angle made by the normal to the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool substrate surface is measured, and 0 of the measured inclination angles to the normal direction. When the measured inclination angles in the range of ~ 45 degrees are divided into pitches of 0.25 degrees, the frequencies present in each section are summed up, and the distribution of the number of inclined angles is determined, the range of 0 ~ 10 degrees The highest peak exists in the inclination angle section of the above, and the total of the frequencies present in the range of 0 to 10 degrees accounts for 40% or more of the total frequencies in the inclination angle number distribution,
The crystal orientation of the crystal grains of the composite nitride layer or composite carbonitride layer of Ti and Al having a face-centered cubic structure of the NaCl type in the TiAlCN layer β, from the longitudinal cross section using the electron beam backscattering diffraction device When observed, the inclination angle formed by the normal to the {111} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool substrate surface is measured, and 0 of the measured inclination angles with respect to the normal direction. When the measured inclination angles in the range of ~ 45 degrees are divided into pitches of 0.25 degrees, the frequencies present in each section are summed up, and the distribution of the number of inclined angles is determined, the range of 0 ~ 10 degrees The highest peak is present in the inclination angle section of the above, and the total of the frequencies existing within the range of 0 to 10 degrees accounts for 40% or more of the total frequencies in the inclination angle number distribution. The surface-coated cutting tool according to Item 1.
TiAlCN層αおよびTiAlCN層βを含む前記複合窒化物層または複合炭窒化物層に対し、前記ポアが占める平均面積割合AtotはAtot≦1.00面積%であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The average area ratio A tot occupied by the pores is A tot ≦ 1.00 area% with respect to the composite nitride layer or composite carbonitride layer including the TiAlCN layer α and the TiAlCN layer β. The surface-coated cutting tool according to 1 or 2.
JP2018240650A 2018-01-04 2018-12-25 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Active JP7183522B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018000183 2018-01-04
JP2018000183 2018-01-04

Publications (2)

Publication Number Publication Date
JP2019119045A true JP2019119045A (en) 2019-07-22
JP7183522B2 JP7183522B2 (en) 2022-12-06

Family

ID=67307027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018240650A Active JP7183522B2 (en) 2018-01-04 2018-12-25 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP7183522B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262559A1 (en) 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Imaging device
US20210082656A1 (en) * 2019-09-17 2021-03-18 Kioxia Corporation Etching apparatus and etching method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPH11323574A (en) * 1998-03-16 1999-11-26 Hitachi Tool Eng Ltd Multilayer film-coated member
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016137549A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2017030076A (en) * 2015-07-30 2017-02-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JPH11323574A (en) * 1998-03-16 1999-11-26 Hitachi Tool Eng Ltd Multilayer film-coated member
JP2012143827A (en) * 2011-01-11 2012-08-02 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer with excellent chipping resistance and defect resistance
JP2012187659A (en) * 2011-03-10 2012-10-04 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer having superior chipping resistance and fracture resistance
JP2015163423A (en) * 2014-01-31 2015-09-10 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2016137549A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2017030076A (en) * 2015-07-30 2017-02-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2017080883A (en) * 2015-10-30 2017-05-18 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262559A1 (en) 2019-06-26 2020-12-30 ソニーセミコンダクタソリューションズ株式会社 Imaging device
US20210082656A1 (en) * 2019-09-17 2021-03-18 Kioxia Corporation Etching apparatus and etching method

Also Published As

Publication number Publication date
JP7183522B2 (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548071B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
KR20170057434A (en) Surface-coated cutting tool having excellent chip resistance
JP6519952B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP2020040175A (en) Coated cutting tool
KR102312226B1 (en) Surface-coated cutting tool and method of producing the same
JP2018118346A (en) Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance
JP2019217579A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent fracture resistance and chipping resistance
JP6635347B2 (en) Coated cutting tool
EP3456867B1 (en) Coated drill
JP7183522B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
WO2019065682A1 (en) Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance
JP7288602B2 (en) coated cutting tools
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP6796257B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP2020138301A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7453616B2 (en) surface coated cutting tools
JP7329180B2 (en) surface coated cutting tools
JP2013146843A (en) Surface-coated cutting tool in which hard coating layer demonstrates excellent chipping resistance and excellent wear resistance in high-speed and heavy cutting work
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221106

R150 Certificate of patent or registration of utility model

Ref document number: 7183522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150