JP6796257B2 - Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer - Google Patents

Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer Download PDF

Info

Publication number
JP6796257B2
JP6796257B2 JP2017038028A JP2017038028A JP6796257B2 JP 6796257 B2 JP6796257 B2 JP 6796257B2 JP 2017038028 A JP2017038028 A JP 2017038028A JP 2017038028 A JP2017038028 A JP 2017038028A JP 6796257 B2 JP6796257 B2 JP 6796257B2
Authority
JP
Japan
Prior art keywords
layer
average
composite
section
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017038028A
Other languages
Japanese (ja)
Other versions
JP2018144115A (en
Inventor
光亮 柳澤
光亮 柳澤
卓也 石垣
卓也 石垣
翔 龍岡
翔 龍岡
佐藤 賢一
佐藤  賢一
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017038028A priority Critical patent/JP6796257B2/en
Publication of JP2018144115A publication Critical patent/JP2018144115A/en
Application granted granted Critical
Publication of JP6796257B2 publication Critical patent/JP6796257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する鋳鉄等の高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、耐剥離性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention is a high-speed intermittent cutting process of cast iron or the like, which is accompanied by high heat generation and exerts a shocking load on the cutting edge, and has a hard coating layer having excellent chipping resistance and peeling resistance for a long period of time. It relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over the use of.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング、剥離等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) -based cermet or cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. A coated tool in which a Ti—Al-based composite nitride layer is coated and formed as a hard coating layer on the surface of a tool substrate (hereinafter, collectively referred to as a tool substrate) by a physical vapor deposition method is known. These are known to exhibit excellent wear resistance.
However, although the conventional covering tool coated with the Ti-Al-based composite nitride layer has relatively excellent wear resistance, abnormal wear such as chipping and peeling occurs when used under high-speed intermittent cutting conditions. Since it is easy to use, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Alの含有割合xの値を0.65〜0.95まで高めた(Ti1−xAl)N層の形成によって、切削性能にどのような影響を及ぼしているかについては明らかでない。 For example, in Patent Document 1, the value of Al content ratio x is 0.65- by performing chemical vapor deposition in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3 in a temperature range of 650 to 900 ° C. It is described that a (Ti 1-x Al x ) N layer of 0.95 can be vapor-deposited, but in this document, an Al 2 O 3 layer is further formed on the (Ti 1-x Al x ) N layer. Since the purpose is to enhance the heat insulating effect by coating the aluminum layer, the value of the Al content ratio x is increased to 0.65 to 0.95 (Ti 1-x Al x ). It is not clear how this affects the cutting performance.

また、例えば、特許文献2には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, for example, in Patent Document 2, a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic structure (Ti 1-x Al) including a cubic structure or a hexagonal structure is formed on the TiCN layer and the Al 2 O 3 layer by a chemical vapor deposition method. x ) N layer (however, x is 0.65 to 0.90 in atomic ratio) is coated as an outer layer, and by applying a compressive stress of 100 to 1100 MPa to the outer layer, heat resistance and fatigue strength of the coating tool are applied. It has been proposed to improve.

また、例えば、特許文献3には、基材表面に形成された硬質被膜のうちの少なくとも1層をCVD法により形成した表面被覆部材において、第1単位層と第2単位層とが交互に多層積層され、第1単位層は、Tiと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第1化合物を含み、第2単位層は、Alと、B、C、NおよびOからなる群より選ばれる1種以上の元素とを含む第2化合物を含むことにより、表面被覆部材の耐摩耗性、耐溶着性および耐熱衝撃性を向上させることが提案されている。 Further, for example, in Patent Document 3, in a surface coating member in which at least one layer of a hard coating formed on the surface of a base material is formed by a CVD method, the first unit layer and the second unit layer are alternately laminated. Laminated, the first unit layer contains a first compound containing Ti and one or more elements selected from the group consisting of B, C, N and O, and the second unit layer contains Al and B, It has been proposed to improve the wear resistance, welding resistance and thermal shock resistance of the surface coating member by containing a second compound containing one or more elements selected from the group consisting of C, N and O. There is.

また、例えば、特許文献4には、基材表面に形成された硬質被膜のうちの少なくとも1層をCVD法により形成した表面被覆部材において、前記層のうち少なくとも1層は、硬質粒子を含む層であり、前記硬質粒子は、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第1化合物を含み、前記第2単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第2化合物を含むことにより、表面被覆部材の耐摩耗性、耐溶着性を向上させることが提案されている。 Further, for example, in Patent Document 4, in a surface coating member in which at least one layer of a hard coating formed on the surface of a base material is formed by a CVD method, at least one of the layers is a layer containing hard particles. The hard particles include a multilayer structure in which first unit layers and second unit layers are alternately laminated, and the first unit layer is a group 4 element, a group 5 element, and a group 6 element in the periodic table. The second unit layer comprises a first compound consisting of one or more elements selected from the group consisting of and Al and one or more elements selected from the group consisting of B, C, N and O, and the second unit layer has a period. A first element consisting of one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al in the table, and one or more elements selected from the group consisting of B, C, N and O. It has been proposed to improve the wear resistance and welding resistance of the surface coating member by containing the two compounds.

特表2011−516722号公報Japanese Patent Publication No. 2011-516722 特表2011−513594号公報Japanese Patent Publication No. 2011-513594 特開2014−128848号公報Japanese Unexamined Patent Publication No. 2014-128884 特開2014−129562号公報Japanese Unexamined Patent Publication No. 2014-129562

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている化学蒸着法で蒸着形成した(Ti1−xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
また、前記特許文献2に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、層間の密着強度が不十分で、鋳鉄等の高速断続切削加工に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
さらに、前記特許文献3、4に記載される被覆工具においても、鋳鉄等の高速断続切削加工に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとはいえなかった。
そこで、本発明は、鋳鉄等の高速断続切削等に供した場合であっても、層間の密着強度に優れ、チッピング、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とする。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and covering tools have even more chipping resistance and chipping resistance. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance over a long period of use is required.
However, in the (Ti 1-x Al x ) N layer formed by vapor deposition by the chemical vapor deposition method described in Patent Document 1, the Al content ratio x can be increased and a cubic crystal structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool substrate is not sufficient and the toughness is inferior.
Further, the covering tool described in Patent Document 2 has a predetermined hardness and is excellent in wear resistance, but the adhesion strength between layers is insufficient, and it is used for high-speed intermittent cutting of cast iron and the like. In this case, there is a problem that abnormal damage such as chipping, chipping, and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Further, even in the covering tools described in Patent Documents 3 and 4, when they are subjected to high-speed intermittent cutting of cast iron or the like, abnormal damage such as chipping, chipping, and peeling is likely to occur, and satisfactory cutting performance is obtained. I couldn't say that it would work.
Therefore, the present invention is excellent in adhesion strength between layers even when subjected to high-speed intermittent cutting of cast iron or the like, without causing abnormal damage such as chipping or peeling, and is excellent over a long period of use. It is an object of the present invention to provide a covering tool exhibiting abrasion resistance.

本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」、「(Ti,Al)(C,N)」あるいは「(Ti1−XAl)(C1−Y)」で示すことがある)を含む硬質被覆層を形成した被覆工具の耐チッピング性、耐剥離性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above viewpoint, the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter, "TiAlCN", "(Ti, Al) (C, N)" or "(Ti 1-X )". al X) (C Y N 1 -Y) chipping resistance of the coated tool forming a hard coating layer containing a "is sometimes indicated by), to improve the peel resistance, of extensive studies, the following I got the following findings.

即ち、本発明者らは、硬質被覆層を構成するTiAlCN層の結晶粒内の濃度変化に着目し鋭意研究を進めたところ、TiAlCN層のNaCl型の立方晶構造を有する結晶粒粒内にTiとAlの周期的な組成変化を形成し、さらに、TiAlCN層をその層厚方向の複数区間に分割した場合、各区間におけるAlの平均含有割合が硬質被覆層の表面側の区間ほど大きくなるような組成変化を形成することにより、結晶粒に歪を生成させて硬さを高めることができ、また、Alの平均含有割合の傾斜により、下部層との密着強度を高めることができるとともに、硬質被覆層表面で発生したクラックの工具基体表面方向への伝播を抑制し、さらに、組成変化の界面におけるクラック進展抑制効果も相まって、TiAlCN層の耐チッピング性、耐剥離性を高め得ることを見出した。
その結果、本発明の被覆工具は、高熱発生を伴うとともに、刃先に断続的・衝撃的な高負荷が作用する鋳鉄等の高速断続切削に供した場合であっても、チッピング、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮することができる。
That is, as a result of diligent research focusing on the change in the concentration of the TiAlCN layer constituting the hard coating layer in the crystal grains, the present inventors conducted a diligent study, and found that Ti was contained in the crystal grains having a NaCl-type cubic structure of the TiAlCN layer. When the TiAlCN layer is divided into a plurality of sections in the layer thickness direction, the average content ratio of Al in each section becomes larger as the section on the surface side of the hard coating layer increases. By forming a change in composition, strain can be generated in the crystal grains to increase the hardness, and by the inclination of the average content ratio of Al, the adhesion strength with the lower layer can be increased and the hardness can be increased. It has been found that the chipping resistance and peeling resistance of the TiAlCN layer can be improved by suppressing the propagation of cracks generated on the surface of the coating layer toward the surface of the tool substrate and further suppressing the crack growth at the interface of the composition change. ..
As a result, the covering tool of the present invention causes abnormalities such as chipping and peeling even when it is subjected to high-speed intermittent cutting of cast iron or the like, which is accompanied by high heat generation and in which a high load intermittently or shockingly acts on the cutting edge. It can exhibit excellent wear resistance over a long period of use without causing damage.

そして、前述のような構成のTiAlCN層は、例えば、NHを用いた熱CVD法によって形成することができる。
つまり、NHとHからなるガス群Aと、TiCl、AlCl、N、C、Hからなるガス群Bをおのおの別々のガス供給管から反応装置内へ供給し、AlCl/TiCl比を逐次的に増加させながら成膜することにより、工具基体表面から硬質皮膜表面方向へ向かって、Al量が周期的な組成変化をしながら次第に増加するTiAlCN層が成膜される。なお、高Al量のTiAlCN層の成膜において、TiとAlの周期的な組成変化は1周期当たりのガス供給時間や供給量を制御することによって形成される。
Then, the TiAlCN layer having the above-described configuration can be formed by, for example, a thermal CVD method using NH 3 .
That is, the gas group A consisting of NH 3 and H 2 and the gas group B consisting of TiCl 4 , AlCl 3 , N 2 , C 2 H 4 , and H 2 are supplied from separate gas supply pipes into the reactor. By forming a film while gradually increasing the AlCl 3 / TiCl 4 ratio, a TiAlCN layer in which the amount of Al gradually increases while periodically changing the composition is formed from the surface of the tool substrate toward the surface of the hard film. Will be done. In the film formation of the TiAlCN layer having a high Al content, the periodic composition change of Ti and Al is formed by controlling the gas supply time and the supply amount per cycle.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、TiとAlの周期的な組成変化が存在し、組成変化の平均周期が少なくとも1nm以上であるNaCl型の面心立方構造を有する結晶粒を含み、
(d)前記TiとAlの複合窒化物または複合炭窒化物層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表し、平均層厚をLavg(μm)とした場合、その層厚方向に[Lavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合を求めたとき、各区間のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)は、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(e)前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合を求めたとき、工具基体側の区間に比して、硬質被覆層表面側の区間のAlのTiとAlの合量に占める平均含有割合が単調増加し、最も工具基体側の区間のAlのTiとAlの合量に占める平均含有割合よりも最も硬質被覆層表面側の区間におけるAlのTiとAlの合量に占める平均含有割合の方が大きい値であり、
(f)前記周期的に変化するAlのTiとAlの合量に占める含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は0.01〜0.1であることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層を工具基体の表面と垂直な縦断面から分析した場合、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記TiとAlの周期的な組成変化の周期が最小になる方向と、工具基体表面に垂直な方向とのなす角が30度以内であるようなNaCl型の面心立方構造を有する結晶粒が存在することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間における前記TiとAlの周期的な組成変化の平均周期を求めたとき、工具基体側の区間に比して硬質被覆層表面側の区間におけるTiとAlの組成変化の平均周期が短くなる(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5) 前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間における前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化の周期が最小になる方向について測定した各区間のTiとAlの周期的な組成変化の平均周期は1〜20nmであり、かつ、周期的に変化するAlのTiとAlの合量に占める含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は0.01〜0.1であることを特徴とする(1)乃至(4)のいずれかに記載の表面被覆切削工具。
(6) 前記TiとAlの複合窒化物または複合炭窒化物層を工具基体の表面と垂直な縦断面から観察した場合に、該層内のNaCl型の面心立方構造を有する個々の結晶粒の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒が前記複合窒化物または複合炭窒化物層の面積に占める割合は5面積%以下であり、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであることを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7) 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、組成の異なるTiとAlの複合窒化物または複合炭窒化物層、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8) 前記TiとAlの複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で形成されていることを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based cemented carbide. In the tool
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm.
(B) The Ti and Al composite nitride or composite carbonitride layer contains at least a phase of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) the composite nitride of Ti and Al or composite carbonitride layer, Ti and periodic composition variation of Al is present, the average period of the compositional change is Ru der least 1nm or more NaCl type face-centered cubic Contains crystal grains with structure
(D) The Ti and Al composite nitride or composite carbonitride layer has an average composition thereof.
Composition formula: (Ti 1-X Al X ) ( CY N 1-Y )
When the average layer thickness is Lavg (μm), the average content ratio of Al in the total amount of Ti and Al in each section divided into [ Lavg ] + 2 in the layer thickness direction is calculated. The average content ratio X avg of Al in the total amount of Ti and Al in the section and the average content ratio Y avg of C and N total amount of C (however, both X avg and Y avg are atomic ratios) are , 0.60 ≤ X avg ≤ 0.95, 0 ≤ Y avg ≤ 0.005,
(E) The average layer thickness Lavg (μm) of the Ti and Al composite nitride or composite carbonitride layer is divided into [ Lavg ] + 2 in the layer thickness direction, and the combination of Al Ti and Al in each section. When the average content ratio in the amount was calculated, the average content ratio of Al in the section on the surface side of the hard coating layer to the total amount of Ti and Al increased monotonically compared to the section on the tool substrate side, and the most tool substrate. the larger the value der towards the average content percentage of the total amount of Ti and Al of Al in most hard layer surface of the segment than the average content percentage of the total amount of Ti and Al of Al side section is,
(F) the maximum value of the difference Δx between adjacent local maximum values Xmax and minimum value Xmin of the content X occupying the total amount of Ti and Al of the periodically varying Al is 0.01-0.1 der Rukoto A surface coating cutting tool characterized by.
(2) When the composite nitride or composite carbonitride layer is analyzed from a vertical cross section perpendicular to the surface of the tool substrate, a crystal having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al. The surface-coated cutting tool according to (1), wherein the ratio of the grains to the area of the composite nitride or composite carbonitride layer is 40 area% or more.
(3) It has a NaCl-type face-centered cubic structure such that the angle between the direction in which the periodic composition change period of Ti and Al is minimized and the direction perpendicular to the surface of the tool substrate is within 30 degrees. The surface-coated cutting tool according to (1) or (2), wherein crystal grains are present.
(4) The average layer thickness Lavg (μm) of the composite nitride or composite carbonitride layer of Ti and Al is divided into [ Lavg ] + 2 in the layer thickness direction, and the Ti and Al are periodically divided into two sections. When the average period of the composition change is determined, the average period of the composition change of Ti and Al in the section on the surface side of the hard coating layer is shorter than that on the section on the tool substrate side, whichever is (1) to (3). Surface coating cutting tool described in.
(5) The average layer thickness Lavg (μm) of the composite nitride or composite carbonic nitride layer of Ti and Al is divided into [ Lavg ] + 2 in the layer thickness direction, and the Ti and Al are periodically divided into two sections. In a crystal grain having a NaCl-type face-centered cubic structure with a large composition change, the periodic composition change of Ti and Al in each section measured in the direction in which the period of the periodic composition change of Ti and Al is minimized. The average period is 1 to 20 nm, and the maximum value of the difference Δx between the adjacent maximum value Xmax and the minimum value Xmin of the content ratio X in the total amount of Ti and Al that changes periodically is 0.01 to The surface-coated cutting tool according to any one of (1) to (4), which is 0.1.
(6) When the composite nitride or composite carbonitride layer of Ti and Al is observed from a vertical cross section perpendicular to the surface of the tool substrate, individual crystal grains having a NaCl-type surface-centered cubic structure in the layer. Fine crystal grains having a hexagonal structure are present at the grain boundaries of the above, and the ratio of the fine crystal grains to the area of the composite nitride or composite carbonitride layer is 5 area% or less, and the fine crystal grains The surface-coated cutting tool according to any one of (1) to (5), wherein the average grain size R of the above is 0.01 to 0.3 μm.
(7) A Ti and Al composite nitride or composite carbonitride layer having different compositions, a Ti carbide layer, and a nitride layer between the tool substrate and the Ti and Al composite nitride or composite carbonitride layer. It is characterized in that there is a lower layer composed of one or more of a carbide layer, a carbon oxide layer and a carbonitride oxide layer, and having a total average layer thickness of 0.1 to 20 μm (. The surface coating cutting tool according to any one of 1) to (6).
(8) The upper layer including at least the aluminum oxide layer is formed on the upper part of the composite nitride or composite carbonitride layer of Ti and Al with a total average layer thickness of 1 to 25 μm (1). ) To (7). The surface coating cutting tool according to any one of (7). "
It has the characteristics of.

本発明について、以下に詳細に説明する。 The present invention will be described in detail below.

本発明のTiとAlの複合窒化物または複合炭窒化物層(TiAlCN層):
図1〜図5は、TiとAlの周期的な組成変化の概略説明図であり、図1は、硬質被覆層表面側ほど、TiAlCN層におけるAlのTiとAlの合量に占める含有割合(以下、単に、「Alの含有割合」という)が高くなる様子を示し、図2は、TiAlCN層の層厚方向に向かって、周期的な組成変化を示しながら硬質被覆層表面側ほど、Alの含有割合が高くなることを示す概略説明図である。図3はTiAlCN層の層厚方向に向かって、周期的な組成変化を示しながら、硬質被覆層表面側の区間ほど、Alの含有割合が高くなる別の態様を示す概略説明図である。図4は、TiAlCN層の層厚方向に向かって、周期的な組成変化を示しながら組成変化の周期が小さくなり、かつ硬質被覆層表面側ほど、Alの含有割合が高くなる様子を表し、図5はTiAlCN層の層厚方向に向かって、周期的な組成変化を示しながら組成変化の周期が小さくなり、かつ硬質被覆層表面側ほど、Alの含有割合が高くなることを示す概略説明図である。
The Ti and Al composite nitride or composite carbonitride layer (TiAlCN layer) of the present invention:
1 to 5 are schematic explanatory views of periodic composition changes of Ti and Al, and FIG. 1 shows the content ratio of Al in the total amount of Ti and Al in the TiAlCN layer toward the surface side of the hard coating layer. Hereinafter, it is simply referred to as “Al content ratio”), and FIG. 2 shows that Al is increased toward the surface side of the hard coating layer while showing a periodic composition change in the layer thickness direction of the TiAlCN layer. It is a schematic explanatory drawing which shows that the content ratio becomes high. FIG. 3 is a schematic explanatory view showing another aspect in which the Al content ratio increases toward the section on the surface side of the hard coating layer while showing periodic composition changes in the layer thickness direction of the TiAlCN layer. FIG. 4 shows a state in which the cycle of the composition change becomes smaller while showing the periodic composition change in the layer thickness direction of the TiAlCN layer, and the Al content ratio increases toward the surface side of the hard coating layer. 5 is a schematic explanatory view showing that the cycle of the composition change becomes smaller while showing the periodic composition change in the layer thickness direction of the TiAlCN layer, and the Al content ratio increases toward the surface side of the hard coating layer. is there.

TiAlCN層の平均層厚:
本発明の硬質被覆層は、前述したようにNHを用いた熱CVD法によって形成されたTiAlCN層を少なくとも含む。
このTiAlCN層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
したがって、その平均層厚を1〜20μmと定めた。
Average thickness of TiAlCN layer:
The hard coating layer of the present invention contains at least a TiAlCN layer formed by a thermal CVD method using NH 3 as described above.
This TiAlCN layer has high hardness and excellent wear resistance, but its effect is remarkably exhibited especially when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, sufficient wear resistance cannot be ensured for long-term use because the layer thickness is thin, while if the average layer thickness exceeds 20 μm, the TiAlCN layer Crystal grains are likely to be coarsened, and chipping is likely to occur.
Therefore, the average layer thickness was set to 1 to 20 μm.

TiAlCN層の組成:
本発明の硬質被覆層を構成するTiAlCN層を、
組成式:(Ti1−XAl)(C1−Y
で表し、平均層厚をLavg(μm)とした場合、その層厚方向に[Lavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合を求めたとき、各区間のAlのTiとAlの合量に占める平均含有割合(以下、単に、「Alの平均含有割合」という)XavgおよびCのCとNの合量に占める平均含有割合(以下、単に、「Cの平均含有割合」という)Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足するように定める。
その理由は、TiAlCN層の硬さを担保するためにはAlの平均含有割合Xavgの高いNaCl型の面心立方構造の結晶粒からなるTiAlCN層を形成することが望まれるが、Alの平均含有割合Xavgが0.60未満では、硬さが十分でないため耐摩耗性の向上を図ることはできず、一方、0.60≦Xavgにおいて硬さが最大値に漸近するが、0.95<Xavgになると、硬さを確保する上で重要なNaCl型の面心立方構造を維持するのが難しく、硬さが低い六方晶構造のTiAlCN結晶粒が生成するため、Alの平均含有割合Xavgは、0.60≦Xavg≦0.95の範囲内とする。
また、TiAlCN層に含まれるCの平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、TiAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として硬質被覆層の耐欠損性および耐チッピング性が向上する。一方、Cの平均含有割合Yavgが0≦Yavg≦0.005の範囲を外れると、TiAlCN層の靭性が低下し、耐欠損性および耐チッピング性が低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005とする。
ただし、Cの平均含有割合Yavgについては、ガス原料としてCを含むガスを用いなくても不可避的に含有されるCの含有割合を除外している。具体的には、例えば、Cを含むガス原料であるCの供給量を0とした場合に、TiAlCN層に含まれるCの含有割合(原子比)を不可避的なCの含有割合として求め、例えば、Cを意図的に供給した場合に得られるTiAlCN層に含まれるCの含有割合(原子比)から前記不可避的に含有されるCの含有割合を差し引いた値をYavgとする。
Composition of TiAlCN layer:
The TiAlCN layer constituting the hard coating layer of the present invention
Composition formula: (Ti 1-X Al X ) ( CY N 1-Y )
When the average layer thickness is Lavg (μm), the average content ratio of Al to the total amount of Ti and Al in each section divided into [ Lavg ] + 2 in the layer thickness direction is calculated. Average content ratio of Al in the total amount of Ti and Al in the section (hereinafter, simply referred to as "average content ratio of Al") Average content ratio of X avg and C in the total amount of C and N (hereinafter, simply, Y avg (referred to as “average content ratio of C”) (where X avg and Y avg are both atomic ratios) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively. Decide to do.
The reason is that in order to ensure the hardness of the TiAlCN layer, it is desirable to form a TiAlCN layer composed of NaCl-type face-centered cubic crystal grains having a high average Al content of X avg , but the average of Al. If the content ratio X avg is less than 0.60, the hardness is not sufficient and the abrasion resistance cannot be improved. On the other hand, when 0.60 ≦ X avg , the hardness gradually approaches the maximum value. When 95 <X avg , it is difficult to maintain a NaCl-type face-centered cubic structure, which is important for ensuring hardness, and TiAlCN crystal grains having a hexagonal structure with low hardness are produced, so that the average content of Al is contained. The ratio X avg shall be within the range of 0.60 ≦ X avg ≦ 0.95.
Further, when the average content ratio Y avg of C contained in the TiAlCN layer is a very small amount in the range of 0 ≦ Y avg ≦ 0.005, the adhesion between the TiAlCN layer and the tool substrate or the lower layer is improved, and the adhesion is improved. By improving the lubricity, the impact during cutting is alleviated, and as a result, the fracture resistance and chipping resistance of the hard coating layer are improved. On the other hand, if the average content ratio Y avg of C is out of the range of 0 ≦ Y avg ≦ 0.005, the toughness of the TiAlCN layer is lowered, and the fracture resistance and chipping resistance are lowered, which is not preferable. Therefore, the average content ratio Y avg of C is 0 ≦ Y avg ≦ 0.005.
However, the average content of Y avg of C, excludes content of C which is inevitably contained even without using a gas containing C as the gas feed. Specifically, for example, when the supply amount of C 2 H 4 , which is a gas raw material containing C, is set to 0, the content ratio (atomic ratio) of C contained in the TiAlCN layer is set as the unavoidable C content ratio. determined, for example, a value obtained by subtracting the content of C contained in the unavoidable from the content (atomic ratio) of C contained in TiAlCN layer obtained when intentionally supplying C 2 H 4 Y avg And.

TiAlCN層におけるAlの平均含有割合Xavgについては、透過型電子顕微鏡を用いて、加速電圧200kVの条件において前記TiAlCN層縦断面の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から線分析を行うことによって、次のように求めることが出来る。
TiAlCN層の平均層厚をLavg(μm)とした場合、該TiAlCN層の平均層厚Lavg(μm)を、層厚方向に[Lavg]+2分割した各区間におけるAlの含有割合の平均値を求めたとき硬質被覆層表面側の区間におけるAlの含有割合の平均値は、工具基体側の区間におけるAlの含有割合の平均値に比して単調増加し、最も工具基体側の区間のAlのTiとAlの合量に占める平均含有割合よりも最も硬質被覆層表面側の区間におけるAlのTiとAlの合量に占める平均含有割合の方が大きい値であることが必要である。
また、分割した各区間におけるAlの含有割合は、工具基体表面と垂直な方向に少なくとも10本以上の線分析を行い、測定点の平均値としてそれぞれ分割した区間毎に求めることが出来る。さらに、この各区間のAlの含有割合の平均値を用い、全区間の平均値を取り、Xavgとして算出する。
Regarding the average Al content ratio X avg in the TiAlCN layer, a minute region of the vertical cross section of the TiAlCN layer was observed using a transmission electron microscope under the condition of an acceleration voltage of 200 kV, and energy dispersive X-ray spectroscopy (EDS) was performed. By performing line analysis from the cross-sectional side using, the following can be obtained.
When the average layer thickness of the TiAlCN layer is Lavg (μm), the average layer thickness Lavg (μm) of the TiAlCN layer is divided into [ Lavg ] + 2 in the layer thickness direction, and the average of the Al content ratio in each section. When the value was calculated, the average value of the Al content in the section on the surface side of the hard coating layer monotonically increased compared to the average value of the Al content in the section on the tool substrate side, and the average value of the section on the most tool substrate side. It is necessary that the average content ratio of Al in the total amount of Ti and Al in the section on the surface side of the hard coating layer is larger than the average content ratio of Al in the total amount of Ti and Al.
Further, the Al content ratio in each divided section can be obtained for each divided section as an average value of measurement points by performing line analysis of at least 10 lines in the direction perpendicular to the surface of the tool substrate. Further, using the average value of the Al content ratio in each section, the average value of all sections is taken and calculated as Xavg .

周期的な組成変化:
図1〜図5の模式図に示すように、TiAlCN層のNaCl型の面心立方構造を有する結晶粒内には、周期的な組成変化が存在することが必要である。また、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であることが好ましい。
また、前記TiとAlの周期的な組成変化において、周期的な組成変化の周期が最小となる方向と、工具基体表面に垂直な方向とのなす角が30度以内であるようなNaCl型の面心立方構造を有する結晶粒が少なくとも存在することが好ましい。
本発明でいう「TiとAlの周期的な組成変化」とは、Alの含有割合が増減を繰り返しながら、全体としては、工具基体側から上部層側に向かって増加することをいう。TiとAlの周期的な組成変化の周期とは、TiとAlの周期的な組成変化の周期が最小となる方向において測定される隣り合う極小値の長さ(距離)のことである。
前記でいう「周期的な組成変化の周期が最小となる方向が、工具基体表面に垂直な方向とのなす角度が30度以内」の方向とは、「硬質被覆層を構成するTiAlCN層を、工具基体の表面と垂直な任意の縦断面から分析した場合、NaCl型の面心立方構造を有する結晶粒内に存在するTiとAlの周期的な組成変化のうちで、組成変化の周期が最小になる方向を求め、該組成変化の周期が最小になる方向と工具基体表面に垂直な方向となす角が30度以内であるような周期的な組成変化の方向」(以下、「本発明組成変化の方向」と略記する)のことである。
ここで、NaCl型の面心立方構造を有する結晶粒には、TiとAlの周期的な組成変化が存在することが必要である理由と、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であることが好ましい理由、あるいは周期的な組成変化の周期が最小となる方向が、工具基体表面に垂直な方向とのなす角度が30度以内の方向であるNaCl型の面心立方構造を有する結晶粒が少なくとも存在することが好ましい理由は、次のとおりである。
本発明では、TiAlCN層の成膜を、反応ガス群Aとガス群Bを工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内にTiとAlの局所的な組成差を形成することができる。前記TiとAlの周期的な組成変化が膜中に存在すると、切削時に摩耗が進行する面に作用するせん断力により生じるクラックの進展を抑制し、靱性が向上する。このクラック進展抑制効果については、TiとAlの組成の異なる境界において、その進展方向の曲がりや屈折が生じることにより発揮されるものと推測される。
前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合が、40面積%未満であると前記クラックの進展を抑制する効果が小さくなり、靱性向上の効果も小さくなる。
特に 前記工具基体表面に垂直な方向となす角度が30度以内の方向の周期的な組成変化は、切削時に摩耗が進行する面に作用するせん断力により生じる基体と垂直な方向へのクラックの進展を抑制し、靭性が向上するが、周期的な組成変化の方向が、工具基体表面に垂直な方向となす角度が30度を超えると、工具基体と垂直な方向へのクラックの進展を抑制する効果が小さくなり、靭性向上の効果も小さくなる。
したがって、本発明では、NaCl型の面心立方構造を有する結晶粒には、TiとAlの周期的な組成変化が存在することが必要であり、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であること、また、前記結晶粒内における周期的な組成変化の周期が最小となる方向が、工具基体表面に垂直な方向となす角度が30度以内の方向であることが好ましい。
Periodic composition change:
As shown in the schematic views of FIGS. 1 to 5, it is necessary that a periodic composition change exists in the crystal grains having a NaCl-type face-centered cubic structure of the TiAlCN layer. Further, the ratio of the crystal grains having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al to the area of the composite nitride or the composite carbonitride layer is 40 area% or more. Is preferable.
Further, in the periodic composition change of Ti and Al, the angle between the direction in which the cycle of the periodic composition change is minimized and the direction perpendicular to the surface of the tool substrate is within 30 degrees. It is preferable that at least crystal grains having a face-centered cubic structure are present.
The "periodic composition change of Ti and Al" in the present invention means that the content ratio of Al increases from the tool base side to the upper layer side as a whole while repeatedly increasing and decreasing. The period of periodic composition change of Ti and Al is the length (distance) of adjacent minimum values measured in the direction in which the period of periodic composition change of Ti and Al is minimized.
The above-mentioned direction in which "the direction in which the period of periodic composition change is minimized is within 30 degrees with the direction perpendicular to the surface of the tool substrate" means "the TiAlCN layer constituting the hard coating layer is defined as" When analyzed from an arbitrary longitudinal section perpendicular to the surface of the tool substrate, the period of composition change is the smallest among the periodic composition changes of Ti and Al existing in the crystal grains having a NaCl-type face-centered cubic structure. The direction of periodic composition change such that the angle between the direction in which the period of the composition change is minimized and the direction perpendicular to the surface of the tool substrate is within 30 degrees "(hereinafter," the composition of the present invention ". It is abbreviated as "direction of change").
Here, the reason why it is necessary for the crystal grains having a NaCl-type face-centered cubic structure to have a periodic composition change of Ti and Al, and the NaCl having a periodic composition change of Ti and Al. The reason why the ratio of the crystal grains having the face-centered cubic structure of the mold to the area of the composite nitride or the composite carbonic chloride layer is preferably 40 area% or more, or the period of periodic composition change is the minimum. The reason why it is preferable that there are at least crystal grains having a NaCl-type face-centered cubic structure in which the direction formed by the direction perpendicular to the surface of the tool substrate is within 30 degrees is as follows. ..
In the present invention, the formation of the TiAlCN layer is supplied so that there is a difference in the time for the reaction gas group A and the gas group B to reach the surface of the tool substrate, so that the local composition of Ti and Al in the crystal grains is generated. Differences can be formed. When the periodic composition change of Ti and Al is present in the film, the growth of cracks caused by the shearing force acting on the surface where wear progresses during cutting is suppressed, and the toughness is improved. It is presumed that this crack growth suppressing effect is exerted by bending or refraction in the growth direction at the boundary where the compositions of Ti and Al are different.
The ratio of the crystal grains having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al to the area of the composite nitride or the composite carbonitride layer is less than 40 area%. The effect of suppressing the growth of cracks is reduced, and the effect of improving toughness is also reduced.
In particular, the periodic composition change in the direction perpendicular to the surface of the tool substrate within 30 degrees is the growth of cracks in the direction perpendicular to the substrate caused by the shearing force acting on the surface where wear progresses during cutting. However, when the angle between the periodic composition change direction and the direction perpendicular to the tool substrate surface exceeds 30 degrees, the growth of cracks in the direction perpendicular to the tool substrate is suppressed. The effect is small, and the effect of improving toughness is also small.
Therefore, in the present invention, it is necessary that the crystal grains having a NaCl-type face-centered cubic structure have a periodic composition change of Ti and Al, and the crystal grain has a periodic composition change of Ti and Al. The ratio of the crystal grains having a NaCl-type face-centered cubic structure to the area of the composite nitride or composite carbonic nitride layer is 40 area% or more, and the periodic composition change in the crystal grains. It is preferable that the direction in which the period of the above is minimized is the direction perpendicular to the surface of the tool substrate and the angle formed is within 30 degrees.

なお、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であることの測定、確認は次のように行った。透過型電子顕微鏡を用いて、1μm×1μmの像におけるTiとAlの周期的な組成変化に対応する画像のコントラストの変化、あるいはエネルギー分散型X線分光法(EDS)によって確認されるTiとAlの周期的な組成変化を有する結晶粒の面積をそれぞれ算出し、前記1μm×1μmの観察領域に占める面積割合を少なくとも10視野で求め、その平均値を、本発明組成変化を有する結晶粒の面積として求めることが出来る。
また、結晶粒内における周期的な組成変化の方向が、工具基体表面に垂直な方向となす角度が30度以内の方向であるNaCl型の面心立方構造を有する結晶粒の存在の測定・確認は、透過型電子顕微鏡を用いて、1μm×1μmの像におけるTiとAlの周期的な組成変化に対応する画像のコントラストの変化、あるいはエネルギー分散型X線分光法(EDS)によって確認されるTiとAlの周期的な組成変化を有する領域から、各結晶粒の組成変化の方向を求め、これらの中から、周期的組成変化の方向が工具基体表面に垂直な方向となす角が30度以内である結晶粒を抽出することによって、測定・確認することが出来る。
The ratio of the crystal grains having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al to the area of the composite nitride or composite carbonitride layer is 40 area% or more. The measurement and confirmation of this were performed as follows. Changes in image contrast corresponding to periodic composition changes of Ti and Al in a 1 μm × 1 μm image using a transmission electron microscope, or Ti and Al confirmed by energy dispersive X-ray spectroscopy (EDS). The area of the crystal grain having the periodic composition change of is calculated, the area ratio to the observation area of 1 μm × 1 μm is obtained in at least 10 visual fields, and the average value is the area of the crystal grain having the composition change of the present invention. Can be obtained as.
Further, measurement and confirmation of the presence of crystal grains having a NaCl-type face-centered cubic structure in which the direction of periodic composition changes in the crystal grains is a direction perpendicular to the surface of the tool substrate and the angle formed within 30 degrees. Is confirmed by a change in image contrast corresponding to a periodic composition change of Ti and Al in a 1 μm × 1 μm image using a transmission electron microscope, or by energy dispersion X-ray spectroscopy (EDS). The direction of the composition change of each crystal grain is obtained from the region having the periodic composition change of and Al, and the angle formed by the direction of the periodic composition change with the direction perpendicular to the surface of the tool substrate is within 30 degrees. It can be measured and confirmed by extracting the crystal grains that are.

本発明のTiAlCN層は、前述の周期的な組成変化を示すとともに、TiAlCN層の平均層厚をLavg(μm)とした場合、該TiAlCN層の平均層厚Lavg(μm)を、層厚方向に[Lavg]+2分割した各区間におけるAlの含有割合の平均値を求めたとき、硬質被覆層表面側の区間におけるAlの含有割合の平均値は、工具基体側の区間におけるAlの含有割合の平均値に比して単調増加し、最も工具基体側の区間のAlのTiとAlの合量に占める平均含有割合よりも最も硬質被覆層表面側の区間におけるAlのTiとAlの合量に占める平均含有割合の方が大きい値であることが必要である。
これは、TiAlCN層を、NaCl型の立方晶構造の結晶粒を主体として形成し、該層の硬さを担保し、硬質被覆層全体としての耐摩耗性を向上させると同時に、工具基体(あるいは後記する下部層)との密着性を高め、硬質被覆層全体としての耐チッピング性、耐剥離性を向上させるためである。
なお、前記[Lavg]はガウス記号を表す。
ガウス記号[Lavg]はLavgを超えない最大の整数を表す数学記号であり、言い換えれば、[Lavg]は、n≦Lavg<n+1で定義される数値(ただし、nは整数)をいう。
例えば、TiAlCN層のLavg=1.5(μm)の場合、[1.5]=1であるから、『[Lavg]+2分割』とは、1+2=3分割ということになる。
また、前記それぞれの区間毎のAlの含有割合の平均値は、エネルギー分散型X線分光法(EDS)を用いて、断面側から線分析を行うことによって、確認することが出来る。分割した各区間におけるAlの含有割合は、工具基体表面と垂直な方向に少なくとも10本以上の線分析を行い、該測定値の平均値としてそれぞれ分割した区間毎に求める。
TiAlCN layer of the present invention exhibit a periodic composition variation described above, when the average layer thickness of TiAlCN layer was L avg ([mu] m), the average layer thickness L avg of the TiAlCN layer ([mu] m), the layer thickness When the average value of the Al content ratio in each section divided into [ Lavg ] + 2 in the direction is obtained, the average value of the Al content ratio in the section on the surface side of the hard coating layer is the content of Al in the section on the tool substrate side. It increases monotonically compared to the average value of the ratio, and the combination of Ti and Al of Al in the section on the surface side of the hard coating layer is larger than the average content ratio of Ti and Al in the section on the most tool substrate side. It is necessary that the average content ratio in the amount is a larger value.
This forms the TiAlCN layer mainly consisting of NaCl-type cubic crystal grains, secures the hardness of the layer, improves the wear resistance of the hard coating layer as a whole, and at the same time improves the tool substrate (or This is to improve the adhesion to the lower layer (described later) and to improve the chipping resistance and peeling resistance of the hard coating layer as a whole.
The [ Lavg ] represents a Gaussian symbol.
The Gaussian symbol [ Lavg ] is a mathematical symbol representing the largest integer that does not exceed Lavg , in other words, [ Lavg ] is a numerical value defined by n≤Lavg <n + 1 (where n is an integer). ).
For example, in the case of Lavg = 1.5 (μm) of the TiAlCN layer, [1.5] = 1, so "[ Lavg ] + 2 division" means 1 + 2 = 3 division.
Further, the average value of the Al content ratio for each of the sections can be confirmed by performing line analysis from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS). The Al content ratio in each of the divided sections is determined for each divided section as an average value of the measured values by performing line analysis of at least 10 lines in the direction perpendicular to the surface of the tool substrate.

本発明のTiAlCN層の本発明組成変化の方向を有するNaCl型の面心立方構造を有する結晶粒において、TiAlCN層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間におけるTiとAlの周期的な組成変化の平均周期を求めたとき、工具基体側の区間における組成変化の平均周期に比して、硬質被覆層表面側の区間における組成変化の平均周期が短くなることが好ましい(図4、図5参照)。
これは、Al含有割合が多いほど、AlTiCN層の格子定数が小さくなるために、格子歪を付与し、また、亀裂進展性能を発揮するための最適なTiとAlの周期的な組成変化の周期が小さくなるためという理由による。
In the crystal grains having a NaCl-type face-centered cubic structure having the direction of change in the composition of the TiAlCN layer of the present invention, the average layer thickness Lavg (μm) of the TiAlCN layer is set to [ Lavg ] +2 in the layer thickness direction. When the average period of the periodic composition change of Ti and Al in each divided section was calculated, the average of the composition change in the section on the hard coating layer surface side was compared with the average period of the composition change in the section on the tool substrate side. It is preferable that the cycle is short (see FIGS. 4 and 5).
This is because the higher the Al content ratio, the smaller the lattice constant of the AlTiCN layer, so that lattice strain is applied and the period of periodic composition change of Ti and Al that is optimum for exhibiting crack growth performance. Because it becomes smaller.

本発明組成変化の方向を有するNaCl型の面心立方構造を有する結晶粒について測定した組成変化の平均周期は1〜20nmであり、かつ、周期的に変化するAlの含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は0.01〜0.1であることが望ましい。
これは、組成変化の周期が1nm未満であると、結晶粒の歪みが大きくなり過ぎ、格子欠陥が多くなり、硬さが低下し、一方、組成変化の周期が20nmを超えると、切削時のクラックの進展抑制のための十分な緩衝作用が見込めないことから、組成変化の周期は1〜20nmとすることが望ましい。
また、前記結晶粒内にTiとAlの周期的な組成変化が存在することによって、結晶粒に歪みが生じ、硬さが向上するが、TiとAlの周期的な組成変化量の大きさの指標であるAlの含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値が0.01より小さいと結晶粒の歪みが小さく十分な硬さの向上が見込めず、一方、Δxの最大値が0.1を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が増加し硬さが低下することから、Δxの最大値を0.01〜0.1とすることが望ましい。
図2、図3、図5には、結晶粒内に存在するTiとAlの周期的な組成変化の様子を、透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による線分析を行って求めたTiとAlの周期的な組成変化を示すグラフの一例を示す。
The average period of the composition change measured for the crystal grains having the NaCl-type face-centered cubic structure having the direction of the composition change of the present invention is 1 to 20 nm, and the adjacent maximum of the content ratio X of Al which changes periodically. The maximum value of the difference Δx between the value Xmax and the minimum value Xmin is preferably 0.01 to 0.1.
This is because if the cycle of composition change is less than 1 nm, the strain of the crystal grains becomes too large, the lattice defects increase, and the hardness decreases. On the other hand, if the cycle of composition change exceeds 20 nm, during cutting. Since a sufficient buffering action for suppressing the growth of cracks cannot be expected, it is desirable that the cycle of composition change is 1 to 20 nm.
Further, the presence of periodic composition changes of Ti and Al in the crystal grains causes distortion of the crystal grains and improves the hardness, but the magnitude of the periodic composition change of Ti and Al not be expected to improve the content ratio X of the adjacent local maximum values Xmax and the maximum value of the difference [Delta] x of the minimum value Xmin is less than 0.01 and the crystal grains of the strain is small enough hardness of the Al is an indicator, whereas, [Delta] x If the maximum value of Δx exceeds 0.1, the strain of the crystal grains becomes too large, lattice defects increase, and the hardness decreases. Therefore, it is desirable to set the maximum value of Δx to 0.01 to 0.1.
In FIGS. 2, 3 and 5, the state of periodic composition changes of Ti and Al existing in the crystal grains is shown by energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope. An example of a graph showing the periodic composition change of Ti and Al obtained by analysis is shown.

TiAlCN層中に存在する微粒六方晶結晶粒:
本発明のTiAlCN層では、NaCl型の面心立方構造を有する結晶粒の粒界に六方晶構造の微粒結晶粒を含有することができる。
硬さにすぐれたNaCl型の面心立方構造を有する結晶粒の粒界に、微粒六方晶が存在することで粒界すべりが抑えられ、TiAlCN層の靱性が向上する。しかし、六方晶構造の微粒結晶粒の面積割合が5面積%を超えると相対的に硬さが低下し好ましくなく、また、六方晶構造の微粒結晶粒の平均粒径Rが0.01μm未満であると粒界滑りを抑制する効果が十分でなく、一方、0.3μmを超えると層内の歪みが大きくなり硬さが低下する。
したがって、TiAlCN層中に存在する微粒六方晶結晶粒の面積割合は、5面積%以下であることが好ましく、また、該微粒六方晶結晶粒の平均粒径Rは0.01〜0.3μmとすることが好ましい。
なお、NaCl型の面心立方構造を有する結晶粒の粒界に存在する六方晶構造の微粒結晶粒は、透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定することができ、また、六方晶構造の微粒結晶粒の平均粒子径は、粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出することによって求めることができる。
Fine hexagonal grains present in the TiAlCN layer:
In the TiAlCN layer of the present invention, fine crystal grains having a hexagonal structure can be contained at the grain boundaries of crystal grains having a NaCl-type face-centered cubic structure.
The presence of fine hexagonal crystals at the grain boundaries of the crystal grains having a NaCl-type face-centered cubic structure with excellent hardness suppresses the grain boundary slip and improves the toughness of the TiAlCN layer. However, when the area ratio of the hexagonal structure fine crystal grains exceeds 5 area%, the hardness is relatively lowered, which is not preferable, and the average particle size R of the hexagonal structure fine crystal grains is less than 0.01 μm. If there is, the effect of suppressing grain boundary slip is not sufficient, while if it exceeds 0.3 μm, the strain in the layer becomes large and the hardness decreases.
Therefore, the area ratio of the fine hexagonal crystal grains existing in the TiAlCN layer is preferably 5 area% or less, and the average particle size R of the fine hexagonal crystal grains is 0.01 to 0.3 μm. It is preferable to do so.
The hexagonal fine grain crystals existing at the grain boundaries of the NaCl-type surface-centered cubic structure can be identified by analyzing the electron beam diffraction pattern using a transmission electron microscope. Further, the average particle size of the fine crystal grains having a hexagonal structure is determined by measuring the particle size of the particles existing within the measurement range of 1 μm × 1 μm including the grain boundary and calculating the average value thereof. Can be done.

下部層および上部層:
本発明のTiAlCN層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層であって、該上部層の合計平均層厚が1〜25μmである上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower and upper layers:
The TiAlCN layer of the present invention exerts a sufficient effect by itself, but one or more Ti of the carbide layer, the nitride layer, the carbonitride layer, the carbonic acid oxide layer and the carbonic acid nitrogen oxide layer of Ti. When a lower layer composed of a compound layer and having a total average layer thickness of 0.1 to 20 μm is provided, and / or an upper layer including at least an aluminum oxide layer, the total average layer thickness of the upper layer is 1. When the upper layers having a thickness of about 25 μm are provided, more excellent characteristics can be created in combination with the effects of these layers.
When a lower layer composed of one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbon dioxide oxide layer of Ti is provided, the total average layer of the lower layers is provided. If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur.
Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. ..

本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層が、所定の組成のTiAlCN層を少なくとも含み、該TiAlCN層にはNaCl型の面心立方構造を有する結晶粒が存在し、また、NaCl型の面心立方構造を有する結晶粒内には、TiとAlの組成変化(好ましくは、周期的な組成変化)が存在し、さらに、該TiAlCN層の平均層厚Lavgを、その層厚方向に[Lavg]+2分割した各区間におけるAlの平均含有割合を求めたとき、工具基体側の区間に比して、硬質被覆層表面側の区間ほど、Alの平均含有割合が高くなるため、結晶粒に歪が生じて硬さが向上し、また、周期的な組成変化とAlの含有割合の傾斜構造により、クラックの伝播・進展が抑制され、耐チッピング性、耐剥離性、耐摩耗性が向上する。
したがって、上記の硬質被覆層を備える本発明の被覆工具は、鋳鉄等の高速断続切削等に供した場合であっても、層間の密着強度に優れ、チッピング、剥離等の異常損傷を発生することなく、長期の使用に亘ってすぐれた耐摩耗性を発揮するのである。
According to the present invention, in a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate, the hard coating layer contains at least a TiAlCN layer having a predetermined composition, and the TiAlCN layer has a NaCl-type face-centered cubic structure. There are crystal grains having, and there is a composition change of Ti and Al (preferably a periodic composition change) in the crystal grain having a NaCl-type face-centered cubic structure, and further, the TiAlCN layer When the average content ratio of Al in each section obtained by dividing the average layer thickness Lavg into [ Lavg ] + 2 in the layer thickness direction, the section on the hard coating layer surface side is higher than the section on the tool substrate side. Since the average Al content ratio is high, the crystal grains are distorted and the hardness is improved, and the periodic composition change and the inclined structure of the Al content ratio suppress the propagation and propagation of cracks. Chipping resistance, peeling resistance, and abrasion resistance are improved.
Therefore, the coating tool of the present invention provided with the above-mentioned hard coating layer has excellent adhesion strength between layers even when subjected to high-speed intermittent cutting of cast iron or the like, and causes abnormal damage such as chipping and peeling. It exhibits excellent wear resistance over a long period of use.

本発明のTiAlCN層におけるTiとAlの周期的な組成変化の一つの態様を示す模式図であり、硬質被覆層表面側ほど、Alの平均含有割合が相対的に多くなっていることを示す。また、図中の矢印の方向が、各結晶粒におけるTiとAlの周期的な組成変化の周期が最小になる方向を表す。It is a schematic diagram which shows one aspect of the periodic composition change of Ti and Al in the TiAlCN layer of this invention, and shows that the average content ratio of Al is relatively large toward the surface side of a hard coating layer. The direction of the arrow in the figure indicates the direction in which the period of periodic composition change of Ti and Al in each crystal grain is minimized. 図1に示す本発明のTiAlCN層におけるTiとAlの周期的な組成変化の一つの態様をグラフ化した模式図であり、硬質被覆層表面側ほど、Alの平均含有割合が相対的に多くなっていることを示す。It is a schematic diagram which graphed one aspect of the periodic composition change of Ti and Al in the TiAlCN layer of this invention shown in FIG. 1, and the average content ratio of Al becomes relatively large toward the surface side of a hard coating layer. Indicates that 本発明のTiAlCN層におけるTiとAlの周期的な組成変化の別の態様を示す模式図であり、硬質被覆層表面側ほど、Alの平均含有割合が相対的に多くなっていることを示す。It is a schematic diagram which shows another aspect of the periodic composition change of Ti and Al in the TiAlCN layer of this invention, and shows that the average content ratio of Al is relatively large toward the surface side of a hard coating layer. 本発明のTiAlCN層におけるTiとAlの周期的な組成変化の一つの態様を示す模式図であり、硬質被覆層表面側ほど、Alの平均含有割合が相対的に多くなるとともに、組成変化の周期が短くなっていることを示す。It is a schematic diagram which shows one aspect of the periodic composition change of Ti and Al in the TiAlCN layer of this invention, and the average content ratio of Al becomes relatively large toward the surface side of a hard coating layer, and the period of a composition change. Indicates that is shortened. 図4に示す本発明のTiAlCN層におけるTiとAlの周期的な組成変化の別の態様をグラフ化した模式図であり、硬質被覆層表面側ほど、Alの平均含有割合が相対的に多くなるとともに、組成変化の周期が短くなっていることを示す。It is a schematic diagram which graphed another aspect of the periodic composition change of Ti and Al in the TiAlCN layer of this invention shown in FIG. 4, and the average content ratio of Al becomes relatively large toward the surface side of a hard coating layer. At the same time, it is shown that the cycle of composition change is shortened.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、以下の実施例では、工具基体として、炭化タングステン基超硬合金(以下、「WC基超硬合金」で示す。)あるいは炭窒化チタン基サーメット(以下、「TiCN基サーメット」で示す。)を用いた場合について説明するが、立方晶窒化ホウ素基超高圧焼結体を工具基体として用いた場合も同様である。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
In the following examples, the tool base is a tungsten carbide-based cemented carbide (hereinafter referred to as “WC-based cemented carbide”) or a titanium nitride-based cermet (hereinafter referred to as “TiCN-based cermet”). The case where the cubic boron nitride cemented carbide is used as the tool substrate is also the same.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was prepared.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、表4、表5に示される形成条件A〜Jにより、AlCl/TiClの比の値を逐次的に増加させながら、また、ガスの供給時間や供給量を調整することによって、表9に示される本発明被覆工具1〜16を製造した。
つまり、表4、表5に示される形成条件A〜Hにしたがい、NHとHからなるガス群Aと、TiCl、AlCl、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0〜5.0%、H:50〜65%、ガス群BとしてAlCl:0.6〜1.0%、TiCl:0.07〜0.6%、N:0.0〜12.0%、C:0〜0.5%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.10〜0.14秒、ガス群Aの供給とガス群Bの供給の位相差0.04〜0.09秒として、所定時間、熱CVD法を行い、表9に示されるTiAlCN層を成膜することにより本発明被覆工具1〜16を製造した。
なお、本発明被覆工具1〜3、9〜11については、それぞれ、表3に示される形成条件で、表8に示される下部層、上部層を形成した。
Next, a chemical vapor deposition apparatus was used on the surfaces of these tool substrates A to D, and the value of the ratio of AlCl 3 / TiCl 4 was sequentially increased according to the formation conditions A to J shown in Tables 4 and 5. However, by adjusting the gas supply time and the supply amount, the covering tools 1 to 16 of the present invention shown in Table 9 were manufactured.
That is, according to the formation conditions A to H shown in Tables 4 and 5, the gas group A consisting of NH 3 and H 2 and the gas group consisting of TiCl 4 , AlCl 3 , N 2 , C 2 H 4 and H 2 As a gas supply method for B and each gas, the reaction gas composition (volume% of the total of the gas group A and the gas group B) was used as the gas group A, and NH 3 : 2.0 to 5.0%, H 2 : 50 to 65%, AlCl 3 : 0.6 to 1.0% as gas group B, TiCl 4 : 0.07 to 0.6%, N 2 : 0.0 to 12.0%, C 2 H 4 : 0 to 0.5%, H 2 : Residual, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0. The thermal CVD method was performed for a predetermined time with a phase difference of 0.04 to 0.09 seconds between the supply of the gas group A and the supply of the gas group B for 10 to 0.14 seconds to form the TiAlCN layer shown in Table 9. By doing so, the covering tools 1 to 16 of the present invention were manufactured.
For the covering tools 1 to 3 and 9 to 11 of the present invention, the lower layer and the upper layer shown in Table 8 were formed under the formation conditions shown in Table 3, respectively.

また、比較の目的で、工具基体A〜Dの表面に、表6および表7に示される比較成膜工程の条件で、本発明被覆工具1〜16と同様に、少なくともTiAlCN層を含む硬質被覆層を蒸着形成し比較例被覆工具1〜10を製造した。
但し、比較例被覆工具2、7、10は、TiAlCN層の成膜工程中に、工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成した。
なお、本発明被覆工具と同様に、比較例被覆工具1〜3、6〜8については、表3に示される形成条件で、表8に示される下部層、上部層を形成した。
Further, for the purpose of comparison, the surfaces of the tool substrates A to D are hard coated with at least a TiAlCN layer under the conditions of the comparative film forming process shown in Tables 6 and 7, as in the coating tools 1 to 16 of the present invention. Layers were vapor-deposited to produce Comparative Examples Covering Tools 1-10.
However, in Comparative Examples Coating Tools 2, 7 and 10, a hard coating layer was formed so that the reaction gas composition on the surface of the tool substrate did not change with time during the film forming process of the TiAlCN layer.
Similar to the covering tool of the present invention, with respect to the covering tools 1 to 3 and 6 to 8 of the comparative examples, the lower layer and the upper layer shown in Table 8 were formed under the formation conditions shown in Table 3.

本発明被覆工具1〜16、比較例被覆工具1〜10の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡あるいは透過型電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表9および表10に示される目標層厚と実質的に同じ平均層厚を示した。また、エネルギー分散型X線分光法(EDS)を用いて、断面側から線分析を行うことによって、TiAlCN層の平均層厚をLavg(μm)とした場合、該TiAlCN層の平均層厚Lavg(μm)を層厚方向に[Lavg]+2分割した時の各区間におけるAlの含有割合の平均値を求めた。分割した各区間におけるAlの含有割合は、工具基体表面と垂直な方向に少なくとも10本以上の線分析を行い、該測定値の平均値としてそれぞれ分割した区間毎に求めた。また、Cの平均含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YavgはTiAlCN層についての深さ方向の平均値を示す。ただし、Cの平均含有割合Yavgには、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるCの含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるCの含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。 The cross section of each constituent layer of the covering tools 1 to 16 of the present invention and the covering tools 1 to 10 in the direction perpendicular to the tool substrate was measured using a scanning electron microscope or a transmission electron microscope, and 5 in the observation field. When the layer thickness of the points was measured and averaged to obtain the average layer thickness, the average layer thickness was substantially the same as the target layer thickness shown in Tables 9 and 10. Further, when the average layer thickness of the TiAlCN layer is Lavg (μm) by performing line analysis from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS), the average layer thickness L of the TiAlCN layer is L. The average value of the Al content ratio in each section when avg (μm) was divided into [ Lavg ] + 2 in the layer thickness direction was obtained. The Al content ratio in each of the divided sections was determined for each divided section as an average value of the measured values by performing line analysis of at least 10 lines in the direction perpendicular to the surface of the tool substrate. Moreover, the average content ratio Yavg of C was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). An ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration of the component released by the sputtering action was measured in the depth direction. The average content ratio Yavg of C indicates the average value in the depth direction for the TiAlCN layer. However, the average C content ratio Yavg excludes the unavoidable C content ratio contained even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of C contained in the TiAlCN layer when the supply amount of C 2 H 4 is set to 0 is obtained as the unavoidable C content ratio, and C 2 H 4 is intentionally supplied. the value obtained by subtracting the content of the unavoidable C content from the ratio (atomic ratio) of C contained in TiAlCN layer obtained when calculated as Y avg.

また、透過型電子顕微鏡を用いて、加速電圧200kVの条件においてTiAlCN層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、工具基体表面に垂直な縦断面について面分析を行うことによって、前記立方晶構造を有する結晶粒内に、TiとAlの周期的な組成変化が存在するか否かを確認した。
表9、表10にその結果を示す。
また、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合を次のようにして測定した。
透過型電子顕微鏡を用いて、1μm×1μmの像におけるTiとAlの周期的な組成変化に対応する画像のコントラストの変化、あるいはエネルギー分散型X線分光法(EDS)によって確認されるTiとAlの周期的な組成変化を有する結晶粒の面積をそれぞれ算出し、前記1μm×1μmの観察領域に占める面積割合を少なくとも10視野で求め、その平均値として算出し、表9、表10に示す。
さらに、上記周期的な組成変化の方向について、工具基体表面に垂直な方向とのなす角度を次のようにして測定した。
透過型電子顕微鏡を用いて、前記NaCl型の面心立方構造を有する結晶粒内における工具基体表面と垂直な任意の断面から任意の1μm×1μmの領域において観察を行い、TiとAlの周期的な組成変化が存在し、前記断面におけるTiとAlの周期的な組成変化の周期が最小になる方向と工具基体表面に垂直な方向とのなす角を測定することにより、求めた。
そして、測定された「周期的な組成変化の周期が最小になる方向と工具基体表面に垂直な方向とのなす角」のうちで、最小の角度を、周期的組成変化の方向(度)として、この周期的な組成変化の方向が30度以内であるかを判定した。
この周期的な組成変化の方向が30度以内である場合を「有」、30度を超える場合を「無」として表9、表10に示す。
In addition, a transmission electron microscope was used to observe a minute region of the TiAlCN layer under the condition of an acceleration voltage of 200 kV, and energy dispersive X-ray spectroscopy (EDS) was used to view a vertical cross section perpendicular to the surface of the tool substrate. By performing the analysis, it was confirmed whether or not there was a periodic compositional change of Ti and Al in the crystal grains having the cubic structure.
The results are shown in Tables 9 and 10.
Further, the ratio of the crystal grains having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al to the area of the composite nitride or composite carbonitride layer was measured as follows. ..
Changes in image contrast corresponding to periodic composition changes of Ti and Al in a 1 μm × 1 μm image using a transmission electron microscope, or Ti and Al confirmed by energy dispersive X-ray spectroscopy (EDS). The areas of the crystal grains having a periodic composition change of 1 are calculated, the area ratio to the observation area of 1 μm × 1 μm is obtained in at least 10 visual fields, and the average value is calculated and shown in Tables 9 and 10.
Further, regarding the direction of the periodic composition change, the angle formed by the direction perpendicular to the surface of the tool substrate was measured as follows.
Using a transmission electron microscope, observation is performed in an arbitrary 1 μm × 1 μm region from an arbitrary cross section perpendicular to the surface of the tool substrate in the crystal grain having the NaCl type face-centered cubic structure, and Ti and Al are periodically observed. It was determined by measuring the angle between the direction in which the periodic composition change of Ti and Al in the cross section is minimized and the direction perpendicular to the surface of the tool substrate.
Then, the smallest angle among the measured "angles formed by the direction in which the period of the periodic composition change is minimized and the direction perpendicular to the surface of the tool substrate" is set as the direction (degree) of the periodic composition change. , It was determined whether the direction of this periodic composition change was within 30 degrees.
Tables 9 and 10 show the case where the direction of the periodic composition change is within 30 degrees as “yes” and the case where the direction exceeds 30 degrees as “no”.

また、本発明被覆工具1〜16の周期的組成変化が形成されているTiAlCN結晶粒について、TiAlCN層の平均層厚をLavg(μm)とした場合に、前記TiAlCN層をその層厚方向に[Lavg]+2分割し、分割された各区間(例えば、m分割された区間1,区間2,・・区間m。但し、区間1が工具基体側であり、区間mが硬質被覆層の表面側である。)における層厚方向のAlの含有割合Xを測定し、各区間の層厚方向中央位置におけるAlの含有割合を該区間のAlの平均含有割合(例えば、区間1においてはX1,区間2においてはX2,・・区間mにおいてはXm)とし、X1≦X2≦・・≦XmかつX1<Xmを満たすかを確認した。X1≦X2≦・・≦XmかつX1<Xmを満たすかの判定結果とX1とXmの測定結果について表9、表10に示す。 Further, the TiAlCN grains periodic composition variation of the present invention coated tool 1 to 16 are formed, the average layer thickness of TiAlCN layer when the L avg ([mu] m), the TiAlCN layer in its thickness direction [ Lavg ] +2 divided, each divided section (for example, m divided section 1, section 2, ... Section m. However, section 1 is on the tool substrate side, and section m is the surface of the hard coating layer. The Al content ratio X in the layer thickness direction on the side) is measured, and the Al content ratio at the center position in the layer thickness direction of each section is the average Al content ratio of the section (for example, X1 in section 1). It was set to X2 in the section 2 and Xm in the section m), and it was confirmed whether X1 ≦ X2 ≦ ・ ・ ≦ Xm and X1 <Xm were satisfied. Tables 9 and 10 show the determination results of whether X1 ≦ X2 ≦ ・ ・ ≦ Xm and X1 <Xm are satisfied, and the measurement results of X1 and Xm.

また、前記の区間1〜区間mの結晶粒について、透過型電子顕微鏡を用いた微小領域の観察と、エネルギー分散型X線分光法(EDS)を用いた断面側からの面分析により、各区間(区間1,区間2,・・区間m)におけるTiとAlの組成変化の周期Pを求め、各区間の組成変化の平均周期(例えば、区間1、区間2、・・区間mにおける平均周期は、それぞれ、P1、P2、・・Pm)を求め、P1≧P2≧・・≧PmかつP1>Pmを満たすかを確認した。
なお、各区間(区間1、区間2、・・区間m)における平均周期P1、P2、・・Pmの測定は、工具基体表面と垂直な方向に少なくとも10本以上の線分析を行い、該測定値の平均値としてそれぞれ分割した区間毎に求める。P1≧P2≧・・≧PmかつP1>Pmを満たすかの判定結果とP1、Pmの測定結果を表9、表10に示す。
In addition, for the crystal grains in the sections 1 to m, each section was observed by observing a minute region using a transmission electron microscope and surface analysis from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS). The period P of the composition change of Ti and Al in (section 1, section 2, ... Section m) is obtained, and the average period of the composition change of each section (for example, section 1, section 2, ... Section m is the average period. , P1, P2, ··· Pm), respectively, and it was confirmed whether P1 ≧ P2 ≧ ··· ≧ Pm and P1> Pm were satisfied.
The average periods P1, P2, ... Pm in each section (section 1, section 2, ... Section m) are measured by performing at least 10 line analyzes in the direction perpendicular to the surface of the tool substrate. It is calculated for each divided section as the average value of the values. Tables 9 and 10 show the determination result of whether P1 ≧ P2 ≧ ・ ・ ≧ Pm and P1> Pm are satisfied, and the measurement results of P1 and Pm.

さらに、周期的な組成変化におけるAlの含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は、以下の測定手法で求めた。
工具基体表面の周期的な組成変化の方向に沿ってEDSによる線分析を少なくとも10本以上の線について行い、TiとAlの周期的な組成変化の隣接する極大値Xmaxと極小値Xminのそれぞれの差Δxを求めた。表9、表10に、Δxの最大値を示す。
Further, the maximum value of the difference Δx between the adjacent maximum value Xmax and the minimum value Xmin of the Al content ratio X in the periodic composition change was determined by the following measurement method.
Line analysis by EDS was performed on at least 10 lines along the direction of the periodic composition change on the surface of the tool substrate, and the adjacent maximum values Xmax and minimum values Xmin of the periodic composition changes of Ti and Al were performed, respectively. the difference Δx required meta. Tables 9 and 10 show the maximum value of Δx.

また、前記TiAlCN層について、透過型電子顕微鏡を用いて複数視野に亘って観察し、NaCl型の面心立方構造を有する結晶粒の粒界部に六方晶構造の微粒結晶粒が存在する面積割合および六方晶構造の微粒結晶粒の平均粒径Rを測定した。
なお、粒界に存在する微粒六方晶の同定は透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定した。微粒六方晶の平均粒子径は粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、微粒六方晶の総面積を算出した値から面積割合を求めた。また、粒径は六方晶と同定した粒に対して外接円を作成し、その外接円の半径を求め、その平均値を粒径とした。
表9、表10に得られた結果を示す。
Further, the TiAlCN layer was observed over a plurality of visual fields using a transmission electron microscope, and the area ratio in which the hexagonal fine crystal grains were present at the grain boundaries of the crystal grains having a NaCl type face-centered cubic structure. And the average particle size R of the fine crystal grains having a hexagonal structure was measured.
The fine hexagonal crystals present at the grain boundaries were identified by analyzing the electron diffraction pattern using a transmission electron microscope. The average particle size of the fine hexagonal crystals was measured for the particles existing within the measurement range of 1 μm × 1 μm including the grain boundaries, and the area ratio was obtained from the calculated value of the total area of the fine hexagonal crystals. For the particle size, a circumscribed circle was created for the grains identified as hexagonal, the radius of the circumscribed circle was obtained, and the average value was taken as the particle size.
The results obtained in Tables 9 and 10 are shown.








つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜8、比較例被覆工具1〜5について、以下に示す切削条件Aで、鋳鉄の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
≪切削条件A≫
カッタ径: 125 mm、
被削材: JIS・FCD700幅100mm、長さ400mmのブロック材、
回転速度: 891 min−1
切削速度: 400 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/刃、
切削時間: 8分、
(通常の切削速度は、200m/min)、
Next, the covering tools 1 to 8 of the present invention and the covering tools 1 to 5 of the comparative examples are described below in a state where all of the various covering tools are clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. Under the cutting condition A shown in (1), a dry high-speed face milling cutter, which is a kind of high-speed intermittent cutting of cast iron, and a center-cut cutting process test were carried out, and the flank wear width of the cutting edge was measured.
≪Cutting condition A≫
Cutter diameter: 125 mm,
Work material: JIS / FCD700 block material with a width of 100 mm and a length of 400 mm,
Rotation speed: 891 min -1 ,
Cutting speed: 400 m / min,
Notch: 2.0 mm,
Single blade feed amount: 0.2 mm / blade,
Cutting time: 8 minutes,
(Normal cutting speed is 200m / min),

また、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具9〜16、比較例被覆工具6〜10について、以下に示す切削条件Bで、鋳鉄の乾式高速断続切削試験を実施し、切刃の逃げ面摩耗幅を測定した。
≪切削条件B≫
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300 m/min、
切り込み:2.0 mm、
送り:0.2 mm/rev、
切削時間:5 分、
(通常の切削速度は、220m/min)、
表11、表12に、前記切削試験A、切削試験Bの結果を示す。
Further, with the various covering tools screwed to the tip of the tool steel cutting tool with a fixing jig, the covering tools 9 to 16 of the present invention and the covering tools 6 to 10 of the comparative example are cut as shown below. Under condition B, a dry high-speed intermittent cutting test of cast iron was carried out, and the flank wear width of the cutting edge was measured.
≪Cutting condition B≫
Work material: JIS / FCD700 round bar with 4 vertical grooves at equal intervals in the length direction,
Cutting speed: 300 m / min,
Notch: 2.0 mm,
Feed: 0.2 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Tables 11 and 12 show the results of the cutting test A and the cutting test B.


表11、表12に示される結果から、本発明の被覆工具は、硬質被覆層の密着性、耐チッピング性、耐剥離性にすぐれ、切れ刃に断続的・衝撃的な高負荷が作用する高速断続切削加工に用いた場合でも、チッピング、剥離の発生を抑制し、その結果、長期の使用に亘ってすぐれた耐摩耗性が発揮される。 From the results shown in Tables 11 and 12, the coating tool of the present invention has excellent adhesion, chipping resistance, and peeling resistance of the hard coating layer, and a high speed in which an intermittent and shocking high load acts on the cutting edge. Even when used for intermittent cutting, chipping and peeling are suppressed, and as a result, excellent wear resistance is exhibited over a long period of use.

これに対して、硬質被覆層を構成するAlTiCN層に周期的な組成変化がない比較例の被覆工具、あるいは、層厚方向に測定した各区間におけるAlの含有割合が本発明の規定を満たさない比較例の被覆工具は、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、剥離等の発生により短時間で寿命にいたることが明らかである。 On the other hand, the coating tool of the comparative example in which the AlTiCN layer constituting the hard coating layer does not have a periodic composition change, or the Al content ratio in each section measured in the layer thickness direction does not satisfy the provisions of the present invention. The covering tool of the comparative example has a short life due to chipping, peeling, etc. when it is used for high-speed intermittent cutting in which a high heat is generated and an intermittent / shocking high load acts on the cutting edge. Is clear.

前述のように、本発明の被覆工具は、炭素鋼、合金鋼、鋳鉄等の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

As described above, the covering tool of the present invention can be used not only for high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., but also as a covering tool for various work materials, and can be used for a long period of time. Since it exhibits excellent chipping resistance and abrasion resistance, it can sufficiently satisfactorily cope with high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction.

Claims (8)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層は、TiとAlの周期的な組成変化が存在し、組成変化の平均周期が少なくとも1nm以上であるNaCl型の面心立方構造を有する結晶粒を含み、
(d)前記TiとAlの複合窒化物または複合炭窒化物層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表し、平均層厚をLavg(μm)とした場合、その層厚方向に[Lavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合を求めたとき、各区間のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)は、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(e)前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間におけるAlのTiとAlの合量に占める平均含有割合を求めたとき、工具基体側の区間に比して、硬質被覆層表面側の区間のAlのTiとAlの合量に占める平均含有割合が単調増加し、最も工具基体側の区間のAlのTiとAlの合量に占める平均含有割合よりも最も硬質被覆層表面側の区間におけるAlのTiとAlの合量に占める平均含有割合の方が大きい値であり、
(f)前記周期的に変化するAlのTiとAlの合量に占める含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は0.01〜0.1であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm.
(B) The Ti and Al composite nitride or composite carbonitride layer contains at least a phase of the composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) the composite nitride of Ti and Al or composite carbonitride layer, Ti and periodic composition variation of Al is present, the average period of the compositional change is Ru der least 1nm or more NaCl type face-centered cubic Contains crystal grains with structure
(D) The Ti and Al composite nitride or composite carbonitride layer has an average composition thereof.
Composition formula: (Ti 1-X Al X ) ( CY N 1-Y )
When the average layer thickness is Lavg (μm), the average content ratio of Al in the total amount of Ti and Al in each section divided into [ Lavg ] + 2 in the layer thickness direction is calculated. The average content ratio X avg of Al in the total amount of Ti and Al in the section and the average content ratio Y avg of C and N total amount of C (however, both X avg and Y avg are atomic ratios) are , 0.60 ≤ X avg ≤ 0.95, 0 ≤ Y avg ≤ 0.005,
(E) The average layer thickness Lavg (μm) of the Ti and Al composite nitride or composite carbonitride layer is divided into [ Lavg ] + 2 in the layer thickness direction, and the combination of Al Ti and Al in each section. When the average content ratio in the amount was calculated, the average content ratio of Al in the section on the surface side of the hard coating layer in the total amount of Ti and Al increased monotonically compared to the section on the tool substrate side, and the most tool substrate. the larger the value der towards the average content percentage of the total amount of Ti and Al of Al in most hard layer surface of the segment than the average content percentage of the total amount of Ti and Al of Al side section is,
(F) the maximum value of the difference Δx between adjacent local maximum values Xmax and minimum value Xmin of the content X occupying the total amount of Ti and Al of the periodically varying Al is 0.01-0.1 der Rukoto A surface coating cutting tool characterized by.
前記複合窒化物または複合炭窒化物層を工具基体の表面と垂直な縦断面から分析した場合、前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒が、前記複合窒化物または複合炭窒化物層の面積に占める割合は、40面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 When the composite nitride or composite carbonitride layer is analyzed from a vertical cross section perpendicular to the surface of the tool substrate, the crystal grains having a NaCl-type face-centered cubic structure having a periodic composition change of Ti and Al are found. The surface-coated cutting tool according to claim 1, wherein the ratio of the composite nitride or composite carbonitride layer to the area is 40 area% or more. 前記TiとAlの周期的な組成変化の周期が最小になる方向と、工具基体表面に垂直な方向とのなす角が30度以内であるようなNaCl型の面心立方構造を有する結晶粒が存在することを特徴とする請求項1または2に記載の表面被覆切削工具。 Crystal grains having a NaCl-type face-centered cubic structure such that the angle between the direction in which the periodic composition change period of Ti and Al is minimized and the direction perpendicular to the surface of the tool substrate is within 30 degrees. The surface-coated cutting tool according to claim 1 or 2, characterized in that it exists. 前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間における前記TiとAlの周期的な組成変化の平均周期を求めたとき、工具基体側の区間に比して硬質被覆層表面側の区間におけるTiとAlの組成変化の平均周期が短くなる請求項1乃至3のいずれか一項に記載の表面被覆切削工具。 Periodic composition change of Ti and Al in each section in which the average layer thickness Lavg (μm) of the composite nitride or composite carbonitride layer of Ti and Al is divided into [ Lavg ] + 2 in the layer thickness direction. The item according to any one of claims 1 to 3, wherein the average period of the composition change of Ti and Al in the section on the surface side of the hard coating layer is shorter than that on the section on the tool substrate side. Surface coating cutting tool. 前記TiとAlの複合窒化物または複合炭窒化物層の平均層厚Lavg(μm)を、その層厚方向に[Lavg]+2分割した各区間における前記TiとAlの周期的な組成変化を有するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化の周期が最小になる方向について測定した各区間のTiとAlの周期的な組成変化の平均周期は1〜20nmであり、かつ、周期的に変化するAlのTiとAlの合量に占める含有割合Xの隣接する極大値Xmaxと極小値Xminの差Δxの最大値は0.01〜0.1であることを特徴とする請求項1乃至4のいずれか一項に記載の表面被覆切削工具。 Periodic composition change of Ti and Al in each section in which the average layer thickness Lavg (μm) of the composite nitride or composite carbonic nitride layer of Ti and Al is divided into [ Lavg ] + 2 in the layer thickness direction. In a crystal grain having a NaCl-type face-centered cubic structure, the average period of the periodic composition change of Ti and Al in each section measured in the direction in which the period of the periodic composition change of Ti and Al is minimized is The maximum value of the difference Δx between the adjacent maximum value Xmax and the minimum value Xmin of the content ratio X in the total amount of Ti and Al of Al which is 1 to 20 nm and changes periodically is 0.01 to 0.1. The surface-coated cutting tool according to any one of claims 1 to 4, wherein the surface-coated cutting tool is characterized by the above. 前記TiとAlの複合窒化物または複合炭窒化物層を工具基体の表面と垂直な縦断面から観察した場合に、該層内のNaCl型の面心立方構造を有する個々の結晶粒の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒が前記複合窒化物または複合炭窒化物層の面積に占める割合は5面積%以下であり、該微粒結晶粒の平均粒径Rは0.01〜0.3μmであることを特徴とする請求項1乃至5のいずれか一項に記載の表面被覆切削工具。 When the Ti and Al composite nitride or composite carbonitride layer is observed from a vertical cross section perpendicular to the surface of the tool substrate, the grain boundaries of individual crystal grains having a NaCl-type face-centered cubic structure in the layer. Fine crystal grains having a hexagonal structure are present in the portion, and the ratio of the fine crystal grains to the area of the composite nitride or composite carbonitride layer is 5 area% or less, and the average grain of the fine crystal grains is 5 area% or less. The surface-coated cutting tool according to any one of claims 1 to 5, wherein the diameter R is 0.01 to 0.3 μm. 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、組成の異なるTiとAlの複合窒化物または複合炭窒化物層、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至6のいずれか一項に記載の表面被覆切削工具。 Between the tool substrate and the composite nitride or composite carbonitride layer of Ti and Al, a composite nitride or composite carbonitride layer of Ti and Al having different compositions, a carbide layer of Ti, a nitride layer, and carbonitride. 1 to claim 1, wherein there is a lower layer composed of one layer or two or more layers of a physical layer, a carbide oxide layer and a carbonitride oxide layer, and having a total average layer thickness of 0.1 to 20 μm. The surface coating cutting tool according to any one of 6. 前記TiとAlの複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で形成されていることを特徴とする請求項1乃至7のいずれか一項に記載の表面被覆切削工具。 Claims 1 to 7 are characterized in that an upper layer including at least an aluminum oxide layer is formed on the upper part of the composite nitride or composite carbonitride layer of Ti and Al with a total average layer thickness of 1 to 25 μm. The surface coating cutting tool according to any one of the above.
JP2017038028A 2017-03-01 2017-03-01 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer Active JP6796257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017038028A JP6796257B2 (en) 2017-03-01 2017-03-01 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017038028A JP6796257B2 (en) 2017-03-01 2017-03-01 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer

Publications (2)

Publication Number Publication Date
JP2018144115A JP2018144115A (en) 2018-09-20
JP6796257B2 true JP6796257B2 (en) 2020-12-09

Family

ID=63589844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038028A Active JP6796257B2 (en) 2017-03-01 2017-03-01 Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer

Country Status (1)

Country Link
JP (1) JP6796257B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198412B2 (en) * 2018-12-27 2023-01-04 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
JP6044401B2 (en) * 2012-04-20 2016-12-14 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6037113B2 (en) * 2012-11-13 2016-11-30 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6268530B2 (en) * 2013-04-01 2018-01-31 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) * 2015-01-28 2019-03-06 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) * 2015-03-13 2019-10-16 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6709536B2 (en) * 2015-05-26 2020-06-17 三菱マテリアル株式会社 Surface coated cutting tool with excellent hard coating layer and chipping resistance

Also Published As

Publication number Publication date
JP2018144115A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6905807B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP6781954B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6617917B2 (en) Surface coated cutting tool
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6796257B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP6850997B2 (en) Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2019119045A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
WO2019065682A1 (en) Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance
JP6774649B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7453616B2 (en) surface coated cutting tools
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6796257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150