JP6850997B2 - Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer - Google Patents

Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer Download PDF

Info

Publication number
JP6850997B2
JP6850997B2 JP2017128555A JP2017128555A JP6850997B2 JP 6850997 B2 JP6850997 B2 JP 6850997B2 JP 2017128555 A JP2017128555 A JP 2017128555A JP 2017128555 A JP2017128555 A JP 2017128555A JP 6850997 B2 JP6850997 B2 JP 6850997B2
Authority
JP
Japan
Prior art keywords
layer
composite
average
crystal grains
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128555A
Other languages
Japanese (ja)
Other versions
JP2019010705A (en
Inventor
光亮 柳澤
光亮 柳澤
卓也 石垣
卓也 石垣
佐藤 賢一
佐藤  賢一
翔 龍岡
翔 龍岡
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017128555A priority Critical patent/JP6850997B2/en
Publication of JP2019010705A publication Critical patent/JP2019010705A/en
Application granted granted Critical
Publication of JP6850997B2 publication Critical patent/JP6850997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層が優れた耐チッピング性、耐熱亀裂性、耐酸化性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具に関するものである。 The present invention is a high-speed intermittent cutting process in which a shocking load acts on a cutting edge while generating high heat of cast iron or the like, and the hard coating layer has excellent chipping resistance, heat crack resistance, and oxidation resistance. As a result, it relates to a surface-coated cutting tool that exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して基体ということがある)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により蒸着形成した被覆工具が知られており、これらは、優れた耐摩耗性を発揮することが知られている。
ここで、前記従来のTi−Al系の複合窒化物層を蒸着形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) -based cermet or cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. A coated tool in which a Ti—Al-based composite nitride layer is vapor-deposited by a physical vapor deposition method is known as a hard coating layer on the surface of a tool substrate (hereinafter, these may be collectively referred to as a substrate). These are known to exhibit excellent wear resistance.
Here, the conventional coated tool formed by vapor-depositing a Ti—Al-based composite nitride layer has relatively excellent wear resistance, but is liable to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、熱CVD法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層を蒸着形成するとともに、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かうにしたがって、硬質被覆層中のAl含有割合が漸次増加する組成傾斜構造を有することによって、組成に応じた(Ti1−XAl)(C1−Y)の格子定数の違いによる歪を積極的に導入する技術が開示されている。
そして、この技術によれば、例えば、(Ti1−XAl)(C1−Y)層からなる硬質被覆層を合金鋼の高速断続切削等に用いた場合に、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の表面被覆工具の使用にわたって優れた耐摩耗性が発揮されるとされている。
また、特許文献2、3、4、5、6には、TiとAlの複合窒化物もしくは複合炭窒化物層、または、TiとAlとMe(但し、Meは、Si、Zr、B、V、Crの中から選ばれる一種の元素)の複合窒化物もしくは複合炭窒化物層、または、CrとAlの複合窒化物もしくは複合炭窒化物層で構成される硬質皮膜層について、結晶粒中のNaCl型の面心立方構造を有する結晶粒の結晶方位について、電子線後方散乱回折装置を用いて縦断面方向から解析される結晶粒個々の結晶粒内平均方位差(GOS値)をある一定水準以上に導入する技術が開示されている。
そして、この技術によれば(Ti1−XAl)(C1−Y)層からなる硬質被覆層を合金鋼の高速断続切削等に用いた場合に、チッピング、欠損の発生が抑えられるとともに、長期の表面被覆工具の使用にわたって優れた耐摩耗性が発揮されるとされている。
For example, in Patent Document 1, a cubic (Ti 1-X Al X ) ( CY N 1-Y ) layer is vapor-deposited as a hard coating layer by a thermal CVD method, and the hard coating layer and a substrate are formed. By having a composition gradient structure in which the Al content ratio in the hard coating layer gradually increases from the interface side with and toward the surface layer side of the hard coating layer, the composition is adjusted (Ti 1-X Al X ) (Ti 1-X Al X). C Y N 1-Y) actively introducing technology distortion due to the difference in lattice constant is disclosed.
According to this technique, for example, when a hard coating layer composed of (Ti 1-X Al X ) ( CY N 1-Y ) layers is used for high-speed intermittent cutting of alloy steel, chipping, chipping, It is said that the occurrence of peeling and the like is suppressed, and excellent wear resistance is exhibited over a long period of use of the surface coating tool.
Further, Patent Documents 2, 3, 4, 5, and 6 describe a composite nitride or composite carbonitride layer of Ti and Al, or Ti, Al, and Me (where Me is Si, Zr, B, V). , A type of element selected from Cr) composite nitride or composite carbonitride layer, or a hard film layer composed of a Cr and Al composite nitride or composite carbonitride layer, in the crystal grains. Regarding the crystal orientation of crystal grains having a NaCl-type face-centered cubic structure, the average orientation difference (GOS value) within each crystal grain analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer is at a certain level. The technology to be introduced above is disclosed.
According to this technique, when a hard coating layer composed of (Ti 1-X Al X ) ( CY N 1-Y ) layers is used for high-speed intermittent cutting of alloy steel, chipping and chipping are suppressed. At the same time, it is said that excellent wear resistance is exhibited over a long period of use of surface coating tools.

特開2013−212575号公報Japanese Unexamined Patent Publication No. 2013-212575 特開2015−214015号公報JP-A-2015-214015 特開2016−5863号公報Japanese Unexamined Patent Publication No. 2016-5863 特開2017−80883号公報JP-A-2017-80883 特開2017−80884号公報JP-A-2017-80884 特開2017−47526号公報Japanese Unexamined Patent Publication No. 2017-47526

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、表面被覆切削工具には、チッピング、欠損、剥離等の発生を更に抑え、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1に記載された技術は、硬質被覆層を合金鋼の高速断続切削等に用いた場合における、チッピング、欠損、剥離等の発生の抑制について、格子定数の違いによる歪の積極的な導入に着目されているにすぎず、硬質皮膜層を構成する各結晶粒子の欠陥に起因する耐チッピング性、耐熱亀裂性、耐酸化性への影響については特段の考慮がなされていない。
また、特許文献2、3、4、5、6に記載された技術は、該複合窒化物もしくは複合炭窒化物層の立方晶結晶構造を有する結晶粒の結晶粒内平均方位差(GOS)に着目しているが、結晶粒内平均方位差(GOS値)は対象のピクセルから遠方のピクセルとの方位差を含んだ評価であり、隣り合うピクセル同士の方位差については特段の考慮がなされていないため、結晶粒そのものの靱性を高めた皮膜とはとはいえない面がある。
そこで、本発明は、チッピング、欠損等の異常損傷が発生しやすい鋳鉄等の高速断続切削等に供した場合であっても、より一層優れた耐チッピング性、耐熱亀裂性、耐酸化性を発揮するとともに、長期の使用にわたって優れた耐摩耗性を有する被覆工具を提供することを目的とするものである。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and surface-coated cutting tools are subject to chipping, chipping, peeling, etc. Further suppression, excellent wear resistance is required over a long period of use.
However, the technique described in Patent Document 1 positively distorts due to the difference in lattice constant in order to suppress the occurrence of chipping, chipping, peeling, etc. when the hard coating layer is used for high-speed intermittent cutting of alloy steel. No particular consideration has been given to the effects on chipping resistance, heat crack resistance, and oxidation resistance due to defects in each crystal particle constituting the hard film layer.
Further, the techniques described in Patent Documents 2, 3, 4, 5, and 6 are used to obtain the average intergranular orientation difference (GOS) of crystal grains having a cubic crystal structure of the composite nitride or composite carbonic nitride layer. Although we are paying attention, the average intergranular orientation difference (GOS value) is an evaluation that includes the orientation difference from the target pixel to the pixel far from the target pixel, and special consideration is given to the orientation difference between adjacent pixels. Therefore, it cannot be said that the film has increased toughness of the crystal grains themselves.
Therefore, the present invention exhibits even better chipping resistance, heat-resistant crack resistance, and oxidation resistance even when used for high-speed intermittent cutting of cast iron or the like, which is prone to abnormal damage such as chipping and chipping. At the same time, it is an object of the present invention to provide a covering tool having excellent wear resistance over a long period of use.

本発明者は、上述のとおり、耐チッピング性、耐熱亀裂性、耐酸化性を発揮するとともに、長期の使用にわたって優れた耐摩耗性を有する被覆工具を提供するとの観点から、少なくともTiとAlの複合窒化物層または複合炭窒化物(以下、「(Ti1−xAl)(C1−y)」で示すことがある)を含む硬質被覆層を蒸着形成した被覆工具の耐チッピング性・耐熱亀裂性、耐酸化性を向上させ、耐摩耗性の改善をはかるべく、当該硬質皮膜層の結晶粒子内の結晶方位差に起因する歪や欠陥の有無について鋭意研究を重ねた結果、次のような新規な知見を得た。 As described above, the present inventor has at least Ti and Al from the viewpoint of providing a covering tool that exhibits chipping resistance, heat crack resistance, and oxidation resistance, and also has excellent wear resistance over a long period of use. Chipping resistance of a coating tool formed by depositing a hard coating layer containing a composite nitride layer or a composite carbonitride (hereinafter sometimes referred to as "(Ti 1-x Al x ) ( Cy N 1-y)"). As a result of intensive research on the presence or absence of strain and defects due to the difference in crystal orientation in the crystal particles of the hard film layer in order to improve resistance, heat crack resistance, oxidation resistance, and wear resistance. The following new findings were obtained.

すなわち、前記(Ti1−xAl)(C1−y)のNaCl型面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面(基体表面に対する法線方向の断面)から解析し、電子線後方散乱回折による方位マッピングを測定し、各々の測定点同士の結晶方位関係を解析し、測定した結晶粒の局所方位差平均(GAM値)を求めた場合、
該結晶粒の結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒が、前記(Ti1−xAl)(C1−y)のNaCl型面心立方構造である結晶粒の中で面積割合として60%以上であるときに、
(Ti1−xAl)(C1−y)のNaCl型面心立方構造を含む硬質被覆層を有する被覆工具の耐チッピング性・耐熱亀裂性・耐酸化性は向上し、耐摩耗性の改善がなされることを見出した。
That is, the crystal orientation of the crystal grains having the NaCl-type plane-centered cubic structure of (Ti 1-x Al x ) ( Cy N 1-y) is determined in the longitudinal direction (base surface) using an electron backscatter diffraction device. Analyze from the cross section in the normal direction with respect to), measure the orientation mapping by electron backscatter diffraction, analyze the crystal orientation relationship between each measurement point, and calculate the average local orientation difference (GAM value) of the measured crystal grains. If you ask,
The crystal grains having an intra-crystal local orientation difference average (GAM value) of less than 1 degree are the NaCl-type face-centered cubic structure of (Ti 1-x Al x ) ( Cy N 1-y). When the area ratio is 60% or more in a certain crystal grain,
(Ti 1-x Al x ) ( Cy N 1-y ) improved chipping resistance, heat crack resistance, oxidation resistance, and abrasion resistance of a coating tool having a hard coating layer including a NaCl-type face-centered cubic structure. It was found that sexual improvement was made.

したがって、前記のような硬質被覆層を備えた被覆工具を、例えば、鋳鉄等の高速断続切削等に用いた場合には、より一層、チッピング、熱亀裂の発生が抑えられるとともに、長期の使用にわたって優れた耐摩耗性を発揮することができるのである。 Therefore, when a coating tool provided with the above-mentioned hard coating layer is used, for example, for high-speed intermittent cutting of cast iron or the like, chipping and thermal cracking are further suppressed, and over a long period of use. It can exhibit excellent wear resistance.

本発明は、前記知見に基づいてなされたものであり、以下のとおりのものである。
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlとの複合窒化物層または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、複合窒化物層または複合炭窒化物層のAlのTiとAlとの合量に占める平均含有割合xavgおよび複合窒化物層または複合炭窒化物層のCのCとNとの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、
(b)前記硬質被覆層は、NaCl型の面心立方構造を有する前記TiとAl複合窒化物層または複合炭窒化物の結晶粒を少なくとも含み、
(c)また、前記NaCl型の面心立方構造を有するTiとAlとの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面から解析し、電子線後方散乱回折による結晶方位マッピングを行い、各々の測定点同士の結晶方位関係を解析し、測定した結晶粒の局所方位差平均(GAM値)を求めた場合、該結晶粒の結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒が、前記NaCl型の面心立方構造を有する結晶粒の中で面積割合として60%以上存在することを特徴とする表面被覆切削工具。
(2)前記複合窒化物または複合炭窒化物層を構成する結晶粒中のNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差(GOS値)を求めた場合、該結晶粒内平均方位差(GOS値)が、1度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で50%未満かつ2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%未満であることを特徴とする前記(1)に記載の表面切削工具。
(3)前記硬質被覆層は、前記複合窒化物または複合炭窒化物について、前記縦断面方向から観察した場合に、前記複合窒化物または複合炭窒化物のNaCl型の立方晶構造を有する個々の結晶粒の平均粒子幅(W)が0.1〜2.0μm、平均アスペクト比(A)が2.0〜10.0である柱状組織を有することを特徴とする前記(1)または(2)のいずれかに記載の表面切削工具。
(4)前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒が、前記複合窒化物または複合炭窒化物層に占める面積割合が95%以上であることを特徴とする前記(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5)前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒化酸化物層のうちの1層または2層以上のTi化合物層からなる合計で0.1〜20.0μmの平均層厚を有する下部層が存在することを特徴とする前記(1)〜(4)のいずれかに記載の表面切削工具。
(6)前記硬質被覆層の外表面に少なくとも酸化アルミニウムを含む1層以上の上部層が合計で1.0〜25.0μmの平均膜厚で形成されていることを特徴とする前記(1)〜(5)のいずれかに記載の表面切削工具。」
The present invention has been made based on the above findings, and is as follows.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. In the tool
(A) The hard coating layer contains at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm, and has a composition formula: (Ti 1-x Al x ). When represented by (Cy N 1-y ), the average content ratio of Al in the total amount of Ti and Al of the composite nitride layer or composite carbonitride layer x avg and the composite nitride layer or composite carbonitride The average content ratio y avg (where x avg and y avg are both atomic ratios) in the total amount of C and N in the layer C is 0.60 ≦ x avg ≦ 0.95 and 0 ≦ y, respectively. Satisfying avg ≤ 0.005,
(B) The hard coating layer contains at least crystal grains of the Ti and Al composite nitride layer or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) Further, the crystal orientation of the crystal grains of the composite nitride or composite carbon nitride of Ti and Al having the NaCl-type face-centered cubic structure is analyzed from the longitudinal cross section using an electron beam backscattering diffractometer. Then, when crystal orientation mapping is performed by electron beam backward scattering diffraction, the crystal orientation relationship between each measurement point is analyzed, and the local orientation difference average (GAM value) of the measured crystal grains is obtained, the crystals of the crystal grains are obtained. A surface coating characterized in that crystal grains having an intra-grain local orientation difference average (GAM value) of less than 1 degree are present as an area ratio of 60% or more among the crystal grains having a NaCl-type face-centered cubic structure. Cutting tools.
(2) The crystal orientation of the crystal grains having a NaCl-type plane-centered cubic structure in the crystal grains constituting the composite nitride or composite carbon nitride layer is analyzed from the longitudinal cross-sectional direction using an electron beam rear scattering diffractometer. Then, when the average intragranular orientation difference (GOS value) of each crystal grain is obtained, the crystal grain having an average intragranular orientation difference (GOS value) of 1 degree or more is a composite nitride or a composite carbonic nitride. The surface cutting tool according to (1) above, wherein the crystal grains exhibiting less than 50% in the area ratio of the layer and 2 degrees or more are less than 20% in the area ratio of the composite nitride or composite carbon nitride layer. ..
(3) The hard coating layer is an individual having a NaCl-type cubic structure of the composite nitride or the composite carbonitride when observed from the longitudinal cross-sectional direction of the composite nitride or the composite carbonitride. The above (1) or (2), wherein the crystal grains have a columnar structure having an average particle width (W) of 0.1 to 2.0 μm and an average aspect ratio (A) of 2.0 to 10.0. ) The surface cutting tool described in any of.
(4) In the hard coating layer, the area ratio of the crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure to the composite nitride or composite carbonitride layer is 95. The surface-coated cutting tool according to any one of (1) to (3) above, wherein the content is% or more.
(5) One or two or more Ti compounds among a carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbonitride oxide layer of Ti between the tool substrate and the hard coating layer. The surface cutting tool according to any one of (1) to (4) above, wherein a lower layer having an average layer thickness of 0.1 to 20.0 μm in total is present.
(6) The above (1), wherein one or more upper layers containing at least aluminum oxide are formed on the outer surface of the hard coating layer with an average film thickness of 1.0 to 25.0 μm in total. The surface cutting tool according to any one of (5). "

本発明は、硬質被覆層における結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒の面積割合が60%以上であるため、結晶粒の靱性が向上する他、結晶粒内の欠陥が抑制され、耐チッピング性・耐熱亀裂性・耐酸化性が向上し、その結果、この硬質皮膜を有する表面切削工具は、優れた耐摩耗性を発揮し、工具として十分な寿命を有するという優れた効果を発揮する。また結晶粒内平均方位差(GOS)が1度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で50%未満または、2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%未満とすることにより、結晶粒の靱性や耐酸化性が向上し、より一層、上記効果が奏される。 In the present invention, since the area ratio of the crystal grains whose local orientation difference average (GAM value) in the crystal grains is less than 1 degree in the hard coating layer is 60% or more, the toughness of the crystal grains is improved and the inside of the crystal grains is improved. Chipping resistance, heat crack resistance, and oxidation resistance are improved, and as a result, the surface cutting tool having this hard film exhibits excellent wear resistance and has a sufficient life as a tool. It exerts an excellent effect. Further, the crystal grains having an average orientation difference (GOS) of 1 degree or more in the crystal grains are less than 50% in the area ratio of the composite nitride or the composite carbonitride layer, or the crystal grains showing 2 degrees or more are the composite nitride or the composite. By setting the area ratio of the carbonitride layer to less than 20%, the toughness and oxidation resistance of the crystal grains are improved, and the above effects are further exhibited.

本発明の表面被覆切削工具の硬質被覆層である、TiとAlとの複合窒化物層または複合炭窒化物のNaCl型面心立方構造(立方晶)を有する結晶粒の結晶粒内局所方位差平均(GAM値)の測定方法の概略説明図を示す。Local orientation difference in crystal grains having a NaCl-type face-centered cubic structure (cubic crystal) of a composite nitride layer of Ti and Al or a composite carbonitride, which is a hard coating layer of the surface coating cutting tool of the present invention. A schematic explanatory diagram of a method for measuring the average (GAM value) is shown. 本発明の表面被覆切削工具の硬質被覆層である、TiとAlとの複合窒化物層または複合炭窒化物のNaCl型面心立方構造(立方晶)を有する結晶粒の結晶粒内平均方位差(GOS値)の測定方法の概略説明図を示す。Average intragranular orientation difference of crystal grains having a NaCl-type face-centered cubic structure (cubic crystal) of a composite nitride layer of Ti and Al or a composite carbonitride, which is a hard coating layer of the surface coating cutting tool of the present invention. A schematic explanatory diagram of a method for measuring (GOS value) is shown. 本発明の表面被覆切削工具が有する硬質被覆層を構成する、TiとAlとの複合窒化物層または複合炭窒化物の断面を模式的に表した膜構成模式図である。It is a film composition schematic diagram schematically showing the cross section of the composite nitride layer of Ti and Al or the composite carbonitride which constitutes the hard coating layer of the surface coating cutting tool of the present invention. 本発明の表面被覆切削工具の硬質被覆層を構成する複合窒化物層または複合炭窒化物の断面において、立方晶構造を有する個々の結晶粒の結晶粒内局所方位差平均(GAM値)面積割合についてのヒストグラムの一例を示すものである。Local orientation difference average (GAM value) area ratio of individual crystal grains having a cubic structure in the cross section of the composite nitride layer or composite carbonitride constituting the hard coating layer of the surface coating cutting tool of the present invention. It shows an example of a histogram about. 比較例の表面被覆切削工具の硬質被覆層を構成する複合窒化物層または複合炭窒化物の断面において、立方晶構造を有する個々の結晶粒の結晶粒内局所方位差平均(GAM値)面積割合についてのヒストグラムの一例を示すものである。In the cross section of the composite nitride layer or composite carbonitride constituting the hard coating layer of the surface coating cutting tool of the comparative example, the local orientation difference average (GAM value) area ratio in the grain of each crystal grain having a cubic structure. It shows an example of a histogram about.

本発明について詳細に説明する。 The present invention will be described in detail.

硬質被覆層を構成する複合窒化物層または複合炭窒化物の平均層厚:
本発明の表面被覆切削工具が有する硬質被覆層は、化学蒸着された組成式:(Ti1−xAl)(C1−y)で表されるTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含む。この複合窒化物層または複合炭窒化物層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiとAlの複合窒化物層または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
Average layer thickness of composite nitride layer or composite carbonitride constituting the hard coating layer:
The hard coating layer of the surface coating cutting tool of the present invention is a composite nitride layer of Ti and Al represented by a chemically vapor-deposited composition formula: (Ti 1-x Al x ) ( Cy N 1-y). It contains at least a composite carbonitride layer. This composite nitride layer or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is remarkably exhibited particularly when the average layer thickness is 1.0 to 20.0 μm. .. The reason is that if the average layer thickness is less than 1.0 μm, the wear resistance over a long period of use cannot be sufficiently ensured because the average layer thickness is thin, while the average layer thickness exceeds 20.0 μm. This is because the crystal grains of the composite nitride layer of Ti and Al or the composite carbonitride layer are likely to be coarsened, and chipping is likely to occur.

硬質被覆層を構成する複合窒化物層または複合炭窒化物層の組成:
本発明の表面被覆切削工具が有する硬質被覆層を構成する複合窒化物層または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合xavgが0.60未満であると、TiとAlの複合窒化物層または複合炭窒化物層は硬さに劣るため、鋳鉄等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、Alの平均含有割合xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下するためである。
また、Cの平均含有割合yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物層または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物層または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yavgが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物層または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に損なわれるため好ましくない。
Composition of composite nitride layer or composite carbonitride layer constituting the hard coating layer:
The composite nitride layer or composite carbonitride layer constituting the hard coating layer of the surface coating cutting tool of the present invention is a combination of the average content ratio x avg and C and N of C in the total amount of Ti and Al of Al. The average content ratio y avg in the amount (however, x avg and y avg are both atomic ratios) so as to satisfy 0.60 ≤ x avg ≤ 0.95 and 0 ≤ y avg ≤ 0.005, respectively. Control.
The reason is that when the average content ratio x avg of Al is less than 0.60, the composite nitride layer or composite carbonitride layer of Ti and Al is inferior in hardness, so that it is used for high-speed intermittent cutting of cast iron or the like. In some cases, the abrasion resistance is not sufficient, while when the average Al content x avg exceeds 0.95, the Ti content is relatively reduced, resulting in embrittlement and chipping resistance. This is because it decreases.
The average content ratio y avg of C is, 0 ≦ when y is avg ≦ 0.005 range trace to improve the adhesion between the composite nitride layer or a composite carbonitride layer and the tool substrate or lower layer In addition, the improved lubricity alleviates the impact during cutting, and as a result, the fracture resistance and chipping resistance of the composite nitride layer or the composite carbonitride layer are improved. On the other hand, if the average content ratio y avg of the C component deviates from the range of 0 ≦ y avg ≦ 0.005, the toughness of the composite nitride layer or the composite carbonitride layer is lowered, so that the fracture resistance and chipping resistance are reversed. It is not preferable because it is impaired.

複合窒化物または複合炭窒化物を構成するNaCl型の立方晶構造である結晶粒個々の結晶粒内局所方位差平均(GAM値)と結晶粒内平均方位差(GOS値):
本発明において電子線後方散乱回折装置を用いて縦断面方向から0.01μm間隔で解析し、図1、2に示すように、隣接する測定点(以下、ピクセルという)P間で5度以上の方位差がある場合、そこを粒界Bと定義する。ここで、縦断面方向とは、縦断面に垂直な方向を意味する。縦断面とは、工具基体表面に垂直な工具の断面を意味する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
本発明でいう結晶粒内局所方位差平均(GAM(Grain Average Misorientation)値)とは、立方晶構造を有する結晶粒内の全ての隣接するピクセルの方位差の平均値を求めたものである(図1)。GAM値を数式で表す場合、下記式(数1)によって表現できる。ここで、mは結晶粒内のピクセル同士の境界の数を表し、αiは隣接測定点の境界iにおける方位差を表す。
また、本発明でいう結晶粒内平均方位差(GOS(Grain Orientation Spread)値)とは、立方晶構造を有する結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間での方位差を計算し、平均化したものである(図2)。GOS値を数式で表す場合、下記式(数2)によって表現できる。ここで、nは同一結晶粒内のピクセル数、同一結晶粒内の異なるピクセルにおのおの付けた番号をiおよびj(ここで 1≦i、j≦nとなる)、ピクセルiでの結晶方位とピクセルjでの結晶方位から求められる結晶方位差をαij(i≠j)と表す。
Local intra-grain orientation difference average (GAM value) and intra-grain average orientation difference (GOS value) of individual crystal grains having a NaCl-type cubic structure constituting the composite nitride or composite carbonitride:
In the present invention, an electron backscatter diffraction device is used to analyze at intervals of 0.01 μm from the longitudinal cross-sectional direction, and as shown in FIGS. 1 and 2, 5 degrees or more between adjacent measurement points (hereinafter referred to as pixels) P. If there is an orientation difference, it is defined as grain boundary B. Here, the vertical cross-sectional direction means a direction perpendicular to the vertical cross section. The vertical cross section means the cross section of the tool perpendicular to the surface of the tool substrate. Then, the region surrounded by the grain boundaries is defined as one crystal grain. However, a pixel that exists independently with all adjacent pixels and an orientation difference of 5 degrees or more is not regarded as a crystal grain, and a pixel in which two or more pixels are connected is treated as a crystal grain.
The average value of the local orientation difference in the crystal grain (GAM (Grain Average Missionation) value) referred to in the present invention is the average value of the orientation difference of all the adjacent pixels in the crystal grain having a cubic structure ( Figure 1). When expressing the GAM value by a mathematical formula, it can be expressed by the following formula (Equation 1). Here, m represents the number of boundaries between pixels in the crystal grain, and α i represents the orientation difference at the boundary i of adjacent measurement points.
Further, the average orientation difference (GOS (Grain Origination Spread) value) in a crystal grain in the present invention is defined as a pixel in a crystal grain having a cubic structure and all other pixels in the same crystal grain. The orientation difference is calculated and averaged (Fig. 2). When expressing the GOS value by a mathematical formula, it can be expressed by the following formula (Equation 2). Here, n is the number of pixels in the same crystal grain, the numbers assigned to different pixels in the same crystal grain are i and j (here, 1 ≦ i and j ≦ n), and the crystal orientation in pixel i. The crystal orientation difference obtained from the crystal orientation at pixel j is expressed as α ij (i ≠ j).

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

ここで、結晶粒内局所方位差平均(GAM値)は、電子線後方散乱回折装置を用いて縦断面方向から0.01μm間隔の解析を、幅25μm、縦は膜厚の測定範囲内での縦断面方向からの測定を任意の5視野で実施し、各視野において、複合窒化物または複合炭窒化物を構成するNaCl型の面心立方構造の結晶粒に対して、結晶粒内の隣り合うピクセル間の方位差を計算し、それを結晶粒内の隣接するピクセルの境界の数で平均化することで求められ、これをヒストグラムで整理し、1度未満を示す結晶粒がAlとTiの複合窒化物層または複合炭窒化物層のNaCl型の面心立方構造である結晶粒全体に対して面積割合で60%以上存在している(図4)とき、長期の使用にわたって優れた耐摩耗性を有する。
このように本発明の表面被覆切削工具が有するAlとTiの複合窒化物層または複合炭窒化物層を構成する結晶粒は、従来のTiAlN層を構成している結晶粒と比較して、結晶粒内で結晶方位のばらつきが小さく、すなわち、歪みが小さいため、このことが耐酸化性や結晶粒の靱性の向上に寄与していると推定される。
好ましい複合窒化物層または複合炭窒化物層の面積に対する、結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒の面積割合は70%以上である。また、より好ましい複合窒化物層または複合炭窒化物層のNaCl型の面心立方構造である結晶粒の面積に対する、結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒の面積割合は80%以上である。
また、結晶粒個々の結晶粒内平均方位差(GOS値)を求めた場合に該結晶粒内平均方位差(GOS値)が1度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で50%未満、または、2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%未満であることが好ましい。これは、該結晶粒内平均方位差(GOS値)が1度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で50%以上、または、2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%以上の被覆層は、ともに結晶粒に歪あるいは欠陥が多く入り、結晶粒の靱性向上や耐酸化性向上の効果が小さくなることがあるという理由による。
Here, the average local orientation difference (GAM value) in the crystal grains is analyzed at intervals of 0.01 μm from the longitudinal cross-sectional direction using an electron beam rear scattering diffractometer, and the width is 25 μm and the length is within the measurement range of the film thickness. Measurements from the longitudinal cross-sectional direction are performed in any of the five visual fields, and in each visual field, the NaCl-type face-centered cubic crystal grains constituting the composite nitride or the composite carbon nitride are adjacent to each other in the crystal grains. It is obtained by calculating the orientation difference between pixels and averaging it by the number of boundaries of adjacent pixels in the crystal grain, and arranging this in a histogram, and the crystal grains showing less than 1 degree are Al and Ti. Excellent wear resistance over long-term use when the composite nitride layer or composite carbon nitride layer is present in an area ratio of 60% or more with respect to the entire crystal grains having a NaCl-type face-centered cubic structure (Fig. 4). Has sex.
As described above, the crystal grains constituting the Al and Ti composite nitride layer or the composite carbonic nitride layer possessed by the surface coating cutting tool of the present invention are more crystalline than the crystal grains constituting the conventional TiAlN layer. Since the variation in crystal orientation within the grains is small, that is, the strain is small, it is presumed that this contributes to the improvement of oxidation resistance and toughness of the crystal grains.
The area ratio of the crystal grains having a local orientation difference average (GAM value) within the crystal grains of less than 1 degree to the area of the preferred composite nitride layer or composite carbonitride layer is 70% or more. Further, the crystal grains having a local orientation difference average (GAM value) within the crystal grains of less than 1 degree with respect to the area of the crystal grains having a NaCl-type face-centered cubic structure of the more preferable composite nitride layer or composite carbonitride layer. The area ratio is 80% or more.
Further, when the average intergranular orientation difference (GOS value) of each crystal grain is obtained, the crystal grains having the average intragranular orientation difference (GOS value) of 1 degree or more are composite nitrides or composite carbonitride layers. It is preferable that the area ratio of the above is less than 50%, or the crystal grains showing 2 degrees or more are less than 20% in the area ratio of the composite nitride or the composite carbonitride layer. This is because the crystal grains having an average orientation difference (GOS value) of 1 degree or more in the crystal grains are 50% or more or 2 degrees or more in the area ratio of the composite nitride or the composite carbonitride layer. A coating layer having an area ratio of 20% or more of the composite nitride or composite carbonitride layer may have many strains or defects in the crystal grains, and the effects of improving the toughness and oxidation resistance of the crystal grains may be reduced. Because of that.

NaCl型の面心立方構造を有するAlとTi複合窒化物または複合炭窒化物の面積割合:
TiとAlの複合窒化物層または複合炭窒化物層はNaCl型の面心立方構造を有する複合窒化物層または複合炭窒化物の結晶粒を含むことで優れた耐摩耗性を発揮し、前記複合窒化物または複合炭窒化物層に占める前記NaCl型の面心立方構造を有する結晶粒の面積割合が95%以上で特に優れた耐摩耗性を発揮する。
Area ratio of Al and Ti composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure:
The composite nitride layer or composite carbonitride layer of Ti and Al exhibits excellent wear resistance by containing crystal grains of the composite nitride layer or composite carbonitride having a NaCl-type face-centered cubic structure. When the area ratio of the crystal grains having the NaCl-type face-centered cubic structure to the composite nitride or composite carbonitride layer is 95% or more, particularly excellent wear resistance is exhibited.

縦断面方向から観察した場合に、複合窒化物層または複合炭窒化物のNaCl型の立方晶構造を有する個々の結晶粒の平均結晶幅Wと平均アスペクト比A:
TiとAlの複合窒化物層または複合炭窒化物層内のNaCl型の立方晶構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10となる柱状組織となるように構成することにより、靭性および耐摩耗性が向上するという前述した効果をより一層発揮させることができる。
すなわち、平均粒子幅Wを0.1〜2.0μmとしたのは、0.1μm未満では、被覆層表面に露出した原子における(Ti1−xAl)(C1−y)結晶粒界に属する原子の占める割合が相対的に大きくなることにより、被削材との反応性が増し、その結果、耐摩耗性を十分に発揮することができず、また、2.0μmを超えると硬質被覆層全体における(Ti1−xAl)(C1−y)結晶粒界に属する原子の占める割合が相対的に小さくなることにより、靭性が低下し、耐チッピング性を十分に発揮することができなくなるためである。
また、平均アスペクト比Aが2未満の場合、十分な柱状組織となっていないため、アスペクト比の小さな等軸結晶の脱落を招き、その結果、十分な耐摩耗性を発揮することができない。一方、平均アスペクト比Aが10を超えると結晶粒そのものの強度を保つことができず、かえって、耐チッピング性が低下するため好ましくない。
なお、本発明において、平均アスペクト比Aとは、走査型電子顕微鏡を用い、幅100μm、高さが硬質被覆層全体を含む範囲で硬質被覆層の縦断面観察を行った際に、工具基体表面と垂直な被覆断面側から観察し、基体表面と平行な方向の粒子幅w、工具基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。
Average crystal width W and average aspect ratio A of individual crystal grains having a NaCl-type cubic structure of a composite nitride layer or composite carbonitride when observed from the longitudinal direction.
The average particle width W of individual crystal grains having a NaCl-type cubic structure in the composite nitride layer of Ti and Al or the composite carbonitride layer is 0.1 to 2.0 μm, and the average aspect ratio A is 2 to 10. By forming the columnar structure so as to have a columnar structure, the above-mentioned effect of improving toughness and abrasion resistance can be further exhibited.
That is, the average particle width W was set to 0.1 to 2.0 μm when the average particle width W was less than 0.1 μm, (Ti 1-x Al x ) ( Cy N 1-y ) crystals in the atoms exposed on the surface of the coating layer. As the proportion of atoms belonging to the grain boundaries becomes relatively large, the reactivity with the work material increases, and as a result, the abrasion resistance cannot be sufficiently exhibited and exceeds 2.0 μm. The proportion of atoms belonging to the (Ti 1-x Al x ) ( Cy N 1-y ) grain boundaries in the entire hard coating layer is relatively small, so that the toughness is reduced and the chipping resistance is sufficient. This is because it cannot be exerted on.
Further, when the average aspect ratio A is less than 2, the columnar structure is not sufficient, which causes the equiaxed crystals having a small aspect ratio to fall off, and as a result, sufficient wear resistance cannot be exhibited. On the other hand, if the average aspect ratio A exceeds 10, the strength of the crystal grains themselves cannot be maintained, and on the contrary, the chipping resistance is lowered, which is not preferable.
In the present invention, the average aspect ratio A is defined as the surface of the tool substrate when the vertical cross section of the hard coating layer is observed in a range of 100 μm in width and 100 μm in height including the entire hard coating layer using a scanning electron microscope. Observe from the side of the coating cross section perpendicular to the surface of the coating, measure the particle width w in the direction parallel to the surface of the substrate and the particle length l in the direction perpendicular to the surface of the tool substrate, and measure the aspect ratio a (= l / w) of each crystal grain. Was calculated, the average value of the aspect ratio a obtained for each crystal grain was calculated as the average aspect ratio A, and the average value of the particle width w obtained for each crystal grain was calculated as the average particle width W. ..

下部層と上部層:
本発明の表面被覆切削工具が有するTiとAlの複合窒化物層または複合炭窒化物層は、それだけでも十分に前記効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、合計で0.1〜20.0μmの平均層厚を有する下部層を設けた場合、および/または、合計で1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層優れた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower and upper layers:
The Ti and Al composite nitride layer or composite carbonitride layer of the surface coating cutting tool of the present invention sufficiently exerts the above-mentioned effect by itself, but Ti carbide layer, nitride layer, carbonitride layer, carbonic acid. When a lower layer composed of one or more Ti compound layers of a compound layer and a carbonitride oxide layer and having an average layer thickness of 0.1 to 20.0 μm in total is provided, and / or When the upper layer including the aluminum oxide layer having an average layer thickness of 1 to 25 μm in total is provided, more excellent characteristics can be created in combination with the effects of these layers. When a lower layer composed of one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a coal oxide layer and a carbon dioxide oxide layer of Ti is provided, the total average layer of the lower layers is provided. If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. ..

なお、本発明の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面を模式的に図3に示す。 A cross section of a composite nitride layer or a composite carbonitride layer of Ti and Al constituting the hard coating layer of the present invention is schematically shown in FIG.

次に、本発明の被覆工具を実施例により具体的に説明する。
なお、実施例としては、WC基超硬合金を工具基体とする被覆工具について述べるが、工具基体としてTiCN基サーメットおよびcBN基超高圧焼結体を用いた場合も同様である。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
As an example, a coated tool using a WC-based cemented carbide as a tool base will be described, but the same applies to the case where a TiCN-based cermet and a cBN-based ultrahigh-pressure sintered body are used as the tool base.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. did.

次に、これらの工具基体A〜Cの表面に、CVD装置を用い、
(a)表3、表4に示される形成条件A〜G、すなわち、NH、NとHからなるガス群Aと、AlCl、TiCl、Al(CH、Hからなるガス群Bをそれぞれ供給する。
(b)供給に当たり、ガス群AにおけるNH供給量を比較的少なくし、ガス群AにNをNHの少なくとも4倍以上供給した上で、N/(AlCl+Al(CH)が大きくなり過ぎないことが本発明に係る硬質被覆層を得るために好ましい。
(c)より具体的には、反応ガス組成は、容量%(ガス群Aとガス群Bの合計に対する
割合)で表して、
ガス群A NH:1.0〜1.9%、N:6.0〜10.0%、H:40.0〜50.0%
ガス群B AlCl:0.60〜0.90%、TiCl:0.10〜0.40%、Al(CH:0.00〜0.10%、H:残部
(d)反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:1〜5秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒
として、所定時間、熱CVD法を行い、結晶粒内局所方位差平均1度未満を示す結晶粒が表5に示される割合で存在し、同表に記載の厚みを有する(Ti1−xAl)(C1−y)層を含む硬質被覆層を形成した本発明被覆工具1〜15を製造した。
なお、一部の本発明被覆工具については、表2に示される形成条件で、表5に示される下部層および/または上部層を形成した。
Next, a CVD device is used on the surfaces of these tool bases A to C.
(A) From the formation conditions A to G shown in Tables 3 and 4, that is, the gas group A composed of NH 3 , N 2 and H 2 , and AlCl 3 , TiCl 4 , Al (CH 3 ) 3 , and H 2. Gas group B is supplied.
(B) Upon supply, the amount of NH 3 supplied in the gas group A is relatively small, and N 2 is supplied to the gas group A at least four times as much as NH 3 , and then N 2 / (AlCl 3 + Al (CH 3 )). It is preferable that 3 ) does not become too large in order to obtain the hard coating layer according to the present invention.
More specifically, the reaction gas composition is expressed in% by volume (ratio of gas group A and gas group B to the total).
Gas group A NH 3 : 1.0 to 1.9%, N 2 : 6.0 to 10.0%, H 2 : 40.0 to 50.0%
Gas group B AlCl 3 : 0.60 to 0.90%, TiCl 4 : 0.10 to 0.40%, Al (CH 3 ) 3 : 0.00 to 0.10%, H 2 : Remaining (d) Reaction atmosphere pressure: 4.5-5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds, heat for a predetermined time By performing the CVD method, crystal grains showing an average local orientation difference of less than 1 degree in the crystal grains are present at the ratio shown in Table 5, and have the thickness shown in the same table (Ti 1-x Al x ) ( Cy N). The coating tools 1 to 15 of the present invention in which a hard coating layer including a 1-y) layer was formed were manufactured.
For some of the covering tools of the present invention, the lower layer and / or the upper layer shown in Table 5 were formed under the formation conditions shown in Table 2.

また、比較の目的で、工具基体A〜Cの表面に、表3、表4に示される条件で本発明被覆工具1〜15と同様に、少なくともTiとAlの複合窒化物層または複合炭窒化物層を含む硬質被覆層を蒸着形成した。なお、本発明被覆工具と同様に、一部の比較被覆工具については、表2に示される形成条件で、表6に示される下部層および/または上部層を形成した。 Further, for the purpose of comparison, at least a composite nitride layer of Ti and Al or composite carbonitride is formed on the surfaces of the tool substrates A to C under the conditions shown in Tables 3 and 4, as in the case of the coated tools 1 to 15 of the present invention. A hard coating layer including a material layer was formed by vapor deposition. Similar to the covering tool of the present invention, for some of the comparative covering tools, the lower layer and / or the upper layer shown in Table 6 were formed under the formation conditions shown in Table 2.

本発明被覆工具1〜15、比較被覆工具1〜15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。 The cross section of each constituent layer of the covering tools 1 to 15 and the comparative covering tools 1 to 15 in the direction perpendicular to the tool substrate was measured using a scanning electron microscope (magnification of 5000 times), and 5 points in the observation field of view. The average layer thickness was obtained by measuring and averaging the layer thickness.

また、複合窒化物層または複合炭窒化物層のAlの平均含有割合xavgについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合xavgを求めた。Cの平均含有割合yavgについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合yavgはTiとAlの複合窒化物層または複合炭窒化物層についての深さ方向の平均値を示す。 Regarding the average Al content x avg of the composite nitride layer or the composite carbonic nitride layer, an electron beam was used in a sample whose surface was polished using an electron probe microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). Was irradiated from the sample surface side, and the average Al content ratio x avg was obtained from the 10-point average of the obtained characteristic X-ray analysis results. The average content ratio of C, y avg , was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). An ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration of the component released by the sputtering action was measured in the depth direction. The average content ratio y avg of C indicates the average value in the depth direction for the composite nitride layer or composite carbonitride layer of Ti and Al.

さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物層または複合炭窒化物層を構成するNaCl型の立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で5度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、結晶粒内のあるピクセルと、同一結晶粒内の他のすべてのピクセル間で結晶粒内方位差を求め、結晶粒内局所方位差平均(GAM値)が0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・と0〜10度の範囲を1度ごとに区切って、マッピングした。そのマッピング図から、結晶粒内局所方位差平均(GAM値)が1度未満となる結晶粒がTiとAlの複合窒化物層または複合炭窒化物層のNaCl型の面心立方構造である結晶粒全体に占める面積割合および該結晶粒内平均方位差(GOS値)が1度以上あるいは2度以上を示す結晶粒が複合窒化物または複合炭窒化物層のNaCl型の面心立方構造である結晶粒全体に占める面積割合を求めた。その結果を表5および表6に示す。図4に、本発明被覆工具7について測定した結晶粒内局所方位差平均(GAM値)のヒストグラムの一例を示し、また、図5には、比較被覆工具4について測定した結晶粒内平均方位差平均のヒストグラムの一例を示す。 Furthermore, the crystal orientation of each crystal grain having a NaCl-type cubic structure constituting the Ti and Al composite nitride layer or the composite carbon nitride layer is analyzed from the longitudinal cross-sectional direction using an electron beam rear scattering diffractometer. If there is an orientation difference of 5 degrees or more between adjacent pixels, that is the grain boundary, the area surrounded by the grain boundary is one crystal grain, and one pixel in the crystal grain and another in the same crystal grain. The intergranular orientation difference is calculated between all the pixels of, and the average local orientation difference (GAM value) in the crystal grain is 0 degrees or more and less than 1 degree, 1 degree or more and less than 2 degrees, 2 degrees or more and less than 3 degrees, 3 degrees or more. The range of less than 4 degrees, ..., And 0 to 10 degrees was separated for each degree and mapped. From the mapping diagram, the crystal grains having a local orientation difference average (GAM value) of less than 1 degree in the crystal grains are a NaCl-type face-centered cubic structure of a composite nitride layer of Ti and Al or a composite carbonic nitride layer. A crystal grain having an area ratio to the entire grain and an average orientation difference (GOS value) within the crystal grain of 1 degree or more or 2 degrees or more is a NaCl-type face-centered cubic structure of a composite nitride or composite carbon nitride layer. The area ratio to the total crystal grains was calculated. The results are shown in Tables 5 and 6. FIG. 4 shows an example of a histogram of the average intragranular orientation difference (GAM value) measured for the coating tool 7 of the present invention, and FIG. 5 shows the average intragranular orientation difference measured for the comparative coating tool 4. An example of the average histogram is shown.

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

次に、前記各種の被覆工具をいずれもカッタ径50mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜8、比較被覆工具1〜8について、以下に示す切削条件Aで、鋳鉄の高速断続切削の一種である湿式フライス切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表7に示す。
≪切削条件A≫
工具基体:WC基超硬合金
切削試験:湿式フライス切削加工、
被削材:ダクタイル鋳鉄FCD 700幅100mm、長さ400mmのブロック材
回転速度:994 min−1
切削速度:350 m/min、
切り込み:1.0 mm、
一刃送り量:0.4 mm/刃、
切削時間:6分
(通常の切削速度は、200m/min)
Next, with the various covering tools clamped to the tip of a tool steel cutter having a cutter diameter of 50 mm with a fixing jig, the covering tools 1 to 8 of the present invention and the comparative covering tools 1 to 8 are described below. Under the cutting condition A shown, a wet milling cutting test, which is a kind of high-speed intermittent cutting of cast iron, was carried out, and the flank wear width of the cutting edge was measured. The results are shown in Table 7.
≪Cutting condition A≫
Tool base: WC-based cemented carbide Cutting test: Wet milling,
Work material: Ductile cast iron FCD 700 Block material with width 100 mm and length 400 mm Rotation speed: 994 min -1 ,
Cutting speed: 350 m / min,
Notch: 1.0 mm,
Single blade feed amount: 0.4 mm / blade,
Cutting time: 6 minutes (normal cutting speed is 200 m / min)

また、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具9〜15、比較例被覆工具9〜15について、以下に示す切削条件Bで、鋳鉄の乾式高速断続切削試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表8に示す。
≪切削条件B≫
工具基体:WC基超硬合金
被削材:JIS・FCD800 長さ方向等間隔8本縦溝入り丸棒
切削速度:350 m/min、
切り込み:1.5 mm、
一刃送り量:0.2 mm/刃、
切削時間:4分
(通常の切削速度は、200m/min)
Further, with the various covering tools screwed to the tip of the tool steel cutting tool with a fixing jig, the covering tools 9 to 15 of the present invention and the covering tools 9 to 15 of the comparative example are cut as shown below. Under condition B, a dry high-speed intermittent cutting test of cast iron was carried out, and the flank wear width of the cutting edge was measured. The results are shown in Table 8.
≪Cutting condition B≫
Tool base: WC-based cemented carbide Work material: JIS / FCD800 8 round bars with vertical grooves at equal intervals in the length direction Cutting speed: 350 m / min,
Notch: 1.5 mm,
Single blade feed amount: 0.2 mm / blade,
Cutting time: 4 minutes (normal cutting speed is 200 m / min)

Figure 0006850997
Figure 0006850997

Figure 0006850997
Figure 0006850997

表7および表8に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiの複合窒化物層または複合炭窒化物層を構成するNaCl型の立方晶結晶粒内において、結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒の割合が面積割合で60%以上であるため、優れた耐酸化性を発揮し、高い耐摩耗性を保ちつつ、靱性が向上し、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用にわたって優れた耐摩耗性を発揮している。 From the results shown in Tables 7 and 8, the coating tool of the present invention is used in the NaCl-type cubic grain grains constituting the Al and Ti composite nitride layer or the composite carbon nitride layer constituting the hard coating layer. Since the ratio of crystal grains showing an average local orientation difference (GAM value) of less than 1 degree in the crystal grains is 60% or more in terms of area ratio, excellent oxidation resistance is exhibited and high wear resistance is maintained. Excellent toughness and excellent chipping resistance and fracture resistance even when used for high-speed intermittent cutting in which a high load is applied to the cutting edge intermittently and impactfully. As a result, excellent wear resistance over a long period of use. Is demonstrating.

これに対して、硬質被覆層を構成するAlとTiの複合窒化物層または複合炭窒化物層を構成するNaCl型の立方晶結晶粒内において、結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒の割合が面積割合で60%未満の比較被覆工具1〜15については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、皮膜の靱性、耐酸化性が劣り、熱亀裂、チッピング、欠損等の発生により短時間で寿命にいたっている。 On the other hand, in the NaCl-type cubic crystal grains constituting the Al and Ti composite nitride layer or the composite carbon nitride layer constituting the hard coating layer, the local orientation difference average (GAM value) in the crystal grains is For comparative covering tools 1 to 15 in which the ratio of crystal grains indicating less than 1 degree is less than 60% in terms of area ratio, high-speed intermittent cutting is accompanied by high heat generation and intermittent and impactful high load acts on the cutting edge. When used in, the toughness and oxidation resistance of the film are inferior, and the life is reached in a short time due to the occurrence of thermal cracks, chipping, defects, and the like.

前述のように、本発明の被覆工具は、鋳鉄の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coating tool of the present invention can be used not only for high-speed intermittent cutting of cast iron, but also as a coating tool for various work materials, and has excellent chipping resistance and abrasion resistance over a long period of use. Since it exhibits its properties, it can sufficiently and satisfactorily cope with high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction.

P 測定点(ピクセル)
B 粒界
P measurement point (pixel)
B grain boundary

Claims (6)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlとの複合窒化物層または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、複合窒化物層または複合炭窒化物層のAlのTiとAlとの合量に占める平均含有割合xavgおよび複合窒化物層または複合炭窒化物層のCのCとNとの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足し、
(b)前記硬質被覆層は、NaCl型の面心立方構造を有する前記TiとAl複合窒化物層または複合炭窒化物の結晶粒を少なくとも含み、
(c)また、前記NaCl型の面心立方構造を有するTiとAlとの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面から解析し、電子線後方散乱回折による結晶方位マッピングを行い、各々の測定点同士の結晶方位関係を解析し、測定した結晶粒の局所方位差平均(GAM値)を求めた場合、該結晶粒の結晶粒内局所方位差平均(GAM値)が1度未満を示す結晶粒が、前記NaCl型の面心立方構造を有する結晶粒の中で面積割合として60%以上存在することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm, and has a composition formula: (Ti 1-x Al x ). When represented by (Cy N 1-y ), the average content ratio of Al in the total amount of Ti and Al of the composite nitride layer or composite carbonitride layer x avg and the composite nitride layer or composite carbonitride The average content ratio y avg (where x avg and y avg are both atomic ratios) in the total amount of C and N in the layer C is 0.60 ≦ x avg ≦ 0.95 and 0 ≦ y, respectively. Satisfying avg ≤ 0.005,
(B) The hard coating layer contains at least crystal grains of the Ti and Al composite nitride layer or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) Further, the crystal orientation of the crystal grains of the composite nitride or composite carbon nitride of Ti and Al having the NaCl-type face-centered cubic structure is analyzed from the longitudinal cross section using an electron beam backscattering diffractometer. Then, when crystal orientation mapping is performed by electron beam backward scattering diffraction, the crystal orientation relationship between each measurement point is analyzed, and the local orientation difference average (GAM value) of the measured crystal grains is obtained, the crystals of the crystal grains are obtained. A surface coating characterized in that crystal grains having an intra-grain local orientation difference average (GAM value) of less than 1 degree are present as an area ratio of 60% or more among the crystal grains having a NaCl-type face-centered cubic structure. Cutting tools.
前記複合窒化物または複合炭窒化物層を構成する結晶粒中のNaCl型の面心立方構造を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析し、結晶粒個々の結晶粒内平均方位差(GOS値)を求めた場合、該結晶粒内平均方位差(GOS値)が、1度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で50%未満かつ2度以上を示す結晶粒が複合窒化物または複合炭窒化物層の面積割合で20%未満であることを特徴とする請求項1に記載の表面切削工具。 The crystal orientation of the crystal grains having a NaCl-type plane-centered cubic structure in the crystal grains constituting the composite nitride or composite carbon nitride layer is analyzed from the longitudinal cross-sectional direction using an electron beam rear scattering diffractometer, and the crystals are crystallized. When the average intergranular orientation difference (GOS value) of each grain is determined, the crystal grain having an average intragranular orientation difference (GOS value) of 1 degree or more is the area of the composite nitride or composite carbonic nitride layer. The surface cutting tool according to claim 1, wherein the crystal grains exhibiting a ratio of less than 50% and 2 degrees or more are less than 20% in terms of the area ratio of the composite nitride or composite carbon nitride layer. 前記硬質被覆層は、前記複合窒化物または複合炭窒化物について、前記縦断面方向から観察した場合に、前記複合窒化物または複合炭窒化物のNaCl型の立方晶構造を有する個々の結晶粒の平均粒子幅(W)が0.1〜2.0μm、平均アスペクト比(A)が2.0〜10.0である柱状組織を有することを特徴とする請求項1または2のいずれかに記載の表面切削工具。 The hard coating layer is an individual crystal grain having a NaCl-type cubic structure of the composite nitride or the composite carbonitride when observed from the longitudinal cross-sectional direction of the composite nitride or the composite carbonitride. The invention according to any one of claims 1 or 2, wherein the columnar structure has an average particle width (W) of 0.1 to 2.0 μm and an average aspect ratio (A) of 2.0 to 10.0. Surface cutting tool. 前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒が、前記複合窒化物または複合炭窒化物層に占める面積割合が95%以上であることを特徴とする請求項1〜3のいずれか一項に記載の表面被覆切削工具。 In the hard coating layer, the area ratio of the crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure to the composite nitride or composite carbonitride layer is 95% or more. The surface-coated cutting tool according to any one of claims 1 to 3, wherein the surface coating cutting tool is provided. 前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒化酸化物層のうちの1層または2層以上のTi化合物層からなる合計で0.1〜20.0μmの平均層厚を有する下部層が存在することを特徴とする請求項1〜4のいずれか一項に記載の表面切削工具。 Between the tool substrate and the hard coating layer, it is composed of one or more Ti compound layers of a carbide layer of Ti, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbonitride oxide layer. The surface cutting tool according to any one of claims 1 to 4, wherein a lower layer having an average layer thickness of 0.1 to 20.0 μm in total is present. 前記硬質被覆層の外表面に少なくとも酸化アルミニウムを含む1層以上の上部層が合計で1.0〜25.0μmの平均膜厚で形成されていることを特徴とする請求項1〜5のいずれか一項に記載の表面切削工具。
Any of claims 1 to 5, wherein one or more upper layers containing at least aluminum oxide are formed on the outer surface of the hard coating layer with an average film thickness of 1.0 to 25.0 μm in total. The surface cutting tool described in item 1.
JP2017128555A 2017-06-30 2017-06-30 Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer Active JP6850997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128555A JP6850997B2 (en) 2017-06-30 2017-06-30 Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128555A JP6850997B2 (en) 2017-06-30 2017-06-30 Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer

Publications (2)

Publication Number Publication Date
JP2019010705A JP2019010705A (en) 2019-01-24
JP6850997B2 true JP6850997B2 (en) 2021-03-31

Family

ID=65227167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128555A Active JP6850997B2 (en) 2017-06-30 2017-06-30 Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer

Country Status (1)

Country Link
JP (1) JP6850997B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6977746B2 (en) * 2019-07-24 2021-12-08 株式会社タンガロイ Cover cutting tool
WO2022264196A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6599062B1 (en) * 1999-06-11 2003-07-29 Kennametal Pc Inc. Coated PCBN cutting inserts
US8846217B2 (en) * 2008-10-28 2014-09-30 Kyocera Corporation Surface-coated tool
JP5835308B2 (en) * 2013-11-22 2015-12-24 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool using the same
JP6548073B2 (en) * 2014-05-28 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6284034B2 (en) * 2014-09-25 2018-02-28 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2017038840A1 (en) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6604138B2 (en) * 2015-10-22 2019-11-13 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP6931454B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer

Also Published As

Publication number Publication date
JP2019010705A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6931453B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2015163423A (en) Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP7098932B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6164399B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709526B2 (en) Surface coated cutting tool
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
JP6850997B2 (en) Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer
CN104801941A (en) Surface coating cutting tool
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP2020055097A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6931454B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2020196128A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP6935058B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2020146820A (en) Cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6931452B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6850997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150