JP7125013B2 - A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance - Google Patents

A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Download PDF

Info

Publication number
JP7125013B2
JP7125013B2 JP2019054069A JP2019054069A JP7125013B2 JP 7125013 B2 JP7125013 B2 JP 7125013B2 JP 2019054069 A JP2019054069 A JP 2019054069A JP 2019054069 A JP2019054069 A JP 2019054069A JP 7125013 B2 JP7125013 B2 JP 7125013B2
Authority
JP
Japan
Prior art keywords
average
layer
period
long
avg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019054069A
Other languages
Japanese (ja)
Other versions
JP2020151822A (en
Inventor
大樹 中村
卓也 石垣
光亮 柳澤
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019054069A priority Critical patent/JP7125013B2/en
Publication of JP2020151822A publication Critical patent/JP2020151822A/en
Application granted granted Critical
Publication of JP7125013B2 publication Critical patent/JP7125013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、合金鋼や高炭素鋼等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a surface-coated cutting tool that exhibits excellent cutting performance over a long period of use by providing a hard coating layer with excellent chipping resistance even in high-speed interrupted cutting of alloy steel, high-carbon steel, etc. (hereinafter sometimes referred to as a coated tool).

従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、硬質被覆層として、Ti-Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi-Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, there is a coated tool in which a Ti—Al-based composite carbonitride layer is formed by vapor deposition as a hard coating layer on the surface of a tool substrate such as a tungsten carbide (hereinafter referred to as WC)-based cemented carbide. These are known to exhibit excellent wear resistance.
However, although the conventional coated tool coated with the Ti—Al-based composite carbonitride layer has relatively excellent wear resistance, it is prone to abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、CVDによって成膜された複数の層を有し、Ti1-xAlN層および/またはTi1-xAlC層および/またはTi1-xAlCN層(式中、xは0.65~0.95である)の上にAl層が外層として配置されていることを特徴とする、硬質材料で被覆された被覆工具が記載されている。 For example, Patent Document 1 has a plurality of layers deposited by CVD and includes Ti 1-x Al x N layers and/or Ti 1-x Al x C layers and/or Ti 1-x Al x CN layers. Coated tools coated with a hard material are described, characterized in that an Al 2 O 3 layer is arranged as an outer layer on the layer (where x is between 0.65 and 0.95). there is

また、例えば、特許文献2には、工具基体と、その表面に形成された1または2以上の硬質被膜層を含む被覆工具であって、前記硬質被膜のうち少なくとも1層は、硬質粒子を含む層であり、前記硬質粒子は、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、周期表の4族~6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第1化合物を含み、前記第2単位層は、周期表の4~6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第2化合物を含む、被覆工具が記載されている。 Further, for example, Patent Document 2 discloses a coated tool including a tool substrate and one or more hard coating layers formed on the surface thereof, wherein at least one layer of the hard coating contains hard particles. layer, the hard particles include a multilayer structure in which the first unit layer and the second unit layer are alternately laminated, and the first unit layer is composed of elements of groups 4 to 6 of the periodic table and Al The second unit layer includes a first compound consisting of one or more elements selected from the group and one or more elements selected from the group consisting of B, C, N, and O, and the second unit layer includes 4 to 4 of the periodic table. A coated tool containing a second compound consisting of at least one element selected from the group consisting of Group 6 elements and Al and at least one element selected from the group consisting of B, C, N and O is described. ing.

さらに、例えば、特許文献3には、(a)硬質被覆層は、化学蒸着法により成膜された平均層厚1~20μmの(Ti1-XAl)(C1-Y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavgが、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005である、NaCl型の面心立方構造を有する結晶粒を含む複合窒化物層または複合炭窒化物層を有し、(b)前記複合窒化物層または複合炭窒化物層の工具基体表面の法線方向に沿って、前記結晶粒内にTiとAlの周期的な組成変化が存在し、該周期的な組成変化が存在する前記結晶粒は、その工具基体表面の法線方向に沿った組成変化の周期が50~200nmである長周期層から構成され、さらに前記長周期層は、平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層における周期は3~20nmであり、A層およびB層におけるAl含有量xの極大値の平均および極小値の平均のそれぞれの差Δx、Δxは、0.02<Δx<0.1、0.02<Δx<0.1を満たし、さらに、A層とB層から構成される長周期層におけるAl含有量xの極大値の平均および極小値の平均の差Δxは、0.05<Δx<0.25を満たし、かつ、Δx>(Δx+Δx)であることを特徴とする被覆工具が記載されている。 Furthermore, for example, in Patent Document 3, (a) the hard coating layer is (Ti 1-X Al X ) (C YN 1-Y ) having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition. When expressed, the average content ratio X avg of Al in the total amount of Ti and Al and the average content ratio Y avg of C in the total amount of C and N are 0.60 ≤ X avg ≤ 0.95, (b) the composite nitride layer or composite carbonitride layer containing crystal grains having a NaCl-type face-centered cubic structure, wherein 0 ≤ Y avg ≤ 0.005; There is a periodic composition change of Ti and Al in the crystal grain along the normal direction of the tool substrate surface of the material layer, and the crystal grain in which the periodic composition change exists is the tool substrate surface The long-period layer is composed of a long-period layer having a composition change period of 50 to 200 nm along the normal direction, and the long-period layer is composed of two short-period layers A and B having different average Al contents. The period in the A layer and the B layer is 3 to 20 nm, and the differences Δx 1 and Δx 2 of the average maximum value and the average minimum value of the Al content x in the A layer and the B layer are 0.5 nm. 02 < Δx 1 < 0.1, 0.02 < Δx 2 < 0.1, and further, the average of the maximum values and the minimum values of the Al content x in the long period layer composed of the A layer and the B layer A coated tool is described, characterized in that the mean difference Δx 3 satisfies 0.05<Δx 3 <0.25 and Δx 3 >(Δx 1 +Δx 2 ).

特表2011-516722号公報Japanese translation of PCT publication No. 2011-516722 特開2014-129562号公報JP 2014-129562 A 特開2016-137549号公報JP 2016-137549 A

近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。 In recent years, there is a strong demand for labor saving and energy saving in cutting. Abnormal damage resistance such as peeling resistance is required, and excellent wear resistance over long-term use is also required.

そこで、本発明はこのような状況をかんがみてなされたもので、合金鋼や高炭素鋼等の高速断続切削加工等に供した場合であっても、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and even when subjected to high-speed interrupted cutting of alloy steel, high-carbon steel, etc., it has excellent chipping resistance and resistance over a long period of use. An object of the present invention is to provide a coated tool exhibiting wearability.

本発明者は、TiとAlの複合窒化物層または複合炭窒化物層(以下、これらを総称して、「TiAlCN層」ということがある)を含む被覆工具の耐チッピング性、耐摩耗性をはかるべく、鋭意検討を重ねた。 The present inventor has investigated the chipping resistance and wear resistance of a coated tool containing a composite nitride layer or composite carbonitride layer of Ti and Al (hereinafter collectively referred to as "TiAlCN layer"). In order to find out, we conducted a thorough study.

その結果、TiAlCN層内のNaCl型の面心立方構造を有する結晶粒内に、TiとAlの組成の特定の繰り返し変化が2種類存在すると、1種類しか存在しない場合に比して大きな歪みが生じ、この大きな歪みが硬さと靭性の向上に寄与して、硬質被覆層の耐チッピング性、耐欠損性を向上させるという新規な知見を得た。 As a result, when there are two types of specific repeated changes in the composition of Ti and Al in the crystal grains having the NaCl-type face-centered cubic structure in the TiAlCN layer, a larger strain is generated than when there is only one type. New knowledge was obtained that this large strain contributes to the improvement of hardness and toughness, and improves the chipping resistance and fracture resistance of the hard coating layer.

本発明は、前記知見に基づいてなされたものであって、
「(1)工具基体の表面に硬質被覆層が設けられた表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚が1.0~20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を含み、
(b)前記TiとAlの複合窒化物層または複合炭窒化物層は、その組成を、
組成式:(Ti1-xAl)(C1-y)で表した場合、
AlのAlとTiの合量に占めるAlの含有割合xの平均xavgが、0.60≦xavg≦0.90を満足し、また、CのCとNの合量に占めるCの含有割合yの平均yavgが、0.000≦yavg≦0.005(但し、x、y、xavg、yavgは原子比)であり、
(c)前記TiとAlの複合窒化物層または複合炭窒化物層の縦断面のNaCl型の面心立方構造を有する結晶粒において、前記AlのAlとTiの合量に占めるAlの含有割合xが、50~200nmの平均周期dLavgを有する長周期変化と1~20nmの平均周期dSavgを有する短周期変化を有し(dLavg、dSavgはxの変化の周期が最小になる方向において測定される値)、
(d)前記TiとAlの複合窒化物層または複合炭窒化物層の縦断面を0.5μmの間隔で工具基体側端面から工具表面に向かって順にn個の区間(区間1、・・・、区間n)に分割したとき、各区間の前記長周期変化における隣接するxの極大値と極小値との平均差ΔxLiの平均値ΔxLavgが0.12~0.15で、
各区間の前記短周期変化における隣接するxの極大値と極小値との平均差ΔxSiの平均値ΔxSavgが0.03~0.07であり、
(e)前記各区間の前記長周期変化における隣接するxの極大値と極小値との平均差ΔxLiは、前記工具基体から遠ざかるにつれて、
前記nが3以上のとき、(区間1から区間[n/3]までのΔxLiの平均値)<(区間[n/3]+1から区間[2n/3]までのΔxLiの平均値)<(区間[2n/3]+1から区間nまでのΔxLiの平均値)を満足し、
前記nが2のとき、ΔxL1<ΔxL2
を満たすように増加し、
(f)前記TiとAlの複合窒化物層または複合炭窒化物層は、縦断面において、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の結晶粒の占める割合が80面積%以上であって、前記長周期変化と前記短周期変化を有する該結晶粒の割合が50面積%以上である、
ことを特徴とする表面被覆切削工具。
(2)前記長周期変化と前記短周期変化を有する前記NaCl型の面心立方構造を有する結晶粒は、前記縦断面において70面積%以上である、
ことを特徴とする前記(1)に記載の表面被覆切削工具。」
The present invention was made based on the above findings,
"(1) A surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate,
(a) the hard coating layer includes a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(b) The composite nitride layer or composite carbonitride layer of Ti and Al has a composition of
When represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ),
The average x avg of the content ratio x of Al in the total amount of Al and Ti of Al satisfies 0.60 ≤ x avg ≤ 0.90, and the content of C in the total amount of C and N of C The average y avg of the ratio y is 0.000 ≤ y avg ≤ 0.005 (where x, y, x avg , y avg are atomic ratios),
(c) In the crystal grains having a NaCl-type face-centered cubic structure in the longitudinal section of the composite nitride layer or composite carbonitride layer of Ti and Al, the content ratio of Al to the total amount of Al and Ti in the Al x has a long-period variation with an average period d Lavg of 50-200 nm and a short-period variation with an average period d Savg of 1-20 nm (d Lavg , d Savg is the direction of the minimum period of variation of x value measured at
(d) n sections (section 1, . , n), the average value Δx Lavg of the average difference Δx Li between the maximum and minimum values of adjacent x in the long-period change in each interval is 0.12 to 0.15,
The average value Δx Savg of the average difference Δx Si between the maximum value and the minimum value of adjacent x in the short period change in each section is 0.03 to 0.07,
(e) The average difference Δx Li between the maximum value and the minimum value of adjacent x in the long-period change in each section is, as it moves away from the tool base,
When n is 3 or more, (Average value of Δx Li from interval 1 to interval [n/3]) <(Average value of Δx Li from interval [n/3]+1 to interval [2n/3]) satisfying <(average value of Δx Li from interval [2n/3]+1 to interval n),
When n is 2, Δx L1 <Δx L2
is increased to satisfy
(f) The composite nitride layer or composite carbonitride layer of Ti and Al is occupied by crystal grains of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure in a longitudinal section. The ratio is 80 area% or more, and the ratio of the crystal grains having the long period change and the short period change is 50 area% or more.
A surface-coated cutting tool characterized by:
(2) crystal grains having the NaCl-type face-centered cubic structure having the long-period change and the short-period change are 70 area % or more in the longitudinal section;
The surface-coated cutting tool according to (1), characterized in that: "

本発明の表面被覆工具は、硬質被覆層の硬さと靱性が向上して優れた耐チッピング性、耐剥離性を有する。 The surface-coated tool of the present invention has improved hardness and toughness of the hard coating layer and has excellent chipping resistance and peeling resistance.

Al含有割合xの周期的変化を説明する模式図である。It is a schematic diagram explaining the periodic change of the Al content rate x. Al含有割合xの長周期変化と短周期変化の観察方向を示す模式図である。It is a schematic diagram which shows the observation direction of the long-period change and short-period change of Al content x. AlClとTiClの合量を一定としてAlCl/TiCl(容量%の比)の値を周期的に増減させた一例を示す模式図である。FIG. 3 is a schematic diagram showing an example in which the total amount of AlCl 3 and TiCl 4 is constant and the value of AlCl 3 /TiCl 4 (ratio of % by volume) is periodically increased or decreased. 相対的に周期の長い波形(三角波状)と相対的に周期の短い波形(パルス状)を重畳させた一例を示す模式図である。It is a schematic diagram which shows an example which superimposed the waveform (triangular wave shape) with a relatively long period, and the waveform (pulse shape) with a relatively short period.

本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「~」で表現するとき、その範囲は上限および下限の数値を含んでいる。 The present invention is described in detail below. In addition, when a numerical range is expressed by "-" in the present specification and claims, the range includes upper and lower numerical values.

TiAlCN層の平均層厚:
本発明の硬質被覆層は、TiAlCN層を少なくとも含む。このTiAlCN層は、硬さが高く、優れた耐チッピング性、耐摩耗性を有するが、特に平均層厚が1.0~20.0μmのとき、その効果が際立って発揮される。これは、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。
したがって、その平均層厚を1.0~20.0μmと定めた。平均層厚は、3.0~15.0μmがより好ましい。
Average layer thickness of TiAlCN layer:
The hard coating layer of the present invention includes at least a TiAlCN layer. This TiAlCN layer has high hardness and excellent chipping resistance and wear resistance, and the effect is particularly noticeable when the average layer thickness is 1.0 to 20.0 μm. This is because if the average layer thickness is less than 1.0 μm, the layer thickness is too thin to ensure sufficient wear resistance over long-term use. Crystal grains in the layer tend to coarsen, and chipping tends to occur.
Therefore, the average layer thickness was set to 1.0 to 20.0 μm. More preferably, the average layer thickness is 3.0 to 15.0 μm.

TiAlCN層の平均組成:
本発明におけるTiAlCN層の組成は、組成式:(Ti1-xAl)(C1-y)で表したとき、
AlのTiとAlの合量に占める含有割合xの平均(以下、「Al含有割合の平均」という)xavgが、
CのC、Nとの合量に占める含有割合yの平均(以下、「C含有割合の平均」という)yavgが、
それぞれ、0.60≦xavg≦0.90、0.000≦yavg≦0.005(ただし、xavg、yavgはいずれも原子比)を満足するように定める。
Average composition of TiAlCN layer:
The composition of the TiAlCN layer in the present invention is represented by the composition formula: (Ti 1-x Al x )(C y N 1-y ),
The average of the content ratio x of Al in the total amount of Ti and Al (hereinafter referred to as “average of Al content ratio”) x avg is
The average content ratio y of C in the total amount of C and N (hereinafter referred to as “average of C content ratio”) y avg is
They are defined to satisfy 0.60≦x avg ≦0.90 and 0.000≦y avg ≦0.005 (where x avg and y avg are both atomic ratios).

その理由は、以下のとおりである。
Al含有割合の平均xavgが0.60未満であると、TiAlCN層は硬さが劣るため、合金鋼等の高速切削に供した場合には、耐摩耗性が十分でなく、一方、0.90を超えると六方晶のTiAlCN結晶粒が析出し、耐摩耗性が低下する。したがって、0.60≦xavg≦0.90としたが、より好ましくは0.70≦xavg≦0.90である。
また、C含有割合の平均yavgを0.000≦yavg≦0.005と定めたのは、前記範囲において耐チッピング性を保ちつつ硬さを向上させることができるためである。
The reason is as follows.
When the average x avg of the Al content is less than 0.60, the TiAlCN layer is inferior in hardness, so that when subjected to high-speed cutting of alloy steel or the like, the wear resistance is not sufficient. If it exceeds 90, hexagonal TiAlCN crystal grains are precipitated, resulting in deterioration of wear resistance. Therefore, 0.60 ≤ x avg ≤ 0.90, but more preferably 0.70 ≤ x avg ≤ 0.90.
The reason why the average y avg of the C content ratio is set to 0.000≦y avg ≦0.005 is that the hardness can be improved while maintaining the chipping resistance within the above range.

TiAlCN層のAl含有割合の平均xavgは、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から照射し、膜厚方向に5本の線分析を行って得られたオージェ電子の解析結果を平均したものである。 The average x avg of the Al content ratio of the TiAlCN layer is obtained by using Auger Electron Spectroscopy (AES) and irradiating an electron beam from the longitudinal section side of a sample whose cross section is polished, and 5 lines in the film thickness direction. This is the average of the analysis results of Auger electrons obtained by line analysis of .

また、C含有割合の平均yavgは、二次イオン質量分析(Secondary Ion Mass Spectrometry:SIMS)により求める。すなわち、試料表面を研磨した試料において、TiAlCN層の表面側からイオンビームを70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の組成測定を行う。まず、TiAlCN層についての層の深さ方向へ0.5μm以上侵入した箇所から0.1μm以下のピッチで少なくとも0.5μmの長さの測定を行ったデータの平均を求める。さらに、これを少なくとも試料表面の5箇所において繰り返し算出した結果を平均してC含有割合の平均yavgとして求める。 Also, the average y avg of the C content ratio is determined by secondary ion mass spectrometry (SIMS). That is, in a sample having a polished sample surface, an ion beam is irradiated in a range of 70 μm×70 μm from the surface side of the TiAlCN layer, and surface analysis by the ion beam and etching by the sputtered ion beam are alternately repeated, thereby increasing the depth direction. Composition measurements are taken. First, the average of the data obtained by measuring the length of at least 0.5 μm at a pitch of 0.1 μm or less from a portion of the TiAlCN layer intruded by 0.5 μm or more in the depth direction of the layer is obtained. Furthermore, the average y avg of the C content ratio is obtained by averaging the results obtained by repeatedly calculating this at least at five locations on the sample surface.

TiAlCN層のAl含有割合の繰り返し変化:
TiAlCN層の縦断面を0.5μmの間隔で層厚方向に順にn個の区間(区間1、・・・、区間n)に分割したとき、この区間において、NaCl型の面心立方構造(立方晶)を有する結晶粒のAlのTiとAlの合量に占める含有割合(以下、「Al含有割合」という)xの繰り返し変化の平均間隔(平均周期)として、50~200nmである長い間隔のAl含有割合xの繰り返し変化(長周期変化)と、平均周期が1~20nmである短い間隔のAl含有割合xの繰り返し変化(短周期変化)とが、存在することが好ましい。
Repeated change of Al content in TiAlCN layer:
When the longitudinal section of the TiAlCN layer is divided into n sections (section 1, . The content ratio of Al in the total amount of Ti and Al in crystal grains having a crystal) (hereinafter referred to as “Al content ratio”) x The average interval (average period) of repeated changes is 50 to 200 nm. It is preferable that there is a repetitive change (long-period change) in the Al content x and a repetitive change (short-period change) in the Al content x at short intervals with an average period of 1 to 20 nm.

ここで、Al含有割合xの繰り返し変化とは、測定区間のほとんどの位置で、ほぼ一定の間隔(周期)をおいて、ほぼ同じAl含有割合xの値が観察できることをいい、長周期変化と短周期変化を有していることをグラフ化すると、図1に示すような、あたかも、一定振幅の短周期の正弦波と一定振幅の長周期の正弦波とを重畳したものに類似する変化を示す。そして、このほぼ一定の間隔は、前記区間を透過型電子顕微鏡(Transmission Electron Microscope:TEM)によって観察すると、Al含有割合xの繰り返し変化が観察でき、長周期変化と短周期変化がいずれも最小になる方向(観察方向という。図2の模式図では工具基体から遠ざかる方向であり、必ずしも工具基体表面に垂直な方向ではないが、工具表面方向ともよぶ。)に対して測定する。 Here, the repetitive change in the Al content rate x means that almost the same value of the Al content rate x can be observed at almost constant intervals (periods) at most positions in the measurement section, and is referred to as a long-period change. Graphing the fact that it has a short-period change shows that a change similar to a superposition of a short-period sine wave with a constant amplitude and a long-period sine wave with a constant amplitude, as shown in FIG. show. Then, when the section is observed with a transmission electron microscope (TEM), this almost constant interval allows repeated changes in the Al content ratio x to be observed, and both the long-period change and the short-period change are minimized. direction (referred to as observation direction. In the schematic diagram of FIG. 2, it is the direction away from the tool base, and is not necessarily perpendicular to the surface of the tool base, but is also referred to as the tool surface direction.).

長い間隔のAl含有割合xの繰り返し変化(長周期変化)とは、次のとおりのものである。すなわち、前記観察方向において、後述するライン分析によってAl含有割合xの繰り返し変化を測定し、この変化を直線近似する。すなわち、直線と繰り返し変化を示す曲線に囲まれた領域の面積が直線の上側と下側とで等しくなるように、前記曲線を横切る直線を引く。この近似直線(x:図1では直線mと記載されているもの)の傾きは増加、減少、ほぼ一定のいずれであってもよい。そして、このxがAl含有割合xの繰り返し変化を示す曲線を横切る領域ごとに、極大値または極小値を求めたとき、隣接する極大値と極小値の差が0.10以上であれば、その極大値と極小値をそれぞれ長周期変化の極大値、長周期変化の極小値と呼ぶ。また、前記の隣接する極大値同士または極小値同士の間隔を長周期と呼ぶ。なお、この長周期の平均値dLavgが50~200nmであることが好ましい(図1を参照)。 The repetitive change (long-period change) of the Al content x at long intervals is as follows. That is, in the observation direction, repeated changes in the Al content x are measured by line analysis, which will be described later, and the changes are linearly approximated. That is, a straight line is drawn across the curve so that the area of the area surrounded by the straight line and the curve showing repeated changes is equal above and below the straight line. The slope of this approximation straight line (x m : straight line m in FIG. 1) may increase, decrease, or be substantially constant. Then, when the maximum value or the minimum value is obtained for each region where this x m crosses the curve showing the repeated change of the Al content x, if the difference between the adjacent maximum value and the minimum value is 0.10 or more, The maximum value and the minimum value are called the maximum value of the long-period change and the minimum value of the long-period change, respectively. Further, the interval between adjacent maximum values or between adjacent minimum values is called a long period. The long-period average value d Lavg is preferably 50 to 200 nm (see FIG. 1).

長周期の平均値dLavgをこの範囲とする理由は、50nm未満であると、NaCl型の面心立方構造を有する結晶粒がAl含有割合xの変化として短周期変化に加えて長周期変化を有することによる靱性向上の効果が小さく、耐チッピング性の向上が望めず、一方、周期が200nmを超えると、クラック進展を抑制することができず、耐チッピング性、耐剥離性が低下するためである。なお、長周期の平均値dLavgは80~180nmであることがより好ましい。 The reason why the long-period average value d Lavg is set in this range is that when the average value d Lavg of the long period is less than 50 nm, the crystal grains having a NaCl-type face-centered cubic structure undergo a long-period change in addition to a short-period change as a change in the Al content x. If the period exceeds 200 nm, crack growth cannot be suppressed, and chipping resistance and peeling resistance decrease. be. The long-period average value d Lavg is more preferably 80 to 180 nm.

短い間隔のAl含有割合xの繰り返し変化(短周期変化)とは、前記観察方向において、後述するライン分析を行ったとき、Al含有割合xの増加し減少する変化が、隣接して繰り返される変化であり、この隣接する繰り返しにおいて、隣接する極大値同士、または、極小値同士の間隔を短周期と呼び、この短周期の平均値dSavgが1~20nmであることが好ましい(図1を参照)。 A repetitive change in the Al content x at short intervals (short-period change) is a change in which an increase and a decrease in the Al content x are repeated adjacently when a line analysis described later is performed in the observation direction. In this adjacent repetition, the interval between adjacent maximum values or minimum values is called a short period, and the average value d Savg of this short period is preferably 1 to 20 nm (see FIG. 1 ).

短周期の平均値dSavgをこの範囲とする理由は、1nm未満であると、高Al含有領域(Al含有割合xの繰り返し変化を示す曲線において近似直線xより上側の範囲)と低Al含有領域(Al含有割合xの繰り返し変化を示す曲線において近似直線xより下側の範囲)の界面数が増えることにより、局所的な密着強度の低下や塑性変形を生じやすくなるため、耐チッピング性あるいは硬さが低下し、一方、20nmを超えると、切削時のクラックの進展抑制のための十分な緩衝作用が見込めないためである。なお、短周期の平均値dSavgは3~15nmがより好ましい。 The reason why the short-period average value d Savg is set in this range is that when it is less than 1 nm, a high Al content region (a range above the approximate straight line x m in a curve showing repeated changes in the Al content rate x) and a low Al content As the number of interfaces in the region (the range below the approximate straight line x m in the curve showing repeated changes in the Al content x) increases, local adhesion strength decreases and plastic deformation tends to occur, so chipping resistance Alternatively, the hardness is lowered, and if the thickness exceeds 20 nm, a sufficient cushioning action for suppressing crack propagation during cutting cannot be expected. The short-period average value d Savg is more preferably 3 to 15 nm.

長周期の平均値dLavgと短周期の平均値dSavgの測定:
前記長周期の平均値dLavgと短周期の平均値dSavgは次にようにして測定する。
(1)TiAlCN層の縦断面を、工具基体との界面から工具表面に向かって、0.5μm間隔で層厚方向に分割して、区間を画定する。ただし、工具表面に最も近い区間の厚さは0.5μm未満となってもよい。
Determination of the long-cycle average d Lavg and the short-cycle average d Savg :
The long-period average value d Lavg and the short-period average value d Savg are measured as follows.
(1) Sections are defined by dividing the longitudinal section of the TiAlCN layer in the layer thickness direction at intervals of 0.5 μm from the interface with the tool base toward the tool surface. However, the section closest to the tool surface may have a thickness of less than 0.5 μm.

(2)TiAlCN層の平均層厚が5.0μm以下の場合は分割したすべての区間を、平均層厚が5.0μmを超える場合は少なくとも10個の区間(但し、区間1(工具基体に最も近い区間)、区間n(工具表面に最も近い区間)を含む等間隔の区間が好ましい)を測定対象とする。 (2) If the average layer thickness of the TiAlCN layer is 5.0 μm or less, all the divided sections, if the average layer thickness exceeds 5.0 μm, at least 10 sections (however, section 1 (the most (closest section) and section n (the section closest to the tool surface) are preferably measured.

(3)前記測定対象の区間の全てに対して、TEMによる観察を行い、Al含有割合xの繰り返し変化を観察できることを確認した後、前記観察方向を確定して5本の後述するライン分析(測定間隔0.5nm以下)を行う。 (3) All of the sections to be measured are observed with a TEM, and after confirming that repeated changes in the Al content x can be observed, the observation direction is determined and five lines are analyzed (described later). measurement interval of 0.5 nm or less).

(4)観察方向の位置とAl含有割合xの繰り返し変化との関係をグラフ化し、ライン分析を行った全範囲においてAl含有割合xの繰り返し変化の間隔を測定し、前記のとおり長周期の平均値dLavgと短周期の平均値dSavgを求める。ここで、この平均値を求めるために、前記のとおり、Al含有割合xの繰り返し変化を測定し、この繰り返し変化を示す曲線と直線に囲まれた領域の面積が直線の上側と下側とで等しくなるように、前記曲線を横切る直線を引くことにより、前記曲線を直線近似する。なお、グラフ化に当たり公知の測定ノイズ除去方法(例えば、移動平均法)を行うことはいうまでもない。 (4) Graph the relationship between the position in the observation direction and the repeated change in the Al content ratio x, measure the interval between repeated changes in the Al content ratio x in the entire range where the line analysis was performed, and average the long period as described above. A value d Lavg and a short period average value d Savg are obtained. Here, in order to obtain this average value, as described above, the repeated change in the Al content x is measured, and the area of the region surrounded by the curve showing this repeated change and the straight line is above and below the straight line. Linearize the curve by drawing a straight line across the curve so that it is equal. It goes without saying that a well-known measurement noise removal method (for example, a moving average method) is performed in graphing.

長周期変化と短周期変化におけるAl含有割合の差
長周期変化における前記区間の内のAl含有割合変化の測定対象区間(i)ごとの前記極大値と前記極小値との平均差ΔxLiを求め、測定対象となった全ての区間にわたって平均した(すなわち、実質的に硬質被覆層全体の平均となる)平均値ΔxLavgは、0.12~0.15であることが好ましい。その理由は、0.12未満であると、TiAlCN層がAl含有割合xの変化として短周期変化に加えて長周期変化を有することによる切削時のクラック進展の抑制効果が小さくなり、一方、0.15を超えると、結晶粒の格子歪が大きくなりすぎ、格子欠陥が増加し、硬さが低下するためである。
Difference in Al content ratio between long-period change and short-period change Calculate the average difference Δx Li between the maximum value and the minimum value for each measurement target section (i) of the Al content ratio change in the section in the long-period change , the average value Δx Lavg averaged over all measured sections (that is, substantially averaged over the entire hard coating layer) is preferably 0.12 to 0.15. The reason for this is that when the ratio x is less than 0.12, the TiAlCN layer has a long-period change in addition to a short-period change as a change in the Al content x, which reduces the effect of suppressing crack growth during cutting. If it exceeds 0.15, the lattice strain of crystal grains becomes too large, lattice defects increase, and hardness decreases.

また、前記測定対象区間(i)ごとの短周期変化である前記極大値と前記極小値との平均差ΔxSiの平均差ΔxSavgは0.03~0.07が好ましい。その理由は、0.03未満であると、切削時のクラック進展の抑制効果が小さくなり、耐チッピング性が低下し、一方、0.07を超えると、前記高Al含有領域と前記低Al含有領域の界面に生じる格子歪が大きくなり過ぎ、切削時に破壊起点となってチッピング等の異常損傷を生じるためである。ΔxSavgは0.05~0.07がより好ましい。 Further, the average difference Δx Savg of the average difference Δx Si between the maximum value and the minimum value, which is the short-period change in each measurement target section (i), is preferably 0.03 to 0.07. The reason for this is that if it is less than 0.03, the effect of suppressing crack growth during cutting is reduced and the chipping resistance is reduced. This is because the lattice strain generated at the interface between the regions becomes too large, and becomes a starting point of fracture during cutting, resulting in abnormal damage such as chipping. Δx Savg is more preferably 0.05 to 0.07.

ΔxLiの変化
前記各測定対象区間(i)において、隣接する前記極大値と前記極小値との平均差ΔxLiは、前記工具基体から遠ざかるにつれて増加しており、
n≧3のとき、
(区間1から区間[n/3]までのΔxLiの平均値)<(区間[n/3]+1から区間[2n/3]までのΔxLiの平均値)<(区間[2n/3]+1から区間nまでのΔxLiの平均値)、
すなわち、
ΔxL1+ΔxL2+・・・+ΔxL[n/3])/[n/3]<(ΔxL[n/3]+ΔxL[n/3]+1+・・・+ΔxL[2n/3])/([2n/3]-[n/3])<(ΔxL[2n/3]+ΔxL[2n/3]+1+・・・+ΔxLn)/(n-[2n/3])
を満足し、
n=2のとき、ΔxL1<ΔxL2
を満たすことが好ましい。その理由は、この条件を満足すると、TiAlCN層とその直下の層(後述する下部層)または工具基体の歪みの差が抑制されるため、優れた耐剥離性を示すからである。
なお、前記[i](i=n/3、2n/3)はガウス記号を表す。
ガウス記号[i]はiを超えない最大の整数を表す数学記号であり、言い換えれば、[i]は、m≦i<m+1で定義される数値(ただし、mは整数)をいう。
例えば、n=23、すなわち、n/3=7.7、2n/3=15.3の場合、[n/3]=7、[2n/3]=15となる。
Change in Δx Li In each measurement target section (i), the average difference Δx Li between the adjacent maximum value and the minimum value increases as the distance from the tool base increases,
When n≧3,
(Average value of Δx Li from interval 1 to interval [n/3]) < (Average value of Δx Li from interval [n/3] + 1 to interval [2n/3]) < (Interval [2n/3] +1 to interval n average value of Δx Li ),
i.e.
Δx L1 +Δx L2 +...+Δx L[n/3] )/[n/3]<(Δx L[n/3] +Δx L[n/3]+1 +...+Δx L[2n/3] )/([2n/3]-[n/3])<(Δx L[2n/3] +Δx L[2n/3]+1 +...+Δx Ln )/(n-[2n/3])
satisfies the
When n=2, Δx L1 <Δx L2
is preferably satisfied. The reason for this is that if this condition is satisfied, the difference in strain between the TiAlCN layer and the layer immediately below it (lower layer described later) or the tool base is suppressed, so excellent peeling resistance is exhibited.
Note that [i] (i=n/3, 2n/3) represents a Gaussian symbol.
The Gaussian symbol [i] is a mathematical symbol representing the largest integer not exceeding i, in other words [i] refers to a numerical value defined by m≦i<m+1, where m is an integer.
For example, if n=23, ie n/3=7.7 and 2n/3=15.3, then [n/3]=7 and [2n/3]=15.

TiAlCN層内のNaCl型の面心立方構造を有する結晶粒の面積割合:
前記TiAlCN層におけるNaCl型の面心立方構造を有する結晶粒の面積割合が80面積%以上であることが好ましい。これにより、高硬度であるNaCl型の面心立方構造を有する結晶粒の面積割合が六方晶構造の結晶粒に比べて相対的に高くなり、TiAlCN層の硬さが向上するという効果を得ることができる。この面積割合は、より好ましくは90面積%以上である。
Area ratio of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer:
It is preferable that the area ratio of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer is 80 area % or more. As a result, the area ratio of crystal grains having a high hardness NaCl type face-centered cubic structure is relatively higher than the crystal grains having a hexagonal crystal structure, and the effect of improving the hardness of the TiAlCN layer is obtained. can be done. This area ratio is more preferably 90 area % or more.

ここで、NaCl型の面心立方晶構造を有する結晶粒の面積割合は、次のように測定する。TiAlCN層の縦断面(工具基体表面に垂直な断面)において、工具基体表面に平行な方向に100μm、工具基体表面に垂直な方向に層厚分の長さを測定範囲とする。この測定範囲を研磨し、電子線後方散乱回折像装置(Electron Backscatter Diffraction:EBSD)を用いて、この研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づきNaCl型の面心立方晶構造を有するかについて結晶粒個々の結晶構造を解析する。このとき、隣接する測定点(ピクセル)間で5度以上の方位差がある場合、そこを粒界と定義し、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。 Here, the area ratio of crystal grains having a NaCl-type face-centered cubic crystal structure is measured as follows. In the longitudinal section of the TiAlCN layer (the cross section perpendicular to the surface of the tool base), the measurement range is 100 μm in the direction parallel to the surface of the tool base and the length of the layer thickness in the direction perpendicular to the surface of the tool base. This measurement range is polished, and an electron beam backscatter diffraction (EBSD) is used to irradiate the polished surface with an electron beam at an incident angle of 70 degrees and an acceleration voltage of 15 kV at an irradiation current of 1 nA. The crystal structure of each crystal grain is analyzed to see if it has a NaCl-type face-centered cubic crystal structure based on the electron beam backscatter diffraction image obtained by irradiating the crystal grains at intervals of 0.01 μm. At this time, when there is an orientation difference of 5 degrees or more between adjacent measurement points (pixels), the area is defined as a grain boundary, and a region surrounded by the grain boundary is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with respect to all adjacent pixels is not treated as a crystal grain, but a crystal grain in which two or more pixels are connected is treated as a crystal grain.

長周期変化と短周期変化を有するNaCl型の面心立方構造の結晶粒の縦断面における面積割合:
長周期変化と短周期変化を有するNaCl型の面心立方構造の結晶粒の面積割合は、縦断面において50面積%以上であることが好ましい。その理由は、50面積%以上であると、クラック進展を抑制する効果がより大きくなり、靱性向上の効果も一層向上するためである。この面積割合は、より好ましくは70面積%以上である。
Area ratio in longitudinal section of crystal grains of NaCl type face-centered cubic structure with long-period change and short-period change:
The area ratio of the NaCl-type face-centered cubic structure crystal grains having long-period changes and short-period changes is preferably 50 area % or more in the longitudinal section. The reason for this is that when the area ratio is 50 area % or more, the effect of suppressing crack growth is further increased, and the effect of improving toughness is further improved. This area ratio is more preferably 70 area % or more.

なお、長周期変化と短周期変化を有するNaCl型の面心立方構造を有する結晶粒の面積割合は、次のように測定する。TEMを用いて、1μm×1μmの像におけるAl含有割合xの繰り返し変化に対応する画像のコントラストの変化によって確認されるAl含有割合xの繰り返し変化(長周期変化、短周期変化のいずれか一方のみの場合も含む)を有する結晶粒を特定する。更に、Al含有割合xの繰り返し変化を有する結晶粒すべてに対して、後述するライン分析を行い、長周期変化および短周期変化の有無を確認する。そして、長周期変化と短周期変化を両方とも有する結晶粒の面積をそれぞれ算出し、前記1μm×1μmの観察領域に占める面積割合を少なくとも5視野で求め、その平均値を本発明における長周期変化と短周期変化を有する結晶粒の面積として求めることができる。 The area ratio of crystal grains having a NaCl-type face-centered cubic structure with long-period changes and short-period changes is measured as follows. Using TEM, repeated changes in Al content x confirmed by changes in image contrast corresponding to repeated changes in Al content x in a 1 μm × 1 μm image (either long-period change or short-period change only (including the case of ) is specified. Furthermore, line analysis, which will be described later, is performed on all the crystal grains having repeated changes in the Al content x, and the presence or absence of long-period changes and short-period changes is confirmed. Then, the areas of the crystal grains having both the long period change and the short period change are calculated, and the area ratios occupying the observation area of 1 μm × 1 μm are obtained in at least 5 fields of view, and the average value thereof is the long period change in the present invention. It can be obtained as the area of the crystal grain having short period change.

ここで、前記Al含有割合xを測定するライン分析とは、研磨して作製した試料縦断面において、TEMを用いたエネルギー分散型X線分光法(Energy Dispersive X-ray Spectrometry:EDS)により工具基体から離れる方向(工具表面方向)に5本のラインに沿って分析を行い、得られた解析結果を平均したものである。ただし、測定範囲は、前記観察方向において、少なくとも100nmの長さで、かつ長周期変化の平均周期dLavgよりも長い範囲とする(長周期変化の平均周期dLavgが200nmであった場合には200nmの長さ、長周期変化の平均周期dLavgが50nmあるいは長周期変化が存在しない場合には100nmの長さで測定を行う。)。 Here, the line analysis for measuring the Al content ratio x means that the longitudinal section of the sample prepared by polishing is analyzed by Energy Dispersive X-ray Spectrometry (EDS) using a TEM. Analysis is performed along five lines in the direction away from (tool surface direction), and the obtained analysis results are averaged. However, the measurement range in the observation direction has a length of at least 100 nm and is longer than the average period d Lavg of the long period change (when the average period d Lavg of the long period change is 200 nm Measurement is performed with a length of 200 nm and an average period dLavg of the long-period variation of 50 nm, or 100 nm if there is no long-period variation).

その他の層:
硬質被覆層として、本発明の前記TiAlCN層は十分な耐摩耗性、耐チッピング性、および、耐剥離性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム層を含む層が1.0~25.0μmの合計平均層厚で上部層として前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、より一層優れた耐摩耗性、耐チッピング性、および、耐剥離性を発揮することができる。
Other layers:
As a hard coating layer, the TiAlCN layer of the present invention has sufficient wear resistance, chipping resistance and spallation resistance, but Ti carbide, nitride, carbonitride, carbide and carbonitride layers. Tooling a lower layer consisting of one or more layers of nitride oxide layers and including a Ti compound (not limited to stoichiometric compounds) layer having a total average layer thickness of 0.1 to 20.0 μm When provided adjacent to a substrate and/or when a layer comprising at least an aluminum oxide layer is provided as a top layer on top of said TiAlCN layer with a total average layer thickness of 1.0 to 25.0 μm, Together with the effects of these layers, even better wear resistance, chipping resistance, and peeling resistance can be exhibited.

ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。 Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains of the lower layer tend to coarsen, causing chipping. easier to do. When the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited. , chipping is more likely to occur.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool substrate:
As the tool substrate, any conventionally known substrate for this type of tool substrate can be used as long as it does not interfere with the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, containing Co, or containing carbonitrides such as Ti, Ta, Nb, etc.), cermets (TiC, TiN , TiCN as a main component, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body.

製造方法:
Al含有割合xの長周期変化と短周期変化を有する本発明のTiAlCN層は、例えば、工具基体もしくは当該工具基体上にある前記下部層であるTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上の上に、例えば、NHとHからなるガス群Aと、AlCl、TiCl、N、C、Hからなるガス群Bと、からなる2種の反応ガスを次のように供給することによって得ることができる。すなわち、Al含有割合xの長周期変化を形成するため、ガス群Aの組成は変化させず、ガス群BのAlClとTiClの合量を一定としてAlCl/TiCl(容量%の比)の値を周期的に増減させ(例えば、三角波状、矩形波状等)、かつ、AlCl/TiClの極大値と極小値との差を増加させて供給する(図3を参照)。また、短周期変化を形成するため、ガス群Aとガス群Bを共に組成を変化させることなく(長周期変化を形成するため変化させたAlCl、TiClの値を更に変化させることはなく)、所定の位相差で供給する。
長周期変化を与えるためのガス供給方法に対して短周期変化を与えるためのガス供給方法を組み合わせるため、全体的なガス変化は、あたかも相対的に周期の長い波形と相対的に周期の短い波形(パルス波)を重畳したものになる(図4を参照)。
Production method:
The TiAlCN layer of the present invention having a long-period change and a short-period change in the Al content x is, for example, a carbide layer, a nitride layer, or a carbonitride layer of Ti, which is the tool substrate or the lower layer on the tool substrate. , on at least one layer of the carbonate layer and the carbonitride layer, for example, a gas group A consisting of NH 3 and H 2 and AlCl 3 , TiCl 4 , N 2 , C 2 H 4 and H 2 It can be obtained by supplying two kinds of reaction gases consisting of gas group B and B as follows. That is, in order to form a long-period change in the Al content ratio x, the composition of the gas group A is not changed, and the total amount of AlCl 3 and TiCl 4 in the gas group B is constant, and AlCl 3 /TiCl 4 (volume % ratio ) is periodically increased or decreased (eg triangular wave, square wave, etc.) and the difference between the maxima and minima of AlCl 3 /TiCl 4 is increased (see FIG. 3). Further, in order to form the short-period change, the compositions of both the gas group A and the gas group B are not changed (the values of AlCl 3 and TiCl 4 which are changed to form the long-period change are not further changed). ), supplied with a predetermined phase difference.
Since the gas supply method for giving a long period change is combined with the gas supply method for giving a short period change, the overall gas change is as if a waveform with a relatively long period and a waveform with a relatively short period. (pulse waves) are superimposed (see FIG. 4).

反応ガス組成(容量%):
長周期変化と短周期変化共通:
ガス群A:NH:2.0~5.0%、H:65~75%
ガス群B:AlCl:0.52~0.76%、TiCl:0.08~0.53%、
:0.0~12.0%、C:0.0~0.5%、H:残
反応雰囲気圧力:4.0~5.0kPa
反応雰囲気温度:700~900℃
長周期変化:
AlCl/TiClの増減の周期:10.0~40.0秒
AlCl/TiClの極大値と極小値との差:0.44~6.23(開始時)
0.65~147(終了時)
短周期変化:
ガス供給周期:1.00~5.00秒
1周期当たりのガス供給時間:0.10~0.20秒
ガス群Aとガス群Bの供給の位相差:0.05~0.15秒
Reaction gas composition (% by volume):
Common to both long-term and short-term changes:
Gas group A: NH 3 : 2.0 to 5.0%, H 2 : 65 to 75%
Gas group B: AlCl 3 : 0.52 to 0.76%, TiCl 4 : 0.08 to 0.53%,
N 2 : 0.0 to 12.0%, C 2 H 4 : 0.0 to 0.5%, H 2 : Residual reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700-900°C
Long-term variation:
Period of increase and decrease of AlCl 3 /TiCl 4 : 10.0-40.0 seconds Difference between maximum and minimum values of AlCl 3 /TiCl 4 : 0.44-6.23 (at the start)
0.65 to 147 (end time)
Short cycle change:
Gas supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.10 to 0.20 seconds Supply phase difference between gas group A and gas group B: 0.05 to 0.15 seconds

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前記のものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, an insert cutting tool using a WC-based cemented carbide as a tool substrate will be described. and the same applies to drills and end mills.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末、ZrC粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~C、および、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D~Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, ZrC powder, TiN powder and Co powder, all having an average particle size of 1 to 3 μm, were prepared. It was blended according to the formulation shown in Table 1, further wax was added, ball mill mixed in acetone for 24 hours, and dried under reduced pressure. Vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within the range of 1370 to 1470° C. for 1 hour, and after sintering, a tool substrate made of WC-based cemented carbide having an insert shape of ISO standard SEEN1203AFSN. Tool substrates A to C and tool substrates D to F made of WC-based cemented carbide with insert geometry of ISO standard CNMG120412 were produced respectively.

次に、これら工具基体A~Fの表面に、CVD装置を用いて、TiAlCN層をCVDにより形成し、表5に示される本発明被覆工具1~16を得た。
成膜条件は、表2に記載したとおりであるが、概ね、次のとおりであって、Al含有割合xの長周期変化を形成するため、ガス群Aの組成は変化させず、ガス群BのAlClとTiClの合量を一定としてAlCl/TiCl(容量%の比)の値を表2で示す開始値から三角波状に変化させ、かつ、AlCl/TiClの極大値と極小値との差を線形に増加させて供給した。また、短周期変化を形成するため、ガス群Aとガス群Bを共に組成を変化させることなく(長周期変化を形成するため変化させたAlCl、TiClの値を更に変化させることはなく)、所定の位相差で供給した。なお、ガス組成の%は容量%(ガス群Aとガス群Bの和を全体としている)である。
Next, a TiAlCN layer was formed on the surfaces of these tool substrates A to F by CVD using a CVD apparatus to obtain coated tools 1 to 16 of the present invention shown in Table 5.
The film formation conditions are as described in Table 2, but are generally as follows. With the total amount of AlCl 3 and TiCl 4 constant, the value of AlCl 3 /TiCl 4 (ratio of % by volume) is changed in a triangular wave form from the starting value shown in Table 2, and the maximum value of AlCl 3 /TiCl 4 and A linearly increasing difference from the local minimum was supplied. Further, in order to form the short-period change, the compositions of both the gas group A and the gas group B are not changed (the values of AlCl 3 and TiCl 4 which are changed to form the long-period change are not further changed). ), supplied at a given phase difference. Note that % of the gas composition is volume % (the sum of gas group A and gas group B is taken as a whole).

反応ガス組成(容量%):
長周期変化と短周期変化共通:
ガス群A:NH:2.0~5.0%、H:65~75%
ガス群B:AlCl:0.52~0.76%、TiCl:0.08~0.53%、
:0.0~12.0%、C:0.0~0.5%、H:残
反応雰囲気圧力:4.0~5.0kPa
反応雰囲気温度:700~900℃
長周期変化:
AlCl/TiClの三角波状変化の周期:10.0~40.0秒
AlCl/TiClの極大値と極小値との差:0.44~6.23(開始時)
0.65~147(終了時)
短周期変化:
ガス供給周期:1.00~5.00秒
1周期当たりのガス供給時間:0.10~0.20秒
ガス群Aとガス群Bの供給の位相差:0.05~0.15秒
Reaction gas composition (% by volume):
Common to both long-term and short-term changes:
Gas group A: NH 3 : 2.0 to 5.0%, H 2 : 65 to 75%
Gas group B: AlCl 3 : 0.52 to 0.76%, TiCl 4 : 0.08 to 0.53%,
N 2 : 0.0 to 12.0%, C 2 H 4 : 0.0 to 0.5%, H 2 : Residual reaction atmosphere pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700-900°C
Long-term variation:
Period of triangular change of AlCl 3 /TiCl 4 : 10.0-40.0 seconds Difference between maximum and minimum values of AlCl 3 /TiCl 4 : 0.44-6.23 (at the start)
0.65 to 147 (end time)
Short cycle change:
Gas supply cycle: 1.00 to 5.00 seconds Gas supply time per cycle: 0.10 to 0.20 seconds Supply phase difference between gas group A and gas group B: 0.05 to 0.15 seconds

なお、本発明被覆工具4~8、11、13、15、および16は、表3に記載された成膜条件により、表4に示された下部層および/または上部層を形成した。 For coated tools 4 to 8, 11, 13, 15, and 16 of the present invention, the lower layer and/or upper layer shown in Table 4 was formed under the film forming conditions shown in Table 3.

また、比較の目的で、工具基体A~Fの表面に、表2に示される条件によりCVDを行うことにより、表5に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1~16を製造した。
なお、比較被覆工具4~8、11、13、15、および16については、表3に示される形成条件により、表4に示された下部層および/または上部層を形成した。
For the purpose of comparison, a hard coating layer containing a TiAlCN layer shown in Table 5 was vapor-deposited on the surfaces of the tool substrates A to F under the conditions shown in Table 2 to form a comparative coated tool 1. ~16 was produced.
For comparative coated tools 4 to 8, 11, 13, 15, and 16, the lower layer and/or upper layer shown in Table 4 were formed under the forming conditions shown in Table 3.

さらに、前記本発明被覆工具1~16および比較被覆工具1~16の硬質被覆層について、前述の方法によりAl含有割合の平均xavg、C含有割合の平均yavgを求めた。また、長周期変化の平均間隔dLavg、短周期変化の平均間隔dSavg、ΔxLavg、ΔxSavg、ΔxLi、NaCl型の面心立方構造の結晶粒の面積割合、および、Al含有割合の周期的変化を有するNaCl型の面心立方構造の結晶粒の面積割合(面積%)を求めた。
さらに、平均層厚は、本発明被覆工具1~16、比較被覆工具1~16の各構成層の縦断面(工具基体表面に垂直な方向の断面)を、走査型電子顕微鏡を用いて適切な倍率(倍率5000倍)を選択して観察し、観察視野内の5点の層厚を測って平均した。
結果を表5に示す。
Further, the average Al content x avg and the average C content y avg were determined for the hard coating layers of the coated tools 1 to 16 of the present invention and the comparative coated tools 1 to 16 by the method described above. In addition, the average interval d Lavg of the long-period change, the average interval d Savg of the short-period change, Δx Lavg , Δx Savg , Δx Li , the area ratio of the crystal grains of the NaCl type face-centered cubic structure, and the period of the Al content ratio The area ratio (area %) of NaCl-type crystal grains having a face-centered cubic structure having a characteristic change was determined.
Furthermore, the average layer thickness was determined by scanning a longitudinal section (a section perpendicular to the surface of the tool substrate) of each constituent layer of the coated tools 1 to 16 of the present invention and the comparative coated tools 1 to 16 with an appropriate scanning electron microscope. Observation was carried out at a selected magnification (magnification of 5000 times), and the thickness of the layer at five points within the observation field was measured and averaged.
Table 5 shows the results.

Figure 0007125013000001
Figure 0007125013000001

Figure 0007125013000002
Figure 0007125013000002

Figure 0007125013000003
Figure 0007125013000003

Figure 0007125013000004
Figure 0007125013000004

Figure 0007125013000005
Figure 0007125013000005

続いて、前記本発明被覆工具1~8および比較被覆工具1~8について、前記各種の工具基体A~C(ISO規格SEEN1203AFSN形状)をいずれもカッタ径125mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、合金鋼の乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。表6に、切削試験の結果を示す。なお、比較被覆工具1~8については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 Subsequently, for the coated tools 1 to 8 of the present invention and the comparative coated tools 1 to 8, the various tool substrates A to C (ISO standard SEEN 1203 AFSN shape) were all fixed to the tip of the alloy steel cutter with a cutter diameter of 125 mm. In the state of being clamped with a tool, the following high-speed dry face milling and center-cut cutting test of alloy steel was performed, and the flank wear width of the cutting edge was measured. Table 6 shows the results of the cutting test. As for the comparative coated tools 1 to 8, the life was reached before the end of the cutting time due to the occurrence of chipping, so the time until the life is reached is shown.

切削試験1:乾式高速正面フライス、センターカット切削試験
カッタ径:125mm
被削材:JIS・SCM440 幅100mm、長さ400mmのブロック材
回転速度:1019min-1
切削速度:400m/min
切り込み:2.5mm
送り:0.25mm/刃
切削時間:20分
(通常の切削速度は、200m/min)
Cutting test 1: Dry high-speed face milling, center cut cutting test Cutter diameter: 125 mm
Work material: JIS SCM440 block material with a width of 100 mm and a length of 400 mm Rotational speed: 1019 min -1
Cutting speed: 400m/min
Notch: 2.5mm
Feed: 0.25 mm/blade Cutting time: 20 minutes (normal cutting speed is 200 m/min)

また、前記本発明被覆工具9~16および比較被覆工具9~16について、前記各種の被覆工具D~F(ISO規格CNMG120412形状)をいずれも合金鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す、高炭素鋼の乾式高速断続切削試験を実施し、切刃の逃げ面摩耗幅を測定した。表7に、切削試験の結果を示す。なお、比較被覆工具9~16については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 In addition, with respect to the coated tools 9 to 16 of the present invention and the comparative coated tools 9 to 16, each of the various coated tools D to F (ISO standard CNMG120412 shape) was screwed to the tip of the alloy steel cutting tool with a fixing jig. In the stopped state, the following dry high-speed interrupted cutting test of high carbon steel was performed to measure the flank wear width of the cutting edge. Table 7 shows the results of the cutting test. As for the comparative coated tools 9 to 16, the life was reached before the end of the cutting time due to the occurrence of chipping, so the time until the life is reached is shown.

切削試験2:乾式高速断続切削
被削材: JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒
切削速度: 400 m/min
切り込み: 1.5 mm
一刃送り量:0.2 mm/刃
切削時間: 5分
(通常の切削速度は、200m/min)
Cutting test 2: Dry high-speed interrupted cutting Work material: JIS S55C round bar with 4 equally spaced longitudinal grooves Cutting speed: 400 m/min
Notch: 1.5mm
Feed amount per blade: 0.2 mm/blade Cutting time: 5 minutes (normal cutting speed is 200 m/min)

Figure 0007125013000006
Figure 0007125013000006

Figure 0007125013000007
Figure 0007125013000007

表6、表7に示される結果から、本発明被覆工具1~16は、いずれも硬質被覆層が優れた耐チッピング性、耐剥離性を有しているため、合金鋼や高炭素鋼の高速断続切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1~16は、合金鋼や高炭素鋼の高速断続切削加工に用いた場合チッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Tables 6 and 7, the coated tools 1 to 16 of the present invention all have excellent chipping resistance and peeling resistance in the hard coating layer. Even when used for interrupted cutting, it does not cause chipping and exhibits excellent wear resistance over a long period of time. On the other hand, the comparative coated tools 1 to 16, which did not satisfy even one of the items specified for the coated tool of the present invention, caused chipping when used for high-speed interrupted cutting of alloy steel or high carbon steel. , the service life is reached in a short time.

前述のように、本発明の被覆工具は、合金鋼や高炭素鋼以外の高速断続切削加工の被覆工具としても用いることができ、しかも、長期にわたって優れた耐チッピング性、耐剥離性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化及び省エネルギー化、さらには低コスト化に十分に満足できる対応が可能である。 As described above, the coated tool of the present invention can be used as a coated tool for high-speed interrupted cutting of materials other than alloy steel and high-carbon steel, and exhibits excellent chipping resistance and peeling resistance over a long period of time. Therefore, it is possible to fully satisfy high performance cutting equipment, labor saving and energy saving in cutting, and cost reduction.

Claims (2)

工具基体の表面に硬質被覆層が設けられた表面被覆切削工具であって、
(a)前記硬質被覆層は、平均層厚が1.0~20.0μmのTiとAlの複合窒化物層または複合炭窒化物層を含み、
(b)前記TiとAlの複合窒化物層または複合炭窒化物層は、その組成を、
組成式:(Ti1-xAl)(C1-y)で表した場合、
AlのAlとTiの合量に占めるAlの含有割合xの平均xavgが、0.60≦xavg≦0.90を満足し、また、CのCとNの合量に占めるCの含有割合yの平均yavgが、0.000≦yavg≦0.005(但し、x、y、xavg、yavgは原子比)であり、
(c)前記TiとAlの複合窒化物層または複合炭窒化物層の縦断面のNaCl型の面心立方構造を有する結晶粒において、前記AlのAlとTiの合量に占めるAlの含有割合xが、50~200nmの平均周期dLavgを有する長周期変化と1~20nmの平均周期dSavgを有する短周期変化を有し(dLavg、dSavgはxの変化の周期が最小になる方向において測定される値)、
(d)前記TiとAlの複合窒化物層または複合炭窒化物層の縦断面を0.5μmの間隔で工具基体側端面から工具表面に向かって順にn個の区間(区間1、・・・、区間n)に分割したとき、各区間の前記長周期変化における隣接するxの極大値と極小値との平均差ΔxLiの平均値ΔxLavgが0.12~0.15で、
各区間の前記短周期変化における隣接するxの極大値と極小値との平均差ΔxSiの平均値ΔxSavgが0.03~0.07であり、
(e)前記各区間の前記長周期変化における隣接するxの極大値と極小値との平均差ΔxLiは、前記工具基体から遠ざかるにつれて、
前記nが3以上のとき、(区間1から区間[n/3]までのΔxLiの平均値)<(区間[n/3]+1から区間[2n/3]までのΔxLiの平均値)<(区間[2n/3]+1から区間nまでのΔxLiの平均値)を満足し、
前記nが2のとき、ΔxL1<ΔxL2
を満たすように増加し、
(f)前記TiとAlの複合窒化物層または複合炭窒化物層は、縦断面において、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の結晶粒の占める割合が80面積%以上であって、前記長周期変化と前記短周期変化を有する該結晶粒の割合が50面積%以上である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a hard coating layer on the surface of the tool substrate,
(a) the hard coating layer includes a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(b) The composite nitride layer or composite carbonitride layer of Ti and Al has a composition of
When represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ),
The average x avg of the content ratio x of Al in the total amount of Al and Ti of Al satisfies 0.60 ≤ x avg ≤ 0.90, and the content of C in the total amount of C and N of C The average y avg of the ratio y is 0.000 ≤ y avg ≤ 0.005 (where x, y, x avg , y avg are atomic ratios),
(c) In the crystal grains having a NaCl-type face-centered cubic structure in the longitudinal section of the composite nitride layer or composite carbonitride layer of Ti and Al, the content ratio of Al to the total amount of Al and Ti in the Al x has a long-period variation with an average period d Lavg of 50-200 nm and a short-period variation with an average period d Savg of 1-20 nm (d Lavg , d Savg is the direction of the minimum period of variation of x value measured at
(d) n sections (section 1, . , n), the average value Δx Lavg of the average difference Δx Li between the maximum and minimum values of adjacent x in the long-period change in each interval is 0.12 to 0.15,
The average value Δx Savg of the average difference Δx Si between the maximum value and the minimum value of adjacent x in the short period change in each section is 0.03 to 0.07,
(e) The average difference Δx Li between the maximum value and the minimum value of adjacent x in the long-period change in each section is, as it moves away from the tool base,
When n is 3 or more, (Average value of Δx Li from interval 1 to interval [n/3]) <(Average value of Δx Li from interval [n/3]+1 to interval [2n/3]) satisfying <(average value of Δx Li from interval [2n/3]+1 to interval n),
When n is 2, Δx L1 <Δx L2
is increased to satisfy
(f) The composite nitride layer or composite carbonitride layer of Ti and Al is occupied by crystal grains of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure in a longitudinal section. The ratio is 80 area% or more, and the ratio of the crystal grains having the long period change and the short period change is 50 area% or more.
A surface-coated cutting tool characterized by:
前記長周期変化と前記短周期変化を有する前記NaCl型の面心立方構造を有する結晶粒は、前記縦断面において70面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein the crystal grains having the NaCl-type face-centered cubic structure having the long period change and the short period change account for 70 area% or more in the longitudinal section. .
JP2019054069A 2019-03-22 2019-03-22 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Active JP7125013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054069A JP7125013B2 (en) 2019-03-22 2019-03-22 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054069A JP7125013B2 (en) 2019-03-22 2019-03-22 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2020151822A JP2020151822A (en) 2020-09-24
JP7125013B2 true JP7125013B2 (en) 2022-08-24

Family

ID=72557146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054069A Active JP7125013B2 (en) 2019-03-22 2019-03-22 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP7125013B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307323A (en) 2005-03-31 2006-11-09 Hitachi Tool Engineering Ltd Hard film coated member
JP2014210333A (en) 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
JP2015157351A (en) 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
JP2016137549A (en) 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2018118346A (en) 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6548073B2 (en) * 2014-05-28 2019-07-24 三菱マテリアル株式会社 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307323A (en) 2005-03-31 2006-11-09 Hitachi Tool Engineering Ltd Hard film coated member
JP2014210333A (en) 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance
JP2015157351A (en) 2014-01-22 2015-09-03 三菱マテリアル株式会社 Surface coating cutting tool in which hard coating layer is excellent in chipping resistance
JP2016137549A (en) 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP2018118346A (en) 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance

Also Published As

Publication number Publication date
JP2020151822A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
EP3103572B1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3127637B1 (en) Surface-coated cutting tool and production method therefor
WO2014163081A1 (en) Surface-coated cutting tool
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3202515A1 (en) Surface-coated cutting tool having excellent chip resistance
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016030319A (en) Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6617917B2 (en) Surface coated cutting tool
JP7325720B2 (en) surface coated cutting tools
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7132548B2 (en) surface coated cutting tools
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP7329180B2 (en) surface coated cutting tools
JP2020151794A (en) Surface-coated cutting tool
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
WO2016084938A1 (en) Surface-coated cutting tool
JP7453616B2 (en) surface coated cutting tools
JP7198412B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2022150413A (en) Surface-coated cutting tool
JP2021137935A (en) Surface coating cutting tool
JP2021146421A (en) Surface-coated cutting tool
JP2021146419A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220726

R150 Certificate of patent or registration of utility model

Ref document number: 7125013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150