JP7132548B2 - surface coated cutting tools - Google Patents

surface coated cutting tools Download PDF

Info

Publication number
JP7132548B2
JP7132548B2 JP2019015015A JP2019015015A JP7132548B2 JP 7132548 B2 JP7132548 B2 JP 7132548B2 JP 2019015015 A JP2019015015 A JP 2019015015A JP 2019015015 A JP2019015015 A JP 2019015015A JP 7132548 B2 JP7132548 B2 JP 7132548B2
Authority
JP
Japan
Prior art keywords
composition
average
component
tool
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019015015A
Other languages
Japanese (ja)
Other versions
JP2020121378A (en
Inventor
和宏 引田
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019015015A priority Critical patent/JP7132548B2/en
Publication of JP2020121378A publication Critical patent/JP2020121378A/en
Application granted granted Critical
Publication of JP7132548B2 publication Critical patent/JP7132548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、溶着性の高い材料において、硬質被覆層が優れた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a surface-coated cutting tool (hereinafter referred to as a coated tool) in which the hard coating layer exhibits excellent chipping resistance and wear resistance in materials with high adhesion properties, and exhibits excellent cutting performance over a long period of use. there is).

従来、炭化タングステン(以下、WCで示すことがある)基超硬合金等の工具基体(以下、工具基体という)の表面に、硬質被覆層として、Ti-Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi-Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、溶着性の高い材料の切削に用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, a Ti—Al-based composite carbonitride layer is vapor-deposited as a hard coating layer on the surface of a tool substrate (hereinafter referred to as a tool substrate) such as a tungsten carbide (hereinafter sometimes referred to as WC)-based cemented carbide. There are coated tools which are coated by a method, and these are known to exhibit excellent wear resistance.
However, although the conventional coated tool coated with the Ti—Al-based composite carbonitride layer has relatively excellent wear resistance, it may cause abnormal wear such as chipping when used for cutting materials with high adhesion. Since this tends to occur, various proposals have been made to improve the hard coating layer.

例えば、特許文献1には、工具基体の表面に、0.5~10.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、前記TiとAlの複合窒化物層は、(TiAl1-x)N、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成xに比して、Ti成分の組成が相対的に高い帯状領域が、少なくとも、工具基体表面の法線とのなす角度が30度以下の方向に存在していることを特徴とする表面被覆切削工具が記載されている。 For example, in Patent Document 1, a surface-coated cutting tool provided with a hard coating layer containing at least a composite nitride layer of Ti and Al having an average layer thickness of 0.5 to 10.0 μm on the surface of the tool substrate, The composite nitride layer of Ti and Al has an average composition satisfying (Ti x Al 1-x )N, 0.10≦x≦0.35 (where x is an atomic ratio), and In the Al composite nitride layer, a belt-like region having a relatively high Ti component composition relative to the average composition x of the Ti component forms an angle of at least 30 degrees with the normal line of the tool substrate surface. A surface-coated cutting tool is described which is characterized in that it lies in the following directions:

また、例えば、特許文献2には、工具基体の表面に、0.5~8.0μmの平均層厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、前記TiとAlの複合窒化物層は、(TiAl1-x)N、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が、少なくとも、工具基体表面の法線とのなす角度が35度以上70度以下の方向に存在していることを特徴とする表面被覆切削工具が記載されている。 Further, for example, Patent Document 2 describes a surface-coated cutting tool provided with a hard coating layer containing at least a composite nitride layer of Ti and Al having an average layer thickness of 0.5 to 8.0 μm on the surface of the tool substrate. wherein the composite nitride layer of Ti and Al has an average composition satisfying (Ti x Al 1-x )N, 0.10≦x≦0.35 (where x is an atomic ratio); In the composite nitride layer of Ti and Al, a belt-like region having a relatively high Ti component composition compared to the average composition of the Ti component forms an angle of at least 35 degrees with the normal line of the tool substrate surface. A surface coated cutting tool is described which is characterized in that it lies in an orientation of greater than or equal to 70 degrees or less.

さらに、例えば、特許文献3には、工具基体の表面に、大電力パルススパッタリング(High Power Impulse Magnetron Sputtering:HiPIMS)によりドロップレットのない硬質皮膜を作製した表面被覆切削工具が記載されている。 Furthermore, for example, Patent Document 3 describes a surface-coated cutting tool in which a droplet-free hard coating is produced on the surface of a tool substrate by high power pulse sputtering (HiPIMS).

特開2018-43326号公報JP 2018-43326 A 特開2018-144224号公報JP 2018-144224 A 特表2015-501371号公報Japanese Patent Publication No. 2015-501371

特許文献1および2に記載された表面被覆切削工具は、溶着性の高い材料において、硬質被覆層が優れた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたって優れた切削性能を発揮する。また、特許文献3に記載の表面被覆工具は、高硬度で低残留応力の皮膜を有している。しかし、より高速化の進む切削加工では、硬質被覆層にはさらなる耐溶着性が求められている。そこで、本発明は、より耐溶着性が優れた被覆工具を提供することを目的とする。 In the surface-coated cutting tools described in Patent Documents 1 and 2, the hard coating layer exhibits excellent chipping resistance and wear resistance in materials with high adhesion, and exhibits excellent cutting performance over long-term use. . Further, the surface-coated tool described in Patent Document 3 has a coating with high hardness and low residual stress. However, the hard coating layer is required to have further adhesion resistance in cutting at higher speeds. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a coated tool having excellent adhesion resistance.

特許文献1および2に記載された被覆工具の硬質被覆層は、アークイオンプレーティング(Arc Ion Plating: AIP)法により製造されているため、硬質被覆層には混入液滴(ドロップレット)が存在しており、表面改質により、主に表面に存在するドロップレットが除去され、表面粗さが減少することで工具寿命を増加させている。しかし、アークイオンプレーティングの原理に基づいて検討すれば、硬質被覆層内部においても、表面に存在するドロップレットと比較し頻度は少ないものの、ドロップレットが存在するため、硬質被覆層表面が摩耗し、硬質被覆層内部のドロップレットが表面に露出したときから工具寿命に至るまでの期間は表面改質を行わない状態と同じとなってしまう。そのため、表面改質による工具寿命の向上効果は表面近傍のみに限られてしまう。 Since the hard coating layers of the coated tools described in Patent Documents 1 and 2 are manufactured by the Arc Ion Plating (AIP) method, the hard coating layers contain mixed droplets (droplets). Surface modification mainly removes droplets present on the surface, reducing surface roughness and increasing tool life. However, when examined based on the principle of arc ion plating, the presence of droplets inside the hard coating layer, though less frequent than the droplets existing on the surface, causes wear on the surface of the hard coating layer. The period from when the droplets inside the hard coating layer are exposed to the end of the tool life is the same as when the surface is not modified. Therefore, the effect of improving the tool life by surface modification is limited only to the vicinity of the surface.

一方、特許文献3には、混入溶滴がないとの一文の記載のみであり、工具寿命に影響を与える混入溶滴の大きさとその存在量について具体的な言及はなされていない。 On the other hand, Patent Document 3 only states that there is no mixed droplet, and does not specifically mention the size and amount of mixed droplets that affect the tool life.

本発明者は、TiとAlの複合窒化物層においてTi成分の組成が相対的に高い領域が、工具基体表面の法線に対して所定の角度をなして存在する場合の混入溶滴の大きさと工具寿命との関係について鋭意検討した。その結果、混入溶滴が単純に少なくなれば工具寿命が向上するのではなく、所定の大きさの混入溶滴が所定量存在するとき工具寿命が向上するという驚くべき知見を得た。 The present inventors have found that the size of mixed droplets when a region with a relatively high composition of Ti components in a composite nitride layer of Ti and Al exists at a predetermined angle with respect to the normal to the surface of the tool substrate. and tool life. As a result, the surprising finding was obtained that the tool life is improved not simply by reducing the number of mixed droplets, but by the presence of a predetermined amount of mixed droplets of a predetermined size.

本発明は、前記知見に基づくものであって、次のとおりのものである。
「(1)工具基体の表面に、0.5~8.0μmの平均膜厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、前記TiとAlの複合窒化物層は、その組成を、
組成式:(TiAl1-x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成xに対して、前記Ti成分の組成が相対的に高い帯状領域が、少なくとも、前記工具基体表面の法線とのなす角度が70度以下の刃先稜線部に向かう方向に存在しており、
最大長さ50nm以上の大きさを有する混入溶滴の面積の和(Sdp)の前記硬質被覆層の面積(Sc)に対する割合、Sdp/Scが0.100%以下であり、かつ、最大長さ10nm以上50nm未満の大きさを有する混入溶滴の面積の和(Ssdp)の前記硬質被覆層の面積(Sc)に対する割合、Ssdp/Scが0.001%以上0.100%以下である、
ことを特徴とする表面被覆切削工具。
(2)刃先稜線部においては、工具表面同士の延長線がなす角を2θとするとき、当該角の二等分線となす角が0.70×θ度以下となる範囲で、前記Ti成分の組成が相対的に高い帯状領域が、すくい面側と逃げ面側にそれぞれ存在することを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記刃先稜線部以外では、前記Ti成分の組成が相対的に高い帯状領域が、工具基体表面の法線とのなす角度が35度以上70度以下または30度以下であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域のTi成分の平均組成をYとした場合、前記TiとAlの複合窒化物層におけるTi成分の平均組成xと前記Yは、(x+0.01)≦Y≦(x+0.05)の関係を満足することを特徴とする前記(1)~(3)のいずれかに記載の表面被覆切削工具。
(5)前記刃先稜線部以外では、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域の平均幅Wは、30~500nmであることを特徴とする前記(4)に記載の表面被覆切削工具。
(6)前記刃先稜線部以外では、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が前記TiとAlの複合窒化物層の縦断面に占める、平均面積割合Stは3~50面積%であることを特徴とする前記(1)~(5)のいずれかに記載の表面被覆切削工具。
(7)前記刃先稜線部以外では、前記TiとAlの複合窒化物層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなり、前記TiとAlの複合窒化物層の縦断面に占める立方晶構造の結晶粒の平均面積割合Sは30面積%以上であることを特徴とする前記(1)~(6)のいずれかに記載の表面被覆切削工具。」
The present invention is based on the above findings, and is as follows.
"(1) A surface-coated cutting tool in which a hard coating layer containing at least a composite nitride layer of Ti and Al having an average thickness of 0.5 to 8.0 μm is provided on the surface of the tool substrate, wherein the Ti and Al The composite nitride layer of
Composition formula: (Ti x Al 1-x )N
has an average composition that satisfies 0.10 ≤ x ≤ 0.35 (where x is the atomic ratio), and the composite nitride layer of Ti and Al contains the average composition of the Ti component With respect to x, the band-shaped region with a relatively high Ti component composition exists at least in the direction toward the cutting edge ridge portion at an angle of 70 degrees or less with the normal line of the tool base surface,
The ratio of the sum of areas (Sdp) of mixed droplets having a maximum length of 50 nm or more to the area (Sc) of the hard coating layer, Sdp/Sc, is 0.100% or less, and the maximum length is Ssdp/Sc, the ratio of the sum of the areas of mixed droplets having a size of 10 nm or more and less than 50 nm (Ssdp) to the area of the hard coating layer (Sc), is 0.001% or more and 0.100% or less.
A surface-coated cutting tool characterized by:
(2) In the cutting edge ridge, when the angle formed by the extension lines of the tool surfaces is 2θ, the angle formed with the bisector of the angle is 0.70 × θ degrees or less, and the Ti component The surface-coated cutting tool according to (1) above, characterized in that band-like regions having a relatively high composition of are present on the rake face side and the flank face side, respectively.
(3) Except for the cutting edge ridge line, the belt-like region having a relatively high Ti composition forms an angle of 35 degrees or more and 70 degrees or less or 30 degrees or less with the normal line of the tool substrate surface. The surface-coated cutting tool according to (1) or (2) above.
(4) When the average composition of the Ti component in the strip-shaped region in which the Ti component is relatively high compared to the average composition of the Ti component is Y, the average of the Ti component in the composite nitride layer of Ti and Al The surface-coated cutting tool according to any one of (1) to (3), wherein the composition x and the Y satisfy the relationship of (x+0.01)≤Y≤(x+0.05).
(5) The average width W of the band-shaped region having a relatively higher Ti component composition than the average Ti component composition other than the cutting edge ridge is 30 to 500 nm. ), the surface-coated cutting tool described in .
(6) In the longitudinal section of the composite nitride layer of Ti and Al, the average area ratio of the band-shaped region having a relatively higher Ti composition than the average composition of the Ti component other than the ridge line of the cutting edge. The surface-coated cutting tool according to any one of (1) to (5), wherein St is 3 to 50 area %.
(7) Except for the cutting edge ridge, the Ti and Al composite nitride layer is composed of a mixed structure of cubic crystal grains and hexagonal crystal grains, and the Ti and Al composite nitride layer The surface-coated cutting tool according to any one of the above (1) to (6), wherein the average area ratio S of crystal grains having a cubic crystal structure in the longitudinal section is 30 area % or more. ”

本発明の表面被覆切削工具は、溶着性の高い材料において、硬質被覆層が優れた耐チッピング性と耐摩耗性を発揮し、高速断続切削加工に供しても長期の使用にわたって優れた切削性能を発揮することができる。 In the surface-coated cutting tool of the present invention, the hard coating layer exhibits excellent chipping resistance and wear resistance in a highly adhesive material, and exhibits excellent cutting performance over long-term use even when subjected to high-speed interrupted cutting. can demonstrate.

本発明被覆工具の逃げ面・すくい面(刃先稜線部以外)におけるTiとAlの複合窒化物層(TiAlN層)の縦断面模式図を示す。FIG. 2 shows a schematic vertical cross-sectional view of a composite nitride layer (TiAlN layer) of Ti and Al on the flank/rake face (other than the cutting edge ridge) of the coated tool of the present invention. 本発明被覆工具の刃先稜線部におけるTiAlN層の縦断面模式図(高Ti領域の表示を省略)を示す。FIG. 2 shows a schematic vertical cross-sectional view of the TiAlN layer in the ridgeline portion of the cutting edge of the coated tool of the present invention (display of the high-Ti region is omitted). 図2の刃先部分の拡大図(刃先稜線部のみの高Ti領域の表示あり)を示す。FIG. 3 shows an enlarged view of the cutting edge portion of FIG. 2 (only the ridge line of the cutting edge shows a high Ti region). 本発明被覆工具のTiAlN層を成膜するのに用いる大出力パルススパッタリング装置を示し、(a)は概略平面図、(b)は概略正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a high power pulse sputtering apparatus used for forming a TiAlN layer of a coated tool of the present invention, (a) being a schematic plan view and (b) being a schematic front view.

次に、本発明の表面被覆切削工具について、詳細に説明する。 Next, the surface-coated cutting tool of the present invention will be described in detail.

TiAlN層の平均層厚:
硬質被覆層は、少なくともTiAlN層を含むが、該TiAlN層の平均層厚が0.5μm未満では、TiAlN層によって付与される長期の耐摩耗性向上効果が十分に得られず、一方、平均層厚が8.0μmを超えると、欠損やチッピングが発生しやすくなることがあるため、TiAlN層の平均層厚を0.5~8.0μmとすることが好ましい。
Average layer thickness of TiAlN layer:
The hard coating layer includes at least a TiAlN layer. If the average layer thickness of the TiAlN layer is less than 0.5 μm, the long-term wear resistance improvement effect imparted by the TiAlN layer cannot be sufficiently obtained. If the thickness exceeds 8.0 μm, defects and chipping may easily occur, so the average layer thickness of the TiAlN layer is preferably 0.5 to 8.0 μm.

TiAlN層の平均組成:
TiAlN層を、組成式:(TiAl1-x)Nで表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有することが好ましい。その理由は、Ti成分の平均組成を表すxが0.10未満である場合には、六方晶構造のTiAlN結晶粒が形成されやすくなり、TiAlN層の硬度が低下して十分な耐摩耗性を得ることができず、一方、Ti成分の平均組成を表すxが0.35を超える場合には、Al成分の組成割合が減少するため、TiAlN層の高温硬さおよび高温耐酸化性が低下するためである。
なお、工具基体表面の汚染の影響などで不可避的に検出される炭素や酸素などの元素を除いてTi、Al、Nの含有割合の原子比を定量し、TiとAlとNの含有割合の原子比の合計に対するNの含有割合が0.45以上0.65以下の範囲であれば、前記xの範囲が満足される限り、前述の発明が解決しようとする課題は解決される。
Average composition of TiAlN layer:
When the TiAlN layer is represented by the composition formula: (Ti x Al 1-x )N, it preferably has an average composition that satisfies 0.10≦x≦0.35 (where x is the atomic ratio). The reason for this is that when x, which represents the average composition of the Ti component, is less than 0.10, TiAlN crystal grains with a hexagonal crystal structure are likely to be formed, and the hardness of the TiAlN layer is lowered to provide sufficient wear resistance. On the other hand, if x, which represents the average composition of the Ti component, exceeds 0.35, the composition ratio of the Al component decreases, so the high-temperature hardness and high-temperature oxidation resistance of the TiAlN layer decrease. It's for.
In addition, the atomic ratio of the content ratio of Ti, Al, and N is quantified, excluding elements such as carbon and oxygen that are unavoidably detected due to the influence of contamination of the tool substrate surface, etc., and the content ratio of Ti, Al, and N is determined. If the content of N with respect to the total atomic ratio is in the range of 0.45 or more and 0.65 or less, as long as the range of x is satisfied, the problem to be solved by the invention is solved.

刃先稜線部以外におけるTiAlN層中の立方晶構造の結晶粒の平均面積割合S:
本発明のTiAlN層は、後述する刃先稜線部以外で、Al成分の平均組成割合1-x(ただし、1-xは原子比)を0.65~0.90と高くしているため、TiAlN層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなるが、TiAlN層の縦断面に占める立方晶構造の結晶粒の平均面積割合S(面積%)は30面積%以上とすることが好ましい。
これは、立方晶構造の結晶粒の平均面積割合Sが30面積%未満では、相対的に、六方晶構造の結晶粒の面積割合が増加するためTiAlN層の硬さが低下し、その結果、耐摩耗性が低下することがあるためである。
なお、立方晶構造の結晶粒の平均面積割合Sは、例えば、後述するように、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、TiAlN層の工具基体表面に垂直な方向の断面を測定することにより求めることができる。
Average area ratio S of crystal grains with a cubic structure in the TiAlN layer other than the cutting edge ridge:
In the TiAlN layer of the present invention, the average composition ratio 1-x (where 1-x is the atomic ratio) of the Al component is as high as 0.65 to 0.90 except for the ridgeline portion of the cutting edge, which will be described later. The layer consists of a mixed structure of crystal grains of cubic structure and crystal grains of hexagonal structure, and the average area ratio S (area %) of crystal grains of cubic structure in the longitudinal section of the TiAlN layer is 30 area% or more. It is preferable to
This is because when the average area ratio S of crystal grains having a cubic crystal structure is less than 30% by area, the area ratio of crystal grains having a hexagonal crystal structure relatively increases, so that the hardness of the TiAlN layer decreases, and as a result, This is because wear resistance may decrease.
The average area ratio S of crystal grains having a cubic crystal structure can be determined, for example, by using a field emission scanning electron microscope and an electron beam backscattering diffraction device, as described later, in the direction perpendicular to the surface of the tool substrate of the TiAlN layer. It can be determined by measuring the cross section.

高Ti帯状領域:
TiAlN層中に、Ti成分の平均組成xに比して、Ti成分の組成xが相対的に高い高Ti帯状領域は、次の(1)~(6)を満足することが好ましい。
High Ti band area:
In the TiAlN layer, the high-Ti belt-like region in which the composition x of the Ti component is relatively high compared to the average composition x of the Ti component preferably satisfies the following (1) to (6).

(1)工具基体表面(刃先稜線部以外の逃げ面およびすくい面)の法線とのなす角
工具基体表面(刃先稜線部以外の逃げ面およびすくい面)の法線とのなす角度は70度以下の方向となるように形成することが好ましい(図1を参照)。
この角度範囲とした理由は、70度を超えると硬質被覆層が積層膜であるときと同様の層厚方向の剥離が生じやすくなるためである。
この角度は、70度以下35度以上、または、30度以下(0度を含む)が好ましい。すなわち、35度未満~30度超えの傾きの範囲では、高切込み等の切れ刃に高負荷が掛かる切削において硬質被覆層の表面のクラック発生・進展が生じる可能性がある。
この角度の測定は、高Ti帯状領域の特定がなされた後に行うものであるから、後述する高Ti帯状領域の特定の欄で説明する。
(1) Angle formed with the normal to the tool base surface (flank and rake faces other than the ridgeline of the cutting edge) The angle formed with the normal to the surface of the tool base (flank and rake face other than the ridgeline of the cutting edge) is 70 degrees. It is preferable to form so as to have the following directions (see FIG. 1).
The reason for setting this angle range is that if the angle exceeds 70 degrees, peeling in the layer thickness direction is likely to occur as in the case where the hard coating layer is a laminated film.
This angle is preferably 70 degrees or less and 35 degrees or more, or 30 degrees or less (including 0 degrees). That is, in the range of inclination from less than 35 degrees to more than 30 degrees, there is a possibility that cracks will occur and develop on the surface of the hard coating layer in cutting such as high cutting depth where a high load is applied to the cutting edge.
Since the measurement of this angle is performed after the high-Ti band-like region is specified, it will be described later in the section on specifying the high-Ti band-like region.

(2)刃先稜線部では、工具表面同士の延長線がなす角を2θとするとき、当該角の二等分線となす角が0.70×θ度以下となる範囲ですくい面側と逃げ面側にそれぞれ存在することがより好ましい。ここでいう、すくい面側と逃げ面側にそれぞれ存在するとは、すくい面側と逃げ面側に、それぞれ、1つ以上存在することである。
この刃先稜線部の高Ti帯状領域が存在することにより、存在しないときに比して硬質被覆層の剥離防止がより一層確実になる。
なお、この角の二等分線(13:図2、3を参照。)となす角度の測定は、高Ti帯状領域の特定がなされた後に行うものであるから、後述する高Ti帯状領域の特定を説明する箇所で説明する。
(2) At the cutting edge ridge, when the angle formed by the extended lines of the tool surfaces is 2θ, the angle formed with the bisector of the angle is 0.70 × θ degrees or less. It is more preferable to exist on each surface side. Here, "existing on each of the rake face side and the flank face side" means that one or more of each exists on the rake face side and the flank face side.
The presence of the high-Ti band-like region on the ridgeline of the cutting edge makes it possible to prevent the peeling of the hard coating layer more reliably than when it does not exist.
The angle formed by the bisector of this angle (13: see FIGS. 2 and 3) is measured after the high-Ti band-like region is specified. This will be explained where specificity is explained.

ここで、本発明でいう刃先稜線部とは、以下に定義されるものである。すなわち、図2および図3(図2および図3の縦横比、縮尺は正確ではない)に示されるように、
本発明の被覆工具の厚さ方向に垂直な硬質皮膜(2)を含む断面(縦断面)において、すくい面(3)、逃げ面(4)をそれぞれ近似する直線(以下、それぞれを、「すくい面の近似直線(5)」、および、「逃げ面の近似直線(6)」といい、総称するときは、「工具表面同士の延長線」という)同士の交点(7)と、この交点(7)に最も近い前記断面の硬質皮膜上の点(M)とを通る直線を「刃先法線(8)」といい、
前記すくい面の近似曲線(5)が前記すくい面(3)との接触がなくなる点を「すくい面の屈曲点(9)」といい、
前記逃げ面の近似曲線(6)が前記逃げ面(4)との接触がなくなる点を「逃げ面の屈曲点(10)」というとき、
前記刃先法線(8)と前記すくい面の屈曲点(9)との距離をr1、
前記刃先法線(8)と前記逃げ面の屈曲点(10)との距離をr2、
R=(r1+r2)/2とすると、
前記刃先法線(8)と前記すくい面(3)との距離が3Rとなる前記すくい面上の点(11)と、前記刃先法線(8)と前記逃げ面(4)との距離が3Rとなる前記逃げ面上の点(12)とを結んだ硬質被膜(2)上の領域をいう。
Here, the cutting edge ridgeline portion as used in the present invention is defined below. That is, as shown in FIGS. 2 and 3 (aspect ratios of FIGS. 2 and 3, not to scale):
In a cross section (longitudinal cross section) including the hard coating (2) perpendicular to the thickness direction of the coated tool of the present invention, straight lines that respectively approximate the rake face (3) and the flank face (4) (hereinafter, each is referred to as "rake The approximation straight line of the surface (5)" and the approximation straight line of the flank (6)", collectively referred to as the "extension line between the tool surfaces"), the intersection point (7) and this intersection point ( A straight line passing through the point (M) on the hard coating of the cross section closest to 7) is called the "normal line (8) of the cutting edge",
The point where the approximation curve (5) of the rake face loses contact with the rake face (3) is called the "rake face inflection point (9)",
When the flank surface approximation curve (6) is no longer in contact with the flank surface (4) and is called the "flank inflection point (10)",
The distance between the cutting edge normal (8) and the bending point (9) of the rake face is r1,
The distance between the cutting edge normal (8) and the bending point (10) of the flank face is r2,
Assuming R=(r1+r2)/2,
A point (11) on the rake face where the distance between the normal to the cutting edge (8) and the rake face (3) is 3R, and the distance between the normal to the cutting edge (8) and the flank (4) is It refers to the area on the hard coating (2) connecting the point (12) on the flank face that becomes 3R.

(3)Ti成分の平均組成
高Ti帯状領域のTi成分の平均組成をYとした場合、TiとAlの複合窒化物層におけるTi成分の平均組成xとYは、(x+0.01)≦Y≦(x+0.05)の関係を満足することが好ましい。
これは、Yが(x+0.01)未満であると、TiAlN層全体に対して高Ti帯状領域の靱性が十分ではないため衝撃の吸収・緩和が不十分なときがあり、(x+0.05)を超えると、高Ti帯状領域が必要な硬度を得ることができず、TiAlN層全体の耐摩耗性が低下してしまうことがあるためである。
(3) Average composition of Ti component When the average composition of Ti component in the high-Ti belt-like region is Y, the average composition x and Y of Ti component in the composite nitride layer of Ti and Al is (x + 0.01) ≤ Y It is preferable to satisfy the relationship ≦(x+0.05).
This is because when Y is less than (x + 0.01), the toughness of the high Ti band-like region is not sufficient for the entire TiAlN layer, so that the impact absorption and mitigation may be insufficient, and (x + 0.05) , the high Ti band-like region cannot obtain the required hardness, and the wear resistance of the TiAlN layer as a whole may decrease.

(4)平均幅W
高Ti帯状領域の幅とは、図1に示すように、高Ti帯状領域が傾斜している角度に対して垂直な方向における幅をいい、刃先稜線部以外では、その平均値(平均幅)Wは30~500nmであることが望ましい。
これは、前記Wが30nm未満では、TiAlN層が全体としてほぼ均質な組成となるため、靱性向上効果、衝撃の吸収・緩和効果を期待することができないときがあり、一方、前記Wが500nmを超えると、TiAlN層中に部分的な低硬度領域が形成され、偏摩耗発生等により耐摩耗性が低下することがあるという理由による。
なお、高Ti帯状領域の平均幅とは、後記するように、例えば、透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)(以下、「TEM-EDS」という)によりTiAlN層の縦断面のTi成分の組成を測定した場合に、Ti成分の平均組成Yが、例えば、前記した(x+0.01)≦Y≦(x+0.05)の関係を満たすTi帯状領域の平均幅である。
(4) Average width W
As shown in FIG. 1, the width of the high-Ti band-like region refers to the width in the direction perpendicular to the angle at which the high-Ti band-like region is inclined. Desirably, W is 30 to 500 nm.
This is because when the W is less than 30 nm, the TiAlN layer has a substantially homogeneous composition as a whole, so that it may not be possible to expect the effect of improving toughness and the effect of absorbing and mitigating impact. This is because if it exceeds, a partial low-hardness region is formed in the TiAlN layer, and the wear resistance may be lowered due to uneven wear or the like.
Incidentally, the average width of the high-Ti band-like region is determined by, for example, an energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope (TEM) (hereinafter referred to as "TEM-EDS"), as described later. When the composition of the Ti component in the longitudinal section of the TiAlN layer is measured, the average composition Y of the Ti component is, for example, the average of the Ti band-like regions that satisfy the relationship of (x + 0.01) ≤ Y ≤ (x + 0.05) width.

(5)刃先稜線部以外における平均面積割合St
刃先稜線部以外において、高Ti帯状領域がTiAlN層に占める平均面積割合Stは、3~50面積%であることが望ましい。
これは、Stが3面積%未満の場合には、高Ti帯状領域を形成したことによる靱性向上効果、衝撃の吸収・緩和効果が少ないため、耐チッピング性の改善度合いが低いことがあり、一方、Stが50面積%を超える場合には、高Ti帯状領域が低硬度領域として形成され、その結果、偏摩耗発生等により耐摩耗性が低下することがある、という理由による。
(5) Average area ratio St other than the cutting edge ridge line
It is desirable that the average area ratio St of the TiAlN layer occupied by the high-Ti belt-like region other than the cutting edge ridge is 3 to 50 area %.
This is because when the St content is less than 3 area %, the effect of improving toughness and the effect of absorbing and mitigating impact due to the formation of the high-Ti band-like region are small, so the degree of improvement in chipping resistance may be low. This is because when the St content exceeds 50 area %, the Ti-rich belt-like region is formed as a low-hardness region, and as a result, the wear resistance may decrease due to uneven wear and the like.

(6)高Ti帯状領域の特定
少なくとも500nmの帯状の幅が入る視野で測定したTEM-EDSによる測定像において、
刃先稜線部以外では、基体表面の法線とのなす角が70度以下である直線上の複数の測定点におけるTi成分の組成Yが、
刃先稜線部(すくい面側と逃げ面側の両方)では、工具表面同士の延長線がなす角を2θとするとき、当該角の二等分線となす角が0.70×θ度以下となる直線上の複数の測定点におけるTi成分の組成Yが、
それぞれ、所定のTiの濃度の高い領域、例えば、(x+0.01)以上(x+0.05)以下の範囲内(なお、xは、既述したTiAlN層全体におけるTi成分の平均組成)にあるか否かによって、該直線が高Ti帯状領域に属するか直線であるか否かを判定する。
ついで、前記直線が高Ti帯状領域に属する場合には、該直線に直交する方向にTi成分の組成を測定し、測定したTi成分の組成が、当該所定のTiの濃度の高い領域、例えば、(x+0.01)≦Y≦(x+0.05)の関係から外れる位置を、高Ti帯状領域の境界として特定する。
それから、前記で特定された高Ti帯状領域の複数位置においてTi成分の組成を測定し、これらを平均することによって、高Ti帯状領域におけるTi成分の平均組成Yを求めることができる。
(6) Identification of high-Ti band-shaped region In a measurement image by TEM-EDS measured in a field of view containing a band-shaped width of at least 500 nm,
The composition Y of the Ti component at a plurality of measurement points on a straight line with an angle of 70 degrees or less with respect to the normal to the surface of the substrate, other than the ridge line of the cutting edge, is
At the cutting edge ridge (both on the rake face side and the flank face side), if the angle formed by the extended lines of the tool surfaces is 2θ, the angle formed with the bisector of the angle should be 0.70×θ degrees or less. The composition Y of the Ti component at a plurality of measurement points on a straight line is
Is it in a predetermined high Ti concentration region, for example, within a range of (x + 0.01) to (x + 0.05) (where x is the average composition of the Ti component in the entire TiAlN layer described above)? It is determined whether the straight line belongs to the high-Ti belt-like region or is a straight line.
Next, when the straight line belongs to the high Ti band-like region, the composition of the Ti component is measured in the direction perpendicular to the straight line, and the measured Ti component composition is in the predetermined high Ti concentration region, for example, A position outside the relationship of (x+0.01)≦Y≦(x+0.05) is identified as the boundary of the high-Ti strip region.
Then, by measuring the composition of the Ti component at a plurality of positions in the high Ti band-like region specified above and averaging these, the average composition Y of the Ti component in the high Ti band-like region can be obtained.

また、前記で特定された高Ti帯状領域の輪郭を確定し、複数位置における幅を測定し、これらを平均することによって、高Ti帯状領域の平均幅Wを求めることができる。
そして、この画定された高Ti帯状領域の輪郭を当該高Ti帯状領域の境界線とする。刃先稜線部以外では、工具基体表面の法線となす角度を測定し、この測定した角度を高Ti帯状領域ごとに平均したものを工具基体の法線となす角度とする。また、刃先稜線部では、この境界線と工具表面同士の延長線がなす角の二等分線(13)となす角度を測定して高Ti帯状領域ごとに平均したものを前記角の二等分線となす角度とする。
Further, the average width W of the high-Ti band-like region can be determined by determining the outline of the high-Ti band-like region specified above, measuring the widths at a plurality of positions, and averaging these values.
Then, the outline of the high-Ti band-like region thus defined is used as the boundary line of the high-Ti band-like region. In areas other than the cutting edge ridge line, the angle formed with the normal to the surface of the tool substrate is measured, and the average of the measured angles for each high-Ti belt-like region is taken as the angle formed with the normal to the tool substrate. In addition, in the cutting edge ridge line, the angle formed by the bisector (13) of the angle formed by this boundary line and the extension line of the tool surface was measured, and the average for each high Ti band-like region was the bisector of the angle. The angle formed with the segment line.

結晶構造と面積割合の測定:
本発明のTiAlN層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなるが、結晶構造と面積割合は、例えば、電界放出型走査電子顕微鏡と電子線後方散乱回折装置を用いて、TiAlN層の工具基体表面に垂直な方向の断面を測定することにより求めることができる。
Crystal structure and area fraction measurements:
The TiAlN layer of the present invention consists of a mixed structure of crystal grains of cubic crystal structure and crystal grains of hexagonal crystal structure. can be obtained by measuring the cross section of the TiAlN layer in the direction perpendicular to the surface of the tool base.

より具体的に言えば、TiAlN層の工具基体表面に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って層厚以下の距離の測定範囲内について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで、立方晶構造の結晶粒の面積割合を測定することができる。 More specifically, the cross section of the TiAlN layer in the direction perpendicular to the surface of the tool substrate is set as a polished surface, and set in the lens barrel of a field emission scanning electron microscope, and the polished surface is irradiated with an incident angle of 70 degrees. An electron beam with an acceleration voltage of 15 kV is irradiated with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the cross-sectional polished surface, and the length is 100 μm in the horizontal direction to the tool substrate and the direction perpendicular to the tool substrate surface. By measuring the electron beam backscatter diffraction image at intervals of 0.01 μm / step within the measurement range of the distance equal to or less than the layer thickness along the cross section, and analyzing the crystal structure of individual crystal grains, the cubic crystal structure It is possible to measure the area ratio of the crystal grains.

前記測定を5箇所の測定範囲で行い、これらの平均値として、立方晶構造の結晶粒の平均面積割合Sを算出する。なお、0.01μm/stepの間隔とした測定点は、より詳細には、測定範囲内を充填するように一辺が0.01μmの正三角形を配置して、その各々の正三角形の頂点を測定点としており、一つの測定点での測定結果はこの正三角形一つの面積の測定結果を代表する測定結果となっている。従って、前記に示したように、測定点数の割合から面積割合が求められる。 The measurement is performed in five measurement ranges, and the average area ratio S of crystal grains having a cubic crystal structure is calculated as the average value of these measurements. More specifically, the measurement points with an interval of 0.01 μm/step are obtained by arranging an equilateral triangle with a side of 0.01 μm so as to fill the measurement range, and measuring the vertex of each equilateral triangle. The measurement result at one measurement point is the measurement result representing the measurement result of one area of this equilateral triangle. Therefore, as described above, the area ratio can be obtained from the ratio of the number of measurement points.

混入溶滴:
混入溶滴とは、例えば、AIP装置により成膜された硬質皮膜に一般的に存在するドロップレットともいわれるもので、アーク放電により溶融したターゲット成分が液滴として飛散し、硬質被覆層中に取り込まれた粒のことである。本発明では、混入液滴について、以下に定義する。すなわち、SEM-EDSおよびTEM-EDSのマッピング分析によりTiAlN層の縦断面のAl、Ti、N成分の組成を測定したときに、Alおよび/またはTiが検出され、かつN成分が検出されない領域とする。
Mixed droplets:
Mixed droplets are, for example, droplets that generally exist in a hard coating formed by an AIP device. It is about the grains that have been soaked. In the present invention, an entrained droplet is defined below. That is, when the composition of Al, Ti, and N components in the longitudinal section of the TiAlN layer is measured by SEM-EDS and TEM-EDS mapping analysis, Al and/or Ti are detected, and the region where the N component is not detected. do.

混入溶滴の面積比率:
前記混入溶滴に関して、刃先稜線部(すくい面側と逃げ面側の両方)を含む皮膜中のTiAlN層の縦断面をSEM-EDSマッピング分析により倍率50000倍で観察し、混入液滴の最大長さが50nm以上である粒の面積の和をSdpとし、前記刃先稜線部のTiAlN層の縦断面の面積をScとした場合に、SdpのScに対する比、Sdp/Scが0.100%以下、かつ、TEM-EDSマッピング分析により倍率100000倍で観察し、最大長さ10nm以上50nm未満の大きさを有する混入溶滴の面積の和(Ssdp)の硬質被覆層の面積(Sc)に対する割合、Ssdp/Scが0.001%以上0.100%未満であることが好ましい。
その理由は、Sdp/Scが前記範囲にあることにより、50nm以上の粗大な混入液滴による硬質被覆層の欠陥や異常成長発生に伴う突発的な剥離や損傷を抑えることができる。さらに、Ssdp/Scが前記範囲にあれば、微粒な混入溶滴が硬質被覆層内部に拡散して存在していることにより、混入溶滴が切削雰囲気により酸化アルミニウム(AlO)となることにより、耐熱性・耐酸化性が向上する効果が優位に働き、切削性能が向上する。換言すると、最大長さ10nm以上50nm以下の大きさを有する混入溶滴がある程度存在しないと、前記酸化アルミニウムへ変化による被覆効果が発現しない。
ここでいう断面積の面積Scは、SEM-EDSマッピング分析により倍率50000倍で観察する場合は、少なくとも1μm×1μm以上の視野は必要であり、硬質被覆層全体を観察してもよいが、逃げ面・すくい面で各10視野を観察する。
なお前記最大長さとは混入液滴の輪郭線上の任意の2点間の最大値を指す。
Area ratio of mixed droplets:
Regarding the mixed droplets, the longitudinal section of the TiAlN layer in the coating including the cutting edge ridge (both on the rake face side and the flank face side) was observed by SEM-EDS mapping analysis at a magnification of 50000 times, and the maximum length of the mixed droplets Sdp is the sum of the areas of grains having a thickness of 50 nm or more, and Sc is the area of the vertical cross section of the TiAlN layer at the ridge of the cutting edge. And, observed at a magnification of 100000 times by TEM-EDS mapping analysis, the ratio of the sum of the areas of mixed droplets (Ssdp) having a maximum length of 10 nm or more and less than 50 nm to the area of the hard coating layer (Sc), Ssdp /Sc is preferably 0.001% or more and less than 0.100%.
The reason for this is that the Sdp/Sc is in the above range, so that defects of the hard coating layer caused by coarse mixed droplets of 50 nm or more and sudden peeling and damage caused by abnormal growth can be suppressed. Furthermore, when Ssdp/Sc is within the above range, fine mixed droplets diffuse into the hard coating layer, and the mixed droplets become aluminum oxide (AlO x ) due to the cutting atmosphere. , the effect of improving heat resistance and oxidation resistance works predominantly, improving cutting performance. In other words, unless there is a certain amount of mixed droplets having a maximum length of 10 nm or more and 50 nm or less, the coating effect due to the change to aluminum oxide does not occur.
The area Sc of the cross-sectional area referred to here requires a field of view of at least 1 μm×1 μm or more when observed at a magnification of 50,000 times by SEM-EDS mapping analysis, and the entire hard coating layer may be observed. Observe 10 fields each on the face and rake face.
Note that the maximum length refers to the maximum value between any two points on the contour line of the mixed droplet.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、あるいはTi、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool substrate:
As the tool substrate, any conventionally known substrate for this type of tool substrate can be used as long as it does not interfere with the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, containing Co, or containing carbonitrides such as Ti, Ta, Nb, etc.), cermets (TiC, TiN , TiCN as a main component, etc.), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body.

TiAlN層の成膜方法:
本発明のTiAlN層は、例えば、以下の方法によって成膜することができる。
Method for depositing TiAlN layer:
The TiAlN layer of the present invention can be formed, for example, by the following method.

図4に示すアーク電源の一つを高出力パルススパッタ電源に替えた大出力パルススパッタ装置を用い、工具基体を回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、該装置内に、所定組成のTi-Al合金ターゲット(カソード電極)を配置し、工具基体表面をボンバード洗浄し、次いで、該装置内に反応ガスとして窒素ガスを導入し、スパッタガスとしてアルゴンガスを導入して、前記工具基体の温度を低温処理温度から、横軸を時間、縦軸を処理温度(設定温度)としたグラフに表したときに、温度変化が直線状または階段状となるように、高温処理温度まで上昇させて、この温度に保持し、Ti-Al合金ターゲット(カソード電極)に所定スパッタ条件を印可してプラズマ放電を発生させ、直流の低バイアス電圧を前記工具基体に対して所定時間に印可して、直線状もしくは階段状に順次バイアス電圧を上昇させ、直流の高バイアス電圧を印加して、本発明の刃先稜線部の混入液滴の面積率が所定値以下のTiAlN層を成膜することができる。 Using a high-output pulse sputtering apparatus in which one of the arc power sources shown in FIG. A Ti—Al alloy target (cathode electrode) having a predetermined composition is placed in the device, the surface of the tool substrate is bombarded and cleaned, and then nitrogen gas is introduced into the device as a reaction gas and used as a sputtering gas. When argon gas is introduced and the temperature of the tool substrate is plotted from the low-temperature treatment temperature on a graph with time on the horizontal axis and treatment temperature (set temperature) on the vertical axis, the temperature change is linear or stepwise. The temperature is raised to a high-temperature treatment temperature and maintained at this temperature, a predetermined sputtering condition is applied to the Ti—Al alloy target (cathode electrode) to generate plasma discharge, and a DC low bias voltage is applied to the tool substrate. is applied for a predetermined time, the bias voltage is sequentially increased linearly or stepwise, and a high DC bias voltage is applied, and the area ratio of the mixed droplets on the edge of the cutting edge of the present invention is a predetermined value or less. of TiAlN layer can be deposited.

なお、本発明において、TiAlNを含む硬質被覆層と工具基体との間に、TiN等の介在層や、該硬質被覆層の表面にAl等の被覆層を更に設けてもよい。 In the present invention, an intervening layer such as TiN may be further provided between the hard coating layer containing TiAlN and the tool substrate, and a coating layer such as Al 2 O 3 may be provided on the surface of the hard coating layer.

次に、この発明の被覆工具を実施例により具体的に説明する。
なお、具体的な説明としては、WC基超硬合金を工具基体とする被覆工具について説明するが、TiCN基サーメットあるいはcBN焼結体等を工具基体とする被覆工具についても同様である。
Next, the coated tool of the present invention will be specifically described with reference to examples.
As a concrete explanation, a coated tool having a tool substrate made of a WC-based cemented carbide will be described, but the same applies to a coated tool having a tool substrate such as a TiCN-based cermet or cBN sintered body.

工具基体の作製:
原料粉末として、いずれも0.5~5μmの平均粒径を有する、Co粉末、TaC粉末、NbC粉末、VC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥し後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFENのインサート形状をもったWC基超硬合金工具基体1~2を製造した。
Preparation of tool substrate:
As raw material powders, Co powder, TaC powder, NbC powder, VC powder, Cr 3 C 2 powder, and WC powder, each having an average particle size of 0.5 to 5 μm, were prepared. After blending with the formulation shown, wax is further added and wet-mixed in a ball mill for 72 hours, dried under reduced pressure, press-molded at a pressure of 100 MPa, and these green compacts are sintered to obtain a predetermined size. to produce WC-based cemented carbide tool substrates 1 and 2 having an insert shape of ISO standard SEEN1203AFEN.

前記工具基体1~2のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図4に示すアノード電源の一つを高出力パルススパッタ電源に替えた大出力パルススパッタ装置を用いて、表2に示すボンバード条件で洗浄し、TiAlN層成膜条件によりTiAlN層を成膜した。
すなわち、まず、装置内を排気して真空に保持しながら、ヒータで工具基体を表2に示すボンバード条件の工具基体温度に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に表2に示す直流バイアス電圧を印加し、かつ、Ti-Al合金ターゲット(カソード電極)に表2に示すアーク電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
次いで、装置内に反応ガスとして窒素ガスを導入して表2に示すNガス圧とすると共に、スパッタガスとしてアルゴンガスを導入して表2に示すArガス圧とし、前記回転テーブル上で自転しながら回転する工具基体の温度を表2に示す低温処理温度から、横軸を時間、縦軸を処理温度(設定温度)としたグラフに表したときに、温度変化が直線状または階段状となるように、高温処理温度まで上昇させて、この温度に保持し、Ti-Al合金ターゲット(カソード電極)に表2に示すスパッタ投入電力、ピーク電流、パルス周波数、パルス印加時間を持つスパッタ条件を印加してプラズマ放電を発生させ、表2に示す直流の低バイアス電圧を工具基体に対して表2に示す所定時間印加して、ついで表2に示す上昇速度に沿うように、横軸を時間、縦軸をバイアス電圧(-V)としたグラフに表した際に直線状もしくは階段状に順次バイアス電圧を上昇させ、ついで、表2に示す直流の高バイアス電圧を印加して、TiAlN層を成膜することにより、表4に示す平均層厚、Ti成分の平均組成x、立方晶構造の結晶粒の平均面積割合S、所定の高Ti帯状領域(Ti成分の平均組成Y、平均幅W、平均面積割合St)を有する本発明被覆工具1~14(をそれぞれ製造した。
Each of the tool substrates 1 and 2 is ultrasonically cleaned in acetone and dried, using a high-output pulse sputtering apparatus in which one of the anode power sources shown in FIG. After washing under the bombardment conditions shown in Table 2, a TiAlN layer was formed under the TiAlN layer forming conditions.
That is, first, while the inside of the apparatus is evacuated and maintained in a vacuum, the tool substrate is heated with a heater to the tool substrate temperature under the bombardment conditions shown in Table 2, and then the tool substrate is exposed to the tool substrate rotating while rotating on the rotary table. 2 is applied, and the arc current shown in Table 2 is passed through the Ti—Al alloy target (cathode electrode) to generate arc discharge, thereby bombarding the surface of the tool substrate,
Next, nitrogen gas was introduced into the apparatus as a reaction gas to set the N2 gas pressure shown in Table 2, and argon gas was introduced as a sputtering gas to set the Ar gas pressure shown in Table 2. When the temperature of the tool base rotating while rotating is represented in a graph from the low temperature treatment temperature shown in Table 2 with time on the horizontal axis and treatment temperature (set temperature) on the vertical axis, the temperature change is linear or stepwise. The temperature was raised to the high-temperature treatment temperature and held at this temperature, and the sputtering conditions having the sputtering input power, peak current, pulse frequency, and pulse application time shown in Table 2 were applied to the Ti—Al alloy target (cathode electrode). A low DC bias voltage shown in Table 2 is applied to the tool substrate for a predetermined time shown in Table 2, and then the horizontal axis is time along the rising speed shown in Table 2. , the vertical axis is the bias voltage (−V), the bias voltage is increased linearly or stepwise in sequence, and then the high DC bias voltage shown in Table 2 is applied to form the TiAlN layer. By forming the film, the average layer thickness shown in Table 4, the average composition x of the Ti component, the average area ratio S of the crystal grains with a cubic crystal structure, and the predetermined high Ti band-like region (average composition Y of the Ti component, average width W , the coated tools 1 to 14 of the present invention having average area ratios St) were produced, respectively.

一方、比較のために、前記工具基体1~2をアセトン中で超音波洗浄した状態で、AIP装置(図4に示す大出力パルススパッタ装置の高出力パルススパッタ電源をアノード電源にしたもの)を用いて、該装置内に反応ガスとして窒素ガスを導入して表3に示すNガス圧とすると共に、前記回転テーブル上で自転しながら回転する工具基体の温度を表3に示す低温処理温度から、横軸を時間、縦軸を処理温度(設定温度)としたグラフに表したときに、温度変化が直線状または階段状となるように、高温処理温度まで上昇させて、この温度に保持し、Ti-Al合金ターゲット(カソード電極)に表3に示すアーク電流を流してアーク放電を発生させ、表3に示す直流の低バイアス電圧を工具基体に対して表3に示す所定時間印加して、ついで表3に示す上昇速度に沿うように、横軸を時間、縦軸をバイアス電圧(-V)としたグラフに表した際に直線状もしくは階段状に順次バイアス電圧を上昇させ、ついで、表3に示す直流の高バイアス電圧を印加して、TiAlN層を成膜することにより、表5に示す平均層厚、Ti成分の平均組成x、立方晶構造の結晶粒の平均面積割合S、所定の高Ti帯状領域(Ti成分の平均組成Y、平均幅W、平均面積割合St)を有する比較例被覆工具1~10をそれぞれ製造した。 On the other hand, for comparison, the tool substrates 1 and 2 were ultrasonically cleaned in acetone, and an AIP apparatus (a high-output pulse sputtering power supply of the high-output pulse sputtering apparatus shown in FIG. 4 was used as an anode power supply) was operated. Nitrogen gas was introduced into the apparatus as a reaction gas to obtain the N2 gas pressure shown in Table 3, and the temperature of the tool substrate rotating while rotating on the rotary table was set to the low temperature treatment temperature shown in Table 3. Then, when represented on a graph with time on the horizontal axis and processing temperature (set temperature) on the vertical axis, the temperature is raised to the high-temperature treatment temperature so that the temperature changes linearly or stepwise, and held at this temperature. Then, an arc current shown in Table 3 was caused to flow through the Ti—Al alloy target (cathode electrode) to generate an arc discharge, and a low DC bias voltage shown in Table 3 was applied to the tool substrate for a predetermined time shown in Table 3. Then, the bias voltage was sequentially increased linearly or stepwise in a graph with time on the horizontal axis and bias voltage (-V) on the vertical axis along the rate of increase shown in Table 3. , by applying a DC high bias voltage shown in Table 3 to form a TiAlN layer, the average layer thickness shown in Table 5, the average composition x of the Ti component, and the average area ratio S of crystal grains with a cubic structure , Comparative coated tools 1 to 10 each having a predetermined high Ti strip region (average composition Y of Ti component, average width W, average area ratio St) were manufactured.

前記で製造した本発明被覆工具1~14および比較例被覆工具1~10のTiAlN層について、平均層厚、Ti成分の平均組成x、高Ti帯状領域の存在の有無の確認と該領域におけるTi成分の平均組成Y、平均幅w、平均面積率St、刃先稜線部以外では該領域の境界線と工具基体表面の法線となす角の平均値、刃先稜線部では該境界線と工具表面同士の延長線がなす角の二等分線となす角の平均値を、それぞれ、求めた。その結果を表4(本発明工具)、表5(比較例被覆工具)に、それぞれ、示す。 Regarding the TiAlN layers of the coated tools 1 to 14 of the present invention and the coated tools 1 to 10 of the comparative examples manufactured above, the average layer thickness, the average composition x of the Ti components, the presence or absence of a high-Ti belt-like region, and the presence or absence of Ti in the region Average composition Y of components, average width w, average area ratio St, average value of the angle between the boundary line of the region and the normal to the surface of the tool base except for the ridge line of the cutting edge, and the boundary line and the tool surface between the ridge line of the cutting edge The average value of the angle formed with the bisector of the angle formed by the extension line of is obtained. The results are shown in Table 4 (invention tool) and Table 5 (comparative coated tool).

さらに、本発明被覆工具1~14および比較被覆工具1~10について、TiAlN層の刃先稜線部を含む領域の混入溶滴の面積率を求めた。すなわち、刃先稜線部を含むTiAlN層の全領域において倍率100000倍のTEM-EDSにより観察して、最大長さが50nm以上である混入溶滴の面積の総和(Sdp)を求め、前記領域のTiAlN層の面積(Sc)との比Sdp/Sc、および、最大長さ10nm以上50nm未満の大きさを有する混入溶滴の面積の和(Ssdp)の硬質被覆層の面積(Sc)に対する割合、Ssdp/Scを算出した。結果を、それぞれ、表4、表5に示す。 Furthermore, for the coated tools 1 to 14 of the present invention and the comparative coated tools 1 to 10, the area ratio of mixed droplets in the region including the cutting edge ridge of the TiAlN layer was determined. That is, the entire region of the TiAlN layer including the ridgeline of the cutting edge is observed by TEM-EDS at a magnification of 100,000 times, and the total area (Sdp) of mixed droplets having a maximum length of 50 nm or more is obtained. The ratio Sdp/Sc to the area of the layer (Sc), and the ratio of the sum of the areas (Ssdp) of the mixed droplets having a maximum length of 10 nm or more and less than 50 nm to the area (Sc) of the hard coating layer, Ssdp /Sc was calculated. The results are shown in Tables 4 and 5, respectively.

Figure 0007132548000001
Figure 0007132548000001

Figure 0007132548000002
Figure 0007132548000002

Figure 0007132548000003
Figure 0007132548000003

Figure 0007132548000004
Figure 0007132548000004

Figure 0007132548000005
Figure 0007132548000005

次いで、本発明被覆工具1~14および比較例被覆工具1~10について、以下の条件で、高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
切削試験:乾式高速正面フライス、センターカット切削加工
カッタ径: 125 mm
被削材: JIS・SUS440A 幅100mm、長さ365mmのブロック材
切削速度: 210 m/min
切り込み: 2.5 mm
一刃送り量: 0.2mm/刃
切削時間: 14分
表6に、試験結果を示す。
Next, for the coated tools 1 to 14 of the present invention and the coated tools 1 to 10 of the comparative examples, a dry high-speed face milling test, which is a type of high-speed interrupted cutting, and a center cut cutting test were performed under the following conditions. The wear width was measured.
Cutting test: dry high-speed face milling, center cut cutting Cutter diameter: 125 mm
Work material: JIS/SUS440A block material with a width of 100 mm and a length of 365 mm Cutting speed: 210 m/min
Notch: 2.5mm
Feed per blade: 0.2 mm/tooth Cutting time: 14 minutes Table 6 shows the test results.

Figure 0007132548000006
Figure 0007132548000006

表6に示す切削試験結果から明らかなように、本発明被覆工具は、TiAlN層においてTi成分の組成が相対的に高い領域が、工具基体表面の法線に対して所定の角度をなして存在し、かつ、所定の大きさの混入溶滴が所定量存在しているため、混入溶滴に関して本発明の規定を満足していない比較例被覆工具に対して、溶着性の高い材料の高速断続切削加工において、硬質被覆層が優れた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたって優れた切削性能を発揮している。 As is clear from the cutting test results shown in Table 6, in the coated tool of the present invention, a region having a relatively high Ti content in the TiAlN layer exists at a predetermined angle with respect to the normal to the surface of the tool substrate. In addition, since there is a predetermined amount of mixed droplets of a predetermined size, high-speed intermittence of a material with high weldability is possible compared to the coated tool of the comparative example, which does not satisfy the provisions of the present invention with respect to the mixed droplets. In cutting, the hard coating layer exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over long-term use.

この発明の被覆工具は、溶着性の高い材料などの高速断続切削加工に供した場合であっても、優れた耐チッピング性とともに長期の使用にわたって優れた耐摩耗性を発揮するものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The coated tool of the present invention exhibits excellent chipping resistance and excellent wear resistance over long-term use even when subjected to high-speed intermittent cutting of materials with high adhesion properties. It can fully satisfactorily cope with factory automation of cutting equipment, labor saving and energy saving in cutting, and further cost reduction.

1:工具基体
2:硬質被膜
3:すくい面
4:逃げ面
5:すくい面の近似直線
6:逃げ面の近似直線
7:交点
8:刃先法線
9:すくい面の屈曲点
10:逃げ面の屈曲点
11:刃先法線とすくい面との距離が3Rとなるすくい面上の点
12:刃先法線と逃げ面との距離が3Rとなる逃げ面上の点
13:角の二等分線
14:角の二等分線に平行な直線
M:交点に最も近い硬質皮膜上の点
1: Tool substrate 2: Hard coating 3: Rake face 4: Flank face 5: Approximate straight line of rake face 6: Approximate straight line of flank face 7: Intersection 8: Cutting edge normal 9: Inflection point of rake face 10: Rake face Inflection point 11: Point on the rake face where the distance between the normal to the cutting edge and the rake face is 3R 12: Point on the flank where the distance between the normal to the cutting edge and the flank is 3R 13: Angle bisector 14: Straight line parallel to angle bisector M: Point on hard coating closest to intersection

Claims (7)

工具基体の表面に、0.5~8.0μmの平均膜厚のTiとAlの複合窒化物層を少なくとも含む硬質被覆層が設けられた表面被覆切削工具において、前記TiとAlの複合窒化物層は、その組成を、
組成式:(TiAl1-x)N
で表した場合、0.10≦x≦0.35(ただし、xは原子比)を満足する平均組成を有し、前記TiとAlの複合窒化物層中には、前記Ti成分の平均組成xに対して、前記Ti成分の組成が相対的に高い帯状領域が、少なくとも、前記工具基体表面の法線とのなす角度が70度以下の刃先稜線部に向かう方向に存在しており、
最大長さ50nm以上の大きさを有する混入溶滴の面積の和(Sdp)の前記硬質被覆層の面積(Sc)に対する割合、Sdp/Scが0.100%以下であり、かつ、最大長さ10nm以上50nm未満の大きさを有する混入溶滴の面積の和(Ssdp)の前記硬質被覆層の面積(Sc)に対する割合、Ssdp/Scが0.001%以上0.100%以下である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool provided with a hard coating layer containing at least a composite nitride layer of Ti and Al having an average thickness of 0.5 to 8.0 μm on the surface of the tool substrate, wherein the composite nitride of Ti and Al A layer defines its composition as
Composition formula: (Ti x Al 1-x )N
has an average composition that satisfies 0.10 ≤ x ≤ 0.35 (where x is the atomic ratio), and the composite nitride layer of Ti and Al contains the average composition of the Ti component With respect to x, the band-shaped region with a relatively high Ti component composition exists at least in the direction toward the cutting edge ridge portion at an angle of 70 degrees or less with the normal line of the tool base surface,
The ratio of the sum of areas (Sdp) of mixed droplets having a maximum length of 50 nm or more to the area (Sc) of the hard coating layer, Sdp/Sc, is 0.100% or less, and the maximum length is Ssdp/Sc, the ratio of the sum of the areas of mixed droplets having a size of 10 nm or more and less than 50 nm (Ssdp) to the area of the hard coating layer (Sc), is 0.001% or more and 0.100% or less.
A surface-coated cutting tool characterized by:
刃先稜線部においては、工具表面同士の延長線がなす角を2θとするとき、当該角の二等分線となす角が0.70×θ度以下となる範囲で、前記Ti成分の組成が相対的に高い帯状領域が、すくい面側と逃げ面側にそれぞれ存在することを特徴とする請求項1に記載の表面被覆切削工具。 In the ridgeline portion of the cutting edge, when the angle formed by the extended lines of the tool surfaces is 2θ, the angle formed with the bisector of the angle is 0.70 × θ degrees or less, and the composition of the Ti component is 2. A surface coated cutting tool according to claim 1, wherein the relatively high band-shaped areas are present on the rake face side and the flank face side respectively. 前記刃先稜線部以外では、前記Ti成分の組成が相対的に高い帯状領域が、工具基体表面の法線とのなす角度が35度以上70度以下または30度以下であることを特徴とする請求項1または2に記載の表面被覆切削工具。 The belt-like region having a relatively high Ti composition, other than the cutting edge ridge line, forms an angle of 35 degrees or more and 70 degrees or less or 30 degrees or less with the normal line of the tool base surface. Item 3. The surface-coated cutting tool according to Item 1 or 2. 前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域のTi成分の平均組成をYとした場合、前記TiとAlの複合窒化物層におけるTi成分の平均組成xと前記Yは、(x+0.01)≦Y≦(x+0.05)の関係を満足することを特徴とする請求項1~3のいずれかに記載の表面被覆切削工具。 When the average composition of the Ti component in the strip-shaped region in which the composition of the Ti component is relatively high compared to the average composition of the Ti component is Y, the average composition of the Ti component in the composite nitride layer of Ti and Al is x and The surface-coated cutting tool according to any one of claims 1 to 3, wherein said Y satisfies the relationship of (x + 0.01) ≤ Y ≤ (x + 0.05). 前記刃先稜線部以外では、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域の平均幅Wは、30~500nmであることを特徴とする請求項4に記載の表面被覆切削工具。 5. The method according to claim 4, wherein the average width W of the belt-like region having a relatively high Ti component composition compared to the average Ti component composition is 30 to 500 nm, except for the cutting edge ridge line portion. Surface coated cutting tools. 前記刃先稜線部以外では、前記Ti成分の平均組成に比してTi成分の組成が相対的に高い帯状領域が前記TiとAlの複合窒化物層の縦断面に占める、平均面積割合Stは3~50面積%であることを特徴とする請求項1~5のいずれかに記載の表面被覆切削工具。 Except for the ridgeline portion of the cutting edge, the belt-like region having a Ti component relatively higher than the average composition of the Ti component occupies the longitudinal section of the composite nitride layer of Ti and Al, and the average area ratio St is 3. 6. The surface-coated cutting tool according to any one of claims 1 to 5, wherein the surface-coated cutting tool is ∼50% by area. 前記刃先稜線部以外では、前記TiとAlの複合窒化物層は、立方晶構造の結晶粒と六方晶構造の結晶粒の混合組織からなり、前記TiとAlの複合窒化物層の縦断面に占める立方晶構造の結晶粒の平均面積割合Sは30面積%以上であることを特徴とする請求項1~6のいずれかに記載の表面被覆切削工具。 Except for the ridgeline portion of the cutting edge, the composite nitride layer of Ti and Al is composed of a mixed structure of crystal grains with a cubic structure and crystal grains with a hexagonal structure. The surface-coated cutting tool according to any one of claims 1 to 6, wherein the average area ratio S of crystal grains having a cubic crystal structure is 30 area% or more.
JP2019015015A 2019-01-31 2019-01-31 surface coated cutting tools Active JP7132548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019015015A JP7132548B2 (en) 2019-01-31 2019-01-31 surface coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019015015A JP7132548B2 (en) 2019-01-31 2019-01-31 surface coated cutting tools

Publications (2)

Publication Number Publication Date
JP2020121378A JP2020121378A (en) 2020-08-13
JP7132548B2 true JP7132548B2 (en) 2022-09-07

Family

ID=71991861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019015015A Active JP7132548B2 (en) 2019-01-31 2019-01-31 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7132548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415223B2 (en) * 2020-02-14 2024-01-17 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034561A (en) 1998-07-17 2000-02-02 Mitsubishi Materials Corp Formation of metallic compound thin film small in coarse droplet number by arc type ion plating method
JP2000303170A (en) 1999-02-19 2000-10-31 Nihon Seimitsu Co Ltd Pulse power source for constant voltage arc ion plating
JP2010059534A (en) 2008-08-07 2010-03-18 Mitsubishi Heavy Ind Ltd Component for rotary machine, method for production thereof, steam turbine and compressor
JP2010228016A (en) 2009-03-26 2010-10-14 Kyocera Corp Cutting tool
WO2011122553A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
JP2012166333A (en) 2011-01-27 2012-09-06 Mitsubishi Materials Corp Surface-coated cutting tool having excellent chipping and wear resistance
JP2015208768A (en) 2014-04-28 2015-11-24 オーエスジー株式会社 Surface treatment for rolling tool
WO2017159731A1 (en) 2016-03-17 2017-09-21 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance
JP2018043326A (en) 2016-09-16 2018-03-22 三菱マテリアル株式会社 Surface-coated cutting tool
JP2018144224A (en) 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018023A (en) * 1996-07-04 1998-01-20 Toyota Motor Corp Production of sliding member

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034561A (en) 1998-07-17 2000-02-02 Mitsubishi Materials Corp Formation of metallic compound thin film small in coarse droplet number by arc type ion plating method
JP2000303170A (en) 1999-02-19 2000-10-31 Nihon Seimitsu Co Ltd Pulse power source for constant voltage arc ion plating
JP2010059534A (en) 2008-08-07 2010-03-18 Mitsubishi Heavy Ind Ltd Component for rotary machine, method for production thereof, steam turbine and compressor
JP2010228016A (en) 2009-03-26 2010-10-14 Kyocera Corp Cutting tool
WO2011122553A1 (en) 2010-03-29 2011-10-06 京セラ株式会社 Cutting tool
JP2012166333A (en) 2011-01-27 2012-09-06 Mitsubishi Materials Corp Surface-coated cutting tool having excellent chipping and wear resistance
JP2015208768A (en) 2014-04-28 2015-11-24 オーエスジー株式会社 Surface treatment for rolling tool
WO2017159731A1 (en) 2016-03-17 2017-09-21 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance
JP2018043326A (en) 2016-09-16 2018-03-22 三菱マテリアル株式会社 Surface-coated cutting tool
JP2018144224A (en) 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2020121378A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
CN108472737B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance, and method for manufacturing same
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2014034730A1 (en) Surface-coated cutting tool
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016083766A (en) Surface-coated cutting tool
JP7205709B2 (en) surface coated cutting tools
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP7132548B2 (en) surface coated cutting tools
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2009279693A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance in high-speed heavy cutting
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013049119A (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting work
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7132548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150