JP6296294B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP6296294B2
JP6296294B2 JP2014154501A JP2014154501A JP6296294B2 JP 6296294 B2 JP6296294 B2 JP 6296294B2 JP 2014154501 A JP2014154501 A JP 2014154501A JP 2014154501 A JP2014154501 A JP 2014154501A JP 6296294 B2 JP6296294 B2 JP 6296294B2
Authority
JP
Japan
Prior art keywords
layer
composite
average
nitride
composite nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154501A
Other languages
Japanese (ja)
Other versions
JP2016030319A (en
Inventor
翔 龍岡
翔 龍岡
佐藤 賢一
佐藤  賢一
健志 山口
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014154501A priority Critical patent/JP6296294B2/en
Publication of JP2016030319A publication Critical patent/JP2016030319A/en
Application granted granted Critical
Publication of JP6296294B2 publication Critical patent/JP6296294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a tool substrate (hereinafter collectively referred to as a tool substrate), These are known to exhibit excellent wear resistance.
However, the conventional coated tool formed with the Ti-Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、工具基体表面に、組成式(Ti1−xAl)N(ただし、原子比で、xは0.40〜0.60)を満足するAlとTiの複合窒化物層からなり、かつ、
該複合窒化物層についてEBSDによる結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位<110>を有する結晶粒の面積割合が50%以上であり、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような結晶配列を示すAlとTiの複合窒化物層からなる硬質被覆層を蒸着形成することにより、重切削加工条件においても硬質被覆層がすぐれた耐欠損性を発揮することが開示されている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合xを0.60以上にすることは困難で、より一段と切削性能を向上させることが望まれている。
For example, Patent Document 1 discloses a composite nitridation of Al and Ti satisfying the composition formula (Ti 1-x Al x ) N (wherein x is 0.40 to 0.60) on the tool base surface. Consisting of material layers, and
When the crystal orientation analysis by EBSD is performed on the composite nitride layer, the area ratio of the crystal grains having the crystal orientation <110> within the range of 0 to 15 degrees from the normal direction of the surface polished surface is 50% or more. In addition, when the angle between adjacent crystal grains is measured, a composite nitride layer of Al and Ti showing a crystal arrangement in which the ratio of small-angle grain boundaries (0 <θ ≦ 15 °) is 50% or more It is disclosed that the hard coating layer exhibits excellent chipping resistance even under heavy cutting conditions by vapor-depositing a hard coating layer made of
However, since this coating tool forms a hard coating layer by physical vapor deposition, it is difficult to make the Al content ratio x 0.60 or more, and it is desired to further improve the cutting performance. .

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Alの含有割合xの値を0.65〜0.95まで高めた(Ti1−xAl)N層の形成によって、切削性能にどのような影響を及ぼしているかについては明らかでない。
From such a viewpoint, a technique for increasing the Al content ratio x to about 0.9 by forming a hard coating layer by a chemical vapor deposition method has also been proposed.
For example, Patent Document 2 discloses that the value of the Al content ratio x is 0.65 to 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-x Al x ) N layer of 0.95 can be formed by vapor deposition, in this document, an Al 2 O 3 layer is further formed on the (Ti 1-x Al x ) N layer. Therefore, the value of the Al content ratio x is increased from 0.65 to 0.95 to form a (Ti 1-x Al x ) N layer. It is not clear what kind of influence the cutting performance has.

また、例えば、特許文献3には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Also, for example, in Patent Document 3, a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic structure (Ti 1-x Al) including a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition. x ) An N layer (wherein x is 0.65 to 0.90 in atomic ratio) is coated as an outer layer and a compressive stress of 100 to 1100 MPa is applied to the outer layer, whereby the heat resistance and fatigue strength of the coated tool are obtained. It has been proposed to improve.

特開2010−17785号公報JP 2010-17785 A 特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている被覆工具は、(Ti1−xAl)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAlの含有割合xを高めることが困難であるため、例えば、合金鋼の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分であるとは言えないという課題があった。
一方、前記特許文献2に記載されている化学蒸着法で蒸着形成した(Ti1−xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
さらに、前記特許文献3に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、合金鋼等の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, in the coated tool described in Patent Document 1, a hard coating layer composed of a (Ti 1-x Al x ) N layer is deposited by physical vapor deposition, and the Al content ratio x in the hard coating layer is determined. Since it is difficult to increase, for example, when subjected to high-speed intermittent cutting of alloy steel, there is a problem that it cannot be said that the wear resistance and chipping resistance are sufficient.
On the other hand, for the (Ti 1-x Al x ) N layer deposited by the chemical vapor deposition method described in Patent Document 2, the Al content ratio x can be increased, and a cubic structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool base is not sufficient and the toughness is inferior.
Furthermore, although the coated tool described in Patent Document 3 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Therefore, the technical problem to be solved by the present invention, that is, the purpose of the present invention is to provide excellent toughness even when used for high-speed interrupted cutting of alloy steel and the like, over a long-term use. The object is to provide a coated tool exhibiting excellent chipping resistance and wear resistance.

そこで、本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1−xAl)(C1−y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( CyN 1-y ) ”), a hard coating layer containing a hard coating layer formed by chemical vapor deposition. Results of extensive research to improve the chipping resistance and wear resistance of the coated tool The following findings were obtained.

即ち、従来の少なくとも1層の(Ti1−xAl)(C1−y)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Ti1−xAl)(C1−y)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Ti1−xAl)(C1−y)層の異方性が高くなるほど(Ti1−xAl)(C1−y)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層を構成する(Ti1−xAl)(C1−y)層について鋭意研究したところ、(Ti1−xAl)(C1−y)層のNaCl型の面心立方構造を有する結晶粒粒内にTiとAlの周期的な組成変化を形成させるという全く新規な着想により、NaCl型の面心立方構造を有する結晶粒内に歪みを生じさせ、硬さと靭性の双方を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, the conventional hard coating layer including at least one (Ti 1-x Al x ) (C y N 1-y ) layer and having a predetermined average layer thickness is (Ti 1-x Al x ) ( When the C y N 1-y ) layer is formed in a columnar shape in the direction perpendicular to the tool base, it has high wear resistance. On the other hand, it reduces the toughness of (Ti 1-x Al x) as anisotropy (C y N 1-y) layer is high (Ti 1-x Al x) (C y N 1-y) layer, As a result, chipping resistance and chipping resistance are reduced, and sufficient wear resistance cannot be exhibited over a long period of use, and the tool life cannot be said to be satisfactory.
Therefore, the present inventors have conducted intensive research on the (Ti 1-x Al x ) (C y N 1-y ) layer constituting the hard coating layer, and found that (Ti 1-x Al x ) (C y N 1 ). -Y ) In a crystal grain having a NaCl-type face-centered cubic structure by the entirely novel idea of forming a periodic composition change of Ti and Al in a crystal grain having a NaCl-type face-centered cubic structure. As a result, the inventors have succeeded in increasing both hardness and toughness by causing distortion, and as a result, have found a novel finding that the chipping resistance and fracture resistance of the hard coating layer can be improved.

具体的には、硬質被覆層が、化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、該層について、電子線後方散乱回折装置を用いて該層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、また、前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、さらに、複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であることにより、NaCl型の面心立方構造を有する結晶粒内に歪みを生じさせ、従来の硬質被覆層に比して、(Ti1−xAl)(C1−y)層の硬さと靭性が高まり、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。 Specifically, the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al formed by chemical vapor deposition, and a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratio Xavg in the total content of Ti and Al in Al and the average content ratio Yavg in the total content of C and N in C (where Xavg and Yavg are atomic ratios) Satisfy 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yavg ≦ 0.005, respectively, and the composite nitride or composite carbonitride layer has a NaCl-type face-centered cubic structure. When the layer includes at least a carbonitride phase and the layer is analyzed from the longitudinal cross-sectional direction of the layer using an electron beam backscattering diffractometer, the crystal plane of the crystal grain with respect to the normal direction of the surface of the tool base is { 110} normal is Measure the inclination angle, and divide the inclination angle within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles for each pitch of 0.25 degrees, and count the frequencies present in each division When the inclination angle frequency distribution is obtained, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is the inclination angle number distribution. In the composite nitride or composite carbonitride layer, the NaCl in the composite nitride or composite carbonitride layer is observed when observed from the longitudinal section direction of the composite nitride or composite carbonitride layer. Each crystal grain having a face-centered cubic structure of a mold has a columnar structure having an average grain width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10, and further comprising composite nitride or composite charcoal Individuals having the NaCl-type face-centered cubic structure in the nitride layer In the grain, the composition formula: (Ti 1-x Al x ) (C y N 1-y) periodic composition variation of Ti and Al are present in the average of the maximum value of the periodically changing x When the average difference Δx between the minimum values is 0.03 to 0.25, distortion occurs in the crystal grains having the NaCl-type face-centered cubic structure, and compared with the conventional hard coating layer (Ti The hardness and toughness of the 1-x Al x ) (C y N 1-y ) layer are increased, and as a result, chipping resistance and fracture resistance are improved, and excellent wear resistance is exhibited over a long period of time. I found it.

そして、前述のような構成の(Ti1−xAl)(C1−y)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。
用いる化学蒸着反応装置へは、NHとNとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(イ)ガス群A、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bと時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(イ)ガス群Aを主とする混合ガス、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bを主とする混合ガス、と時間的に変化させることでも実現する事が可能である。
工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:3.5〜4.0%、N:0〜5%、H:55〜60%、ガス群BとしてAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%、N:0.0〜12.0%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス供給Aとガス供給Bの位相差0.10〜0.20秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1−xAl)(C1−y)層を成膜する。
The structure of (Ti 1-x Al x) (C y N 1-y) layer, such as described above, for example, formed by the following chemical vapor deposition of periodically changing the reaction gas composition in the tool substrate surface can do.
The chemical vapor deposition reactor to be used includes a gas group A composed of NH 3 , N 2 and H 2 and a gas group B composed of TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 and H 2 . The gas is supplied from the gas supply pipe into the reaction apparatus, and the gas group A and the gas group B are supplied into the reaction apparatus so that the gas flows, for example, at a constant time interval and for a time shorter than that period. The gas supply between the gas group A and the gas group B causes a phase difference with a time shorter than the gas supply time, and the reaction gas composition on the tool base surface is changed to (i) gas group A, (b) gas. The mixed gas of the group A and the gas group B, and (c) the gas group B can be changed with time. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as the gas supply method, for example, the gas supply port is rotated, the tool base is rotated, or the tool base is reciprocated to change the reaction gas composition on the tool base surface. (B) a mixed gas of the gas group A and the gas group B, and (c) a mixed gas mainly of the gas group B.
The reactive gas composition (volume% with respect to the total of the gas group A and the gas group B) on the surface of the tool base is, for example, NH 3 : 3.5 to 4.0% as the gas group A, N 2 : 0 to 5 %, H 2 : 55 to 60%, AlCl 3 : 0.6 to 0.9% as gas group B, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5 %, N 2 : 0.0 to 12.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, per cycle As a gas supply time of 0.15 to 0.25 seconds and a phase difference between gas supply A and gas supply B of 0.10 to 0.20 seconds, the thermal CVD method is performed for a predetermined time, thereby achieving a predetermined target layer thickness. A (Ti 1-x Al x ) (C y N 1-y ) layer is formed.

前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給し、ガス群Aにおける窒素原料ガスとしてNH:3.5〜4.0%、N:0〜5%、と設定し、ガス群Bにおける金属塩化物原料あるいは炭素原料であるAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%と設定する事により、結晶粒内に局所的な組成のムラ、転位や点欠陥の導入による結晶格子の局所的な歪みが形成され、なおかつ結晶粒の工具基体表面側と皮膜表面側での{110}配向の度合いを変化させることが出来る。その結果、耐摩耗性を維持しつつ靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 As described above, the gas group A and the gas group B are supplied so that there is a difference in the time required to reach the surface of the tool base, and NH 3 as a nitrogen source gas in the gas group A: 3.5 to 4.0%, N 2 : 0 to 5%, AlCl 3 which is a metal chloride raw material or carbon raw material in gas group B: 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : By setting 0 to 0.5%, local distortion of the crystal lattice due to local unevenness of composition, dislocations and introduction of point defects is formed in the crystal grains, and the crystal grain tool The degree of {110} orientation on the substrate surface side and the film surface side can be changed. As a result, it has been found that toughness is dramatically improved while maintaining wear resistance. As a result, especially when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and chipping resistance are improved, and the intermittent and impact loads are applied to the cutting edge, It has been found that excellent cutting performance can be exhibited over use.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、前記複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、
(d)前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、
(e)また、前記複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、工具基体表面の法線方向に沿った周期が4〜150nmであり、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3〜100nmであり、その方位に直交する面内でのAlのTiとAlの合量に占める含有割合XOの変化は0.01以下であること特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.4aTiN+0.6aAlNの関係を満たすことを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が30面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(6) 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(6)のいずれかに記載の表面被覆切削工具。
(8) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)乃至(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body In
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio Xavg in the total amount of Ti and Al in the composite nitride or composite carbonitride layer and the total amount of C and N in C The average content ratio Yavg (where Xavg and Yavg are both atomic ratios) satisfy 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yavg ≦ 0.005, respectively.
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) Further, with respect to the composite nitride or composite carbonitride layer, each crystal having an NaCl type face-centered cubic structure in the composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer When the crystal orientation of the grains is analyzed from the longitudinal section direction of the composite nitride or composite carbonitride layer, the normal of the {110} plane that is the crystal plane of the crystal grains with respect to the normal direction of the surface of the tool base is formed. The inclination angle is measured, and the inclination angles within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is in the inclination angle number distribution. Shows a ratio of 35% or more of the entire frequency,
(D) Individual crystals having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer when observed from the longitudinal section direction of the composite nitride or composite carbonitride layer Having a columnar structure having an average particle width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10;
(E) Further, in each crystal grain having the NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer, a composition formula: (Ti 1-x Al x ) (C y N 1 -Y ) there is a periodic composition change of Ti and Al, the period along the normal direction of the tool base surface is 4 to 150 nm, and the average and minimum values of the maximum values of x that periodically change A surface-coated cutting tool having an average difference Δx of 0.03 to 0.25.
(2) In crystal grains having a NaCl-type face-centered cubic structure in which a periodic composition change of Ti and Al in the composite nitride or composite carbonitride layer exists, a periodic composition change of Ti and Al occurs. The crystal grains exist along one of the equivalent crystal orientations represented by <001>, and the period along the orientation is 3 to 100 nm, and Al in a plane perpendicular to the orientation is present. The surface-coated cutting tool according to (1), wherein the change in the content ratio XO in the total amount of Ti and Al is 0.01 or less.
(3) For the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the crystal grains having the NaCl type face centered cubic structure are obtained. The lattice constant a satisfies the relationship of 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN with respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN. The surface-coated cutting tool according to (1) or (2), wherein
(4) The composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. The surface-coated cutting tool according to any one of (3).
(5) When the composite nitride or composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, individual crystals having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer There are fine crystal grains having a hexagonal structure in the grain boundary part of the columnar structure composed of grains, the area ratio of the fine crystal grains is 30% by area or less, and the average grain size R of the fine crystal grains is The surface-coated cutting tool according to any one of (1) to (3), which is 0.01 to 0.3 μm.
(6) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti and Al The surface according to any one of (1) to (5), wherein there is a lower layer having a total average layer thickness of 0.1 to 20 μm. Coated cutting tool.
(7) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present on the upper part of the composite nitride or composite carbonitride layer. (1) to (6) The surface coating cutting tool in any one.
(8) The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. (1) to (7) The surface coating cutting tool in any one. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層は、化学蒸着された組成式:(Ti1−xAl)(C1−y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
なお、前記複合窒化物または複合炭窒化物層は、立方晶と六方晶の混相であっても構わないが、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%を下回ると硬さが低下してくることから、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%以上であることが好ましく、さらに、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることにより、特に優れた耐摩耗性を発揮する。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
The hard coating layer of the present invention comprises at least a composite nitride or composite carbonitride layer of Ti and Al represented by a chemical vapor deposition composition formula: (Ti 1-x Al x ) (C y N 1-y ). Including. This composite nitride or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, Ti and Crystal grains of the Al composite nitride or composite carbonitride layer are likely to be coarsened, and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.
The composite nitride or composite carbonitride layer may be a mixed phase of cubic and hexagonal crystals, but the area ratio occupied by crystal grains having a NaCl type face centered cubic structure is less than 70 area%. Therefore, the ratio of the area occupied by the crystal grains having the NaCl type face centered cubic structure is preferably 70% by area or more. Further, Ti having the NaCl type face centered cubic structure is preferable. By comprising a single phase of Al composite nitride or composite carbonitride, particularly excellent wear resistance is exhibited.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合Xavgが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの平均含有割合Xavgは、0.60≦Xavg≦0.95と定めた。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合Yavgが0≦Yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005と定めた。
Composition of composite nitride or composite carbonitride layer constituting hard coating layer:
The composite nitride or composite carbonitride layer constituting the hard coating layer of the present invention has an average content ratio Xavg in the total content of Ti and Al in Al and an average content ratio Yavg in the total content of C and N in C ( However, Xavg and Yavg are controlled so that the atomic ratio of both satisfies 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yav ≦ 0.005, respectively.
The reason is that when the average content ratio Xavg of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so that it is subjected to high-speed intermittent cutting such as alloy steel In addition, the wear resistance is not sufficient. On the other hand, when the average content ratio Xavg of Al exceeds 0.95, the content ratio of Ti is relatively decreased, so that embrittlement is caused and chipping resistance is lowered. Therefore, the average content ratio Xavg of Al was determined to be 0.60 ≦ Xavg ≦ 0.95.
When the average content ratio Yavg of the C component contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ≦ Yavg ≦ 0.005, the composite nitride or composite carbonitride layer and the tool substrate Alternatively, the adhesion to the lower layer is improved and the lubricity is improved to reduce the impact during cutting, resulting in improved fracture resistance and chipping resistance of the composite nitride or composite carbonitride layer. . On the other hand, when the average content ratio Yavg of the component C deviates from the range of 0 ≦ Yavg ≦ 0.005, the toughness of the composite nitride or the composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are lowered. Therefore, it is not preferable. Therefore, the average content ratio Yavg of C was determined as 0 ≦ Yavg ≦ 0.005.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内のNaCl型の面心立方構造を有する個々の結晶粒の結晶面である{110}面についての傾斜角度数分布:
本発明の前記(Ti1−xAl)(C1−y)層について、電子線後方散乱回折装置を用いてNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層は、NaCl型の面心立方構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上する。
したがって、このような被覆工具は、例えば、合金鋼の高速断続切削等に用いた場合であっても、チッピング、欠損、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
Crystal planes of individual crystal grains having a NaCl-type face-centered cubic structure in a composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-x Al x ) (C y N 1-y ) layer) Inclination angle number distribution for {110} planes:
About the (Ti 1-x Al x ) (C y N 1-y ) layer of the present invention, the crystal orientation of individual crystal grains having a NaCl type face-centered cubic structure using an electron beam backscattering diffractometer, When analyzed from the longitudinal section direction, the inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the tool base surface (the direction perpendicular to the tool base surface on the cross-section polished surface). Of the inclination angles, the inclination angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees, and the frequencies existing in each division are counted. The maximum peak exists in the inclination angle section within the range of -10 degrees, and the total of the frequencies existing within the range of 0-10 degrees is a ratio that is 35% or more of the entire frequency in the inclination angle distribution. When showing the angular number distribution form, the Ti and Al The hard coating layer made of a nitride or composite carbonitride layer has a high hardness while maintaining the NaCl type face-centered cubic structure, and further, the hard coating layer and the substrate have the inclination angle number distribution form as described above. Adhesion with is improved dramatically.
Therefore, even when such a coated tool is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.

複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒の平均粒子幅W、平均アスペクト比A:
複合窒化物または複合炭窒化物層中のNaCl型の面心立方構造を有する結晶粒について、工具基体表面と平行な方向の粒子幅をw、また、工具基体表面に垂直な方向の粒子長さをlとし、前記wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、本発明では、平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10を満足するように制御する。
この条件を満たすとき、複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒は柱状組織となり、すぐれた耐摩耗性を示す。一方、平均アスペクト比Aが2を下回ると、NaCl型の面心立方構造の結晶粒内に本発明の特徴である組成の周期的な分布を形成しにくくなり、10を上回るとクラックの進展を抑制し難くなる。また、平均粒子幅Wが0.1μm未満であると耐摩耗性が低下し、2.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒の平均粒子幅Wは、0.1〜2.0μmと定めた。
Average grain width W and average aspect ratio A of crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
For the crystal grains having the NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer, the grain width in the direction parallel to the tool substrate surface is w, and the grain length in the direction perpendicular to the tool substrate surface Is the aspect ratio a of each crystal grain, and the average value of the aspect ratio a obtained for each crystal grain is the average aspect ratio A, for each crystal grain In the present invention, when the average value of the obtained particle width w is the average particle width W, the average particle width W is controlled to satisfy 0.1 to 2.0 μm and the average aspect ratio A satisfies 2 to 10.
When this condition is satisfied, the crystal grains having the NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer have a columnar structure and exhibit excellent wear resistance. On the other hand, if the average aspect ratio A is less than 2, it is difficult to form a periodic distribution of the composition, which is a feature of the present invention, in the crystal grains of the NaCl-type face-centered cubic structure. It becomes difficult to suppress. Further, when the average particle width W is less than 0.1 μm, the wear resistance is lowered, and when it exceeds 2.0 μm, the toughness is lowered. Therefore, the average grain width W of the crystal grains of the NaCl type face centered cubic structure constituting the composite nitride or composite carbonitride layer was determined to be 0.1 to 2.0 μm.

NaCl型の面心立方構造を有する結晶粒内に存在するTiとAlの組成変化:
さらに、NaCl型の面心立方構造を有する結晶を組成式:(Ti1−xAl)(C1−y)で表した場合、結晶粒内にTiとAlの周期的な組成変化が存在し、その法線方向に沿った周期が4〜150nmであるとき、結晶粒に歪みが生じ、硬さが向上する。しかしながら、TiとAlの組成変化の大きさの指標である前記組成式におけるxの極大値の平均と極小値の平均の差Δxが0.03より小さいと前述した結晶粒の歪みが小さく十分な硬さの向上が見込めない。一方、xの極大値の平均と極小値の平均の差Δxが0.25を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が大きくなり、硬さが低下する。そこで、NaCl型の面心立方構造を有する結晶粒内に存在するTiとAlの組成変化は、周期的に変化するxの極大値の平均と極小値の平均の差Δxを0.03〜0.25とした。
さらに、その法線方向に沿った周期が4nm未満の場合は、複数の組成変化層を伝播するクラックを抑制する事が出来ず、靭性が低下する。一方、150nmを超えると結晶粒に歪みが十分に生じず、硬さの向上効果が見込めない。
また、TiとAlの周期的な組成変化は、NaCl型の面心立方構造を有する結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することが好ましい。しかしながら、その周期が3nm未満であると靭性が低下する。一方、100nmを超えると硬さの向上効果が見込めない。したがって、立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在する周期は、3〜100nmであることが好ましい。また、その方位に直交する面内でのAlのTiとAlの合量に占める含有割合XOの変化は0.01以下となることにより、{110}面と角度をなす{001}面内の転位のすべり運動を誘発して靭性が向上する。
Change in composition of Ti and Al present in crystal grains having a NaCl type face centered cubic structure:
Further, when a crystal having a NaCl type face-centered cubic structure is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), periodic composition change of Ti and Al in the crystal grains When the period along the normal direction is 4 to 150 nm, the crystal grains are distorted and the hardness is improved. However, if the difference Δx between the average of the maximum value and the minimum value of x in the composition formula, which is an index of the magnitude of the composition change of Ti and Al, is smaller than 0.03, the above-described distortion of the crystal grains is small and sufficient. Hardness improvement is not expected. On the other hand, if the difference Δx between the average of the maximum value and the minimum value of x exceeds 0.25, the distortion of the crystal grains becomes too large, the lattice defects become large, and the hardness decreases. Therefore, the composition change of Ti and Al existing in the crystal grains having the NaCl-type face-centered cubic structure indicates that the difference Δx between the average of the maximal value of x and the average of the minimum value is periodically changed from 0.03 to 0. .25.
Furthermore, when the period along the normal direction is less than 4 nm, cracks propagating through the plurality of composition change layers cannot be suppressed, and toughness is reduced. On the other hand, if it exceeds 150 nm, the crystal grains are not sufficiently distorted, and the effect of improving the hardness cannot be expected.
Further, it is preferable that the periodic composition change of Ti and Al exist along one of the equivalent crystal orientations represented by <001> of the crystal grains having the NaCl type face centered cubic structure. . However, if the period is less than 3 nm, the toughness decreases. On the other hand, if it exceeds 100 nm, the effect of improving hardness cannot be expected. Therefore, the period existing along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains is preferably 3 to 100 nm. In addition, the change in the content ratio XO in the total amount of Ti and Al in the plane perpendicular to the orientation is 0.01 or less, so that the angle in the {001} plane is at an angle with the {110} plane. Induces dislocation sliding motion and improves toughness.

複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造を有する結晶粒の格子定数a:
前記複合窒化物または複合炭窒化物層について、X線回折装置を用い、Cu−Kα線を線源としてX線回折試験を実施し、NaCl型の面心立方構造の結晶粒の格子定数aを求めたとき、前記結晶粒の格子定数aが、立方晶TiN(JCPDS00−038−1420)の格子定数aTiN:4.24173Åと立方晶AlN(JCPDS00−046−1200)の格子定数aAlN:4.045Åに対して、0.05aTiN+0.95aAlN ≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことで、すぐれた耐摩耗性に加えて、すぐれた耐熱衝撃性を備える。
Lattice constant a of crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
The composite nitride or composite carbonitride layer is subjected to an X-ray diffraction test using an X-ray diffractometer and Cu—Kα rays as a radiation source, and the lattice constant a of the crystal grains of the NaCl type face-centered cubic structure is determined. when determined, the lattice constant a of the crystal grains, the lattice constant a TiN cubic TiN (JCPDS00-038-1420): 4.24173Å and cubic lattice constant a AlN of AlN (JCPDS00-046-1200): 4 .045mm, 0.05a TiN + 0.95a AlN ≤a ≤0.4a TiN + 0.6a When satisfying the relationship of AlN , it exhibits superior hardness and high thermal conductivity. In addition to high wear resistance, it has excellent thermal shock resistance.

複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒と該微粒結晶粒の存在する面積割合および平均粒径R:
NaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在することにより、粒界滑りが抑制され、靭性が向上する。しかしながら、その面積割合が30面積%を超えると相対的にNaCl型の面心立方構造の結晶相の割合が減少するため硬さが低下し好ましくない。また、微粒結晶粒の平均粒径Rが0.01μm未満であると粒界滑りを抑制する効果が十分でなく、一方、0.3μmを超えると柱状組織内の歪みが大きくなり硬さが低下するため好ましくない。
Fine grain existing in the grain boundary portion of the columnar structure composed of individual grains having the NaCl type face centered cubic structure in the composite nitride or composite carbonitride layer, and the area ratio and average of the fine grain Particle size R:
The presence of fine crystal grains having a hexagonal crystal structure in the grain boundary portion of the columnar structure consisting of individual crystal grains having a NaCl type face centered cubic structure suppresses grain boundary slip and improves toughness. However, if the area ratio exceeds 30 area%, the ratio of the crystal phase of the NaCl-type face-centered cubic structure is relatively decreased, so that the hardness is not preferable. In addition, if the average grain size R of the fine crystal grains is less than 0.01 μm, the effect of suppressing grain boundary sliding is not sufficient, while if it exceeds 0.3 μm, the strain in the columnar structure increases and the hardness decreases. Therefore, it is not preferable.

下部層および上部層:
また、本発明の複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
In addition, the composite nitride or composite carbonitride layer of the present invention alone has a sufficient effect, but among Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer A lower layer having a total average layer thickness of 0.1 to 20 μm and / or an aluminum oxide layer having an average layer thickness of 1 to 25 μm. In the case where the upper layer is provided, it is possible to create better characteristics in combination with the effects of these layers. When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. .

本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し、該結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、また、複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であるという本発明に特有の構成を有していることによって、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さが向上し、高い耐摩耗性を保ちつつ、靭性が向上する。その結果、耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。
特に、TiとAlの複合窒化物または複合炭窒化物層のNaCl型の面心立方構造の結晶粒において、結晶粒内にTiとAlの周期的な組成変化が存在することにより、結晶粒内にひずみが生じ、硬さが向上し、また、柱状組織を有することにより、高い耐摩耗性を発揮すると同時に、柱状組織の粒界部に六方晶構造の微粒結晶粒が存在することにより、粒界滑りを抑制し、靭性が向上し、さらに、NaCl型の面心立方構造の結晶粒が{110}面に配向することによって、耐逃げ面摩耗性、耐クレーター摩耗性がそれぞれ向上することが相俟って、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、本発明の被覆工具は、耐チッピング性、耐欠損性とともにすぐれた耐摩耗性を発揮するのである。
The present invention relates to a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base, and the hard coating layer is a composite nitride of Ti and Al having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition or When containing at least the composite carbonitride layer and expressed by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratios Xavg and C in the total amount of Ti and Al in Al The average content ratio Yavg (where Xavg and Yavg are atomic ratios) in the total amount of C and N satisfy 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yavg ≦ 0.005, respectively. Some crystal grains constituting the nitride or composite carbonitride layer have a NaCl-type face-centered cubic structure, and the crystal orientation of the crystal grains is determined from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer. If analyzed, tool base surface The inclination angle formed by the normal line of the {110} plane, which is the crystal plane of the crystal grain, with respect to the normal direction is measured, and the inclination angle in the range of 0 to 45 degrees with respect to the normal direction is included in the inclination angle. When the slope angle distribution within a range of 0 to 10 degrees exists when the slope angle distribution is obtained by summing up the frequencies existing in each section by dividing each pitch of 0.25 degrees, the above-mentioned peak is present, The sum of the frequencies existing within the range of 0 to 10 degrees represents a ratio of 35% or more of the entire frequencies in the tilt angle frequency distribution, and the vertical section of the layer for the composite nitride or the composite carbonitride layer When observed from the direction, the average grain width W of each crystal grain having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is 0.1 to 2.0 μm, and the average aspect ratio A is It has a columnar structure that is 2 to 10, and is a composite nitride or composite carbonitride The crystal grains having a NaCl type face-centered cubic structure of the object layer, the composition formula: (Ti 1-x Al x ) (C y N 1-y) periodic composition variation of Ti and Al in the presence In addition, by having a configuration unique to the present invention in which the difference Δx between the average of the local maximum value and the average of the local minimum value of x that changes periodically is 0.03 to 0.25, Since distortion occurs in the crystal grains, the hardness of the crystal grains is improved, and the toughness is improved while maintaining high wear resistance. As a result, the effect of improving the chipping resistance is exhibited, the cutting performance is improved over a long period of use as compared with the conventional hard coating layer, and the life of the coated tool is extended.
In particular, in a crystal grain of a NaCl-type face-centered cubic structure of a composite nitride or composite carbonitride layer of Ti and Al, the periodic composition change of Ti and Al exists in the crystal grain, so Strain is generated, hardness is improved, and by having a columnar structure, high wear resistance is exhibited, and at the same time, the presence of hexagonal crystal grains in the grain boundary portion of the columnar structure Suppression of boundary slip is improved, toughness is improved, and further, the crystal grains of the NaCl-type face-centered cubic structure are oriented in the {110} plane, thereby improving flank wear resistance and crater wear resistance. Combined with this, the coated tool of the present invention has excellent chipping resistance and fracture resistance, even when used for high-speed intermittent cutting of alloy steel and the like in which intermittent and impact loads are applied to the cutting edge. Because it shows wear .

本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。It is the film | membrane structure schematic diagram which represented typically the cross section of the composite nitride or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention. 本発明の一実施態様に該当する硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、TiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒について、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に直交する面内でのTiとAlの組成変化は小さいことを模式的に表した模式図である。NaCl-type face center in which a periodic composition change of Ti and Al is present in a cross section of a composite nitride layer or composite carbonitride layer of Ti and Al constituting a hard coating layer corresponding to one embodiment of the present invention For a crystal grain having a cubic structure, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the crystal grain, and is orthogonal to the orientation. It is the schematic diagram which represented typically that the composition change of Ti and Al in a surface was small. 本発明の一実施態様に該当する硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、TiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒について、透過型電子顕微鏡を用いて、エネルギー分散型X線分光法(EDS)による線分析を行った結果のTiとAlの周期的な組成変化xのグラフの一例を示すものである。NaCl-type face center in which a periodic composition change of Ti and Al is present in a cross section of a composite nitride layer or composite carbonitride layer of Ti and Al constituting a hard coating layer corresponding to one embodiment of the present invention An example of a graph of periodic composition change x of Ti and Al as a result of performing a line analysis by energy dispersive X-ray spectroscopy (EDS) on a crystal grain having a cubic structure using a transmission electron microscope is shown. Is. 本発明の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、立方晶構造を有する結晶粒について求めた傾斜角度数分布の一例を示すグラフである。It is a graph which shows an example of the inclination angle number distribution calculated | required about the crystal grain which has a cubic structure in the cross section of the composite nitride layer or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention. 比較例の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、立方晶構造を有する結晶粒について求めた傾斜角度数分布の一例を示すグラフである。It is a graph which shows an example of the inclination angle number distribution calculated | required about the crystal grain which has a cubic structure in the cross section of the composite nitride layer or composite carbonitride layer of Ti and Al which comprises the hard coating layer of a comparative example.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, manufacture tool bases A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
(a)表4に示される形成条件A〜J、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:3.5〜4.0%、N:0〜5%、H:55〜60%、ガス群BとしてAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%、N:0.0〜12.0%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス供給Aとガス供給Bの位相差0.10〜0.20秒として、所定時間、熱CVD法を行い、表7に示される結晶粒内平均方位差が2度以上を示すNaCl型の面心立方構造を有する結晶粒が表7に示される面積割合存在し、表7に示される目標層厚を有する(Ti1−xAl)(C1−y)層からなる硬質被覆層を形成することにより本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表6に示される下部層、上部層のいずれかを形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
(A) Formation conditions A to J shown in Table 4, that is, a gas group A composed of NH 3 and H 2, and a gas group composed of TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 , and H 2 As a method for supplying B and each gas, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set as the gas group A, NH 3 : 3.5 to 4.0%, N 2 : 0~5%, H 2: 55~60% , AlCl 3 as gas group B: 0.6~0.9%, TiCl 4: 0.2~0.3%, Al (CH 3) 3: 0~ 0.5%, N 2 : 0.0 to 12.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, Gas supply time per cycle 0.15 to 0.25 seconds, phase difference 0.1 between gas supply A and gas supply B The thermal CVD method is performed for 0 to 0.20 seconds for a predetermined time, and the crystal grains having an NaCl type face-centered cubic structure in which the average orientation difference in the grains shown in Table 7 is 2 degrees or more are shown in Table 7. The present invention coated tools 1 to 15 are formed by forming a hard coating layer composed of a (Ti 1-x Al x ) (C y N 1-y ) layer having a target area thickness as shown in Table 7. Manufactured.
In addition, about this invention coated tools 6-13, either the lower layer shown in Table 6 or the upper layer was formed on the formation conditions shown in Table 3.

前記本発明被覆工具1〜15の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層について、走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて複数視野に亘って観察したところ、図1に示した膜構成模式図に示されるようにNaCl型の面心立方構造を有する結晶粒からなる柱状組織が観察され、試料によっては柱状組織の粒界部に六方晶結晶を有する微粒結晶粒が存在するとともに、その面積割合が30面積以下であり、さらに、微粒結晶粒の平均粒径Rが0.01〜0.3μmであることが確認された。   About the composite nitride or composite carbonitride layer of Ti and Al constituting the hard coating layers of the inventive coated tools 1 to 15 over a plurality of fields of view using a scanning electron microscope (magnification 5000 times and 20000 times). When observed, a columnar structure composed of crystal grains having a NaCl-type face-centered cubic structure was observed as shown in the schematic diagram of the film structure shown in FIG. 1, and depending on the sample, a hexagonal crystal was formed at the grain boundary portion of the columnar structure. It was confirmed that there are fine crystal grains having a ratio of 30 or less, and that the average grain size R of the fine crystal grains is 0.01 to 0.3 μm.

また、NaCl型の面心立方構造の結晶粒内にTiとAlの周期的な組成変化が存在していることが、透過型電子顕微鏡(倍率200000倍)を用いて、エネルギー分散型X線分光法(EDS)による面分析により確認された。さらに詳しく解析した結果、TiとAlの周期的な組成変化xの極大値と極小値の差が0.03〜0.25であることが確認された。   In addition, the periodic compositional change of Ti and Al is present in the crystal grains of the NaCl-type face-centered cubic structure, and energy dispersive X-ray spectroscopy using a transmission electron microscope (magnification 200000 times). This was confirmed by surface analysis by the method (EDS). As a result of further detailed analysis, it was confirmed that the difference between the maximum value and the minimum value of the periodic composition change x between Ti and Al was 0.03 to 0.25.

また、比較の目的で、工具基体A〜Dの表面に、表3および表5に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1〜15と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。この時には、(Ti1−xAl)(C1−y)層の成膜工程中に工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1〜13を製造した。
なお、本発明被覆工具6〜13と同様に、比較被覆工具6〜13については、表3に示される形成条件で、表6に示される下部層、上部層のいずれかを形成した。
Further, for the purpose of comparison, at least the surfaces of the tool bases A to D were subjected to the conditions shown in Tables 3 and 5 and the target layer thickness (μm) shown in Table 8, at least as in the present coated tools 1 to 15. A hard coating layer including a composite nitride or composite carbonitride layer of Ti and Al was deposited. At this time, a comparison is made by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film formation process of the (Ti 1-x Al x ) (C y N 1-y ) layer. Coated tools 1-13 were produced.
In addition, similarly to this invention coated tool 6-13, about the comparison coated tools 6-13, either the lower layer shown in Table 6 or the upper layer was formed on the formation conditions shown in Table 3.

参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Ti,Al)N層を蒸着形成し、参考被覆工具14、15を製造した。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus. The reference coated tools 14 and 15 shown in Table 8 were produced by vapor-depositing with a target layer thickness.
The arc ion plating conditions used for the vapor deposition in the reference example are as follows.
(A) The tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and a current of 200 A is passed between a cathode electrode and an anode electrode made of an Al—Ti alloy to generate an arc discharge, thereby generating Al and Ti ions in the apparatus, thereby providing a tool base. Clean the surface with bombard,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate arc discharge, and the target composition and target layer shown in Table 8 are formed on the surface of the tool base. A thick (Ti, Al) N layer was formed by vapor deposition to produce reference coated tools 14 and 15.

また、本発明被覆工具1〜15、比較被覆工具1〜13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6〜表8に示される目標層厚と実質的に同じ平均層厚を示した。
また、複合窒化物または複合炭窒化物層のAlの平均含有割合Xavgについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合Xavgを求めた。Cの平均含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YavgはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
また、本発明被覆工具1〜15および比較被覆工具1〜13、参考被覆工具14、15について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ10μm、工具基体表面と垂直方向には膜厚の範囲に存在する複合窒化物または複合炭窒化物層を構成する(Ti1−xAl)(C1−y)層中のNaCl型の面心立方構造を有する個々の結晶粒について、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。さらに、立方晶構造を有する個々の結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒の平均粒径Rについても算出した。その結果を、表7および表8に示した。
また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体表面に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内の該硬質被覆層について0.01μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜10度の範囲内に存在する度数のピークの存在を確認し、かつ0〜10度の範囲内に存在する度数の割合を求めた。その結果を、同じく、表7および表8に示す。
図4に、一例として、本発明被覆工具5について測定した傾斜角度数分布グラフを示し、また、図5に、比較被覆工具5について測定した傾斜角度数分布グラフを示す。
また、電子線後方散乱回折装置を用いて、TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内に亘り硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することでNaCl型の面心立方構造を有する結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒が六方晶構造であることを同定し、その微粒結晶粒の占める面積割合を求めた。その結果を、同じく、表7および表8に示す。さらに微粒結晶粒の平均粒径Rは、微結晶粒が見出される柱状組織の粒界のうち、0.5μm以上の粒界長さを有する部位を複数の観察視野から3ヶ所見出し、おのおの0.5μmの線分上に存在する粒界数を数え上げて、1.5μmを3か所での合計粒界数で割ることにより得る事が出来る。
さらに、透過型電子顕微鏡(倍率200000倍)を用いて、複合窒化物または複合炭窒化物層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行ったところ、前記NaCl型の面心立方構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在することを確認した。また、該結晶粒について電子線回折を行うことで、TiとAlの周期的な組成変化がNaCl型の面心立方構造の結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することを確認し、その方位に沿ったEDSによる線分析を行い、TiとAlの周期的な組成変化の極大値の平均と極小値の平均の差をΔxとして求め、さらに極大値の周期をTiとAlの周期的な組成変化の周期として求め、その方位に直交する方向に沿った線分析を行い、TiとAlの合量に占めるAlの含有割合xの最大値と最小値の差をTiとAlの組成変化XOとして求めた。
その結果を、同じく、表7および表8に示す。
Moreover, the cross section of the direction perpendicular | vertical to the tool base | substrate of each component layer of this invention coating tool 1-15, comparative coating tool 1-13, and reference coating tool 14 and 15 is used for a scanning electron microscope (5000-times multiplication factor). When the average layer thickness was determined by measuring and averaging the five layer thicknesses within the observation field, all showed the same average layer thickness as the target layer thicknesses shown in Tables 6-8. .
In addition, regarding the average content ratio Xavg of Al in the composite nitride or the composite carbonitride layer, an electron beam was sampled in a sample whose surface was polished using an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer). Irradiation was performed from the surface side, and an average content ratio Xavg of Al was determined from an average of 10 points of the analysis result of the obtained characteristic X-rays. About average content ratio Yavg of C, it calculated | required by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average content ratio Yavg of C indicates an average value in the depth direction of the composite nitride or composite carbonitride layer of Ti and Al. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as Yavg.
Moreover, about this invention coated tool 1-15, comparative coated tool 1-13, and reference coated tool 14,15, using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction of a direction perpendicular | vertical to a tool base | substrate. A composite nitride or composite carbonitride layer that is 10 μm long in the horizontal direction from the tool base surface and in the thickness range in the direction perpendicular to the tool base surface is configured (Ti 1-x Al x ) (C y N 1 -y ) For each crystal grain having a NaCl-type face-centered cubic structure in the layer, the particle width w in the direction parallel to the substrate surface and the particle length l in the direction perpendicular to the substrate surface are measured. The aspect ratio a (= l / w) of the crystal grains is calculated, the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the grain width obtained for each crystal grain Average value of w Was calculated as the average particle width W. Furthermore, the average particle diameter R of the fine crystal grains present in the grain boundary portion of the columnar structure composed of individual crystal grains having a cubic structure was also calculated. The results are shown in Tables 7 and 8.
In addition, regarding the inclination angle number distribution of the hard coating layer, the cross section in the direction perpendicular to the tool base surface of the hard coating layer made of a composite nitride or composite carbonitride layer of cubic Ti and Al was used as the polished surface. In the state, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface within the measurement range of the sectional polished surface with an irradiation current of 1 nA. Irradiate each individual crystal grain having a cubic crystal lattice, and use an electron backscatter diffraction imaging apparatus to measure the film thickness along the cross section in a direction perpendicular to the tool substrate surface and a length of 100 μm in the horizontal direction from the tool substrate surface. With respect to the normal surface of the substrate surface (direction perpendicular to the substrate surface in the cross-section polished surface) at an interval of 0.01 μm / step with respect to the hard coating layer within the measurement range of the following distance, Normal of some {110} plane Are measured, and based on the measurement results, the measured inclination angles within the range of 0 to 45 degrees are classified for each 0.25 degree pitch among the measured inclination angles. By counting the frequencies existing in the range, the presence of the frequency peak existing in the range of 0 to 10 degrees was confirmed, and the ratio of the frequencies existing in the range of 0 to 10 degrees was determined. The results are also shown in Table 7 and Table 8.
FIG. 4 shows, as an example, an inclination angle number distribution graph measured for the coated tool 5 of the present invention, and FIG. 5 shows an inclination angle number distribution graph measured for the comparative coated tool 5.
Further, using an electron beam backscatter diffractometer, a field emission type with a cross section in a direction perpendicular to the tool base of a hard coating layer composed of a composite nitride or composite carbonitride layer of Ti and Al as a polished surface. Set in a scanning electron microscope column and apply an electron beam with an acceleration voltage of 15 kV to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA for each crystal grain existing in the measurement range of the cross-sectional polished surface. Irradiation is performed at an interval of 0.01 μm / step with respect to the hard coating layer over a measurement range of a distance of 100 μm or less in the horizontal direction with the tool base and a thickness equal to or less than the film thickness along a cross section perpendicular to the tool base surface. By measuring the line backscatter diffraction image and analyzing the crystal structure of each crystal grain, the fine grain existing in the grain boundary part of the columnar structure consisting of grains having a NaCl type face centered cubic structure is a hexagonal crystal structure. And identify that The area ratio occupied by the fine crystal grains was determined. The results are also shown in Table 7 and Table 8. Further, the average grain size R of the fine crystal grains is found from three observation fields, each having a grain boundary length of 0.5 μm or more, among the grain boundaries of the columnar structure in which the fine crystal grains are found. It can be obtained by counting the number of grain boundaries present on a 5 μm line segment and dividing 1.5 μm by the total number of grain boundaries at three locations.
Further, a microscopic region of the composite nitride or composite carbonitride layer is observed using a transmission electron microscope (magnification 200000 times), and the surface is viewed from the cross-section side using energy dispersive X-ray spectroscopy (EDS). As a result of analysis, the periodic compositional change of Ti and Al in the composition formula: (Ti 1-x Al x ) (C y N 1-y ) in the crystal grains having the NaCl type face-centered cubic structure. Was confirmed to exist. Further, by performing electron beam diffraction on the crystal grains, one of the equivalent crystal orientations in which the periodic composition change of Ti and Al is represented by <001> of the crystal grains of the NaCl type face centered cubic structure. Confirming that it exists along one direction, perform line analysis by EDS along that direction, and determine the difference between the average of the maximum and minimum of the periodic composition change of Ti and Al as Δx, Furthermore, the period of maximum value is obtained as the period of periodic composition change of Ti and Al, line analysis is performed along the direction orthogonal to the direction, and the maximum value of the Al content ratio x in the total amount of Ti and Al And the difference between the minimum values was obtained as the composition change XO of Ti and Al.
The results are also shown in Table 7 and Table 8.


つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較被覆工具1〜13および参考被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。   Next, the coated tools 1-15, comparative coated tools 1-13, and reference coated tools of the present invention are clamped at the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. 14 and 15 were subjected to a dry high-speed face milling and center-cut cutting test, which is a kind of high-speed interrupted cutting of alloy steel, and the flank wear width of the cutting edge was measured. The results are shown in Table 9.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験: 乾式高速正面フライス、センターカット切削加工、
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度: 955 min−1
切削速度: 375 m/min、
切り込み: 1.2 mm、
一刃送り量: 0.12 mm/刃、
切削時間: 8分、
(通常の切削速度は、220m/min)、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: Dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 955 min −1
Cutting speed: 375 m / min,
Cutting depth: 1.2 mm,
Single blade feed amount: 0.12 mm / tooth,
Cutting time: 8 minutes,
(Normal cutting speed is 220 m / min),

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、
化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表13に示される本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層、上部層のいずれかを形成した。
Next, on the surface of these tool bases α to γ and tool base δ,
Using a chemical vapor deposition apparatus, a hard coating layer including at least a (Ti 1-x Al x ) (C y N 1-y ) layer is targeted under the conditions shown in Table 3 and Table 4 in the same manner as in Example 1. The present coated tools 16 to 30 shown in Table 13 were manufactured by vapor deposition with a layer thickness.
In addition, about this invention coated tools 19-28, either the lower layer shown in Table 12 or the upper layer was formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表5に示される条件かつ表13に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16〜28を製造した。
なお、本発明被覆工具19〜28と同様に、比較被覆工具19〜28については、表3に示される形成条件で、表12に示される下部層、上部層のいずれかを形成した。
For comparison purposes, the present invention is also applied to the surfaces of the tool bases α to γ and the tool base δ by using an ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 5 and the target layer thicknesses shown in Table 13. Comparative coating tools 16 to 28 shown in Table 14 were manufactured by vapor-depositing a hard coating layer in the same manner as the coating tools.
In addition, similarly to this invention coated tool 19-28, about the comparison coated tool 19-28, either the lower layer shown in Table 12 or the upper layer was formed on the formation conditions shown in Table 3.

参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
For reference, the (Ti 1-x Al x ) (C y N 1-y ) layer of the reference example is formed on the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. The reference coating tools 29 and 30 shown in Table 14 were manufactured by vapor-depositing with a target layer thickness.
In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12〜表14に示される目標層厚と実質的に同じ平均層厚を示した。
また、前記本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29、30の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、Alの平均含有割合Xavg、Cの平均含有割合Yavg、柱状組織(Ti1−xAl)(C1−y)層を構成する立方晶構造を有する結晶粒の平均粒子幅W、平均アスペクト比Aを算出した。さらに、NaCl型の面心立方構造を有する結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒の平均粒径Rおよび微粒結晶粒が存在する面積割合についても、実施例1に示される方法と同様の方法を用いて算出した。また、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記NaCl型の面心立方構造を有する結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜10度の範囲内に存在する度数のピークの存在を確認し、かつ0〜10度の範囲内に存在する度数の割合を求めた。
その結果を、表13および表14に示す。
Moreover, the cross section of each component layer of this invention coating tool 16-30, comparative coating tool 16-28, and reference coating tool 29,30 is measured using a scanning electron microscope (5000-times multiplication factor), and 5 in an observation visual field. When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, all showed the same average layer thickness as the target layer thicknesses shown in Tables 12 to 14.
Moreover, about the hard coating layer of the said coating tool 16-30 of this invention, the comparative coating tool 16-28, and the reference coating tool 29 and 30, using the method similar to the method shown in Example 1, average content rate of Al calculating XAVG, average proportion Yavg and C, the columnar structure (Ti 1-x Al x) (C y N 1-y) crystal grains having an average grain width W having a cubic structure constituting the layer, an average aspect ratio a did. Further, Example 1 also shows the average grain size R of the fine crystal grains present in the grain boundary portion of the columnar structure made of crystal grains having the NaCl type face centered cubic structure and the area ratio in which the fine crystal grains exist. It calculated using the method similar to the method. In addition, the inclination formed by the normal of the {110} plane, which is the crystal plane of the crystal grains having the NaCl-type face-centered cubic structure, with respect to the normal of the substrate surface (direction perpendicular to the substrate surface in the cross-sectional polished surface) An angle is measured, and based on this measurement result, among the measured inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is divided for each pitch of 0.25 degrees and exists in each division. By counting the frequencies, the presence of frequency peaks existing in the range of 0 to 10 degrees was confirmed, and the ratio of the frequencies existing in the range of 0 to 10 degrees was determined.
The results are shown in Table 13 and Table 14.

前記本発明被覆工具16〜30の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層について、走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて複数視野に亘って観察したところ、図1に示した膜構成模式図に示されるようにNaCl型の面心立方晶結晶と六方晶結晶が存在する柱状組織の(Ti1−xAl)(C1−y)層が確認された。また、NaCl型の面心立方晶結晶粒内にTiとAlの周期的な組成分布が存在していることが、透過型電子顕微鏡(倍率200000倍)を用いて、エネルギー分散型X線分光法(EDS)による面分析により確認された。さらに詳しく解析した結果、xの極大値の平均と極小値の平均のΔxが0.03〜0.25であることが確認された。 The Ti and Al composite nitride or composite carbonitride layer constituting the hard coating layer of the inventive coated tool 16 to 30 is applied over a plurality of fields using a scanning electron microscope (magnification 5000 times and 20000 times). As a result of observation, as shown in the schematic diagram of the film structure shown in FIG. 1, (Ti 1-x Al x ) (C y N 1-1 ) having a columnar structure in which NaCl-type face-centered cubic crystals and hexagonal crystals are present. y ) A layer was confirmed. Further, the presence of a periodic composition distribution of Ti and Al in the NaCl-type face-centered cubic crystal grains indicates that energy dispersive X-ray spectroscopy is performed using a transmission electron microscope (magnification 200000 times). This was confirmed by surface analysis using (EDS). As a result of further detailed analysis, it was confirmed that Δx of the average of the maximum value and the average of the minimum value of x was 0.03 to 0.25.

また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて立方晶構造を有する個々の結晶粒からなる柱状組織を、TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析したところ、粒界部に存在する微粒結晶粒は六方晶構造を有することが確認された。   In addition, with respect to the composite nitride or composite carbonitride layer, a columnar structure composed of individual crystal grains having a cubic structure using an electron beam backscattering diffractometer is used as a composite nitride or composite carbonitride of Ti and Al. As a result of analysis from the longitudinal section direction of the layer, it was confirmed that the fine crystal grains present in the grain boundary part have a hexagonal crystal structure.

つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:380m/min、
切り込み:1.5mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:320m/min、
切り込み:1.0mm、
送り:0.1mm/rev、
切削時間:5分、
(通常の切削速度は、180m/min)、
表15に、前記切削試験の結果を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 16 to 30, comparative coated tools 16 to 28, and reference coated tools 29, About 30, the dry high speed intermittent cutting test of the carbon steel and the wet high speed intermittent cutting test of cast iron which were shown below were implemented, and all measured the flank wear width of the cutting edge.
Cutting condition 1:
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 380 m / min,
Incision: 1.5mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 320 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 180 m / min),
Table 15 shows the results of the cutting test.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations CNGA120412 tool substrate b having the insert shape, were manufactured, respectively b.

つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31〜36を製造した。
なお、本発明被覆工具33、34については、表3に示される形成条件で、表17に示すような下部層、上部層のいずれかを形成した。
Next, at least (Ti 1-x Al x ) under the conditions shown in Tables 3 and 4 by the same method as in Example 1, using a normal chemical vapor deposition apparatus on the surface of these tool substrates A and B. The present coated tools 31 to 36 shown in Table 18 were manufactured by vapor-depositing a hard coating layer including a (C y N 1-y ) layer with a target layer thickness.
In addition, about this invention coated tools 33 and 34, either the lower layer as shown in Table 17 or the upper layer was formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表3および表5に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表19に示される比較被覆工具31〜34を製造した。
なお、本発明被覆工具33、34と同様に、比較被覆工具33、34については、表3に示される形成条件で、表17に示すような下部層、上部層のいずれかを形成した。
For comparison purposes, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases i and b, and at least (Ti 1-x Al x ) (C y N 1 ) under the conditions shown in Tables 3 and 5. -Y ) The comparative coating tools 31-34 shown in Table 19 were manufactured by vapor-depositing the hard coating layer containing a layer with target layer thickness.
As with the coated tools 33 and 34 of the present invention, either the lower layer or the upper layer as shown in Table 17 was formed for the comparative coated tools 33 and 34 under the formation conditions shown in Table 3.

参考のため、工具基体イ、ロの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、(Ti1−xAl)(C1−y)層を目標層厚で蒸着形成することにより、表19に示される参考被覆工具35,36を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表19に示される目標組成、目標層厚の(Al,Ti)N層を蒸着形成し、参考被覆工具35,36を製造した。
For reference, a (Ti 1-x Al x ) (C y N 1-y ) layer is formed at a target layer thickness by arc ion plating on the surface of the tool substrate A and b using a conventional physical vapor deposition apparatus. Reference coating tools 35 and 36 shown in Table 19 were manufactured by vapor deposition.
The arc ion plating conditions are the same as those shown in Example 1, and the (Al, Ti) N layer having the target composition and target layer thickness shown in Table 19 is formed on the surface of the tool base. The reference coating tools 35 and 36 were manufactured.

また、本発明被覆工具31〜36、比較被覆工具31〜34および参考被覆工具35,36の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表17〜表19に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, the cross section of each component layer of this invention coating tool 31-36, comparative coating tool 31-34, and reference coating tool 35,36 is measured using a scanning electron microscope (5000-times multiplication factor), and 5 in an observation visual field. When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, all showed the same average layer thickness as the target layer thicknesses shown in Tables 17-19.

また、前記本発明被覆工具31〜36、比較被覆工具31〜34および参考被覆工具35,36の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、Alの平均含有割合Xavg、Cの平均含有割合Yavg、(Ti1−xAl)(C1−y)層を構成するNaCl型の面心立方構造を有する結晶粒の平均粒子幅W、平均アスペクト比Aを算出した。さらに、NaCl型の面心立方構造を有する結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒の平均粒径Rおよび微粒結晶粒が存在する面積割合についても、実施例1に示される方法と同様の方法を用いて算出した。その結果を、表18および表19に示す。また、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記NaCl型の面心立方構造を有する結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜10度の範囲内に存在する度数のピークの存在を確認し、かつ0〜10度の範囲内に存在する度数の割合を求めた。 Moreover, about the hard coating layer of the said invention coating tool 31-36, the comparison coating tool 31-34, and the reference coating tool 35,36, using the method similar to the method shown in Example 1, the average content rate of Al XAVG average content Yavg of C, (Ti 1-x Al x) (C y N 1-y) crystal grains having an average grain width W with a NaCl type face-centered cubic structure constituting the layer, an average aspect ratio a Was calculated. Further, Example 1 also shows the average grain size R of the fine crystal grains present in the grain boundary portion of the columnar structure made of crystal grains having the NaCl type face centered cubic structure and the area ratio in which the fine crystal grains exist. It calculated using the method similar to the method. The results are shown in Table 18 and Table 19. In addition, the inclination formed by the normal of the {110} plane, which is the crystal plane of the crystal grains having the NaCl-type face-centered cubic structure, with respect to the normal of the substrate surface (direction perpendicular to the substrate surface in the cross-sectional polished surface) An angle is measured, and based on this measurement result, among the measured inclination angles, a measurement inclination angle within a range of 0 to 45 degrees is divided for each pitch of 0.25 degrees and exists in each division. By counting the frequencies, the presence of frequency peaks existing in the range of 0 to 10 degrees was confirmed, and the ratio of the frequencies existing in the range of 0 to 10 degrees was determined.

つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜36、比較被覆工具31〜34および参考被覆工具35,36について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
工具基体:立方晶窒化ホウ素基超高圧焼結体、
切削試験: 浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 240 m/min、
切り込み: 0.1mm、
送り: 0.1mm/rev、
切削時間: 4分、
表20に、前記切削試験の結果を示す。
Next, in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig, the coated tools 31 to 36 of the present invention, the comparative coated tools 31 to 34, and the reference coated tools 35 and 36 are used. The dry high-speed intermittent cutting test of carburized and quenched alloy steel shown below was performed, and the flank wear width of the cutting edge was measured.
Tool substrate: Cubic boron nitride-based ultra-high pressure sintered body,
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 240 m / min,
Cutting depth: 0.1mm,
Feed: 0.1mm / rev,
Cutting time: 4 minutes
Table 20 shows the results of the cutting test.

表9、表15および表20に示される結果から、本発明の被覆工具は、硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造の結晶粒内において、結晶粒内にTiとAlの周期的な組成変化が存在することにより、結晶粒内にひずみが生じ、硬さが向上し、また、柱状組織を有することにより、高い耐摩耗性を発揮すると同時に、柱状組織の粒界部に六方晶構造の微粒結晶粒が存在することにより、粒界滑りを抑制し、靭性が向上し、さらに、NaCl型の面心立方構造の結晶粒が{110}面に配向することによって、耐逃げ面摩耗性、耐クレーター摩耗性がそれぞれ向上し、その結果、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。   From the results shown in Table 9, Table 15, and Table 20, the coated tool of the present invention has a face-centered cubic structure of NaCl type that constitutes a composite nitride of Ti and Al or a composite carbonitride layer constituting the hard coating layer. In the crystal grains, the periodic compositional change of Ti and Al is present in the crystal grains, so that strain is generated in the crystal grains, the hardness is improved, and the columnar structure is used, so At the same time as exhibiting wear properties, the presence of hexagonal crystal grains at the grain boundaries of the columnar structure prevents grain boundary sliding, improves toughness, and further improves the NaCl-type face-centered cubic structure. With the grains oriented in the {110} plane, the flank wear resistance and crater wear resistance improved respectively, and as a result, it was used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge. Even when chipping resistance, Excellent deficient, it is apparent that exhibits excellent wear resistance over a long-term use.

これに対して、比較被覆工具1〜13、16〜28,31〜34および参考被覆工具14、15、29、30、35、36については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, the comparative coated tools 1-13, 16-28, 31-34 and the reference coated tools 14, 15, 29, 30, 35, 36 are accompanied by high heat generation, and the cutting blades are intermittent. When used in high-speed interrupted cutting where an impact high load acts, it is clear that chipping, chipping, etc. will lead to short life.

前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (8)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、前記複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{110}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示し、
(d)前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、
(e)また、前記複合窒化物または複合炭窒化物層中の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、工具基体表面の法線方向に沿った周期が4〜150nmであり、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio Xavg in the total amount of Ti and Al in the composite nitride or composite carbonitride layer and the total amount of C and N in C The average content ratio Yavg (where Xavg and Yavg are both atomic ratios) satisfy 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yavg ≦ 0.005, respectively.
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) Further, with respect to the composite nitride or composite carbonitride layer, each crystal having an NaCl type face-centered cubic structure in the composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer When the crystal orientation of the grains is analyzed from the longitudinal section direction of the composite nitride or composite carbonitride layer, the normal of the {110} plane that is the crystal plane of the crystal grains with respect to the normal direction of the surface of the tool base is formed. The inclination angle is measured, and the inclination angles within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is in the inclination angle number distribution. Shows a ratio of 35% or more of the entire frequency,
(D) Individual crystals having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer when observed from the longitudinal section direction of the composite nitride or composite carbonitride layer Having a columnar structure having an average particle width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10;
(E) Further, in each crystal grain having the NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer, a composition formula: (Ti 1-x Al x ) (C y N 1 -Y ) there is a periodic composition change of Ti and Al, the period along the normal direction of the tool base surface is 4 to 150 nm, and the average and minimum values of the maximum values of x that periodically change A surface-coated cutting tool having an average difference Δx of 0.03 to 0.25.
前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3〜100nmであり、その方位に直交する面内でのAlのTiとAlの合量に占める含有割合XOの変化は0.01以下であること特徴とする請求項1に記載の表面被覆切削工具。   In the crystal grains having the NaCl-type face-centered cubic structure in which the periodic composition change of Ti and Al in the composite nitride or composite carbonitride layer exists, the periodic composition change of Ti and Al is the crystal grain. Present in one of the equivalent crystal orientations represented by <001>, the period along the orientation is 3 to 100 nm, and Ti in the plane perpendicular to the orientation is Ti and The surface-coated cutting tool according to claim 1, wherein the change in the content ratio XO in the total amount of Al is 0.01 or less. 前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.4aTiN+0.6aAlNの関係を満たすことを特徴とする請求項1または請求項2に記載の表面被覆切削工具。 With respect to the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained. but the feature that the relative cubic TiN lattice constant a TiN and cubic AlN lattice constant a AlN, satisfying the relationship 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN The surface-coated cutting tool according to claim 1 or 2. 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is composed of a single phase of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. The surface-coated cutting tool according to any one of the above. 前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に、六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が30面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする請求項1乃至請求項3のいずれかに記載の表面被覆切削工具。   When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the composite nitride or the composite carbonitride layer is composed of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer. There are fine crystal grains having a hexagonal structure in the grain boundary portion of the columnar structure, the area ratio of the fine crystal grains is 30 area% or less, and the average grain size R of the fine crystal grains is 0.01. The surface-coated cutting tool according to any one of claims 1 to 3, wherein the surface-coated cutting tool is -0.3 µm. 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1乃至請求項5のいずれかに記載の表面被覆切削工具。   One layer of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti and Al The surface-coated cutting tool according to any one of claims 1 to 5, wherein there is a lower layer composed of two or more Ti compound layers and having a total average layer thickness of 0.1 to 20 µm. . 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至請求項6のいずれかに記載の表面被覆切削工具。   7. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm is present on the composite nitride or the composite carbonitride layer. The surface-coated cutting tool described. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至請求項7のいずれかに記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 7. The surface-coated cutting tool described.
JP2014154501A 2014-07-30 2014-07-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP6296294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154501A JP6296294B2 (en) 2014-07-30 2014-07-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154501A JP6296294B2 (en) 2014-07-30 2014-07-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2016030319A JP2016030319A (en) 2016-03-07
JP6296294B2 true JP6296294B2 (en) 2018-03-20

Family

ID=55441032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154501A Active JP6296294B2 (en) 2014-07-30 2014-07-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP6296294B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108884562A (en) * 2016-03-31 2018-11-23 瓦尔特公开股份有限公司 With H-ALN layers and the cutting tool of TI1-XAlXCYNZ layers of coating
JP7098932B2 (en) * 2017-01-18 2022-07-12 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP7068646B2 (en) * 2017-03-08 2022-05-17 三菱マテリアル株式会社 Surface coating cutting tool
JP6857299B2 (en) * 2017-09-29 2021-04-14 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP7191287B2 (en) * 2018-03-20 2022-12-19 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7385172B2 (en) * 2018-10-11 2023-11-22 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent welding resistance, plastic deformation resistance, and abnormal damage resistance.
JP7198412B2 (en) * 2018-12-27 2023-01-04 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7329180B2 (en) * 2020-02-03 2023-08-18 三菱マテリアル株式会社 surface coated cutting tools
KR20230028526A (en) 2021-06-14 2023-02-28 스미또모 덴꼬오 하드메탈 가부시끼가이샤 cutting tool
WO2024060667A1 (en) * 2022-09-20 2024-03-28 株洲钻石切削刀具股份有限公司 Coating cutting tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5946016B2 (en) * 2012-05-22 2016-07-05 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) * 2012-08-28 2017-03-08 三菱マテリアル株式会社 Surface coated cutting tool
JP6037113B2 (en) * 2012-11-13 2016-11-30 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6044322B2 (en) * 2012-12-20 2016-12-14 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP5995087B2 (en) * 2013-01-08 2016-09-21 三菱マテリアル株式会社 Surface coated cutting tool with excellent oxidation resistance, chipping resistance, and wear resistance with excellent hard coating layer

Also Published As

Publication number Publication date
JP2016030319A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6090063B2 (en) Surface coated cutting tool
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
WO2015163391A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2013248675A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6617917B2 (en) Surface coated cutting tool
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP2017047526A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6296294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150