JP6171800B2 - Surface coated cutting tool with excellent chipping resistance due to hard coating layer - Google Patents

Surface coated cutting tool with excellent chipping resistance due to hard coating layer Download PDF

Info

Publication number
JP6171800B2
JP6171800B2 JP2013203962A JP2013203962A JP6171800B2 JP 6171800 B2 JP6171800 B2 JP 6171800B2 JP 2013203962 A JP2013203962 A JP 2013203962A JP 2013203962 A JP2013203962 A JP 2013203962A JP 6171800 B2 JP6171800 B2 JP 6171800B2
Authority
JP
Japan
Prior art keywords
layer
tool
composite
average
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013203962A
Other languages
Japanese (ja)
Other versions
JP2015066646A (en
Inventor
翔 龍岡
翔 龍岡
佐藤 賢一
佐藤  賢一
健志 山口
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2013203962A priority Critical patent/JP6171800B2/en
Priority to CN201410507909.6A priority patent/CN104511731A/en
Publication of JP2015066646A publication Critical patent/JP2015066646A/en
Application granted granted Critical
Publication of JP6171800B2 publication Critical patent/JP6171800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al based composite nitride layer is formed by physical vapor deposition on a surface of a substrate (hereinafter collectively referred to as a substrate) as a hard coating layer. It is known that it exhibits excellent wear resistance.
However, the conventional coated tool with a Ti-Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed interrupted cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体の表面に、第1被覆層と、柱状結晶から構成されて基体の表面の垂線方向に対して平均で1〜15°の角度で斜めの方向に成長した第2被覆層とを順次被覆していることによって、被覆層に衝撃がかかっても第2被覆層から伝わる力が分散して第1被覆層には衝撃が伝わりにくくクラックの進展が抑制される結果、被覆層に発生するチッピングや大きな欠損を抑制できる表面被覆切削工具が提案されている。そして、第1被覆層および第2被覆層が、(Ti1−a−bAl)C1−d(ただし、XはTiを除く周期表第4、5および6族元素、Siおよび希土類元素より選ばれる一種以上の元素。0.3≦a≦0.7、0≦b≦0.2、0≦d≦1)から構成されていることによって、両被覆層は硬度が高く、かつ柱状結晶を構成しやすく耐欠損性にすぐれたものとなる。さらに、第1被覆層が基体の表面の垂線方向に成長した、平均結晶幅が0.02〜0.3μmの柱状結晶粒子にて構成されていることによって、第1被覆層が高硬度で基体との密着性にすぐれたものとなり、さらに、第2被覆層を構成する柱状結晶の平均結晶幅が0.1〜0.8μmであり、第1被覆層を構成する柱状結晶の平均結晶幅よりも大きいことによって、被覆層全体としての残留応力を低減することができるとともに硬質被覆層におけるクラックの進展が偏向されやすくなるため、被覆層の膜剥離やチッピングを防止することができて耐欠損性が向上することも開示されている。 For example, Patent Document 1 discloses that a first covering layer and columnar crystals are formed on a surface of a base and grown in an oblique direction at an angle of 1 to 15 ° on average with respect to a normal direction of the surface of the base. As a result of sequentially coating the two coating layers, the force transmitted from the second coating layer is dispersed even when an impact is applied to the coating layer, and the impact is hardly transmitted to the first coating layer, and the progress of cracks is suppressed. There have been proposed surface-coated cutting tools that can suppress chipping and large defects occurring in the coating layer. The first coating layer and second coating layer, (Ti 1-a-b Al a X b) C 1-d N d ( provided that, X is the periodic table groups 4, 5 and 6 elements except Ti, One or more elements selected from Si and rare earth elements (0.3 ≦ a ≦ 0.7, 0 ≦ b ≦ 0.2, 0 ≦ d ≦ 1). It is high and easily forms columnar crystals and has excellent defect resistance. Furthermore, since the first coating layer is composed of columnar crystal grains having an average crystal width of 0.02 to 0.3 μm grown in the direction perpendicular to the surface of the substrate, the first coating layer has a high hardness and a substrate. In addition, the average crystal width of the columnar crystals constituting the second coating layer is 0.1 to 0.8 μm, and more than the average crystal width of the columnar crystals constituting the first coating layer. In addition, the residual stress of the entire coating layer can be reduced and crack propagation in the hard coating layer can be easily deflected, so that film peeling and chipping of the coating layer can be prevented and fracture resistance can be prevented. Is also disclosed to improve.

また、特許文献2には、基材と該基材上に形成された被膜とを備える表面被覆切削工具であって、被膜がAlまたはCrのいずれか一方または両方の元素と、炭素、窒素、酸素およびホウ素からなる群から選ばれる少なくとも1種の元素とにより構成される化合物と、塩素とを含むことによって、被膜の耐摩耗性と耐酸化特性とを飛躍的に向上させた表面被覆切削工具を提供することが提案されている。   Patent Document 2 discloses a surface-coated cutting tool including a base material and a coating film formed on the base material, wherein the coating film has one or both of Al and Cr, carbon, nitrogen, A surface-coated cutting tool that dramatically improves the wear resistance and oxidation resistance of the coating by containing chlorine and a compound composed of at least one element selected from the group consisting of oxygen and boron. It has been proposed to provide

また、特許文献3には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成した被覆工具が記載されているが、この被覆工具では、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、xの値を0.65〜0.95まで高めた(Ti1−xAl)N層の形成によって、切削性能へ如何なる影響があるかという点についての開示はなく、その点については予見しがたい。 Patent Document 3 discloses that the value of the Al content ratio x is 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although a coated tool is described in which a (Ti 1-x Al x ) N layer of 0.95 is deposited, the coated tool further includes an Al 2 layer on the (Ti 1-x Al x ) N layer. Since the purpose is to cover the O 3 layer and thereby enhance the heat insulation effect, the formation of the (Ti 1-x Al x ) N layer with the value of x increased from 0.65 to 0.95 However, there is no disclosure regarding what kind of influence the cutting performance has, and this point is difficult to foresee.

また、特許文献4には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(但し、xは0.65〜0.9)を外層として被覆するとともに、該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Further, in Patent Document 4, a TiCN layer and an Al 2 O 3 layer are used as inner layers, and a cubic structure (Ti 1-x Al x ) including a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition. The N layer (x is 0.65 to 0.9) is coated as an outer layer, and by applying a compressive stress of 100 to 1100 MPa to the outer layer, the heat resistance and fatigue strength of the coated tool can be improved. Proposed.

特開2008−105164号公報JP 2008-105164 A 特開2006−82207号公報JP 2006-82207 A 特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、特許文献1に記載された基体の表面に第1被覆層と柱状結晶から構成されて基体の表面の垂線方向に対して平均で1〜15°の角度で斜めの方向に成長した第2被覆層とを順次被覆したものにおいては、被覆層に衝撃がかかっても第2被覆層から伝わる力が分散して第1被覆層には衝撃が伝わりにくくクラックの進展が抑制されるものの、硬さが十分でなく、また、耐チッピング性も十分ではないという課題があった。
また、特許文献2に記載された被覆工具は、主たる目的が耐摩耗性および耐酸化性の向上にあったため、合金鋼の高速断続切削加工等に供した場合には、満足できる切削性能を発揮するとは言えないという課題があった。
また、特許文献3に記載される被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
さらに、特許文献4に記載された被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で成膜され、膜中のAl含有量Xを十分に高めることができないため、例えば、合金鋼の高速断続切削に供した場合には、耐チッピング性が十分であるとは言えないという課題があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、ステンレス鋼、炭素鋼、鋳鉄、合金鋼などの高速断続切削などに供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, the second coating is composed of the first coating layer and columnar crystals on the surface of the substrate described in Patent Document 1, and grows in an oblique direction at an angle of 1 to 15 ° on the average with respect to the normal direction of the surface of the substrate. In the case where the coating layer is sequentially coated, the force transmitted from the second coating layer is dispersed even when an impact is applied to the coating layer, and the impact is not easily transmitted to the first coating layer, but the progress of cracks is suppressed. However, there is a problem that the chipping resistance is not sufficient and the chipping resistance is not sufficient.
In addition, the coated tool described in Patent Document 2 has a main purpose of improving wear resistance and oxidation resistance, and therefore exhibits satisfactory cutting performance when subjected to high-speed intermittent cutting of alloy steel. There was a problem that could not be said.
Moreover, although the coated tool described in Patent Document 3 has a predetermined hardness and is excellent in wear resistance, since it is inferior in toughness, when subjected to high-speed intermittent cutting of alloy steel, There is a problem that abnormal damage such as chipping, chipping, and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Furthermore, in the coated tool described in Patent Document 4, a hard coating layer composed of a (Ti 1-X Al X ) N layer is formed by physical vapor deposition, and the Al content X in the film can be sufficiently increased. For example, when subjected to high-speed intermittent cutting of alloy steel, there is a problem that it cannot be said that the chipping resistance is sufficient.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent toughness even when it is used for high-speed intermittent cutting of stainless steel, carbon steel, cast iron, alloy steel and the like. It is an object of the present invention to provide a coated tool that exhibits excellent chipping resistance and wear resistance over a long period of use.

そこで、本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1−xAl)(C1−y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( CyN 1-y ) ”), a hard coating layer containing a hard coating layer formed by chemical vapor deposition. Results of extensive research to improve the chipping resistance and wear resistance of the coated tool The following findings were obtained.

即ち、従来の少なくとも1層の(Ti1−xAl)(C1−y)層を含み、かつ所定の平均層厚を有する硬質被覆層は、(Ti1−xAl)(C1−y)層が工具基体に垂直方向に柱状をなして形成されている場合、高い耐摩耗性を有する。その反面、(Ti1−xAl)(C1−y)層の異方性が高くなるほど(Ti1−xAl)(C1−y)層の靭性が低下し、その結果、耐チッピング性、耐欠損性が低下し、長期の使用に亘って十分な耐摩耗性を発揮することができず、また、工具寿命も満足できるものであるとはいえなかった。
そこで、本発明者らは、硬質被覆層の改質を図るべく次のような視点から検討を重ねた。すなわち、粒界は結晶粒同士のつなぎ目であり、その構造は材料の力学的特性や機能的特性と密接に関係している。したがって、粒界の構造を定量的に制御することにより、所望の特性を備えた硬質被覆層を形成することが出来る。このような観点で、硬質被覆層を構成する(Ti1−xAl)(C1−y)層について鋭意研究したところ、所定の割合のSiを含有した(Ti1−x―yAlSi)(C1−z)層を立方晶結晶相と六方晶結晶相とで構成し、かつ、立方晶結晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶を形成させるという全く新規な着想により、Siを含有させたことで硬さが向上するとともに、硬質被覆層内の粒界強度が向上し靭性を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
That is, the conventional hard coating layer including at least one (Ti 1-x Al x ) (C y N 1-y ) layer and having a predetermined average layer thickness is (Ti 1-x Al x ) ( When the C y N 1-y ) layer is formed in a columnar shape in the direction perpendicular to the tool base, it has high wear resistance. On the other hand, it reduces the toughness of (Ti 1-x Al x) as anisotropy (C y N 1-y) layer is high (Ti 1-x Al x) (C y N 1-y) layer, As a result, chipping resistance and chipping resistance are reduced, and sufficient wear resistance cannot be exhibited over a long period of use, and the tool life cannot be said to be satisfactory.
Accordingly, the present inventors have studied from the following viewpoints in order to improve the hard coating layer. That is, the grain boundary is a joint between crystal grains, and its structure is closely related to the mechanical properties and functional properties of the material. Therefore, a hard coating layer having desired characteristics can be formed by quantitatively controlling the structure of the grain boundary. In this point of view, it constitutes a hard layer (Ti 1-x Al x) (C y N 1-y) was intensively studied layer, containing Si in a predetermined ratio (Ti 1-x-y The Al x Si y ) (C z N 1-z ) layer is composed of a cubic crystal phase and a hexagonal crystal phase, and 50% or more of the crystal grains having a cubic crystal structure are present at the interface of the crystal grains. Due to the completely new idea of forming twins, the inclusion of Si has improved the hardness, and has succeeded in improving the grain boundary strength in the hard coating layer and increasing the toughness. The inventors discovered a novel finding that the chipping resistance and fracture resistance of the layer can be improved.

具体的には、硬質被覆層が、化学蒸着法により成膜されたTiとAlとSiの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−x―yAlSi)(C1−z)で表した場合、AlのTiとAlとSiの合量に占める含有割合x、SiのTiとAlとSiの合量に占める含有割合yおよびCのCとNの合量に占める含有割合z(但し、x、y、zはいずれも原子比)が、それぞれ、0.55≦x≦0.95、0.005≦y≦0.10、0≦z≦0.005、x+y≦0.955を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものと六方晶構造を有するものが混在し、工具基体と垂直な面における立方晶結晶相の占める面積割合は50〜90面積%であり、立方晶構造を有する結晶粒が、工具基体と平行な面内の粒子幅をw、また、工具基体と垂直な方向の粒子長さをlとし、該wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下であり、立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶が存在することにより、従来の硬質被覆層に比して、(Ti1−x―yAlSi)(C1−z)層の異方性が緩和され、その結果、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。 Specifically, the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Si formed by chemical vapor deposition, and has a composition formula: (Ti 1-xy Al x Si y ) When expressed by ( CzN1 -z ), the content ratio x in the total amount of Ti, Al, and Si in Al, the content ratio y in the total amount of Ti, Al, and Si in Si, and C in C And the content ratio z in the total amount of N (where x, y, and z are atomic ratios) are 0.55 ≦ x ≦ 0.95, 0.005 ≦ y ≦ 0.10, and 0 ≦, respectively. z ≦ 0.005, x + y ≦ 0.955 is satisfied, and the crystal grains constituting the composite nitride or composite carbonitride layer include those having a cubic structure and those having a hexagonal structure, The area ratio occupied by the cubic crystal phase in the plane perpendicular to the surface is 50 to 90 area%, and the cubic crystal In the crystal grains having a structure, the grain width in a plane parallel to the tool base is w, the grain length in the direction perpendicular to the tool base is l, and the ratio l / w between w and l is defined as each crystal grain. When the average aspect ratio A is the average aspect ratio A obtained for each crystal grain and the average value of the grain width w obtained for each crystal grain is the average grain width W, the average The grain width W is 0.05 to 1.0 μm, the average aspect ratio A is 5 or less, and the presence of twins at the interface of 50% or more of the crystal grains having a cubic structure results in the conventional Compared to the hard coating layer, the anisotropy of the (Ti 1-xy Al x Si y ) (C z N 1-z ) layer is relaxed, and as a result, chipping resistance and chipping resistance are improved. It has been found that it exhibits excellent wear resistance over a long period of time.

そして、前述のような構成の(Ti1−x―yAlSi)(C1−z)層は、例えば、トリメチルアルミニウム(Al(CH)およびSiClを反応ガス成分として含有する以下の化学蒸着法によって成膜することができる。
工具基体表面に、反応ガス組成(容量%)を、TiCl:3.0〜4.0%、Al(CH:0〜2.0%、AlCl:3.0〜5.0%、SiCl:1.5〜2.0%、NH:3.0〜6.0%、N:0〜5.0%、C:0〜1.0%、Ar:1.0〜4.0%、H:残、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1−x―yAlSi)(C1−z)層を成膜する。
この時、NHの添加量を制御することにより、立方晶結晶相の割合を制御する。また、NHおよびNの反応ガス組成を変調させ、NHの反応活性を変化させることにより立方晶結晶粒の界面に双晶が形成されることを促し、双晶が存在する割合を向上させる。
The (Ti 1-xy Al x Si y ) (C z N 1-z ) layer having the above-described configuration is formed from, for example, trimethylaluminum (Al (CH 3 ) 3 ) and SiCl 4 as reactive gas components. It can be formed by the following chemical vapor deposition method.
On the surface of the tool substrate, the reaction gas composition (volume%) is TiCl 4 : 3.0 to 4.0%, Al (CH 3 ) 3 : 0 to 2.0%, AlCl 3 : 3.0 to 5.0. %, SiCl 4 : 1.5 to 2.0%, NH 3 : 3.0 to 6.0%, N 2 : 0 to 5.0%, C 2 H 4 : 0 to 1.0%, Ar: 1.0 to 4.0%, H 2 : remaining, reaction atmosphere pressure: 2.0 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., by performing a thermal CVD method for a predetermined time, a predetermined target A (Ti 1-xy Al x Si y ) (C z N 1-z ) layer having a layer thickness is formed.
At this time, the proportion of the cubic crystal phase is controlled by controlling the amount of NH 3 added. In addition, by modulating the reaction gas composition of NH 3 and N 2 and changing the reaction activity of NH 3 , it promotes the formation of twins at the interface of cubic crystal grains and improves the ratio of twins Let

前述のようにNHの添加量を制御することによって、立方晶結晶相が選択的に形成され、結晶粒内に結晶構造と格子定数が等しい2つの結晶が重なり合い、周期的な格子点の重なりが生じる。すなわち、2つの結晶粒の界面に一致した格子点(対応格子点)を含むような方位にある双晶を形成させることができる。その結果、靭性が飛躍的に向上することを見出した。その結果、特に、耐欠損性、耐チッピング性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。 By controlling the amount of NH 3 added as described above, a cubic crystal phase is selectively formed, and two crystals having the same crystal structure and lattice constant are overlapped in the crystal grains, and periodic lattice points overlap. Occurs. That is, it is possible to form a twin having an orientation including a lattice point (corresponding lattice point) coincident with the interface between two crystal grains. As a result, it has been found that the toughness is dramatically improved. As a result, especially when used for high-speed intermittent cutting of alloy steel with improved fracture resistance and chipping resistance, and intermittent and impact loads on the cutting edge, the hard coating layer is used for a long time. It has been found that excellent cutting performance can be exhibited over a long period of time.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlとSiの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−x―yAlSi)(C1−z)で表した場合、AlのTiとAlとSiの合量に占める含有割合x、SiのTiとAlとSiの合量に占める含有割合yおよびCのCとNの合量に占める含有割合z(但し、x、y、zはいずれも原子比)が、それぞれ、0.55≦x≦0.95、0.005≦y≦0.10、0≦z≦0.005、x+y≦0.955を満足し、
前記複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものと六方晶構造を有するものが混在し、且つ、工具基体と垂直な面における立方晶結晶相の占める面積割合は50〜90面積%であり、立方晶構造を有する結晶粒の平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下であり、前記立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶が存在することを特徴とする表面被覆切削工具。
(2) 前記工具基体と前記TiとAlとSiの複合窒化物または複合炭窒化物層の間に少なくともTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層を含み、かつ、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
なお、本発明における硬質被覆層は、前述のような複合窒化物または複合炭窒化物層をその本質的構成とするが、さらに、従来知られている下部層や上部層などと併用することにより、複合窒化物または複合炭窒化物層が奏する効果と相俟って、一層すぐれた特性を創出することができる。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body In
The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Si having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and has a composition formula: (Ti 1-xy Al x Si y ) (C z N 1-z ), the content ratio x in the total amount of Ti, Al, and Si in Al, the content ratio y in the total amount of Si, Ti, Al, and Si, and The content ratio z (wherein x, y, and z are atomic ratios) of the total amount of C and C in C are 0.55 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.10, respectively. , 0 ≦ z ≦ 0.005, x + y ≦ 0.955,
The crystal grains constituting the composite nitride or composite carbonitride layer include those having a cubic structure and those having a hexagonal structure, and the area occupied by the cubic crystal phase in a plane perpendicular to the tool substrate The ratio is 50 to 90 area%, the average grain width W of the crystal grains having a cubic structure is 0.05 to 1.0 μm, the average aspect ratio A is 5 or less, and the crystal grains having the cubic structure A surface-coated cutting tool characterized in that twins are present at the interface of 50% or more of the crystal grains.
(2) At least Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer between the tool base and the composite nitride or composite carbonitride layer of Ti, Al, and Si The surface-coated cutting according to (1), wherein there is a lower layer including a Ti compound layer composed of one or more of the above and having a total average layer thickness of 0.1 to 20 μm tool.
(3) An upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. (1) or (2) The surface-coated cutting tool described.
(4) the composite carbonitride layer is at least surface-coated cutting according to any of characterized by forming a film by chemical vapor deposition containing trimethyl aluminum as a reaction gas component (1) to (3) Tool manufacturing method . "
It has the characteristics.
Note that the hard coating layer in the present invention has the above-described composite nitride or composite carbonitride layer as its essential structure, and further, when used in combination with a conventionally known lower layer or upper layer, etc. Combined with the effect of the composite nitride or composite carbonitride layer, it is possible to create more excellent characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
本発明の硬質被覆層は、化学蒸着された組成式:(Ti1−x―yAlSi)(C1−z)で表されるTiとAlとSiの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、平均層厚が20μmを越えると、TiとAlとSiの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
Hard layer of the present invention, chemical vapor deposited composition formula: (Ti 1-x-y Al x Si y) (C z N 1-z) composite nitride of Ti and Al and Si represented by or composite At least a carbonitride layer is included. This composite nitride or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, Ti and Al The crystal grains of the composite nitride or composite carbonitride layer of Si and Si are easily coarsened, and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlとSiの合量に占める含有割合x、SiのTiとAlとSiの合量に占める含有割合yおよびCのCとNの合量に占める含有割合z(但し、x、y、zはいずれも原子比)が、それぞれ、0.55≦x≦0.95、0.005≦y≦0.10、0≦z≦0.005、x+y≦0.955を満足するように制御する。
その理由は、Alの含有割合xが0.55未満であると、TiとAlとSiの複合窒化物または複合炭窒化物層の硬さ、靭性に劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分でない。一方、Alの含有割合xが0.95を超えると、相対的にTiの含有割合が減少するため耐食性および高温強度が低下するため好ましくない。したがって、Alの含有割合xは、0.55≦x≦0.95と定めた。
また、Siの含有割合yが0.005未満であると、TiとAlとSiの複合窒化物または複合炭窒化物層の硬さが劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Siの含有割合yが0.10を超えると、靭性が低下するため好ましくない。したがって、Siの含有割合yは、0.005≦y≦0.10と定めた。
また、複合窒化物または複合炭窒化物層に含まれるCの含有割合(原子比)zは、0≦z≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは、下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、Cの含有割合zが0≦z≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの含有割合zは、0≦z≦0.005と定めた。
Composition of composite nitride or composite carbonitride layer constituting hard coating layer:
The composite nitride or composite carbonitride layer constituting the hard coating layer of the present invention is the content ratio x in the total amount of Ti, Al, and Si of Al, the content ratio in the total amount of Si, Ti, Al, and Si. The content ratio z (where x, y, z are atomic ratios) of the total amount of C and N in y and C are 0.55 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0, respectively. .10, 0 ≦ z ≦ 0.005, and x + y ≦ 0.955 are controlled.
The reason is that when the Al content ratio x is less than 0.55, the composite nitride of Ti and Al and Si or the composite carbonitride layer is inferior in hardness and toughness. When provided, the wear resistance and chipping resistance are not sufficient. On the other hand, when the Al content ratio x exceeds 0.95, the content ratio of Ti is relatively reduced, so that the corrosion resistance and high-temperature strength are deteriorated. Therefore, the Al content ratio x was determined to be 0.55 ≦ x ≦ 0.95.
In addition, when the Si content ratio y is less than 0.005, the hardness of the composite nitride or composite carbonitride layer of Ti, Al, and Si is inferior, so when subjected to high-speed intermittent cutting of alloy steel or the like Has insufficient wear resistance. On the other hand, if the Si content ratio y exceeds 0.10, the toughness decreases, which is not preferable. Therefore, the Si content ratio y is determined to be 0.005 ≦ y ≦ 0.10.
Further, when the content ratio (atomic ratio) z of C contained in the composite nitride or composite carbonitride layer is a small amount in the range of 0 ≦ z ≦ 0.005, the composite nitride or composite carbonitride layer The adhesion to the tool base or the lower layer is improved and the lubrication improves the impact during cutting. As a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer Will improve. On the other hand, when the content ratio z of C deviates from the range of 0 ≦ z ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer is lowered, and thus the fracture resistance and chipping resistance are adversely lowered. Absent. Therefore, the content ratio z of C was determined as 0 ≦ z ≦ 0.005.

複合窒化物または複合炭窒化物層を構成する結晶粒:
前記複合炭窒化物層を構成する結晶粒は、平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下を満足するように制御する。
この条件を満たすとき、複合窒化物または複合炭窒化物層を構成する結晶粒は粒状組織となり、すぐれた耐摩耗性を示す。一方、平均粒子幅Wが0.05μm未満であると耐摩耗性が低下し、1.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層を構成する結晶粒の平均粒子幅Wは、0.05〜1.0μmと定めた。
Crystal grains constituting the composite nitride or composite carbonitride layer:
The crystal grains constituting the composite carbonitride layer are controlled so that the average particle width W is 0.05 to 1.0 μm and the average aspect ratio A is 5 or less.
When this condition is satisfied, the crystal grains constituting the composite nitride or composite carbonitride layer have a granular structure and exhibit excellent wear resistance. On the other hand, if the average particle width W is less than 0.05 μm, the wear resistance decreases, and if it exceeds 1.0 μm, the toughness decreases. Therefore, the average particle width W of the crystal grains constituting the composite nitride or composite carbonitride layer was determined to be 0.05 to 1.0 μm.

結晶粒中の立方晶結晶相の占める面積割合:
さらに、電子線後方散乱回折装置を用いて個々の結晶粒の結晶方位を、前記TiとAlとSiの複合窒化物または複合炭窒化物層の縦断面(工具基体と垂直な面)方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する立方晶結晶相の占める面積割合が50〜90面積%であることがより好ましい。結晶粒中の立方晶結晶相の占める面積割合が50面積%を下回ると硬さが低下し、その結果、耐摩耗性が低下する。一方、90面積%を超えると靭性が低下し、その結果、耐チッピング性が低下する。したがって、結晶粒中の立方晶結晶相の占める面積割合は、50〜90面積%と定めた。
Area ratio of cubic crystal phase in crystal grains:
Further, the crystal orientation of each crystal grain is analyzed from the longitudinal section (plane perpendicular to the tool substrate) direction of the composite nitride or composite carbonitride layer of Ti, Al, and Si using an electron beam backscatter diffraction device. In this case, there are a cubic crystal phase in which an electron backscatter diffraction image of the cubic crystal lattice is observed and a hexagonal crystal phase in which an electron backscatter diffraction image of the hexagonal crystal lattice is observed. The area ratio of the cubic crystal phase to the total area occupied by the crystal crystal phase is more preferably 50 to 90 area%. When the area ratio occupied by the cubic crystal phase in the crystal grains is less than 50 area%, the hardness decreases, and as a result, the wear resistance decreases. On the other hand, when it exceeds 90 area%, toughness will fall and as a result, chipping resistance will fall. Therefore, the area ratio occupied by the cubic crystal phase in the crystal grains was determined to be 50 to 90 area%.

立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に存在する双晶:
さらに、立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶が存在するとき、粒界強度が向上し、硬さが向上する。しかしながら、立方晶構造を有する結晶粒のうち50%未満であると、結晶粒の界面に存在する双晶が奏する粒界強度の向上効果が小さく、十分な硬さの向上が見込めない。したがって、立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶が存在すると定めた。
Twins existing at the interface of 50% or more of the grains having a cubic structure:
Further, when twins are present at the interface of 50% or more of the crystal grains having a cubic structure, the grain boundary strength is improved and the hardness is improved. However, if it is less than 50% of the crystal grains having a cubic structure, the effect of improving the grain boundary strength produced by twins existing at the interface of the crystal grains is small, and sufficient improvement in hardness cannot be expected. Therefore, it was determined that twins exist at the interface of 50% or more of the crystal grains having a cubic structure.

また、本発明の複合窒化物または複合炭窒化物層は、下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む場合、および/または上部層として1〜25μmの平均層厚を有する酸化アルミニウム層を含む場合においても、前述した特性が損なわれず、これらの従来知られている下部層や上部層などと併用することにより、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。下部層として、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなるTi化合物層を含む場合、Ti化合物層の合計平均層厚が0.1μm未満であると、層厚が薄いため、長期の使用に亘って耐摩耗性が確保されず、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、上部層として、酸化アルミニウム層を含む場合、酸化アルミニウム層の合計平均層厚が1μm未満であると、層厚が薄いため長期の使用に亘って耐摩耗性が確保されず、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
本発明の硬質被覆層を構成するTiとAlとSiの複合窒化物または複合炭窒化物層の断面を模式的に表した図を図1に示す。
Further, the composite nitride or composite carbonitride layer of the present invention has one or two of a Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer as a lower layer. Even in the case of including a Ti compound layer having a total average layer thickness of 0.1 to 20 μm and / or including an aluminum oxide layer having an average layer thickness of 1 to 25 μm as an upper layer, The above-described characteristics are not impaired, and by using together with these conventionally known lower layers and upper layers, it is possible to create more excellent characteristics in combination with the effects of these layers. When the lower layer includes a Ti compound layer composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total of the Ti compound layer If the average layer thickness is less than 0.1 μm, the layer thickness is thin, so that wear resistance is not ensured over a long period of use, and if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. . Further, when an aluminum oxide layer is included as the upper layer, if the total average layer thickness of the aluminum oxide layer is less than 1 μm, the wear resistance is not ensured over a long period of use because the layer thickness is thin, and exceeds 25 μm. And the crystal grains are easily coarsened, and chipping is likely to occur.
FIG. 1 schematically shows a cross section of a composite nitride or composite carbonitride layer of Ti, Al, and Si constituting the hard coating layer of the present invention.

本発明は、炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlとSiの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−x―yAlSi)(C1−z)で表した場合、AlのTiとAlとSiの合量に占める含有割合x、SiのTiとAlとSiの合量に占める含有割合yおよびCのCとNの合量に占める含有割合z(但し、x、y、zはいずれも原子比)が、それぞれ、0.55≦x≦0.95、0.005≦y≦0.10、0≦z≦0.005、x+y≦0.955を満足し、複合炭窒化物層を構成する結晶粒は、平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下立方晶構造を有するものと六方晶構造を有するものが混在し、工具基体と垂直な面における立方晶結晶相の占める面積割合は50〜90面積%であり、立方晶構造を有する結晶粒のうち50%以上の結晶粒の界面に双晶が存在することにより、立方晶構造を有する結晶粒内に歪みが生じるため、結晶粒の硬さが向上し、高い耐摩耗性を保ちつつ、靭性が向上する。その結果、耐チッピング性が向上するという効果が発揮され、従来の硬質被覆層に比して、長期の使用に亘ってすぐれた切削性能を発揮し、被覆工具の長寿命化が達成される。 The present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Si having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and has a composition formula: (Ti 1-x- y Al x Si y ) (C z N 1-z ), the content ratio x in the total amount of Ti, Al, and Si in Al, the content ratio y in the total amount of Si, Ti, Al, and Si And C in the total amount of C and N, where x, y, and z are atomic ratios, respectively, 0.55 ≦ x ≦ 0.95, 0.005 ≦ y ≦ 0. 10, 0 ≦ z ≦ 0.005, x + y ≦ 0.955 is satisfied, The crystal grains constituting the coal carbonitride layer include those having an average grain width W of 0.05 to 1.0 μm and an average aspect ratio A of 5 or less having a cubic structure and those having a hexagonal structure. The area ratio occupied by the cubic crystal phase in the plane perpendicular to the substrate is 50 to 90 area%, and the presence of twins at the interface of 50% or more of the crystal grains having a cubic structure results in a cubic structure. Since distortion occurs in the crystal grains having a crystal structure, the hardness of the crystal grains is improved, and the toughness is improved while maintaining high wear resistance. As a result, the effect of improving the chipping resistance is exhibited, the cutting performance is improved over a long period of use as compared with the conventional hard coating layer, and the life of the coated tool is extended.

本発明の硬質被覆層を構成するTiとAlとSiの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。It is the film | membrane structure schematic diagram which represented typically the cross section of the composite nitride or composite carbonitride layer of Ti, Al, and Si which comprises the hard coating layer of this invention. 本発明の硬質被覆層を構成するTiとAlとSiの複合窒化物または複合炭窒化物層の断面において立方晶結晶粒の双晶関係を模式的に表した模式図である。It is the schematic diagram which represented typically the twin relation of the cubic crystal grain in the cross section of the composite nitride or composite carbonitride layer of Ti, Al, and Si which comprises the hard coating layer of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder each having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. In a vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool base A made of a WC-based cemented carbide having an insert shape of ISO standard SEEN1203AFSN. C was produced respectively.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all of TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was used. Was made.

つぎに、これらの工具基体A〜Dの表面に、通常の化学蒸着装置を用い、
表4に示される形成条件A〜J、すなわち、反応ガス組成(容量%)を、TiCl:3.0〜4.0%、Al(CH:0〜2.0%、AlCl:3.0〜5.0%、SiCl:1.5〜2.0%、NH:3.0〜6.0%、N:0〜5.0%、C:0〜1.0%、Ar:1.0〜4.0%、H:残として、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、表7に示される平均粒子幅Wおよび平均アスペクト比Aの粒状組織の(Ti1−x―yAlSi)(C1−z)層を成膜することにより本発明被覆工具1〜15を製造した。
この時、NHの添加量を制御することにより、立方晶結晶相の割合を制御した。また、NHおよびNの反応ガス組成を変調させ、NHの反応活性を変化させることにより立方晶結晶粒の界面に双晶が形成されることを促し、双晶が存在する割合を向上させた。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表6および表7に示される下部層および/または上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
The formation conditions A to J shown in Table 4, that is, the reaction gas composition (volume%), TiCl 4 : 3.0 to 4.0%, Al (CH 3 ) 3 : 0 to 2.0%, AlCl 3 : 3.0~5.0%, SiCl 4: 1.5~2.0 %, NH 3: 3.0~6.0%, N 2: 0~5.0%, C 2 H 4: 0 ~1.0%, Ar: 1.0~4.0%, H 2: as residue, reaction atmosphere pressure: 2~5KPa, temperature of reaction atmosphere: as 700 to 900 ° C., a predetermined time to perform a thermal CVD method By coating the present invention by forming a (Ti 1-xy Al x Si y ) (C z N 1-z ) layer having a granular structure with an average particle width W and an average aspect ratio A shown in Table 7 Tools 1-15 were manufactured.
At this time, the proportion of the cubic crystal phase was controlled by controlling the amount of NH 3 added. In addition, by modulating the reaction gas composition of NH 3 and N 2 and changing the reaction activity of NH 3 , it promotes the formation of twins at the interface of cubic crystal grains and improves the ratio of twins I let you.
In addition, about this invention coated tools 6-13, the lower layer and / or the upper layer which were shown in Table 6 and Table 7 were formed on the formation conditions shown in Table 3.

本発明被覆工具1〜15の硬質被覆層を構成するTiとAlとSiの複合窒化物または複合炭窒化物層について、走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて複数視野に亘って観察したところ、図1に示した膜構成模式図に示されるように立方晶結晶と六方晶結晶が存在する粒状組織の(Ti1−x―yAlSi)(C1−z)層が確認された。また、透過型電子顕微鏡による倍率200000倍、加速電圧200.0kVによる観察により、立方晶構造を有する結晶粒のうち50%以上の結晶粒が隣接する立方晶構造を有する結晶粒と双晶関係にあることが確認された。その結果を、同じく表7に示した。 About the composite nitride or composite carbonitride layer of Ti, Al, and Si constituting the hard coating layers of the present coated tools 1 to 15 over a plurality of visual fields using a scanning electron microscope (magnification 5000 times and 20000 times). As shown in the schematic diagram of the film structure shown in FIG. 1, (Ti 1-xy Al x Si y ) (C z N 1-1 ) having a granular structure in which cubic crystals and hexagonal crystals exist is present. z ) layer was confirmed. In addition, by observation with a transmission electron microscope at a magnification of 200000 times and an acceleration voltage of 200.0 kV, 50% or more of the crystal grains having a cubic structure are in a twinning relationship with crystal grains having an adjacent cubic structure. It was confirmed that there was. The results are also shown in Table 7.

また、硬質被覆層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶構造を、TiとAlとSiの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子線後方散乱回折像が観察される立方晶結晶相と六方晶結晶格子の電子線後方散乱回折像が観察される六方晶結晶相との混合組織からなり、かつ、電子線後方散乱回折像が観察された立方晶結晶相と六方晶結晶相との合計に占める立方晶結晶相の面積割合は50〜90面積%であることが確認された。   In addition, when the hard coating layer is analyzed from the longitudinal cross-sectional direction of the composite nitride or composite carbonitride layer of Ti, Al, and Si using an electron beam backscatter diffractometer, the cubic structure is obtained. Consisting of a mixed structure of a cubic crystal phase in which an electron beam backscatter diffraction image of a crystal crystal lattice is observed and a hexagonal crystal phase in which an electron beam backscatter diffraction image of a hexagonal crystal lattice is observed, and the back of the electron beam It was confirmed that the area ratio of the cubic crystal phase to the total of the cubic crystal phase and the hexagonal crystal phase in which the scattering diffraction image was observed was 50 to 90 area%.

また、比較の目的で、工具基体A〜Dの表面に、表3および表5に示される形成条件a〜jかつ表9に示される目標層厚(μm)で本発明被覆工具1〜15と同様に、少なくともTiとAlとSiの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成することにより比較被覆工具1〜13を製造した。
なお、本発明被覆工具6〜13と同様に、比較被覆工具6〜13については、表3に示される形成条件で表6および表8に示される下部層および/または上部層を形成した。
参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−x―yAlSi)(C1−z)層を目標層厚で蒸着形成することにより、表8に示される参考被覆工具14、15を製造した。
なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti−Si合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti−Si合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAl、TiおよびSiイオンを発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4kPaの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti−Si合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表8に示される目標組成、目標層厚の(Ti,Al,Si)N層を蒸着形成し、参考被覆工具14、15を製造した。
For comparison purposes, the coated tools 1 to 15 of the present invention are formed on the surfaces of the tool bases A to D with the formation conditions a to j shown in Tables 3 and 5 and the target layer thickness (μm) shown in Table 9. Similarly, comparative coating tools 1 to 13 were manufactured by vapor-depositing a hard coating layer including at least a composite nitride or composite carbonitride layer of Ti, Al, and Si.
In addition, similarly to this invention coated tools 6-13, about the comparative coated tools 6-13, the lower layer and / or upper layer which were shown in Table 6 and Table 8 on the formation conditions shown in Table 3 were formed.
For reference, (Ti 1-xy Al x Si y ) (C z N 1 ) of the reference example was applied to the surfaces of the tool base B and the tool base C by arc ion plating using a conventional physical vapor deposition apparatus. -Z ) Reference coated tools 14 and 15 shown in Table 8 were produced by vapor deposition of layers at the target layer thickness.
The arc ion plating conditions used for the vapor deposition in the reference example are as follows.
(A) The tool bases B and C are ultrasonically washed in acetone and dried, and the outer periphery is positioned at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. In addition, an Al-Ti-Si alloy having a predetermined composition is disposed as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 10 −2 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −1000 V. And a 200 A current is passed between the cathode electrode and the anode electrode made of an Al—Ti—Si alloy to generate arc discharge, and Al, Ti and Si ions are generated in the apparatus. Bombard cleaning the tool base surface,
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 kPa, and a DC bias voltage of −50 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is caused to flow between a cathode electrode (evaporation source) made of the Al—Ti—Si alloy and an anode electrode to generate an arc discharge, and the target composition shown in Table 8 is formed on the surface of the tool base, Reference coating tools 14 and 15 were manufactured by vapor-depositing (Ti, Al, Si) N layers having a target layer thickness.

また、本発明被覆工具1〜15、比較被覆工具1〜13および参考被覆工具14、15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。
また、複合窒化物または複合炭窒化物層の平均Al含有割合xおよび平均Si含有割合yについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合xおよびSiの平均Si含有割合yを求めた。平均C含有割合zについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合zはTiとAlとSiの複合窒化物または複合炭窒化物層についての深さ方向の平均値を求めた。その結果を、表7および表8に示した。
また、本発明被覆工具1〜15および比較被覆工具1〜13、参考被覆工具14、15について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ10μmの範囲に存在する複合窒化物または複合炭窒化物層を構成する粒状組織(Ti1−x―yAlSi)(C1−z)層中の個々の結晶粒の工具基体表面と平行な粒子幅を測定し測定範囲内に存在する粒子についての平均値を算出することで平均粒子幅Wを、工具基体表面に垂直な方向の粒子長さを測定し測定範囲内に存在する粒子についての平均値を算出することで平均粒子長さLを求めた。そして、W/Lから平均アスペクト比Aを算出した。平均粒子幅Wと平均アスペクト比Aを、表7および表8に示した。
また、電子線後方散乱回折装置を用いて、TiとAlとSiの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に対しては長さ100μm、工具基体と垂直方向に対してはTiとAlとSiの複合窒化物または複合炭窒化物層の層厚分に亘り硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで立方晶構造あるいは六方晶構造であるかを同定し、TiとAlとSiの複合炭窒化物層を構成する結晶粒の立方晶結晶相の占める面積割合を求めた。また、立方晶構造を有する結晶粒について該結晶粒の隣接する結晶粒同士の結晶方位関係から隣接する立方晶構造を有する結晶粒と双晶関係にある結晶粒の数をカウントし、立方晶構造を有する全結晶粒に占める割合を算出した。その結果を、同じく、表7および表8に示す。
さらに、透過型電子顕微鏡(倍率200000倍)を用いて、複合炭窒化物層の微小領域の観察を行い、電子線回折を行うことで、微小な結晶粒における隣り合う結晶粒同士の双晶関係の確認を行った。
Moreover, the cross section of the direction perpendicular | vertical to the tool base | substrate of each component layer of this invention coating tool 1-15, comparative coating tool 1-13, and reference coating tool 14 and 15 is used for a scanning electron microscope (5000-times multiplication factor). When the average layer thickness was determined by measuring and averaging the five layer thicknesses within the observation field of view, both showed substantially the same average layer thickness as the target layer thicknesses shown in Table 7 and Table 8. .
In addition, regarding the average Al content ratio x and the average Si content ratio y of the composite nitride or composite carbonitride layer, in a sample whose surface was polished using an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) Then, an electron beam was irradiated from the sample surface side, and an average Al content ratio x of Al and an average Si content ratio y of Si were obtained from an average of 10 points of the analysis result of the obtained characteristic X-rays. The average C content ratio z was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio z was determined as an average value in the depth direction for a composite nitride or composite carbonitride layer of Ti, Al, and Si. The results are shown in Tables 7 and 8.
Moreover, about this invention coated tool 1-15, comparative coated tool 1-13, and reference coated tool 14,15, using a scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction of a direction perpendicular | vertical to a tool base | substrate. The granular structure (Ti 1-xy Al x Si y ) (C z N 1-z ) constituting the composite nitride or composite carbonitride layer existing in the range of 10 μm in length in the horizontal direction with the tool base surface By measuring the particle width of each crystal grain in the layer parallel to the tool substrate surface and calculating the average value of the particles existing within the measurement range, the average particle width W is determined as the particle perpendicular to the tool substrate surface. The average particle length L was determined by measuring the length and calculating the average value for the particles present in the measurement range. Then, the average aspect ratio A was calculated from W / L. The average particle width W and the average aspect ratio A are shown in Table 7 and Table 8.
In addition, using an electron beam backscatter diffractometer, an electric field with a cross section in a direction perpendicular to the tool base of the hard coating layer composed of a composite nitride or composite carbonitride layer of Ti, Al, and Si is used as a polished surface. Crystal grains that are set in a barrel of an emission scanning electron microscope and are present in the measurement range of the cross-sectional polished surface with an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees and an irradiation current of 1 nA on the polished surface Irradiated individually, hard coating over the thickness of 100 μm length in the horizontal direction with the tool base and the thickness of the composite nitride or composite carbonitride layer of Ti, Al and Si in the vertical direction with the tool base An electron backscatter diffraction image is measured at an interval of 0.01 μm / step for the layer, and the crystal structure of each crystal grain is analyzed to identify whether it is a cubic structure or a hexagonal structure. And composite carbonitride layer of Si The area ratio occupied by the cubic crystal phase of the crystal grains to be obtained was determined. In addition, for the crystal grains having a cubic structure, the number of crystal grains having a twinning relationship with the crystal grains having an adjacent cubic structure is counted from the crystal orientation relationship between the adjacent crystal grains of the crystal grains, and the cubic structure The ratio to the total crystal grains having The results are also shown in Table 7 and Table 8.
Furthermore, by using a transmission electron microscope (magnification 200,000 times), the minute region of the composite carbonitride layer is observed, and electron beam diffraction is performed. Was confirmed.

つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較被覆工具1〜13および参考被覆工具14,15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。   Next, the coated tools 1-15, comparative coated tools 1-13, and reference coated tools of the present invention are clamped at the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig. 14 and 15 were subjected to a dry high-speed face milling and center-cut cutting test, which is a kind of high-speed interrupted cutting of alloy steel, and the flank wear width of the cutting edge was measured.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験: 乾式高速正面フライス、センターカット切削加工、
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度: 917min−1
切削速度: 360m/min、
切り込み: 1.2mm、
一刃送り量: 0.15mm/刃、
切削時間: 8分、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: Dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 917 min −1 ,
Cutting speed: 360 m / min,
Cutting depth: 1.2mm,
Single blade feed amount: 0.15 mm / tooth,
Cutting time: 8 minutes,

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. The powder was blended into the blending composition shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and then press-molded into a compact of a predetermined shape at a pressure of 98 MPa. The powder is sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Thus, tool bases α to γ made of WC-base cemented carbide having an insert shape of ISO standard CNMG120212 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 In addition, as raw material powders, all of TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder were prepared, and these raw material powders were blended into the blending composition shown in Table 11, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.09 mm. A tool base δ made of TiCN-based cermet having an insert shape of standard / CNMG12041 was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、
表4に示される形成条件A〜J、すなわち、反応ガス組成(容量%)を、TiCl:3.0〜4.0%、Al(CH:0〜2.0%、AlCl:3.0〜5.0%、SiCl:1.5〜2.0%、NH:3.0〜6.0%、N:0〜5.0%、C:0〜1.0%、Ar:1.0〜4.0%、H:残として、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、表7に示される平均粒子幅Wおよび平均アスペクト比Aの粒状組織の(Ti1−x―yAlSi)(C1−z)層を成膜することにより、表13に示される平均粒子幅Wおよび平均アスペクト比Aの粒状組織の(Ti1−x―yAlSi)(C1−z)層を成膜することによって、表13に示される目標層厚を有する立方晶結晶と六方晶結晶とが存在する粒状組織の(Ti1−x―yAlSi)(C1−z)層からなる硬質被覆層を形成することにより本発明被覆工具16〜30を製造した。
この時、NHの添加量を制御することにより、立方晶結晶相の割合を制御した。また、NHおよびNの反応ガス組成を変調させ、NHの反応活性を変化させることにより立方晶結晶粒の界面に双晶が形成されることを促し、双晶が存在する割合を向上させた。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表12および表13に示されるような下部層および/または上部層を形成した。
Next, a normal chemical vapor deposition apparatus is used on the surface of these tool bases α to γ and tool base δ,
The formation conditions A to J shown in Table 4, that is, the reaction gas composition (volume%), TiCl 4 : 3.0 to 4.0%, Al (CH 3 ) 3 : 0 to 2.0%, AlCl 3 : 3.0~5.0%, SiCl 4: 1.5~2.0 %, NH 3: 3.0~6.0%, N 2: 0~5.0%, C 2 H 4: 0 ~1.0%, Ar: 1.0~4.0%, H 2: as residue, reaction atmosphere pressure: 2~5KPa, temperature of reaction atmosphere: as 700 to 900 ° C., a predetermined time to perform a thermal CVD method By forming a (Ti 1-xy Al x Si y ) (C z N 1-z ) layer having a granular structure with an average particle width W and an average aspect ratio A shown in Table 7, the average particle width shown in W and an average aspect ratio a of the grain structure of (Ti 1-x-y Al x Si y) (C z N By forming the -z) layer, having a target layer thickness shown in Table 13 cubic crystals and hexagonal crystals and the granular tissue present (Ti 1-x-y Al x Si y) (C z This invention coated tool 16-30 was manufactured by forming the hard coating layer which consists of a N1 -z ) layer.
At this time, the proportion of the cubic crystal phase was controlled by controlling the amount of NH 3 added. In addition, by modulating the reaction gas composition of NH 3 and N 2 and changing the reaction activity of NH 3 , it promotes the formation of twins at the interface of cubic crystal grains and improves the ratio of twins I let you.
In addition, about this invention coated tools 19-28, the lower layer and / or upper layer as shown in Table 12 and Table 13 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表5に示される形成条件a〜jかつ表14に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表14に示される比較被覆工具16〜28を製造した。
なお、本発明被覆工具19〜28と同様に、比較被覆工具19〜28については、表3に示される形成条件で、表12および表14に示されるような下部層および/または上部層を形成した。
参考のため、工具基体βおよび工具基体γの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−x―yAlSi)(C1−z)層を目標層厚で蒸着形成することにより、表14に示される参考被覆工具29,30を製造した。
Further, for the purpose of comparison, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases α to γ and the tool base δ, and the formation conditions a to j shown in Table 5 and the target layer thicknesses shown in Table 14 are used. Comparative coating tools 16 to 28 shown in Table 14 were manufactured by vapor-depositing a hard coating layer in the same manner as the inventive coating tool.
As with the coated tools 19 to 28 of the present invention, the comparative coated tools 19 to 28 are formed with the lower layer and / or the upper layer as shown in Table 12 and Table 14 under the formation conditions shown in Table 3. did.
For reference, (Ti 1-xy Al x Si y ) (C z N 1 ) of the reference example is applied to the surfaces of the tool base β and the tool base γ by arc ion plating using a conventional physical vapor deposition apparatus. -Z ) Reference coating tools 29, 30 shown in Table 14 were produced by vapor deposition of layers at the target layer thickness.

なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。   In addition, the conditions similar to the conditions shown in Example 1 were used for the conditions of arc ion plating.

また、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29,30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表13および表14に示される目標層厚と実質的に同じ平均層厚を示した。
また、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29、30の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合x、平均Si含有割合y、平均C含有割合z、粒状組織(Ti1−x―yAlSi)(C1−z)層を構成する結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。その結果を、表13および表14に示す。
Moreover, the cross section of each component layer of this invention coating tool 16-30, comparative coating tool 16-28, and reference coating tool 29,30 is measured using a scanning electron microscope (5000-times multiplication factor), and 5 in an observation visual field. When the layer thicknesses of the points were measured and averaged to determine the average layer thickness, both showed the average layer thickness substantially the same as the target layer thickness shown in Table 13 and Table 14.
Moreover, about the hard coating layer of this invention coated tool 16-30, comparative coated tool 16-28, and reference coated tool 29,30, using the method similar to the method shown in Example 1, average Al content rate x, Average Si content ratio y, average C content ratio z, granular structure (Ti 1-xy Al x Si y ) (C z N 1-z ) average grain width W of grains constituting the layer, average aspect ratio A The area ratio of the cubic crystal phase in the crystal grains was determined. The results are shown in Table 13 and Table 14.

本発明被覆工具16〜30の硬質被覆層を構成するTiとAlとSiの複合炭窒化物層について、走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて複数視野に亘って観察したところ、図1に示した膜構成模式図に示されるように立方晶結晶と六方晶結晶が存在する粒状組織の(Ti1−x―yAlSi)(C1−z)層が確認された。また、立方晶構造を有する結晶粒のうち50%以上の結晶粒が隣接する立方晶構造を有する結晶粒と双晶関係にあることが、透過型電子顕微鏡による倍率200000倍、加速電圧200.0kVによる観察により確認された。
その結果を同じく、表13および表14に示す。
The composite carbonitride layer of Ti, Al, and Si constituting the hard coating layer of the present coated tool 16 to 30 is observed over a plurality of fields using a scanning electron microscope (magnification 5000 times and 20000 times). As shown in the schematic diagram of the film structure shown in FIG. 1, the (Ti 1-xy Al x Si y ) (C z N 1-z ) layer having a granular structure in which cubic crystals and hexagonal crystals exist is formed. confirmed. Further, it is confirmed that 50% or more of the crystal grains having a cubic structure are in a twinning relationship with the adjacent crystal grains having a cubic structure, that the magnification is 200,000 times and the acceleration voltage is 200.0 kV by a transmission electron microscope. Was confirmed by observation.
The results are also shown in Table 13 and Table 14.

また、前記硬質被覆層について、電子線後方散乱回折装置を用いて個々の結晶粒の結晶構造を、TiとAlとSiの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、立方晶結晶格子の電子線後方散乱回折像が観察される立方晶結晶相と六方晶結晶格子の電子線後方散乱回折像が観察される六方晶結晶相との混合組織からなり、かつ、電子線後方散乱回折像が観察された立方晶結晶相と六方晶結晶相との合計に占める立方晶結晶相の面積割合は50〜90面積%であることが確認された。   For the hard coating layer, when the crystal structure of each crystal grain is analyzed from the longitudinal section direction of the composite nitride or composite carbonitride layer of Ti, Al, and Si using an electron beam backscatter diffractometer, It consists of a mixed structure of a cubic crystal phase in which an electron beam backscatter diffraction image of a cubic crystal lattice is observed and a hexagonal crystal phase in which an electron beam backscatter diffraction image of a hexagonal crystal lattice is observed, and an electron beam It was confirmed that the area ratio of the cubic crystal phase to the total of the cubic crystal phase and the hexagonal crystal phase in which the backscatter diffraction image was observed was 50 to 90 area%.

つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29,30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件2:
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:370m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、200m/min)、
切削条件3:
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:1.0mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、250m/min)、
表15に、前記切削試験の結果を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 16 to 30, comparative coated tools 16 to 28, and reference coated tools 29, About 30, the dry high speed intermittent cutting test of the carbon steel and the wet high speed intermittent cutting test of cast iron which were shown below were implemented, and all measured the flank wear width of the cutting edge.
Cutting condition 2:
Work material: JIS · SCM435 lengthwise equally spaced four round grooved round bars,
Cutting speed: 370 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 200 m / min),
Cutting condition 3:
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 360 m / min,
Cutting depth: 1.0 mm,
Feed: 0.2mm / rev,
Cutting time: 5 minutes
(Normal cutting speed is 250 m / min),
Table 15 shows the results of the cutting test.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表16に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations CNGA120412 tool substrate b having the insert shape, were manufactured, respectively b.

つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される形成条件A〜Jで、少なくとも(Ti1−x―yAlSi)(C1−z)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される本発明被覆工具31〜40を製造した。
この時、NHの添加量を制御することにより、立方晶結晶相の割合を制御した。また、NH及びNの反応ガス組成を変調させ、NHの反応活性を変化させることにより立方晶結晶粒の界面に双晶が形成されることを促し、双晶が存在する割合を向上させた。
なお、本発明被覆工具34〜38については、表3に示される形成条件で、表17および表18に示されるような下部層および/または上部層を形成した。
Next, these tool substrate b, the surface of the filtration, using conventional chemical vapor deposition apparatus, in the same manner as in Example 1 at formation conditions A~J shown in Table 3 and Table 4, at least (Ti 1- by vapor deposited at a target layer thickness of the hard coating layer containing an x-y Al x Si y) (C z N 1-z) layer was prepared present invention coated tool 31-40 shown in Table 18.
At this time, the proportion of the cubic crystal phase was controlled by controlling the amount of NH 3 added. In addition, by modulating the reaction gas composition of NH 3 and N 2 and changing the reaction activity of NH 3 , it promotes the formation of twins at the interface of cubic crystal grains and improves the ratio of twins I let you.
In addition, about this invention coated tools 34-38, the lower layer and / or upper layer as shown in Table 17 and Table 18 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表3および表5に示される形成条件a〜hで、少なくとも(Ti1−x―yAlSi)(C1−z)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表19に示される比較被覆工具31〜38を製造した。
なお、本発明被覆工具34〜38と同様に、比較被覆工具34〜38については、表3に示される形成条件で、表17および表19に示されるような下部層および/または上部層を形成した。
For comparison purposes, a conventional chemical vapor deposition apparatus is also used on the surfaces of the tool bases i and b, and at least (Ti 1-xy Al x) under the formation conditions a to h shown in Tables 3 and 5. Comparative coating tools 31 to 38 shown in Table 19 were manufactured by vapor-depositing a hard coating layer including a Si y ) (C z N 1-z ) layer at a target layer thickness.
As with the coated tools 34 to 38 of the present invention, the comparative coated tools 34 to 38 are formed with the lower layer and / or the upper layer as shown in Table 17 and Table 19 under the formation conditions shown in Table 3. did.

参考のため、工具基体イおよび工具基体ロの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、(Ti1−x―yAlSi)(C1−z)層を目標層厚で蒸着形成することにより、表19に示される参考被覆工具39,40を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表19に示される目標組成、目標層厚の(Al,Ti,Si)N層を蒸着形成し、参考被覆工具39,40を製造した。
For reference, (Ti 1-xy Al x Si y ) (C z N 1-z ) is applied to the surfaces of the tool substrate A and the tool substrate B by arc ion plating using a conventional physical vapor deposition apparatus. Reference coating tools 39 and 40 shown in Table 19 were produced by depositing layers with a target layer thickness.
The arc ion plating conditions are the same as those shown in Example 1, and the target composition and target layer thickness (Al, Ti, Si) shown in Table 19 are formed on the surface of the tool base. N layer was formed by vapor deposition, and reference coating tools 39 and 40 were manufactured.

また、本発明被覆工具31〜40、比較被覆工具31〜38および参考被覆工具39,40の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表18および表19に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, the cross section of each component layer of this invention coating tool 31-40, comparative coating tool 31-38, and reference coating tool 39,40 is measured using a scanning electron microscope (5000 times magnification), and 5 in an observation visual field. When the layer thicknesses of the points were measured and averaged to obtain the average layer thickness, both showed the average layer thickness substantially the same as the target layer thickness shown in Table 18 and Table 19.

また、本発明被覆工具31〜40、比較被覆工具31〜38および参考被覆工具39,40の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合x、平均Si含有割合y,平均C含有割合z、粒状組織(Ti1−x―yAlSi)(C1−z)層を構成する結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。その結果を、表18および表19に示す。 Moreover, about the hard coating layer of this invention coated tool 31-40, comparative coated tool 31-38, and reference coated tool 39,40, using the method similar to the method shown in Example 1, average Al content rate x, Average Si content ratio y, average C content ratio z, granular structure (Ti 1-xy Al x Si y ) (C z N 1-z ) average grain width W of grains constituting the layer, average aspect ratio A The area ratio of the cubic crystal phase in the crystal grains was determined. The results are shown in Table 18 and Table 19.

つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜40、比較被覆工具31〜38および参考被覆工具39,40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
工具基体: 立方晶窒化ホウ素基超高圧焼結体、
切削試験: 浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材: JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 230m/min、
切り込み: 0.12mm、
送り: 0.12mm/rev、
切削時間: 4分、
表20に、前記切削試験の結果を示す。
Next, the present coated tools 31 to 40, the comparative coated tools 31 to 38, and the reference coated tools 39 and 40 in a state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. The dry high-speed intermittent cutting test of carburized and quenched alloy steel shown below was performed, and the flank wear width of the cutting edge was measured.
Tool substrate: Cubic boron nitride based ultra-high pressure sintered body,
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC60) lengthwise equidistant 4 round bars with longitudinal grooves,
Cutting speed: 230 m / min,
Cutting depth: 0.12mm,
Feed: 0.12mm / rev,
Cutting time: 4 minutes
Table 20 shows the results of the cutting test.

表9、15および表20に示される結果から、本発明被覆工具1〜40は、硬質被覆層を構成するAlとTiとSiの複合窒化物または複合炭窒化物層内の立方晶結晶において、界面に双晶が存在することで、結晶粒に歪みが生じ、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。   From the results shown in Tables 9 and 15 and Table 20, the present invention coated tools 1 to 40 are Al, Ti and Si composite nitride or composite carbonitride crystal constituting the hard coating layer, Due to the presence of twins at the interface, the crystal grains are distorted, the hardness is improved, and the toughness is improved while maintaining high wear resistance. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.

これに対して、硬質被覆層を構成するAlとTiとSiの複合窒化物または複合炭窒化物層内の立方晶結晶において、界面に双晶が存在していない比較被覆工具1〜13、16〜28,31〜38および参考被覆工具14、15、29、30、39、40については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, in the cubic crystal in the composite nitride or composite carbonitride layer of Al, Ti and Si constituting the hard coating layer, comparative coating tools 1 to 13, 16 having no twins at the interface -28, 31-38 and reference coated tools 14, 15, 29, 30, 39, 40 are used for high-speed intermittent cutting with high heat generation and intermittent and impact high loads acting on the cutting edge. It is clear that the life is shortened in a short time due to occurrence of chipping, chipping or the like.

前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlとSiの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−x―yAlSi)(C1−z)で表した場合、AlのTiとAlとSiの合量に占める含有割合x、SiのTiとAlとSiの合量に占める含有割合yおよびCのCとNの合量に占める含有割合z(但し、x、y、zはいずれも原子比)が、それぞれ、0.55≦x≦0.95、0.005≦y≦0.10、0≦z≦0.005、x+y≦0.955を満足し、
前記複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものと六方晶構造を有するものが混在し、工具基体と垂直な面における立方晶結晶相の占める面積割合は50〜90面積%であり、立方晶構造を有する結晶粒の平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下であり、前記立方晶構造を有する結晶粒のうち50%以上の結晶粒が隣接する立方晶構造を有する結晶粒と双晶関係にあることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti, Al, and Si having an average layer thickness of 1 to 20 μm formed by chemical vapor deposition, and has a composition formula: (Ti 1-xy Al x Si y ) (C z N 1-z ), the content ratio x in the total amount of Ti, Al, and Si in Al, the content ratio y in the total amount of Si, Ti, Al, and Si, and The content ratio z (wherein x, y, and z are atomic ratios) of the total amount of C and C in C are 0.55 ≦ x ≦ 0.95 and 0.005 ≦ y ≦ 0.10, respectively. , 0 ≦ z ≦ 0.005, x + y ≦ 0.955,
The crystal grains constituting the composite nitride or composite carbonitride layer include those having a cubic structure and those having a hexagonal structure, and the area ratio of the cubic crystal phase in the plane perpendicular to the tool substrate is 50 to 90 area%, the crystal grains having a cubic structure have an average grain width W of 0.05 to 1.0 μm, an average aspect ratio A of 5 or less, and 50 of the grains having the cubic structure. A surface-coated cutting tool characterized in that at least% of the crystal grains have a twinning relationship with adjacent crystal grains having a cubic structure.
前記工具基体と前記TiとAlとSiの複合窒化物または複合炭窒化物層の間に少なくともTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1に記載の表面被覆切削工具。   At least Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti, Al, and Si 2. The surface-coated cutting tool according to claim 1, wherein there is a lower layer comprising a Ti compound layer composed of one layer or two or more layers and having a total average layer thickness of 0.1 to 20 μm. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1または2に記載の表面被覆切削工具。   3. The surface-coated cutting according to claim 1, wherein an upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or the composite carbonitride layer. 4. tool. 前記複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具の製造方法Said composite carbonitride layer is at least, the manufacturing method of the surface-coated cutting tool according to any one of claims 1 to 3, characterized in that formed by chemical vapor deposition containing trimethyl aluminum as a reaction gas component.
JP2013203962A 2013-09-30 2013-09-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP6171800B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013203962A JP6171800B2 (en) 2013-09-30 2013-09-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN201410507909.6A CN104511731A (en) 2013-09-30 2014-09-28 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013203962A JP6171800B2 (en) 2013-09-30 2013-09-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2015066646A JP2015066646A (en) 2015-04-13
JP6171800B2 true JP6171800B2 (en) 2017-08-02

Family

ID=52787917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013203962A Active JP6171800B2 (en) 2013-09-30 2013-09-30 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (2)

Country Link
JP (1) JP6171800B2 (en)
CN (1) CN104511731A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037255B1 (en) * 2016-04-08 2016-12-07 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP6044861B1 (en) * 2016-04-08 2016-12-14 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
CN113166933A (en) 2018-09-28 2021-07-23 康宁股份有限公司 Low temperature method for depositing inorganic particles on a metal substrate and articles produced therefrom

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152055B2 (en) * 2000-03-23 2008-09-17 三菱マテリアル株式会社 Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation
JP4281262B2 (en) * 2001-06-11 2009-06-17 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide with high viscosity and excellent surface lubricity against cutting chips in high-speed cutting of difficult-to-cut materials where cutting chips easily adhere to the cutting edge surface
JP2006082207A (en) * 2004-09-17 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
DE602006002859D1 (en) * 2005-11-18 2008-11-06 Mitsubishi Materials Corp Hard material coated cermet cutting tool with modified alpha-Al2O3 layer
JP5187571B2 (en) * 2008-06-20 2013-04-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5483110B2 (en) * 2010-09-30 2014-05-07 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5907406B2 (en) * 2011-11-30 2016-04-26 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5838769B2 (en) * 2011-12-01 2016-01-06 三菱マテリアル株式会社 Surface coated cutting tool
JP5831707B2 (en) * 2012-03-14 2015-12-09 三菱マテリアル株式会社 Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting

Also Published As

Publication number Publication date
CN104511731A (en) 2015-04-15
JP2015066646A (en) 2015-04-13

Similar Documents

Publication Publication Date Title
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6090063B2 (en) Surface coated cutting tool
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548071B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP2014024130A (en) Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2013248675A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016083766A (en) Surface-coated cutting tool
JP2013223894A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high speed milling cutting and high speed intermittent cutting
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6171638B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2016107397A (en) Surface coated cutting tool
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2017047526A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170619

R150 Certificate of patent or registration of utility model

Ref document number: 6171800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150