JP4152055B2 - Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation - Google Patents

Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation Download PDF

Info

Publication number
JP4152055B2
JP4152055B2 JP2000082315A JP2000082315A JP4152055B2 JP 4152055 B2 JP4152055 B2 JP 4152055B2 JP 2000082315 A JP2000082315 A JP 2000082315A JP 2000082315 A JP2000082315 A JP 2000082315A JP 4152055 B2 JP4152055 B2 JP 4152055B2
Authority
JP
Japan
Prior art keywords
layer
hard coating
chip
average
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000082315A
Other languages
Japanese (ja)
Other versions
JP2001269801A (en
Inventor
高歳 大鹿
惠滋 中村
稔晃 植田
頼人 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2000082315A priority Critical patent/JP4152055B2/en
Publication of JP2001269801A publication Critical patent/JP2001269801A/en
Application granted granted Critical
Publication of JP4152055B2 publication Critical patent/JP4152055B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に材質的に粘性が高いために、高い切削抵抗を示すステンレス鋼や軟鋼などの難削材を高速切削した場合に発生する高熱に対して、硬質被覆層がすぐれた耐熱塑性変形性を発揮し、これによって偏摩耗が著しく抑制されることから、すぐれた切削性能を長期に亘って発揮するようになる表面被覆超硬合金製チップ形状切削工具(以下、被覆超硬工具という)に関するものである。
【0002】
【従来の技術】
従来、一般に、炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたチップ形状工具基体(以下、単に工具基体と云う)の表面に、硬質被覆層を5〜30μmの平均層厚で化学蒸着してなる被覆超硬工具が知られている。
【0003】
また、上記硬質被覆層を、
(a)いずれも粒状結晶組織を有する、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層からなるTi炭・窒・酸化物層のうちの1層または2層以上、
(b)同じく粒状結晶組織を有する酸化アルミニウム(以下、Al23で示す)層、
(c)縦長成長結晶組織を有するTiの炭窒化物(以下、l−TiCNで示す)層、
以上(a)、(b)、および(c)で構成すると共に、その層厚を、上記TiC・N・O層は相対的に薄く、一方上記Al23層およびl−TiCN層は相対的に厚膜化した状態で適用されている被覆超硬工具も知られており、これが各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも良く知られるところである。
【0004】
さらに、上記の従来被覆超硬工具の硬質被覆層を構成するAl23層として、α型結晶構造をもつものやκ型結晶構造をもつものなどが広く実用に供され、また、同じく硬質被覆層を構成する上記のl−TiCN層は、例えば特開平6−8010号公報や特開平7−328808号公報などに記載される通り、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成され、層自身すぐれた靭性を具備することも知られている。
【0005】
【発明が解決しようとする課題】
一方、近年の切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを鋼や鋳鉄などの通常の条件での切削加工に用いた場合には問題はないが、これを特に材質的に粘性が高く、高い切削抵抗を示すステンレス鋼や軟鋼などの難削材の高速切削に用いると、この切削では著しい高熱の発生を伴なうために、硬質被覆層のうち、厚膜化しても耐熱性のすぐれたAl23層には問題はないが、特に同じく厚膜化の傾向にある一方で、耐熱性の劣るl−TiCN層に熱塑性変形が発生し易くなり、これが原因で切刃面に偏摩耗が発生し、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に高熱発生を伴なうステンレス鋼や軟鋼などの難削材の高速切削加工に用いた場合にも、切刃面に偏摩耗の発生がない被覆超硬工具を開発すべく、特に被覆超硬工具の硬質被覆層のうちのl−TiCN層に着目し、これの耐熱塑性変形性の向上を目的として研究を行った結果、
(1)上記の従来被覆超硬工具の硬質被覆層の構成層であるl−TiCN層を、通常の化学蒸着装置にて形成するに際して、反応ガス中に塩化ボロンを配合した条件、例えば具体的には、
反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
BCl3:0.03〜1%、
CH3CN:0.05〜1%、
Ar:5〜50%、
必要に応じてN2:30%以下、
2:残り、
とし、かつ、
反応雰囲気温度:700〜950℃、
反応雰囲気圧力:4〜70kPa、
の条件で層形成を行うと、上記l−TiCN層にB(硼素)成分が含有してなるTiの硼炭窒化物層が形成されること。
【0007】
(2)上記(1)で得られたTiの硼炭窒化物層は、上記l−TiCN層と同じく縦長成長結晶組織を保持するので、すぐれた靭性を有するが、これを、
組成式:TiBxCyNz 、
で表わした場合(但し、Bは硼素、Cは炭素、Nは窒素をそれぞれ示す)、上記の層形成条件を調整して、厚さ方向中央部をオージェ分光分析装置で測定して、いずれもTiに対する原子比で、
x:0.03〜0.13、
y:0.56〜0.62、
z:0.25〜0.40(但し、x+y+z=1)、
を満足する組成をもつものとすると、この結果の縦長成長結晶組織を有するTiの硼炭窒化物(以下、l−TiBCNで示す)層は、耐熱性が著しく向上し、平均層厚で4〜13μ m に厚膜化した状態で、すぐれた耐熱塑性変形性を具備するようになること。
【0008】
(3)上記の4〜13μmの平均層厚を有するl−TiBCN層を、平均層厚を2〜11μmとした上記のAl23層と共に硬質被覆層として適用し、かつ、前記硬質被覆層を、
(a)工具基体と上記l−TiBCN層との間に、いずれも平均層厚を0.2〜3.5μ mとした上記のTiC層、TiN層、およびTiCN層のうちの1層または2層(以下、これらを総称してTiC/TiN/TiCN層で示す)、
(b)上記l−TiBCN層と上記Al23層との間に、平均層厚を0.2〜1μmとした上記のTiCO層およびTiCNO層のうちのいずれか(以下、TiCO/TiCNO層で示す)、
(c)上記Al23層の表面に、平均層厚を0.2〜0.8μmとした上記のTiN層、
を配した層構成をもつものとすると共に、その平均層厚を8.1〜28.1μmとした被覆超硬工具を、ステンレス鋼や軟鋼などの難削材の高熱発生を伴なう高速切削加工に、上記の通り前記l−TiBCN層を厚膜化した状態で用いても、前記l−TiBCN層自体が上記の通りすぐれた耐熱塑性変形性を有し、かつ同じく硬質被覆層を構成するAl23層も耐熱塑性変形性にすぐれ、一方これ以外のTiC/TiN/TiCN層およびTiCO/TiCNO層は、十分な耐熱塑性変形性を具備するものではないが、前記l−TiBCN層およびAl23層に比して層厚が相対的にきわめて薄いことから、硬質被覆層の熱塑性変形が著しく抑制されるようになり、この結果切刃面に偏摩耗の発生がなくなり、切刃面は正常摩耗を保持しながら、長期に亘ってすぐれた切削性能を発揮すること。
以上(1)〜(3)に示される研究結果が得られたのである。
【0009】
この発明は、上記の研究結果に基づいてなされたものであって、工具基体の表面に、4〜13μmの平均層厚を有する上記l−TiBCN層と、2〜11μmの平均層厚を有する上記Al23層を構成層とする硬質被覆層を8.1〜28.1μmの平均層厚で化学蒸着してなる被覆超硬工具にして、前記硬質被覆層を、
(a)上記工具基体と上記l−TiBCN層との間に、いずれも0.2〜3.5μ mの平均層厚を有するTiC/TiN/TiCN層、
(b)上記l−TiBCN層と上記Al23層との間に、いずれも0.2〜1μmの平均層厚を有するTiCO/TiCNO層、
(c)上記Al23層の表面に、0.2〜0.8μmの平均層厚を有するTiN層、
を配した層構成とし、かつ、上記l−TiBCN層が、
組成式:TiBxCyNz 、
で表わした場合(但し、Bは硼素、Cは炭素、Nは窒素をそれぞれ示す)、厚さ方向中央部をオージェ分光分析装置で測定して、いずれもTiに対する原子比で、
x:0.03〜0.13、
y:0.56〜0.62、
z:0.25〜0.40(但し、x+y+z=1)、
を満足する組成を有してなる、高熱発生を伴う難削材の高速切削で硬質被覆層がすぐれた耐熱塑性変形性を発揮する被覆超硬工具に特徴を有するものである。
【0010】
なお、この発明の被覆超硬工具において、硬質被覆層を構成するl−TiBCN層の硼素(B)の割合(x)を、Tiに対する原子比で0.03〜0.13としたのは、その割合が0.03未満では、特に平均層厚で4〜13μ m に厚膜化した場合に、Bによってもたらされる耐熱塑性変形性に確実な向上効果が得られない場合が生じ、一方その割合が同0.13を越えると、縦長成長結晶組織によってもたらされるすぐれた靭性に低下傾向が現れるようになるという理由によるものである。
また、上記l−TiBCN層を構成する炭素(C)には層の硬さを高め、もって耐摩耗性を向上させる作用があるが、その割合(y)が同じくTiに対する原子比で0.56未満では層に所望の硬さを確保することができない場合が生じ、一方同0.62を越えると、相対的に窒素(N)の割合が少なくなって層自体の靭性低下が避けられない場合があることから、その割合(y)を同じくTiに対する原子比で0.56〜0.62と定めた。
さらに、上記l−TiBCN層を構成する窒素(N)には、層のもつ縦長成長結晶組織と相俟って靭性向上に寄与する作用があるが、その割合(z)が同じくTiに対する原子比で0.25未満では層に十分な靭性向上効果が得られない場合が発生し、一方同0.40を越えると、相対的に炭素(C)の割合が少なくなって層自体の硬さに低下傾向が現れ、耐摩耗性が低下するようになることから、その割合(z)を同じくTiに対する原子比で0.25〜0.40と定めた。
なお、上記l−TiBCN層では、原子比でTiと、(B+C+N)を等量割合としているので、x+y+z=1となる。
また、さらに硬質被覆層の平均層厚を8.1〜28.1μmとしたのは、その層厚が8.1μm未満では厚膜化が不十分で、所望のすぐれた耐摩耗性を長期に亘って確保することができず、一方その層厚が28.1μmを越えると、切刃に欠けやチッピングが発生し易くなるという理由によるものである。
【0011】
【発明の実施の形態】
つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、1.5×108Paの圧力で圧粉体にプレス成形し、この圧粉体を真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.05のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−2,A−5,およびA−8を形成した。
【0012】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、9.8×107Paの圧力で圧粉体にプレス成形し、この圧粉体を1.3×103Paの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製の工具基体B−1,B−4,およびB−6を形成した。
【0013】
ついで、これらの工具基体A−2,A−5,およびA−8、さらにB−1,B−4,およびB−6の表面に、ホーニングを施した状態で、通常の化学蒸着装置を用い、表3、4に示される条件にて、同じく表3、4に示される目標組成のTiC/TiN層/TiCN層、TiCO/TiCNO層、およびAl23層、さらにl−TiBCN層またはl−TiCN層からなる硬質被覆層を表5、6に示される目標層厚および組み合わせで形成することにより、本発明被覆超硬工具1〜6および従来被覆超硬工具1〜6をそれぞれ製造した。
【0014】
この結果の本発明被覆超硬工具1〜6および従来被覆超硬工具1〜6のそれぞれの硬質被覆層の構成層について、その組成をオージェ分光分析装置を用いて測定したところ、目標組成と実質的に同じ組成を示し、またその厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
【0015】
つぎに、上記本発明被覆超硬工具1〜6および従来被覆超硬工具1〜6について、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SUS304の丸棒、
切削速度:250m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件でのステンレス鋼の乾式高速連続旋削加工試験、
被削材:JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件でのステンレス鋼の乾式高速断続旋削加工試験、
被削材:JIS・S15Cの丸棒、
切削速度:500m/min.、
切り込み:2mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件での軟鋼の乾式高速連続旋削加工試験、さらに、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:1mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での軟鋼の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃の最大逃げ面摩耗幅を測定した。この測定結果を表7に示した。
【0016】
【表1】

Figure 0004152055
【0017】
【表2】
Figure 0004152055
【0018】
【表3】
Figure 0004152055
【0019】
【表4】
Figure 0004152055
【0020】
【表5】
Figure 0004152055
【0021】
【表6】
Figure 0004152055
【0022】
【表7】
Figure 0004152055
【0023】
【発明の効果】
表5〜7に示される結果から、l−TiBCN層を硬質被覆層の構成層とする本発明被覆超硬工具1〜6は、いずれも前記l−TiBCN層を平均層厚で4〜13μ m に厚膜化したにもかかわらず、すぐれた耐熱塑性変形性を具備することから、ステンレス鋼や軟鋼の切削加工を高い発熱を伴う高速で行っても、硬質被覆層の塑性変形が抑制され、この結果切刃部の摩耗は正常摩耗となり、すぐれた耐摩耗性を長期に亘って発揮するのに対して、l−TiCN層を構成層とする従来被覆超硬工具1〜6は、いずれも前記l−TiCN層が切削時の高い発熱で塑性変形を起し、この結果切刃部に偏摩耗が発生し、これが摩耗進行を著しく促進することが明らかである。
上述のように、この発明の被覆超硬工具は、各種の鋼や鋳鉄などの通常の条件での切削加工は勿論のこと、特にステンレス鋼や軟鋼などの難削材の高速切削加工でもすぐれた切削性能を発揮し、汎用性のある切削性能を示すものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。[0001]
BACKGROUND OF THE INVENTION
This invention is particularly resistant to heat and plastic deformation due to its excellent hard coating layer against the high heat generated when cutting difficult-to-cut materials such as stainless steel and mild steel that exhibit high cutting resistance due to its high viscosity. Since the uneven wear is remarkably suppressed by this, a surface-coated cemented carbide chip-shaped cutting tool (hereinafter referred to as a coated carbide tool) that exhibits excellent cutting performance over a long period of time. It is about.
[0002]
[Prior art]
Conventionally, generally, a hard coating layer is chemically formed with an average layer thickness of 5 to 30 μm on the surface of a chip-shaped tool base (hereinafter simply referred to as a tool base) made of tungsten carbide base cemented carbide or titanium carbonitride base cermet. A coated carbide tool formed by vapor deposition is known.
[0003]
Also, the hard coating layer,
(A) All have a grain crystal structure, Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate ( Hereinafter, one or two or more layers of Ti charcoal / nitrogen / oxide layers composed of a layer represented by TiCO and a carbonitride (hereinafter represented by TiCNO) layer,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having a granular crystal structure,
(C) a Ti carbonitride (hereinafter referred to as 1-TiCN) layer having a vertically elongated crystal structure,
(A), (b), and (c), and the layer thickness of the TiC • N • O layer is relatively thin, while the Al 2 O 3 layer and l-TiCN layer are relatively Coated cemented carbide tools applied in a thick state are also known, and it is well known that this is used for continuous cutting and intermittent cutting of various steels and cast irons.
[0004]
Further, as the Al 2 O 3 layer constituting the hard coating layer of the above conventional coated carbide tool, those having an α-type crystal structure and those having a κ-type crystal structure are widely put into practical use and are also hard. The above-mentioned l-TiCN layer constituting the coating layer is, for example, organic carbonitriding as a reaction gas in a normal chemical vapor deposition apparatus as described in JP-A-6-8010 and JP-A-7-328808. It is also known that it is formed by chemical vapor deposition at a medium temperature range of 700 to 950 ° C. using a mixed gas containing an object, and the layer itself has excellent toughness.
[0005]
[Problems to be solved by the invention]
On the other hand, there are strong demands for labor saving and energy saving and cost reduction for cutting in recent years, and along with this, cutting tends to increase in speed. There is no problem when it is used for cutting under normal conditions such as steel and cast iron, but this is particularly suitable for high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel, which are highly viscous and have high cutting resistance. If used, this cutting involves the generation of extremely high heat, so there is no problem with the Al 2 O 3 layer, which has excellent heat resistance even if it is made thicker. However, the l-TiCN layer with poor heat resistance is likely to be thermoplastically deformed, and this causes uneven wear on the cutting edge surface, resulting in a service life in a relatively short time. Currently.
[0006]
[Means for Solving the Problems]
In view of the above, the present inventors, in view of the above, generate uneven wear on the cutting edge surface even when used for high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel, particularly with high heat generation. As a result of conducting research for the purpose of improving the heat-resistant plastic deformation property, focusing on the l-TiCN layer in the hard coating layer of the coated carbide tool, in particular, in order to develop a coated carbide tool having no coating,
(1) When forming the l-TiCN layer, which is a constituent layer of the hard coating layer of the above-mentioned conventional coated carbide tool, with a normal chemical vapor deposition apparatus, a condition in which boron chloride is blended in the reaction gas, for example, concrete In
Reactive gas composition in volume%
TiCl 4 : 0.2 to 10%,
BCl 3 : 0.03 to 1%
CH 3 CN: 0.05~1%,
Ar: 5 to 50%
N 2 : 30% or less as required
H 2 : Remaining
And
Reaction atmosphere temperature: 700 to 950 ° C.
Reaction atmosphere pressure: 4 to 70 kPa,
When the layer is formed under the above conditions, a Ti borocarbonitride layer containing a B (boron) component in the l-TiCN layer is formed.
[0007]
(2) The Ti borocarbonitride layer obtained in (1) above has a vertically elongated crystal structure similar to the l-TiCN layer, and thus has excellent toughness.
Composition formula: TiBxCyNz,
(Wherein B represents boron, C represents carbon, and N represents nitrogen), the above layer formation conditions were adjusted, and the central portion in the thickness direction was measured with an Auger spectrometer. Atomic ratio to Ti,
x: 0.03-0.13,
y: 0.56-0.62
z: 0.25 to 0.40 (where x + y + z = 1),
When the Ti borocarbonitride (hereinafter referred to as 1-TiBCN) layer having a vertically elongated crystal structure is obtained, the heat resistance is remarkably improved, and the average layer thickness is 4 to 4. while thickened to 13μ m, it will be provided with excellent heat plastic deformation resistance.
[0008]
(3) The 1-TiBCN layer having an average layer thickness of 4 to 13 μm is applied as a hard coating layer together with the Al 2 O 3 layer having an average layer thickness of 2 to 11 μm, and the hard coating layer The
Between (a) a tool body and the l-TiBCN layer, the above TiC layer in which the mean layer thickness and 0.2~3.5Myu m none, one layer of TiN layer, and TiCN layer or Layers (hereinafter collectively referred to as TiC / TiN / TiCN layers),
(B) Any of the above-mentioned TiCO layer and TiCNO layer having an average layer thickness of 0.2 to 1 μm (hereinafter referred to as a TiCO / TiCNO layer) between the l-TiBCN layer and the Al 2 O 3 layer. )
(C) On the surface of the Al 2 O 3 layer, the TiN layer having an average layer thickness of 0.2 to 0.8 μm,
High-speed cutting accompanied by high heat generation of hard-to-cut materials such as stainless steel and mild steel with coated carbide tools with an average layer thickness of 8.1 to 28.1 μm Even when the l-TiBCN layer is used in a thick state as described above for processing, the l-TiBCN layer itself has excellent heat plastic deformation as described above, and also constitutes a hard coating layer. The Al 2 O 3 layer is also excellent in heat plastic deformation, while the other TiC / TiN / TiCN layers and TiCO / TiCNO layers do not have sufficient heat plastic deformation, but the l-TiBCN layer and Since the layer thickness is relatively thin compared to the Al 2 O 3 layer, the thermoplastic deformation of the hard coating layer is remarkably suppressed, and as a result, the occurrence of uneven wear on the cutting edge surface is eliminated. The surface does not maintain normal wear Et al, to exert excellent cutting performance over a long period of time.
The research results shown in (1) to (3) above were obtained.
[0009]
The present invention has been made based on the above research results, and the above-mentioned l-TiBCN layer having an average layer thickness of 4 to 13 μm and the average layer thickness of 2 to 11 μm on the surface of the tool base. A hard coating layer formed by chemical vapor deposition of an Al 2 O 3 layer as a constituent layer with an average layer thickness of 8.1 to 28.1 μm is used.
(A) between the tool substrate and the l-TiBCN layer, TiC / TiN / TiCN layer having an average layer thickness of both 0.2~3.5μ m,
(B) A TiCO / TiCNO layer having an average layer thickness of 0.2 to 1 μm between the l-TiBCN layer and the Al 2 O 3 layer,
(C) a TiN layer having an average layer thickness of 0.2 to 0.8 μm on the surface of the Al 2 O 3 layer;
And the l-TiBCN layer is
Composition formula: TiBxCyNz,
(Wherein B represents boron, C represents carbon, and N represents nitrogen), the central portion in the thickness direction was measured with an Auger spectroscopic analyzer.
x: 0.03-0.13,
y: 0.56-0.62
z: 0.25 to 0.40 (where x + y + z = 1),
It is characterized by a coated cemented carbide tool exhibiting heat-resistant plastic deformation with an excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation.
[0010]
In the coated carbide tool of the present invention, the ratio (x) of boron (B) in the l-TiBCN layer constituting the hard coating layer was set to 0.03 to 0.13 in terms of atomic ratio to Ti. in the ratio is less than 0.03, particularly when thick film into 4~13Myu m in average thickness, occurs if no heat plastic deformation reliable improvement in properties is obtained caused by B, whereas the ratio This is because, if the value exceeds 0.13, a tendency to decrease in the excellent toughness brought about by the vertically grown crystal structure appears.
Further, carbon (C) constituting the l-TiBCN layer has an effect of increasing the hardness of the layer and thereby improving the wear resistance, but the ratio (y) is also 0.56 in terms of atomic ratio to Ti. If the ratio is less than 0.62, the desired hardness cannot be ensured in the layer. On the other hand, if it exceeds 0.62, the toughness of the layer itself is unavoidably reduced due to a relatively small proportion of nitrogen (N). Therefore, the ratio (y) was similarly determined to be 0.56 to 0.62 in terms of atomic ratio to Ti.
Further, nitrogen (N) constituting the l-TiBCN layer has an effect of contributing to improvement of toughness in combination with the vertically grown crystal structure of the layer, but the ratio (z) is also the atomic ratio with respect to Ti. If less than 0.25, the layer may not have a sufficient toughness improving effect. On the other hand, if it exceeds 0.40, the proportion of carbon (C) is relatively small and the hardness of the layer itself is reduced. Since a decreasing tendency appears and the wear resistance decreases, the ratio (z) was similarly set to 0.25 to 0.40 in terms of atomic ratio to Ti.
Note that in the l-TiBCN layer, the atomic ratio is equal to Ti and (B + C + N), so x + y + z = 1.
Further, the average layer thickness of the hard coating layer is set to 8.1 to 28.1 μm because if the layer thickness is less than 8.1 μm, the film thickness is insufficient and the desired excellent wear resistance is maintained for a long time. On the other hand, if the layer thickness exceeds 28.1 μm, the cutting edge is likely to be chipped or chipped.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, the coated carbide tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are shown in Table 1. After blending into the blended composition, wet mixing with a ball mill for 72 hours, drying, and press-molding into a green compact at a pressure of 1.5 × 10 8 Pa, the green compact is heated to 1400 ° C. at a temperature of 1400 ° C. Sintered under the condition of holding time, and after sintering, the cutting edge portion was subjected to honing processing of R: 0.05, and a tool base A-2 made of WC-based cemented carbide having a chip shape of ISO standard / CNMG120408 , A-5, and A-8 .
[0012]
In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, NbC powder, TaC powder, WC powder, Co having an average particle diameter of 0.5 to 2 μm. Powders and Ni powders are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed at a pressure of 9.8 × 10 7 Pa. The green compact was sintered in a nitrogen atmosphere of 1.3 × 10 3 Pa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion had R: 0.03 The tool bases B-1, B-4, and B-6 made of TiCN base cermet having the ISO standard / CNMG120212 chip shape were formed.
[0013]
Next, a normal chemical vapor deposition apparatus was used in a state where the surfaces of these tool bases A-2, A-5, and A-8 , and B-1, B-4, and B-6 were honed. Under the conditions shown in Tables 3 and 4, TiC / TiN layer / TiCN layer, TiCO / TiCNO layer , and Al 2 O 3 layer having the target composition also shown in Tables 3 and 4, and further 1-TiBCN layer or 1 -The present coated carbide tools 1-6 and the conventional coated carbide tools 1-6 were produced by forming a hard coating layer composed of a TiCN layer with the target layer thicknesses and combinations shown in Tables 5 and 6 , respectively.
[0014]
This result of the present invention coated cemented carbide tool 1-6 and the layers constituting the respective hard layer of the conventional coated cemented carbide tools 1 to 6, where the composition was measured using Auger spectroscopy apparatus, the target composition and substantially The same composition was shown and the thickness was measured by cross-section using a scanning electron microscope. As a result, all showed an average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.
[0015]
Next, for the above-described coated carbide tools 1 to 6 and the conventional coated carbide tools 1 to 6 , in a state where this is screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SUS304 round bar,
Cutting speed: 250 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Stainless steel dry-type high-speed continuous turning test,
Work material: JIS / SUS304 lengthwise equidistant four round grooved round bars,
Cutting speed: 200 m / min. ,
Cutting depth: 1mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
Stainless steel dry high-speed intermittent turning test,
Work material: JIS / S15C round bar,
Cutting speed: 500 m / min. ,
Cutting depth: 2mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed continuous turning test of mild steel under the conditions of
Work material: JIS-S15C lengthwise equal length 4 round grooved round bar,
Cutting speed: 250 m / min. ,
Cutting depth: 1mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
A dry high-speed intermittent turning test of mild steel was performed under the conditions described above, and the maximum flank wear width of the cutting edge was measured in any turning test. The measurement results are shown in Table 7.
[0016]
[Table 1]
Figure 0004152055
[0017]
[Table 2]
Figure 0004152055
[0018]
[Table 3]
Figure 0004152055
[0019]
[Table 4]
Figure 0004152055
[0020]
[Table 5]
Figure 0004152055
[0021]
[Table 6]
Figure 0004152055
[0022]
[Table 7]
Figure 0004152055
[0023]
【The invention's effect】
From the results shown in Table 5~7, l-TiBCN layer present invention coated cemented carbide 1 to 6, the layers constituting the hard layer of the, 4~13μ m both in average layer thickness of the l-TiBCN layer In spite of having increased film thickness, it has excellent heat-resistant plastic deformation, so even if cutting of stainless steel or mild steel is performed at high speed with high heat generation, plastic deformation of the hard coating layer is suppressed, As a result, the wear of the cutting edge portion becomes normal wear and exhibits excellent wear resistance over a long period of time, whereas the conventional coated carbide tools 1 to 6 having the l-TiCN layer as the constituent layers are all It is clear that the l-TiCN layer undergoes plastic deformation due to high heat generation during cutting, and as a result, uneven wear occurs at the cutting edge, which significantly accelerates the progress of wear.
As described above, the coated carbide tool of the present invention is excellent not only for cutting under normal conditions such as various steels and cast iron, but also for high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel. Since it exhibits cutting performance and exhibits versatile cutting performance, it can sufficiently satisfy the labor-saving and energy-saving of cutting, and further cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたチップ形状工具基体の表面に、縦長成長結晶組織および4〜13μmの平均層厚を有するTi硼炭窒化物層と、粒状結晶組織および2〜11μmの平均層厚を有する酸化アルミニウム層を構成層とする硬質被覆層を8.1〜28.1μmの平均層厚で化学蒸着してなる表面被覆超硬合金製チップ形状切削工具にして、前記硬質被覆層を、
(a)上記チップ形状工具基体と上記Ti硼炭窒化物層の間に、いずれも粒状結晶組織および0.2〜3.5μ mの平均層厚を有する、Tiの炭化物層、窒化物層、および炭窒化物層のうちの1層または2層、
(b)上記Ti硼炭窒化物層と上記酸化アルミニウム層との間に、いずれも粒状結晶組織および0.2〜1μmの平均層厚を有する、Tiの炭酸化物層および炭窒酸化物層のうちのいずれか、
(c)上記酸化アルミニウム層の表面に、同じく粒状結晶組織および0.2〜0.8μmの平均層厚を有する窒化チタン層、
を配した層構成とし、かつ、上記Ti硼炭窒化物層が、
組成式:TiBxCyNz 、
で表わした場合(但し、Bは硼素、Cは炭素、Nは窒素をそれぞれ示す)、厚さ方向中央部をオージェ分光分析装置で測定して、いずれもTiに対する原子比で、
x:0.03〜0.13、
y:0.56〜0.62、
z:0.25〜0.40(但し、x+y+z=1)、
を満足する組成を有すること、
を特徴とする、高熱発生を伴う難削材の高速切削で硬質被覆層がすぐれた耐熱塑性変形性を発揮する表面被覆超硬合金製チップ形状切削工具。
On the surface of a chip-shaped tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, a vertically grown crystal structure and a Ti boron carbonitride layer having an average layer thickness of 4 to 13 μm, a granular crystal structure, and A surface-coated cemented carbide chip-shaped cutting tool formed by chemical vapor deposition of a hard coating layer comprising an aluminum oxide layer having an average layer thickness of 2 to 11 μm as a constituent layer with an average layer thickness of 8.1 to 28.1 μm. , The hard coating layer,
(A) between the chip-shaped tool substrate and the Ti boron carbon nitride layer, both having an average layer thickness of the granular crystal structure and 0.2~3.5Myu m, carbide layer of Ti, a nitride layer, And one or two of the carbonitride layers,
(B) Between the Ti borocarbonitride layer and the aluminum oxide layer, each of a Ti carbonate layer and a carbonitride oxide layer having a granular crystal structure and an average layer thickness of 0.2 to 1 μm. One of them,
(C) a titanium nitride layer having a granular crystal structure and an average layer thickness of 0.2 to 0.8 μm on the surface of the aluminum oxide layer;
And the Ti borocarbonitride layer is
Composition formula: TiBxCyNz,
(Wherein B represents boron, C represents carbon, and N represents nitrogen), the central portion in the thickness direction was measured with an Auger spectroscopic analyzer.
x: 0.03-0.13,
y: 0.56-0.62
z: 0.25 to 0.40 (where x + y + z = 1),
Having a composition satisfying
A chip-shaped cutting tool made of a surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation.
JP2000082315A 2000-03-23 2000-03-23 Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation Expired - Lifetime JP4152055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000082315A JP4152055B2 (en) 2000-03-23 2000-03-23 Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000082315A JP4152055B2 (en) 2000-03-23 2000-03-23 Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation

Publications (2)

Publication Number Publication Date
JP2001269801A JP2001269801A (en) 2001-10-02
JP4152055B2 true JP4152055B2 (en) 2008-09-17

Family

ID=18599141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000082315A Expired - Lifetime JP4152055B2 (en) 2000-03-23 2000-03-23 Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation

Country Status (1)

Country Link
JP (1) JP4152055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136969A1 (en) * 2016-02-11 2017-08-17 广东工业大学 Boron nitride composite coating, graded structure ultrafine hard alloy cutting tool with the composite coating, and method for manufacturing same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790543B2 (en) * 2001-11-07 2004-09-14 Hitachi Tool Engineering, Ltd. Hard layer-coated tool
KR20030052469A (en) * 2001-12-21 2003-06-27 한국야금 주식회사 Method to improve wear resistance and toughness of coated cutting tools
KR20030052468A (en) * 2001-12-21 2003-06-27 한국야금 주식회사 A thin layer for cutting tools and a coating materials used thereof
KR100457658B1 (en) * 2002-01-16 2004-11-17 한국야금 주식회사 Method to improve wear resistance and toughness of coated cutting tools
US7867633B2 (en) 2004-06-07 2011-01-11 Colorado School Of Mines Coatings for glass molding dies and forming tools
KR100600573B1 (en) 2004-06-30 2006-07-13 한국야금 주식회사 Coating materials for a cutting tool/an abrasion resistance tool
US8080324B2 (en) * 2007-12-03 2011-12-20 Kobe Steel, Ltd. Hard coating excellent in sliding property and method for forming same
AT13091U1 (en) * 2012-02-27 2013-06-15 Ceratizit Austria Gmbh Method for producing a hard material layer on a substrate, hard material layer and cutting tool
JP6171800B2 (en) * 2013-09-30 2017-08-02 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN104816141B (en) * 2014-01-31 2018-06-19 三菱综合材料株式会社 Surface-coated cutting tool
KR101696046B1 (en) * 2014-12-23 2017-01-13 주식회사 포스코 Coated steel sheet having excellent adhesion and method for manufacturing the same
CN105624618B (en) * 2016-02-11 2018-01-19 广东工业大学 TiAlSiZrN base composite coatings, the gradient ultra-fine cemented carbide cutter with the composite coating and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136969A1 (en) * 2016-02-11 2017-08-17 广东工业大学 Boron nitride composite coating, graded structure ultrafine hard alloy cutting tool with the composite coating, and method for manufacturing same

Also Published As

Publication number Publication date
JP2001269801A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP4432097B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials
JP4019246B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP4152055B2 (en) Chip-shaped cutting tool made of surface-coated cemented carbide with excellent heat-resistant plastic deformation with excellent hard coating layer in high-speed cutting of difficult-to-cut materials with high heat generation
JP3250134B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance
JP4019244B2 (en) Surface coated cemented carbide cutting tools with excellent chipping resistance
JP3972299B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high speed heavy cutting
JP4281262B2 (en) Cutting tool made of surface-coated cemented carbide with high viscosity and excellent surface lubricity against cutting chips in high-speed cutting of difficult-to-cut materials where cutting chips easily adhere to the cutting edge surface
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JP4330100B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4329969B2 (en) Surface-coated cutting tip whose hard coating layer exhibits excellent heat-resistant plastic deformation in high-speed cutting of difficult-to-cut materials
JP2004299023A (en) Surface coated cermet cutting tool having hard coated layer exhibiting superior heat and impact resistance
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP3170993B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent fracture resistance
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP4232333B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP3912494B2 (en) Slow-away tip made of surface-coated cemented carbide that exhibits excellent heat-resistant plastic deformation with a hard coating layer
JP3109272B2 (en) Surface coated titanium carbonitride based cermet cutting tool with excellent fracture and wear resistance
JP2001150206A (en) Surface-coated tungsten carbide group sintered allow- made cutting tool which displays excellent defect resistance in interrupted double cutting
JP4235904B2 (en) Surface-coated cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4240522B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JP2003145315A (en) Cutting tool of surface-coated cemented carbide with hard coat layer achieving high abrasion resistance in high speed cutting work
JP3994591B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JPH0657430A (en) Cutting tool made of surface coated titanium carbon nitride base cermet excellent in chipping resistance
JP2001038505A (en) Surface coated cemented carbide cutting tool with superior chipping resistance
JP3397054B2 (en) Surface-coated cemented carbide cutting tool with excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Ref document number: 4152055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

EXPY Cancellation because of completion of term