JP7325720B2 - surface coated cutting tools - Google Patents

surface coated cutting tools Download PDF

Info

Publication number
JP7325720B2
JP7325720B2 JP2020016660A JP2020016660A JP7325720B2 JP 7325720 B2 JP7325720 B2 JP 7325720B2 JP 2020016660 A JP2020016660 A JP 2020016660A JP 2020016660 A JP2020016660 A JP 2020016660A JP 7325720 B2 JP7325720 B2 JP 7325720B2
Authority
JP
Japan
Prior art keywords
region
layer
grain
avg
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020016660A
Other languages
Japanese (ja)
Other versions
JP2021122876A (en
Inventor
卓也 石垣
大樹 中村
光亮 柳澤
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020016660A priority Critical patent/JP7325720B2/en
Publication of JP2021122876A publication Critical patent/JP2021122876A/en
Application granted granted Critical
Publication of JP7325720B2 publication Critical patent/JP7325720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に、鋳鉄等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性や耐熱亀裂性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 In particular, the present invention provides a surface coating that exhibits excellent cutting performance over long-term use, even in high-speed interrupted cutting of cast iron, etc., because the hard coating layer has excellent chipping resistance and thermal crack resistance. It relates to a tool (hereinafter sometimes referred to as a coated tool).

従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、硬質被覆層として、Ti-Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi-Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削加工等の厳しい切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, there is a coated tool in which a Ti—Al-based composite carbonitride layer is formed by vapor deposition as a hard coating layer on the surface of a tool substrate such as a tungsten carbide (hereinafter referred to as WC)-based cemented carbide. These are known to exhibit excellent wear resistance.
However, although the conventional coated tool coated with the Ti—Al-based composite carbonitride layer has relatively excellent wear resistance, it may cause abnormalities such as chipping when used under severe cutting conditions such as high-speed interrupted cutting. Various proposals have been made to improve the hard coating layer because it is prone to wear.

例えば、特許文献1には、(Tix,Aly)N(ただし、x及びyはそれぞれ原子比でx=0.005~0.1、及びy=0.995~0.9である)で表される組成を有するfcc構造の高Al含有TiAlNと、(Tix,Aly)N(ただし、x及びyはそれぞれ原子比でx=0.5~0.9、及びy=0.5~0.1である)で表される組成を有するfcc構造の網目状高Ti含有TiAlNとを有するとともに、前記高Al含有TiAlNが前記網目状高Ti含有TiAlNに囲まれていることを特徴とする窒化チタンアルミニウム硬質皮膜を有する被覆工具が記載されている。 For example, Patent Document 1 describes (Tix 1 , Aly 1 )N (where x 1 and y 1 are x 1 =0.005 to 0.1 and y 1 =0.995 to 0.995 to 0.1 in terms of atomic ratios, respectively). 9) and (Tix 2 , Aly 2 )N (where x 2 and y 2 are each atomic ratio x 2 =0.5 to 0.5). 9 and y 2 = 0.5 to 0.1), and the high Al-content TiAlN is the network-like high Ti content TiAlN A coated tool is described having a titanium aluminum nitride hard coating characterized by being surrounded by a.

また、例えば、特許文献2には、基材(工具基体)と、その表面に形成された被膜とを含む表面被覆切削工具であって、前記被膜は、1または2以上の層を含み、前記層のうち少なくとも1層は、硬質粒子を含むAlリッチ層であり、前記硬質粒子は、塩化ナトリウム型の結晶構造を有し、かつ複数の塊状の第1単位相と、前記第1単位相間に介在する第2単位相とを含み、前記第1単位相は、AlTi1-xの窒化物または炭窒化物からなり、前記第1単位相のAlの原子比xは、0.7以上0.96以下であり、前記第2単位相は、AlTi1-yの窒化物または炭窒化物からなり、前記第2単位相のAlの原子比yは、0.5を超え0.7未満であり、前記Alリッチ層は、X線回折法を用いて前記被膜の表面の法線方向から解析したとき、(200)面において最大ピークを示す、被覆工具が記載されている。 Further, for example, Patent Document 2 discloses a surface-coated cutting tool including a substrate (tool substrate) and a coating formed on the surface thereof, wherein the coating includes one or two or more layers, At least one of the layers is an Al-rich layer containing hard particles, the hard particles having a sodium chloride-type crystal structure, and a plurality of massive first unit phases and between the first unit phases The first unit phase is composed of a nitride or carbonitride of Al x Ti 1-x , and the atomic ratio x of Al in the first unit phase is 0.7 or more. is 0.96 or less, the second unit phase is composed of a nitride or carbonitride of Al y Ti 1-y , and the atomic ratio y of Al in the second unit phase is more than 0.5 and 0.5. 7, and the Al-rich layer exhibits a maximum peak in the (200) plane when analyzed from the normal direction of the surface of the coating using X-ray diffraction.

さらに、例えば、特許文献3には、被膜は、塩化ナトリウム型の結晶構造を有する結晶粒を含む第1硬質被膜層を含み、前記結晶粒は、AlTi1-xの窒化物または炭窒化物からなる第1層と、AlTi1-yの窒化物または炭窒化物からなる第2層とが交互に1層以上積層された積層構造を有し、前記第1層のAlの原子比xは、それぞれ0.76以上1未満の範囲で変動し、前記第2層のAlの原子比yは、それぞれ0.45以上0.76未満の範囲で変動し、前記原子比xと前記原子比yとは、その差の最大値が0.05≦x-y≦0.5となり、隣り合う前記第1層と前記第2層との厚みの合計は、3~30nmであり、前記結晶粒は、前記基材の表面の法線方向に平行な断面において電子線後方散乱回折装置を用いて前記結晶粒の結晶方位をそれぞれ解析することにより、前記結晶粒の結晶面である(200)面に対する法線と前記基材の表面に対する法線との交差角を測定し、前記交差角が0~45度となる前記結晶粒を0度から5度単位で区分けして9つのグループを構築し、各グループに含まれる前記結晶粒の面積の和である度数をそれぞれ算出したとき、前記交差角が0~20度となる前記結晶粒が含まれる4つのグループの前記度数の合計が、全グループの前記度数の合計の50%以上100%以下となり、前記表面被覆切削工具は、前記交差角が10~20度となる前記結晶粒が含まれる2つのグループの前記度数の合計が、前記全グループの前記度数の合計の30%以上100%以下となる、被覆工具が記載されている。 Furthermore, for example, in Patent Document 3, the coating includes a first hard coating layer containing crystal grains having a sodium chloride type crystal structure, and the crystal grains are nitrides or carbonitrides of Al x Ti 1-x and a second layer made of a nitride or carbonitride of Al y Ti 1-y are alternately laminated one or more layers, and the atoms of Al in the first layer The ratio x varies in the range of 0.76 or more and less than 1, the atomic ratio y of Al in the second layer varies in the range of 0.45 or more and less than 0.76, and the atomic ratio x and the The atomic ratio y is such that the maximum value of the difference is 0.05≦xy≦0.5, the total thickness of the adjacent first layer and the second layer is 3 to 30 nm, and the The crystal grains are the crystal planes of the crystal grains (200 ) The intersection angle between the normal to the surface and the normal to the surface of the base material is measured, and the crystal grains having the intersection angle of 0 to 45 degrees are divided in units of 0 degrees to 5 degrees and divided into 9 groups. When constructing and calculating the frequency that is the sum of the areas of the crystal grains contained in each group, the sum of the frequencies of the four groups containing the crystal grains having the intersection angle of 0 to 20 degrees is 50% or more and 100% or less of the total frequency of all groups, and the surface-coated cutting tool is such that the total frequency of the two groups containing the crystal grains having the intersection angle of 10 to 20 degrees is the above A coated tool is described that is 30% or more and 100% or less of the sum of said powers of all groups.

国際公開2017/090540号WO2017/090540 国際公開2018/158974号WO2018/158974 特許第6037255号公報Japanese Patent No. 6037255

近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐熱亀裂性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められているが、前記各公報に記載の被覆工具は、鋳鉄等の高速断続切削においてチッピングが発生しやすく、これらの要求には十分とはいえないものであった。 In recent years, there is a strong demand for labor saving and energy saving in cutting. Abnormal damage resistance such as thermal crack resistance is required, and excellent wear resistance over long-term use is required. However, it was not sufficient to meet these demands.

そこで、本発明はこのような状況をかんがみてなされたもので、鋳鉄等の高速断続切削加工等に供した場合であっても、長期の使用にわたって優れた耐チッピング性を有し、耐熱亀裂性が向上した被覆工具を提供することを目的とする。 Therefore, the present invention has been made in view of such circumstances, and even when subjected to high-speed interrupted cutting of cast iron, etc., it has excellent chipping resistance over long-term use and is resistant to thermal cracking. An object of the present invention is to provide a coated tool with improved

本発明者は、TiとAlの複合窒化物層または複合炭窒化物層(以下、これらを総称して、「TiAlCN層」ということがある)を硬質被覆層として含む被覆工具の耐チッピング性、耐熱亀裂性の向上をはかるべく、鋭意検討を重ねた。 The present inventors have found that the chipping resistance of a coated tool containing a composite nitride layer or composite carbonitride layer of Ti and Al (hereinafter collectively referred to as "TiAlCN layer") as a hard coating layer, In order to improve the resistance to thermal cracking, we conducted extensive studies.

その結果、TiAlCN層内のNaCl型の面心立方構造を有する結晶粒であって、その粒内に低いAl含有割合となっている領域が特定の箇所にある割合で存在するものが特定の分布をするときに、TiAlCN層の靭性が向上して、耐チッピング性や耐熱亀裂性が改善され、鋳鉄等の高速断続切削を行っても被覆工具が高寿命となるという新規な知見を得た。 As a result, crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer, in which a region with a low Al content in the grain exists at a specific location at a certain ratio, has a specific distribution The new knowledge was obtained that the toughness of the TiAlCN layer is improved, the chipping resistance and thermal crack resistance are improved, and the coated tool has a long life even when performing high-speed intermittent cutting of cast iron, etc.

本発明は、前記知見に基づくものであって、次のとおりのものである。
「(1)工具基体と該工具基体の表面に硬質被覆層を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、TiとAlとの複合窒化物層または複合炭窒化物層を含み、
(b)前記TiとAlとの複合窒化物層または複合炭窒化物層は、その組成を、
組成式:(Ti1-xAl)(C1-y)で表した場合、
AlとTiの合量に占めるAlの含有割合xの平均値xavgと、CとNの合量に占めるCの含有割合yの平均値yavgが、それぞれ、0.65≦xavg≦0.95、0.000≦yavg≦0.050(但し、これらx、y、xavg、yavgは原子比)を満足し、かつ、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%以上であり、
(c)前記結晶粒の粒内に前記Alの含有割合xが高い高Al領域と前記xが低い低Al領域とを有する2領域結晶粒が存在し、
(d)前記2領域結晶粒は、その周囲が前記高Al領域のみに囲まれた前記低Al含有領域、および、その周囲が前記高Al領域と一つの結晶粒を画定する結晶粒界に囲まれた低Al領域が、該粒内のすべての前記低Al領域に対して70面積%以上である特異2領域結晶を含み、
(e)前記特異2領域結晶粒は、それぞれ、前記高Al領域における前記xの平均値x、前記低Al領域における前記xの平均値xとするとき(但し、これらx、xは原子比)、0.05≦x-x≦0.60を満足し、
(f)前記TiとAlとの複合窒化物層または複合炭窒化物層をその層厚方向に二等分した該層の表面側には、前記特異2領域結晶粒を10~40面積%含む、
ことを特徴とする表面被覆切削工具。
(2)前記特異2領域結晶粒において、前記高Al領域の幅の最大値と最小値との差が50~300nmであることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記特異2領域結晶粒において、前記高Al領域の幅の平均値が30nm以上であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記TiとAlとの複合窒化物層または複合炭窒化物層において、前記NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.1~3.0μm、平均アスペクト比Aが2.0~10.0であることを特徴とする前記(1)~(3)のいずれかに記載の表面被覆切削工具。」
The present invention is based on the above findings, and is as follows.
"(1) A surface-coated cutting tool having a tool substrate and a hard coating layer on the surface of the tool substrate,
(a) the hard coating layer includes a composite nitride layer or a composite carbonitride layer of Ti and Al,
(b) The composite nitride layer or composite carbonitride layer of Ti and Al has a composition of
When represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ),
The average value x avg of the content ratio x of Al in the total amount of Al and Ti and the average value y avg of the content ratio y of C in the total amount of C and N are 0.65≦x avg ≦0, respectively. .95, 0.000≦y avg ≦0.050 (where x, y, x avg and y avg are atomic ratios) and the area occupied by crystal grains having a NaCl-type face-centered cubic structure The ratio is 70 area% or more,
(c) a two-region crystal grain having a high Al region with a high Al content x and a low Al region with a low x in the crystal grain,
(d) The two-region crystal grain is surrounded by the low Al-containing region surrounded only by the high Al region, and surrounded by the high Al region and a grain boundary defining one crystal grain. The low Al region contained in the grain contains a unique two-region crystal that is 70 area% or more of all the low Al regions in the grain,
(e) When the peculiar two-region crystal grains have the average value x h of x in the high Al region and the average value x l of x in the low Al region (however, these x h , x l atomic ratio), satisfying 0.05≦x h −x l ≦0.60,
(f) 10 to 40 area % of the peculiar two-domain crystal grains are included on the surface side of the layer obtained by bisected the composite nitride layer or composite carbonitride layer of Ti and Al in the layer thickness direction. ,
A surface-coated cutting tool characterized by:
(2) The surface-coated cutting tool according to (1), wherein the difference between the maximum and minimum widths of the high Al regions in the peculiar two-region crystal grains is 50 to 300 nm.
(3) The surface-coated cutting tool according to (1) or (2), characterized in that, in the peculiar two-region crystal grains, the average width of the high Al region is 30 nm or more.
(4) In the composite nitride layer or composite carbonitride layer of Ti and Al, the crystal grains having the NaCl-type face-centered cubic structure have an average grain width W of 0.1 to 3.0 μm and an average aspect The surface-coated cutting tool according to any one of (1) to (3), wherein the ratio A is 2.0 to 10.0. ”

本発明の表面被覆切削工具は、硬質被覆層の硬さと靱性が向上し、耐チッピング性や耐熱亀裂性が改善され、鋳鉄等の高速断続切削においても優れた工具寿命を示す。 The surface-coated cutting tool of the present invention has improved hardness and toughness of the hard coating layer, improved chipping resistance and thermal crack resistance, and exhibits excellent tool life even in high-speed interrupted cutting of cast iron and the like.

:粒内に高Al領域と低Al領域を有する特異2領域結晶粒の一例を示す模式図である。: A schematic diagram showing an example of a peculiar two-domain crystal grain having a high Al region and a low Al region in the grain.

本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において数値範囲を「A~B」で表現するとき、その範囲は上限(B)および下限(A)の数値を含んでいる。また、上限(B)および下限(A)の単位は同じである。 The present invention is described in detail below. In addition, when a numerical range is expressed as "A to B" in the present specification and claims, the range includes the upper limit (B) and the lower limit (A). Also, the units of the upper limit (B) and the lower limit (A) are the same.

TiAlCN層の平均層厚:
本発明のTiAlCN層は、硬質被覆層を構成する。このTiAlCN層の平均層厚は1.0~25.0μmが好ましい。平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が25.0μmを超えると、TiAlCN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。平均層厚は、3.0~15.0μmがより好ましい。
Average layer thickness of TiAlCN layer:
The TiAlCN layer of the present invention constitutes the hard coating layer. The average layer thickness of this TiAlCN layer is preferably 1.0 to 25.0 μm. If the average layer thickness is less than 1.0 μm, the layer thickness is too thin to ensure sufficient wear resistance over a long period of use. The grains tend to coarsen, and chipping tends to occur. More preferably, the average layer thickness is 3.0 to 15.0 μm.

ここで、TiAlCN層の平均層厚は、例えば、TiAlCN層を任意の位置の縦断面(工具基体の表面に垂直な面)で切断して観察用の試料を作製し、その断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)により複数箇所(例えば、5箇所)を観察して、平均することにより得ることができる。 Here, the average layer thickness of the TiAlCN layer can be obtained by, for example, cutting the TiAlCN layer along a vertical cross section (a plane perpendicular to the surface of the tool substrate) at an arbitrary position to prepare a sample for observation, and measuring the cross section with a scanning electron microscope. It can be obtained by observing a plurality of locations (for example, 5 locations) with a microscope (SEM: Scanning Electron Microscope) and averaging them.

TiAlCN層の平均組成:
本発明におけるTiAlCN層の組成は、組成式:(Ti1-xAl)(C1-y)で表したとき、
TiとAlの合量に占めるAlの含有割合xの平均(以下、「Al含有割合の平均」という)xavgと、
C、Nとの合量に占めるCの含有割合yの平均(以下、「C含有割合の平均」という)yavgが、
それぞれ、0.65≦xavg≦0.95、0.00≦yavg≦0.050(ただし、xavg、yavgはいずれも原子比)を満足することが好ましい。
なお、(Ti1-xAl)と(C1-y)との比は特に限定されるものではないが、(Ti1-xAl)を1とする場合、(C1-y)の比は0.8~1.2とすることが好ましい。
Average composition of TiAlCN layer:
The composition of the TiAlCN layer in the present invention is represented by the composition formula: (Ti 1-x Al x )(C y N 1-y ),
the average of the content ratio x of Al in the total amount of Ti and Al (hereinafter referred to as “average of the Al content ratio”) x avg ;
The average content ratio y of C in the total amount of C and N (hereinafter referred to as “average of C content ratio”) y avg is
They preferably satisfy 0.65≦x avg ≦0.95 and 0.00≦y avg ≦0.050 (where x avg and y avg are both atomic ratios).
The ratio of (Ti 1-x Al x ) and (C y N 1-y ) is not particularly limited, but when (Ti 1-x Al x ) is 1, (C y N 1-y ) is preferably 0.8 to 1.2.

その理由は、以下のとおりである。
Al含有割合の平均xavgが0.65未満であると、TiAlCN層は硬さが低下するため、鋳鉄等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、0.95を超えると六方晶のTiAlCN結晶粒が析出し、耐摩耗性が低下する。したがって、0.65≦xavg≦0.95としたが、より好ましくは0.70≦xavg≦0.90である。
また、C含有割合の平均yavgを0.000≦yavg≦0.050が好ましい理由は、前記範囲において耐チッピング性を保ちつつ硬さを向上させることができるためである。
The reason is as follows.
When the average x avg of the Al content is less than 0.65, the TiAlCN layer has a reduced hardness, so when subjected to high-speed intermittent cutting of cast iron or the like, the wear resistance is not sufficient. If it exceeds 0.95, hexagonal TiAlCN crystal grains are precipitated and the wear resistance is lowered. Therefore, 0.65≦x avg ≦0.95, but more preferably 0.70≦x avg ≦0.90.
The reason why the average y avg of the C content is preferably 0.000≦y avg ≦0.050 is that the hardness can be improved while maintaining the chipping resistance within the above range.

TiAlCN層のAl含有割合の平均xavgは、オージェ電子分光法(AES:Auger Electron Spectroscopy)を用い、試料断面を研磨した試料において、電子線を縦断面(工具基体に垂直な断面)側から照射し、膜厚方向全長にわたって少なくとも5本の線分析を行って得られたオージェ電子の解析結果を平均したものである。 The average x avg of the Al content of the TiAlCN layer was obtained by using Auger Electron Spectroscopy (AES) and irradiating an electron beam from the longitudinal section (a section perpendicular to the tool substrate) of a sample whose cross section was polished. Then, the analysis results of Auger electrons obtained by performing at least five line analyzes over the entire length in the film thickness direction are averaged.

また、C含有割合の平均yavgは、二次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)により求める。すなわち、試料表面を研磨した試料において、TiAlCN層の表面側からイオンビームを70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の組成測定を行う。まず、TiAlCN層について層の深さ方向へ0.5μm以上侵入した箇所から0.1μm以下のピッチで少なくとも0.5μmの深さの測定を行ったデータの平均を求める。さらに、これを少なくとも試料表面の5箇所において繰返し算出した結果を平均してC含有割合の平均yavgとして求める。 Also, the average yavg of the C content ratio is determined by secondary ion mass spectrometry (SIMS). That is, in a sample having a polished sample surface, an ion beam is irradiated in a range of 70 μm×70 μm from the surface side of the TiAlCN layer, and surface analysis by the ion beam and etching by the sputtered ion beam are alternately repeated, thereby increasing the depth direction. Composition measurements are taken. First, the average of data obtained by measuring a depth of at least 0.5 μm at a pitch of 0.1 μm or less from a portion of the TiAlCN layer intruded by 0.5 μm or more in the depth direction of the layer is obtained. Furthermore, the average y avg of the C content ratio is obtained by averaging the results obtained by repeating this calculation at least at five locations on the sample surface.

TiAlCN層を構成する結晶粒がNaCl型面心立方構造である面積割合:
TiAlCN層を構成する結晶粒がNaCl型面心立方構造である面積割合は、縦断面において70面積%以上であることが好ましい。その理由は、70面積%以上であれば、より確実に本発明の目的が達成できるためである。なお、前記結晶粒のすべてがNaCl型面心立方構造であってもよい(100面積%であってもよい)。ここで、NaCl型面心立方構造を有する結晶粒の面積割合の算出対象は、TiAlCN層を構成する結晶粒であって、TiAlCN層における高Al領域と低Al領域を有する前記結晶粒に限定されない。
Area ratio of crystal grains constituting the TiAlCN layer having a NaCl-type face-centered cubic structure:
The area ratio of the crystal grains forming the TiAlCN layer having a NaCl-type face-centered cubic structure is preferably 70 area % or more in the longitudinal section. The reason for this is that the object of the present invention can be achieved more reliably if the area is 70 area % or more. All of the crystal grains may have a NaCl-type face-centered cubic structure (may be 100 area %). Here, the calculation target of the area ratio of the crystal grains having the NaCl-type face-centered cubic structure is the crystal grains constituting the TiAlCN layer, and is not limited to the crystal grains having a high Al region and a low Al region in the TiAlCN layer. .

TiAlCN層に含まれる高Al領域と低Al領域を有する2領域結晶粒と特異2領域結晶粒:
TiAlCN層は、その粒内にAlの含有割合の高い高Al領域と、低い低Al領域を有する2領域結晶粒を含む。ここで高Al含有領域のAl含有割合は、xavg+0.025以上であり、低Al領域のAl含有割合は、xavg-0.025以下である。そして、これら高Al領域と低Al領域との間には、これら領域のAl含有割合へ遷移するxavg±0.025未満の領域(以下、遷移領域という)が存在するが、以下の説明では、この遷移領域の存在を無視する。
この2領域結晶粒の中に、その周囲が前記高Al領域のみに囲まれた前記低Al含有領域、および、その周囲が前記高Al領域と前記一つの結晶粒を画定する結晶粒界に囲まれた低Al領域が、該粒内のすべての前記低Al領域に対して70面積%以上である特異2領域結晶が存在していると、TiAlCN層の靭性および耐摩耗性が向上する。
Bi-regional grains and singular bi-regional grains having a high Al region and a low Al region included in the TiAlCN layer:
The TiAlCN layer includes two-region grains having a high Al region with a high Al content and a low Al region with a low Al content within the grain. Here, the Al content ratio of the high Al content region is x avg +0.025 or more, and the Al content ratio of the low Al region is x avg −0.025 or less. Between the high Al region and the low Al region, there is a region of less than x avg ±0.025 (hereinafter referred to as a transition region) where the Al content ratio of these regions transitions. , ignore the existence of this transition region.
In the two-region crystal grain, the low Al-containing region surrounded only by the high Al region and the grain boundary defining the high Al region and the one crystal grain surround the low Al content region. The toughness and wear resistance of the TiAlCN layer are improved when there is a singular two-region crystal where the low Al region is 70 area % or more with respect to all the low Al regions in the grain.

Alの含有割合xの高Al領域と低Al領域における差:
前記特異2領域結晶粒において、高Al領域、低Al領域のAl含有割合xの面積加重平均値を、それぞれ、x、xとするとき(但し、x、xは原子比)、0.05≦x-x≦0.60を満足すると、TiAlCN層の靱性および耐摩耗が向上する。
Difference in Al content x between the high Al region and the low Al region:
When x h and x l are the area-weighted average values of the Al content ratio x in the high Al region and the low Al region in the specific two-region crystal grain, respectively (where x h and x l are atomic ratios ) , Satisfying 0.05≦x h −x l ≦0.60 improves the toughness and wear resistance of the TiAlCN layer.

TiAlCN層の縦断面における2領域結晶粒の面積割合:
2領域結晶粒は、縦断面において、20~100面積%含まれることが好ましい。この範囲であれば、TiAlCN層の靱性および耐摩耗性のバラつきが一定以下に抑えられる。
Area ratio of two-region crystal grains in longitudinal section of TiAlCN layer:
It is preferable that the two-region crystal grains are included at 20 to 100 area % in the longitudinal section. Within this range, variations in toughness and wear resistance of the TiAlCN layer can be suppressed to a certain level or less.

表面被覆切削工具のTiAlCN層表面側領域における特異2領域結晶粒の面積割合:
硬質被覆層を層厚方向(工具基体表面に垂直な方向)に二等分した表面被覆切削工具のTiAlCN層(硬質被覆層)表面側領域では、前記特異2領域結晶粒が10~40面積%含まれることが好ましい。面積割合がこの範囲にあると、前記結晶粒の量が適切となって、TiAlCN層の靱性および耐摩耗が向上する。
一方、工具基体側領域において、前記特異2領域結晶粒の面積割合を規定していない理由は、前記領域はTiAlCN層が成長し始めた領域を含むため、結晶粒径が工具表面側領域に比べて細かくなり、工具基体側領域での前記結晶粒の面積割合が、TiAlCN層の靱性および耐摩耗性に大きな影響を及ぼさないからである。
Area ratio of unique two-region crystal grains in the TiAlCN layer surface side region of the surface-coated cutting tool:
In the surface-side region of the TiAlCN layer (hard coating layer) of the surface-coated cutting tool obtained by halving the hard coating layer in the layer thickness direction (direction perpendicular to the tool substrate surface), the specific two-region crystal grains are 10 to 40 area%. preferably included. When the area ratio is within this range, the amount of the crystal grains is appropriate, and the toughness and wear resistance of the TiAlCN layer are improved.
On the other hand, in the tool base side region, the reason why the area ratio of the peculiar two-region crystal grains is not specified is that the region includes the region where the TiAlCN layer starts to grow, so the crystal grain size is larger than that of the tool surface side region. This is because the area ratio of the crystal grains in the tool substrate side region does not greatly affect the toughness and wear resistance of the TiAlCN layer.

結晶粒界の決定:
次のようにして、TiAlCN層を構成する結晶粒の結晶粒界を求め、高Al領域、低Al領域を、次のようにして鑑別する。すなわち、高分解能電子線後方散乱回折装置(EBSD:Electron Backscatter Diffraction)を用いて、工具基体の表面に平行な方向に幅10μm、縦は層厚(平均層厚)分の観察視野に対して結晶粒界を判定する。この観察視野面内を0.02μm間隔で解析し、観察視野面内のNaCl型の面心立方構造を有する測定点を求める。このNaCl型の面心立方構造を有する測定点の中で隣接する測定点(以下、ピクセルともいい、点と表記しているものの領域である)の間で5度以上の方位差がある場合、あるいは隣接するNaCl型の面心立方構造を有する測定点がない場合は、5度以上の方位差を検出した測定点、あるいはNaCl型の面心立方構造ではない測定点とNaCl型の面心立方構造を有する測定点同士の境界(測定領域同士の境界)を粒界と定義する。そして、粒界により囲まれた領域でNaCl型の面心立方構造を有する測定点を含むものを1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある、あるいは、隣接するNaCl型の面心立方構造を有する測定点がないような、単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。
Determination of grain boundaries:
The grain boundaries of the crystal grains forming the TiAlCN layer are determined as follows, and the high Al region and the low Al region are discriminated as follows. That is, using a high-resolution electron backscatter diffraction device (EBSD: Electron Backscatter Diffraction), a crystal with a width of 10 μm in a direction parallel to the surface of the tool substrate and a layer thickness (average layer thickness) in the vertical direction. Determine grain boundaries. The inside of this observation field plane is analyzed at intervals of 0.02 μm to obtain measurement points having a NaCl-type face-centered cubic structure within the observation field plane. If there is an orientation difference of 5 degrees or more between adjacent measurement points (hereinafter also referred to as pixels, which are regions of what is described as points) among the measurement points having this NaCl-type face-centered cubic structure, Alternatively, if there is no adjacent measurement point having a NaCl-type face-centered cubic structure, a measurement point that detected an orientation difference of 5 degrees or more, or a measurement point that does not have a NaCl-type face-centered cubic structure and a NaCl-type face-centered cubic structure A boundary between measurement points having a structure (a boundary between measurement regions) is defined as a grain boundary. One crystal grain is defined as a region surrounded by grain boundaries and including a measurement point having a NaCl-type face-centered cubic structure. However, a single pixel that has an orientation difference of 5 degrees or more from all adjacent pixels, or that has no measurement point with an adjacent NaCl-type face-centered cubic structure, is not regarded as a crystal grain, and is two pixels or more. are connected as crystal grains. In this manner, grain boundary determination is performed to specify crystal grains.

ここで、結晶粒界帯という結晶粒界の各位置の接線に対して垂直に50nmの長さ分、結晶粒の内部側へ幅を持つ領域を定義する。高Al領域や低Al領域が結晶粒界帯と接するか、または、重なっているとき、前記各領域は結晶粒界に接していると判定する。このようにする理由は、粒界を判定するEBSD分析と後述するAl含有量を測定するTEM-EDS分析では分析手法が異なるため、粒界周辺の測定データの重なりが一致しにくくなってしまうためである。 Here, a grain boundary zone is defined as a region having a width of 50 nm perpendicular to the tangent line at each position of the grain boundary and extending toward the inside of the grain. When the high Al region or the low Al region is in contact with or overlaps with the grain boundary zone, it is determined that each region is in contact with the grain boundary. The reason for this is that the EBSD analysis for determining grain boundaries and the TEM-EDS analysis for measuring Al content, which will be described later, use different analysis methods, so the overlap of measurement data around grain boundaries becomes difficult to match. is.

次に、結晶粒を特定したTiAlCN層(層厚方向断面)の縦断面に対して、SEM、TEM(Transmission Electron Microscope)を用いて観察を行う。図1は本発明のTiAlCN層の縦断面(層厚方向断面)におけるSEM像(反射電子像)の模式図の一例を示す(図1では、1つの結晶粒のみに高Al含有領域と低Al含有領域を示しており、他の結晶粒に前記両領域が存在していたとしてもその図示を省略している。また、遷移領域は黒色領域で表わした低Al領域に含ませている。)。 Next, a longitudinal section of the TiAlCN layer (layer thickness direction section) in which the crystal grains are specified is observed using a SEM and a TEM (Transmission Electron Microscope). FIG. 1 shows an example of a schematic diagram of a SEM image (backscattered electron image) in a vertical section (layer thickness direction section) of the TiAlCN layer of the present invention (in FIG. 1, only one crystal grain has a high Al content region and a low Al In addition, the transition region is included in the low Al region represented by the black region.) .

本発明のTiAlCN層を構成する結晶粒の一部には、図1に表されるような構成元素Alの含有割合の差(濃度差)が存在する2領域結晶粒が含まれる。観察範囲における結晶粒それぞれに対して、TEMを用いたエネルギー分散型X線分光法(Energy Dispersive X-ray Spectrometry:TEM-EDS分析)を行い、別途測定したTiAlCN層のAl含有割合の平均xavgをもとに、xavg+0.025以上の領域である高Al含有領域(図1では白領域)と、xavg-0.025以下である領域を低Al含有領域(図1では黒領域)の二つの領域に結晶粒内を分割する。このようにして、高Al含有領域と低Al含有領域を有する2領域結晶粒と、結晶粒内において、どの領域もAl濃度の平均値の±2.5%未満である、高Al含有領域と低Al含有領域を有しない結晶粒とを鑑別する。 Some of the crystal grains forming the TiAlCN layer of the present invention include two-region crystal grains in which there is a difference in content ratio (concentration difference) of the constituent element Al, as shown in FIG. Energy dispersive X-ray spectrometry (TEM-EDS analysis) using a TEM was performed on each crystal grain in the observation range, and the average of the Al content of the TiAlCN layer measured separately x avg Based on this, x avg +0.025 or more high Al content region (white region in FIG. 1) and x avg −0.025 or less low Al content region (black region in FIG. 1) divides the inside of the grain into two regions. In this way, a two-region crystal grain having a high Al content region and a low Al content region, and a high Al content region in which each region in the crystal grain is less than ± 2.5% of the average Al concentration Discriminate from crystal grains that do not have a low Al content region.

さらに、この2領域結晶粒に対して、その周囲が前記高Al領域のみに囲まれた前記低Al含有領域、および、その周囲が前記高Al領域と前記一つの結晶粒を画定する結晶粒界に対する結晶粒界帯に囲まれた低Al領域が、該粒内のすべての前記低Al領域に対して70面積%以上である特異2領域結晶を求める。 Furthermore, with respect to the two-region crystal grain, the low Al-containing region surrounded only by the high Al region, and the crystal grain boundary surrounding the high Al region and the one crystal grain A peculiar two-region crystal is sought in which the low Al region surrounded by the grain boundary zone for the grain is 70 area % or more of all the low Al regions in the grain.

特異2領域結晶粒における高Al領域の幅の最大値と最小値の差および平均値:
特異2領域結晶粒において、高Al領域の最大幅と最小幅の差が、50~300nmであることが好ましい。この範囲にあると、TiAlCN層の靱性および耐摩耗がより向上する。ここで、高Al領域の幅とは、工具基体表面に垂直な方向(膜厚方向)における前記高Al領域の長さをいう。
Difference and average value of maximum and minimum widths of high Al regions in singular two-domain grains:
In the peculiar two-domain crystal grain, the difference between the maximum width and the minimum width of the high Al region is preferably 50 to 300 nm. Within this range, the toughness and wear resistance of the TiAlCN layer are further improved. Here, the width of the high Al region means the length of the high Al region in the direction (film thickness direction) perpendicular to the surface of the tool substrate.

この長さの測定方法について説明する。前記図1に模式的に表されるような構成元素Alの濃度差が存在する本発明のTiAlCN層を構成する観察範囲内のすべての結晶粒に対して、TEM-EDSにより当該各結晶粒に対して工具基体表面に膜厚方向に対して線分析(測定間隔0.5nm以下)を異なる位置で5本行う。
次に、観察方向の位置とAlの含有割合xの増減の繰返しとの関係をグラフ化し、TiAlCN層のAl含有割合の平均xavg+0.025以上の領域の膜厚方向の長さを求める。この長さの最大値(最大幅)と最小値(最小幅)の差を算出する。さらに、前記長さの平均幅も算出する。
なお、グラフ化に当たり公知の測定ノイズ除去方法(例えば、移動平均法)を行うことはいうまでもない。
A method for measuring this length will be described. For all the crystal grains within the observation range constituting the TiAlCN layer of the present invention in which the concentration difference of the constituent element Al exists as schematically shown in FIG. On the other hand, line analysis (measurement intervals of 0.5 nm or less) is performed on the surface of the tool substrate in the film thickness direction at five different positions.
Next, the relationship between the position in the observation direction and the repetition of increase/decrease in the Al content x is graphed, and the length in the film thickness direction of the region above the average Al content x avg +0.025 of the TiAlCN layer is obtained. The difference between the maximum value (maximum width) and the minimum value (minimum width) of this length is calculated. In addition, the average width of said length is also calculated.
It goes without saying that a well-known measurement noise removal method (for example, a moving average method) is performed in graphing.

TiAlCN層の平均粒子幅Wと平均アスペクト比A:
本発明において、TiAlCN層は柱状結晶組織を有し、その組織における結晶粒の縦断面における平均粒子幅Wが0.1~3.0μm、平均アスペクト比Aが2.0~10.0であることがより好ましい。その理由は、平均粒子幅Wが0.1μmよりも小さい微粒結晶になると粒界の増加による耐塑性変形性の低下、耐酸化性の低下により異常損傷に至りやすくなることがあり、一方、平均粒子幅Wが3.0μmよりも大きくなると粗大に成長した粒子の存在により、靱性が低下しやすくなることがあるためである。また、平均アスペクト比Aが2.0よりも小さい粒状結晶になると切削時に硬質被覆層の表面に生じるせん断応力に対してその界面が破壊起点となりやすくなってしまいチッピングの原因となることがあり、また、平均アスペクト比Aが10.0を超えると、切削時に刃先に微小なチッピングが生じ、隣り合う柱状結晶組織に欠けが生じた場合に、硬質被覆層表面に生じるせん断応力に対しての抗力が小さくなりやすく、柱状結晶組織が破断することで一気に損傷が進行し、大きなチッピングを生じることがある。したがって、結晶粒の平均粒子幅Wが0.1~3.0μm、平均アスペクト比Aが2.0~10.0であることがより好ましい。
Average grain width W and average aspect ratio A of TiAlCN layer:
In the present invention, the TiAlCN layer has a columnar crystal structure, the average grain width W in the longitudinal section of the crystal grains in the structure is 0.1 to 3.0 μm, and the average aspect ratio A is 2.0 to 10.0. is more preferable. The reason for this is that fine grain crystals with an average grain width W of less than 0.1 μm may be prone to abnormal damage due to a decrease in plastic deformation resistance and oxidation resistance due to an increase in grain boundaries. This is because if the grain width W is greater than 3.0 μm, the presence of coarsely grown grains may tend to lower the toughness. In addition, if the average aspect ratio A is less than 2.0, the interface between the granular crystals becomes likely to become a fracture starting point against the shear stress generated on the surface of the hard coating layer during cutting, which may cause chipping. In addition, when the average aspect ratio A exceeds 10.0, fine chipping occurs on the cutting edge during cutting, and when adjacent columnar crystal structures are chipped, resistance to shear stress generated on the surface of the hard coating layer When the columnar crystal structure is fractured, the damage progresses at once, and large chipping may occur. Therefore, it is more preferable that the average grain width W of the crystal grains is 0.1 to 3.0 μm and the average aspect ratio A is 2.0 to 10.0.

次に、結晶粒の平均粒子幅Wと平均アスペクト比A、および柱状結晶組織を有するNaCl型の面心立方構造を有する結晶粒の面積割合の算出方法について説明する。まず、前述のとおりに、粒界の判定を行って結晶粒を特定する。次に、画像処理を行い、ある結晶粒iに対して工具基体と垂直方向(膜厚方向)の最大長さH、工具基体と水平方向の最大長さである粒子幅W、および面積Sを求める。結晶粒iのアスペクト比AはA=H/Wとして算出する。このようにして、観察視野内の少なくとも20以上(i=1~20以上)の結晶粒の粒子幅W~W(n≧20)を数1により面積加重平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記結晶粒のアスペクト比A~A(n≧20)を求め、数2により面積加重平均して、前記結晶粒の平均アスペクト比Aとする。 Next, a method for calculating the average grain width W and average aspect ratio A of the crystal grains, and the area ratio of the crystal grains having a NaCl-type face-centered cubic structure with a columnar crystal structure will be described. First, as described above, grain boundaries are determined to identify crystal grains. Next, image processing is performed, and for a certain crystal grain i, the maximum length H i in the direction perpendicular to the tool substrate (film thickness direction), the grain width W i that is the maximum length in the horizontal direction to the tool substrate, and the area Obtain S i . The aspect ratio A i of the crystal grain i is calculated as A i =H i /W i . In this way, the grain widths W 1 to W n (n ≥ 20) of at least 20 or more (i = 1 to 20 or more) crystal grains in the observation field are averaged by area weighted by Equation 1, and the average of the crystal grains Let W be the grain width. Similarly, the aspect ratios A 1 to A n (n≧20) of the crystal grains are obtained, and the average aspect ratio A of the crystal grains is obtained by area-weighted averaging according to Equation 2.

Figure 0007325720000001
Figure 0007325720000001

Figure 0007325720000002
Figure 0007325720000002

その他の層:
硬質被覆層として、本発明の前記TiAlCN層を含む硬質被覆層は、鋳鉄等の高速断続切削加工であっても十分な耐チッピング性、耐熱亀裂性を有するが、前記硬質被覆層とは別に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1~20.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム(化学量論的な化合物に限定されない)層を含む層が1.0~25.0μmの合計平均層厚で上部層として前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、より一層優れた耐チッピング性、および、耐熱亀裂性を発揮することができる。
Other layers:
As a hard coating layer, the hard coating layer containing the TiAlCN layer of the present invention has sufficient chipping resistance and thermal crack resistance even in high-speed interrupted cutting of cast iron or the like. Ti having a total average layer thickness of 0.1 to 20.0 μm consisting of one or more layers selected from a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride layer If a lower layer comprising a compound (not limited to stoichiometric compounds) layer is provided adjacent to the tool substrate and/or a layer comprising at least an aluminum oxide (not limited to stoichiometric compounds) layer. is provided on the TiAlCN layer as an upper layer with a total average layer thickness of 1.0 to 25.0 μm, combined with the effects of these layers, further excellent chipping resistance, And, heat crack resistance can be exhibited.

ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。 Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains of the lower layer tend to coarsen, causing chipping. easier to do. When the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited. , chipping is more likely to occur.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、またはcBN焼結体のいずれかであることが好ましい。
Tool substrate:
As the tool substrate, any conventionally known substrate for this type of tool substrate can be used as long as it does not interfere with the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, containing Co in addition to WC, and further containing carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), or cBN sintered body.

製造方法:
本発明のTiAlCN層は、例えば、工具基体もしくは当該工具基体上にある前記下部層であるTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも一層以上の上に、例えば、NHと、N、C、CHおよびHからなるガス群Aと、AlCl、TiCl、N、CHおよびHからなるガス群Bとからなる2種の反応ガスを2系統で供給し、この2種の反応ガスをCVD炉内で合流させることにより得ることができる。
Production method:
The TiAlCN layer of the present invention is, for example, at least one layer of a carbide layer, a nitride layer, a carbonitride layer, a carbonate layer and a carbonitride oxide layer of Ti, which is the tool substrate or the lower layer on the tool substrate. above, for example, gas group A consisting of NH3 , N2 , C2H4 , CH4 and H2 , and gas group B consisting of AlCl3 , TiCl4 , N2 , CH4 and H2, and can be obtained by supplying two types of reaction gases consisting of two systems and combining the two types of reaction gases in a CVD furnace.

前記2種の反応ガス組成を例示すると、以下のとおりである。なお、ガス組成はガス群Aとガス群Bの組成和を100容量%としたものである。
ガス群A:NH:1.0~3.0%、N:0.0~5.0%、
CH:0.0~6.0%、C:0.0~12.0%、H:20~40%
ガス群B:AlCl:0.50~1.00%、TiCl:0.10~0.30%、
:2.0~10.0%、CH:0.1~1.0%、
:残
反応雰囲気圧力:4.5~5.0kPa
反応雰囲気温度:650~850℃
ガス供給周期:1.0~5.0秒
1周期当たりのガス供給時間:0.15~0.25秒
ガス群Aとガス群Bの供給の位相差:0.10~0.20秒
Examples of the two kinds of reaction gas compositions are as follows. The gas composition is such that the composition sum of gas group A and gas group B is 100% by volume.
Gas group A: NH 3 : 1.0 to 3.0%, N 2 : 0.0 to 5.0%,
CH4 : 0.0-6.0%, C2H4 : 0.0-12.0%, H2 : 20-40%
Gas group B: AlCl 3 : 0.50 to 1.00%, TiCl 4 : 0.10 to 0.30%,
N 2 : 2.0 to 10.0%, CH 4 : 0.1 to 1.0%,
H 2 : Residual reaction atmosphere pressure: 4.5 to 5.0 kPa
Reaction atmosphere temperature: 650-850°C
Gas supply cycle: 1.0 to 5.0 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Supply phase difference between gas group A and gas group B: 0.10 to 0.20 seconds

次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前記に記載した他のものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, an insert cutting tool using a WC-based cemented carbide as a tool substrate will be described. The same applies to drills and end mills.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末、ZrC粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~C、および、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D~Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, ZrC powder, TiN powder and Co powder, all having an average particle size of 1 to 3 μm, were prepared. It was blended according to the formulation shown in Table 1, further wax was added, ball mill mixed in acetone for 24 hours, and dried under reduced pressure. Vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within the range of 1370 to 1470° C. for 1 hour, and after sintering, a tool substrate made of WC-based cemented carbide having an insert shape of ISO standard SEEN1203AFSN. Tool substrates A to C and tool substrates D to F made of WC-based cemented carbide with insert geometry of ISO standard CNMG120412 were produced respectively.

次に、これら工具基体A~Fの表面に、CVD装置を用いて、表2に示す成膜条件によりTiAlCN層を形成し、表5に示される本発明被覆工具1~16を得た。ここで、下部層および/または上部層を設けた本発明被覆工具は表3に示す成膜条件により表4に示す層を設けたものである。なお、表5におけるxavg、yavg、x、x等は、前述方法により測定したものである。 Next, a TiAlCN layer was formed on the surfaces of these tool substrates A to F using a CVD apparatus under the film forming conditions shown in Table 2, and the coated tools 1 to 16 of the present invention shown in Table 5 were obtained. Here, the coated tool of the present invention provided with the lower layer and/or the upper layer was provided with the layers shown in Table 4 under the film forming conditions shown in Table 3. Note that x avg , y avg , x h , x l , etc. in Table 5 are measured by the method described above.

また、比較のために、これら工具基体A~Fの表面に、CVD装置を用いて、表2に示す成膜条件によりTiAlCN層を形成し、表6に示される比較被覆工具1~16を得た。ここで、下部層および/または上部層を設けた本発明被覆工具は表3に示す成膜条件により表4に示す層を設けたものである。 For comparison, a TiAlCN layer was formed on the surfaces of these tool substrates A to F using a CVD apparatus under the film forming conditions shown in Table 2, and comparative coated tools 1 to 16 shown in Table 6 were obtained. Ta. Here, the coated tool of the present invention provided with the lower layer and/or the upper layer was provided with the layers shown in Table 4 under the film forming conditions shown in Table 3.

Figure 0007325720000003
Figure 0007325720000003

Figure 0007325720000004
Figure 0007325720000004

Figure 0007325720000005
Figure 0007325720000005

Figure 0007325720000006
Figure 0007325720000006

Figure 0007325720000007
Figure 0007325720000007

続いて、前記本発明被覆工具1~8および比較被覆工具1~8について、前記各種の工具基体A~C(ISO規格SEEN1203AFSN形状)をいずれもカッタ径125mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、鋳鉄湿式高速正面フライス、センターカット切削試験1を実施し、切刃の逃げ面摩耗幅を測定した。表6に、切削試験1の結果を示す。なお、比較被覆工具1~8については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 Subsequently, for the coated tools 1 to 8 of the present invention and the comparative coated tools 1 to 8, the various tool substrates A to C (ISO standard SEEN 1203 AFSN shape) were all fixed to the tip of the alloy steel cutter with a cutter diameter of 125 mm. In a state of being clamped with a tool, a wet high-speed face milling, center cut cutting test 1 shown below was performed to measure the flank wear width of the cutting edge. Table 6 shows the results of cutting test 1. As for the comparative coated tools 1 to 8, the life was reached before the end of the cutting time due to the occurrence of chipping, so the time until the life is reached is shown.

切削試験1:湿式高速正面フライス、センターカット切削試験
カッタ径:125mm
被削材:JIS・FCD700 幅100mm、長さ400mmのブロック材
回転速度:764min-1
切削速度:300m/min
切り込み:2.0mm
送り:0.2mm/刃
切削時間:8分
(通常の切削速度は、200m/min)
Cutting test 1: Wet high-speed face milling, center cut cutting test Cutter diameter: 125 mm
Work material: JIS FCD700 block material with a width of 100 mm and a length of 400 mm Rotational speed: 764 min -1
Cutting speed: 300m/min
Notch: 2.0mm
Feed: 0.2 mm/blade Cutting time: 8 minutes (normal cutting speed is 200 m/min)

Figure 0007325720000008
Figure 0007325720000008

また、前記本発明被覆工具9~16および比較被覆工具9~16について、前記各種の被覆工具基体D~F(ISO規格CNMG120412形状)をいずれも合金鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す、鋳鉄の湿式高速断続切削試験2を実施し、切刃の逃げ面摩耗幅を測定した。表7に、切削試験2の結果を示す。なお、比較被覆工具9~16については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 For the coated tools 9 to 16 of the present invention and the comparative coated tools 9 to 16, each of the various coated tool substrates D to F (ISO standard CNMG120412 shape) was fixed to the tip of the alloy steel cutting tool with a jig. In the screwed state, the wet high-speed intermittent cutting test 2 of cast iron shown below was performed to measure the flank wear width of the cutting edge. Table 7 shows the results of cutting test 2. As for the comparative coated tools 9 to 16, the life was reached before the end of the cutting time due to the occurrence of chipping, so the time until the life is reached is shown.

切削試験2:湿式高速断続切削試験
被削材:JIS・FCD800の長さ方向等間隔8本縦溝入り丸棒
切削速度:300m/min
切り込み:2.0mm
一刃送り量:0.2mm/rev.
切削時間:5分
(通常の切削速度は、200m/min)
Cutting test 2: Wet high-speed intermittent cutting test Work material: JIS FCD800 round bar with 8 equally spaced longitudinal grooves Cutting speed: 300 m/min
Notch: 2.0mm
Single blade feed amount: 0.2 mm/rev.
Cutting time: 5 minutes (normal cutting speed is 200m/min)

Figure 0007325720000009
Figure 0007325720000009

表6、表7に示される結果から、本発明被覆工具1~16は、いずれも硬質被覆層が優れた耐チッピング性、耐熱亀裂性を有しているため、鋳鉄等の高速断続切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1~16は、鋳鉄等の高速断続切削加工に用いた場合チッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Tables 6 and 7, the coated tools 1 to 16 of the present invention all have excellent chipping resistance and thermal crack resistance in the hard coating layer, so they are suitable for high-speed interrupted cutting of cast iron and the like. Even when used, chipping does not occur and excellent wear resistance is exhibited over a long period of time. On the other hand, the comparative coated tools 1 to 16, which do not satisfy even one of the items specified for the coated tool of the present invention, cause chipping when used for high-speed interrupted cutting of cast iron, etc., and can be cut in a short time. It has reached the end of its service life.

前述のように、本発明の被覆工具は、鋳鉄以外の高速断続切削加工の被覆工具としても用いることができ、しかも、長期にわたって優れた耐チッピング性、耐熱亀裂性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化及び省エネルギー化、さらには低コスト化に十分に満足できる対応が可能である。 As described above, the coated tool of the present invention can be used as a coated tool for high-speed interrupted cutting of materials other than cast iron, and exhibits excellent chipping resistance and thermal crack resistance over a long period of time. It is possible to fully satisfy the improvement of the performance of the cutting device, the saving of labor and energy in the cutting process, and the reduction of the cost.

Claims (4)

工具基体と該工具基体の表面に硬質被覆層を有する表面被覆切削工具であって、
(a)前記硬質被覆層は、TiとAlとの複合窒化物層または複合炭窒化物層を含み、
(b)前記TiとAlとの複合窒化物層または複合炭窒化物層は、その組成を、
組成式:(Ti1-xAl)(C1-y)で表した場合、
AlとTiの合量に占めるAlの含有割合xの平均値xavgと、CとNの合量に占めるCの含有割合yの平均値yavgが、それぞれ、0.65≦xavg≦0.95、0.000≦yavg≦0.050(但し、これらx、y、xavg、yavgは原子比)を満足し、かつ、NaCl型の面心立方構造を有する結晶粒の占める面積割合が70面積%以上であり、
(c)前記結晶粒の粒内に前記Alの含有割合xが高い高Al領域と前記xが低い低Al領域とを有する2領域結晶粒が存在し、
(d)前記2領域結晶粒は、その周囲が前記高Al領域のみに囲まれた前記低Al含有領域、および、その周囲が前記高Al領域と一つの結晶粒を画定する結晶粒界に囲まれた低Al領域が、該粒内のすべての前記低Al領域に対して70面積%以上である特異2領域結晶を含み、
(e)前記特異2領域結晶粒は、それぞれ、前記高Al領域における前記xの平均値x、前記低Al領域における前記xの平均値xとするとき(但し、これらx、xは原子比)、0.05≦x-x≦0.60を満足し、
(f)前記TiとAlとの複合窒化物層または複合炭窒化物層をその層厚方向に二等分した該層の表面側には、前記特異2領域結晶粒を10~40面積%含む、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool having a tool substrate and a hard coating layer on the surface of the tool substrate,
(a) the hard coating layer includes a composite nitride layer or a composite carbonitride layer of Ti and Al,
(b) The composite nitride layer or composite carbonitride layer of Ti and Al has a composition of
When represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ),
The average value x avg of the content ratio x of Al in the total amount of Al and Ti and the average value y avg of the content ratio y of C in the total amount of C and N are 0.65≦x avg ≦0, respectively. .95, 0.000≦y avg ≦0.050 (where x, y, x avg and y avg are atomic ratios) and the area occupied by crystal grains having a NaCl-type face-centered cubic structure The ratio is 70 area% or more,
(c) a two-region crystal grain having a high Al region with a high Al content x and a low Al region with a low x in the crystal grain,
(d) The two-region crystal grain is surrounded by the low Al-containing region surrounded only by the high Al region, and surrounded by the high Al region and a grain boundary defining one crystal grain. The low Al region contained in the grain contains a unique two-region crystal that is 70 area% or more of all the low Al regions in the grain,
(e) When the peculiar two-region crystal grains have the average value x h of x in the high Al region and the average value x l of x in the low Al region (however, these x h , x l atomic ratio), satisfying 0.05≦x h −x l ≦0.60,
(f) 10 to 40 area % of the peculiar two-domain crystal grains are included on the surface side of the layer obtained by bisected the composite nitride layer or composite carbonitride layer of Ti and Al in the layer thickness direction. ,
A surface-coated cutting tool characterized by:
前記特異2領域結晶粒において、前記高Al領域の幅の最大値と最小値との差が50~300nmであることを特徴とする請求項1に記載の表面被覆切削工具。 2. The surface-coated cutting tool according to claim 1, wherein in the unique two-region crystal grain, the difference between the maximum width and the minimum width of the high Al region is 50 to 300 nm. 前記特異2領域結晶粒において、前記高Al領域の幅の平均値が30nm以上であることを特徴とする請求項1または2に記載の表面被覆切削工具。 3. The surface-coated cutting tool according to claim 1, wherein the average width of the Al-rich regions in the unique two-region crystal grains is 30 nm or more. 前記TiとAlとの複合窒化物層または複合炭窒化物層において、前記NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.1~3.0μm、平均アスペクト比Aが2.0~10.0であることを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。 In the composite nitride layer or composite carbonitride layer of Ti and Al, the crystal grains having the NaCl-type face-centered cubic structure have an average grain width W of 0.1 to 3.0 μm and an average aspect ratio A of The surface-coated cutting tool according to any one of claims 1 to 3, characterized in that it is 2.0 to 10.0.
JP2020016660A 2020-02-03 2020-02-03 surface coated cutting tools Active JP7325720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020016660A JP7325720B2 (en) 2020-02-03 2020-02-03 surface coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020016660A JP7325720B2 (en) 2020-02-03 2020-02-03 surface coated cutting tools

Publications (2)

Publication Number Publication Date
JP2021122876A JP2021122876A (en) 2021-08-30
JP7325720B2 true JP7325720B2 (en) 2023-08-15

Family

ID=77459944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020016660A Active JP7325720B2 (en) 2020-02-03 2020-02-03 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7325720B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453616B2 (en) 2020-02-03 2024-03-21 三菱マテリアル株式会社 surface coated cutting tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090540A1 (en) 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
WO2018008554A1 (en) 2016-07-07 2018-01-11 三菱日立ツール株式会社 Hard coating, hard coating-covered tool, and methods for producing both
JP2019162709A (en) 2018-03-20 2019-09-26 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090540A1 (en) 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool
WO2018008554A1 (en) 2016-07-07 2018-01-11 三菱日立ツール株式会社 Hard coating, hard coating-covered tool, and methods for producing both
JP2019162709A (en) 2018-03-20 2019-09-26 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Takuya ISHIGAKI et al.,"Influence of the Al content on mechanical properties of CVD aluminum titanium nitride coatings",International Journal of Refractory Metals and Hard Materials,Vol. 71,ELSEVIER,2018年02月,p.227-231,DOI: 10.1016/j.ijrmhm.2017.11.028

Also Published As

Publication number Publication date
JP2021122876A (en) 2021-08-30

Similar Documents

Publication Publication Date Title
JP7191287B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
KR20180128531A (en) Surface-coated cutting tool and method of producing the same
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
US11040402B2 (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
KR20180034564A (en) Cloth tool
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP7231885B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
JP7325720B2 (en) surface coated cutting tools
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
US20180154463A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6850997B2 (en) Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer
WO2018135513A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2019005855A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance
JP7190111B2 (en) surface coated cutting tools
JP7329180B2 (en) surface coated cutting tools
JP7132548B2 (en) surface coated cutting tools
JP7183519B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP6796257B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP7125013B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP7453616B2 (en) surface coated cutting tools
JP2019098502A (en) Surface-coated cutting tool having hard coating layer excellent in thermal cracking resistance
JP2019063900A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230716

R150 Certificate of patent or registration of utility model

Ref document number: 7325720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150