JP2019162709A - Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance - Google Patents

Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2019162709A
JP2019162709A JP2018053449A JP2018053449A JP2019162709A JP 2019162709 A JP2019162709 A JP 2019162709A JP 2018053449 A JP2018053449 A JP 2018053449A JP 2018053449 A JP2018053449 A JP 2018053449A JP 2019162709 A JP2019162709 A JP 2019162709A
Authority
JP
Japan
Prior art keywords
content
layer
composite
average
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018053449A
Other languages
Japanese (ja)
Other versions
JP7191287B2 (en
Inventor
光亮 柳澤
Mitsuaki Yanagisawa
光亮 柳澤
卓也 石垣
Takuya Ishigaki
卓也 石垣
佐藤 賢一
Kenichi Sato
佐藤  賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018053449A priority Critical patent/JP7191287B2/en
Publication of JP2019162709A publication Critical patent/JP2019162709A/en
Application granted granted Critical
Publication of JP7191287B2 publication Critical patent/JP7191287B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a surface-coated cutting tool having excellent chipping resistance and defect resistance, and exerting superior cutting performance over a long period even when applying to a high-speed intermittent cutting work.SOLUTION: An objective surface-coated cutting tool is characterized by: including at least a Ti-Al composite nitride or composite carbonitride layer of NaCl type face-centered cubic structure having the average layer thickness of 1.0-20.0 μm; having a biphasic composition in which the high-Al content area represented by a composition formula: (AlTi)(CN) is surrounded by the low-Al content area represented by the composition formula: (AlTi)(CN); and satisfying 0.70<x<0.93, 0.40<x<0.85, 0.0000≤y≤0.0050 and 0.0000≤y≤0.0050, and is further characterized in that the xminimum value, xand the xmaximum value, xsatisfy 0.05<x-x<0.30.SELECTED DRAWING: Figure 1

Description

本発明は、熱伝導性が悪い切削材を含む高負荷が作用する高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性・耐欠損性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。   The present invention is excellent over a long period of use because the hard coating layer has excellent chipping resistance and fracture resistance even in high-speed intermittent cutting where a high load including a cutting material with poor thermal conductivity acts. The present invention relates to a surface-coated cutting tool (hereinafter also referred to as a coated tool) that exhibits excellent cutting performance.

従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet, or cubic boron nitride (hereinafter referred to as cBN) based super high pressure sintered body. There is a coated tool in which a Ti—Al-based composite carbonitride layer is formed on the surface of a tool substrate (hereinafter collectively referred to as a tool substrate) by a vapor deposition method as a hard coating layer. It is known to exhibit wear resistance.
However, the coated tool formed by coating the conventional Ti—Al based composite carbonitride layer is relatively excellent in wear resistance, but is likely to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、基材と、その表面に形成された硬質被膜とを含み、
前記硬質被膜は1または2以上の層により構成され、前記層のうち少なくとも1層は、硬質粒子を含む層であり、前記硬質粒子は、第1単位層と第2単位層とが交互に積層された多層構造を含み、前記第1単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第1化合物を含み、前記第2単位層は、周期表の4族元素、5族元素、6族元素およびAlからなる群より選ばれる1種以上の元素と、B、C、NおよびOからなる群より選ばれる1種以上の元素とからなる第2化合物を含む、被覆工具により、耐摩耗性と耐溶着性を向上させることが提案されている。
For example, Patent Document 1 includes a base material and a hard coating formed on the surface thereof,
The hard coating is composed of one or more layers, and at least one of the layers is a layer containing hard particles, and the hard particles are alternately laminated with first unit layers and second unit layers. The first unit layer includes one or more elements selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al of the periodic table, and B, C, N and O Wherein the second unit layer is selected from the group consisting of Group 4 elements, Group 5 elements, Group 6 elements and Al of the periodic table. Proposed to improve wear resistance and welding resistance with a coated tool comprising a second compound comprising at least one element and at least one element selected from the group consisting of B, C, N and O Has been.

また、特許文献2には、基体上に柱状結晶組織を有する窒化チタンアルミニウム硬質皮膜を形成し、該硬質皮膜が、(TixAly)N(ただし、x及びyはそれぞれ原子比でx=0.005〜0.1、及びy=0.995〜0.9を満たす数字である。)で表される組成を有するfcc構造の高Al含有TiAlNと、(TixAly)N(ただし、x及びyはそれぞれ原子比でx=0.5〜0.9、及びy=0.5〜0.1を満たす数字である。)で表される組成を有するfcc構造の網目状高Ti含有TiAlNを有するとともに、前記高Al含有TiAlNが前記網目状高Ti含有TiAlNに囲まれている被覆工具により、優れた耐摩耗性及び耐酸化性を発揮することが記載されている。 Further, in Patent Document 2, a titanium aluminum nitride hard film having a columnar crystal structure is formed on a substrate, and the hard film is (Tix 1 Aly 1 ) N (where x 1 and y 1 are atomic ratios, respectively). high Al content TiAlN having an fcc structure having a composition represented by: x 1 = 0.005 to 0.1 and y 1 = 0.995 to 0.9), and (Tix 2 Aly 2 ) N (provided that, x 2 = 0.5~0.9 x 2 and y 2 are each an atomic ratio, and a number satisfying y 2 = 0.5 to 0.1.) a composition represented by the The coated tool in which the high Al content TiAlN has a network-like high Ti content TiAlN having an fcc structure and the high Al content TiAlN is surrounded by the network high Ti content TiAlN can exhibit excellent wear resistance and oxidation resistance. Are listed.

特許文献3には、工具基体の表面に、硬質被覆層を設け、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物層または複合炭窒化物層を少なくとも含み、前記複合窒化物層または前記複合炭窒化物層の組成を組成式:(Ti1−xAl)(C1−y)で表した場合、前記複合窒化物層または前記複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合Xavg、および前記複合窒化物層または前記複合炭窒化物層のCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物層または前記複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物層または前記複合炭窒化物層について、電子線後方散乱回折装置を用いて、前記複合窒化物層または前記複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を前記複合窒化物層または前記複合炭窒化物層の縦断面方向から解析した場合、前記工具基体の表面の法線方向に対して前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、該傾斜角のうち0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して、各区分内に存在する度数を集計して得られた傾斜角度数分布において、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上であり、
(d)また、前記工具基体の表面の前記法線方向に沿って、前記複合窒化物層または前記複合炭窒化物層における前記NaCl型の面心立方構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25であり、
(e)さらに、前記複合窒化物層または前記複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、その前記工具基体の表面の前記法線方向に沿った周期が3〜100nmである、被覆工具が、耐摩耗性や耐チッピング性に優れていると記載されている。
In Patent Document 3, a hard coating layer is provided on the surface of a tool base,
(A) The hard coating layer includes at least a composite nitride layer or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and the composite nitride layer or the composite When the composition of the carbonitride layer is expressed by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), Al of the composite nitride layer or the composite carbonitride layer of Ti and Al The average content ratio X avg occupying the total amount, and the average content ratio Y avg occupying the total amount of C and N in C of the composite nitride layer or the composite carbonitride layer (where X avg and Y avg are both Atomic ratio) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
(B) The composite nitride layer or the composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) Further, for the composite nitride layer or the composite carbonitride layer, an NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer is obtained using an electron beam backscattering diffractometer. When the crystal orientation of each crystal grain having the above is analyzed from the longitudinal cross-sectional direction of the composite nitride layer or the composite carbonitride layer, the crystal plane of the crystal grain with respect to the normal direction of the surface of the tool base Measure the inclination angle formed by the normal of a certain {100} plane, and divide the inclination angle within the range of 0 to 45 degrees out of the inclination angle by 0.25 degree pitch, and exist in each section In the inclination angle distribution obtained by counting the frequencies to be performed, the highest peak exists in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 35% or more of the entire frequency in the tilt angle number distribution,
(D) In the crystal grains having the NaCl-type face-centered cubic structure in the composite nitride layer or the composite carbonitride layer along the normal direction of the surface of the tool base, a composition formula: There is a periodic composition change of Ti and Al in (Ti 1-x Al x ) (C y N 1-y ), and the difference Δx between the average of the local maximum value and the average of the local minimum value of x that periodically changes is 0.03-0.25,
(E) Further, in the crystal grains having a NaCl-type face-centered cubic structure in which a periodic composition change of Ti and Al in the composite nitride layer or the composite carbonitride layer exists, the surface of the tool base It is described that the coated tool whose period along the normal direction is 3 to 100 nm is excellent in wear resistance and chipping resistance.

特許文献4には、工具基体の表面に、硬質被覆層を設け、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、前記複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{111}面の法線がなす傾斜角を測定し、該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の45%以上の割合を示し、
(d)前記複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の平均粒子幅Wが0.1〜2.0μm、平均アスペクト比Aが2〜10である柱状組織を有し、
(e)また、前記複合窒化物または複合炭窒化物層の前記NaCl型の面心立方構造を有する個々の結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、周期的に変化するxの極大値の平均と極小値の平均の差Δxが0.03〜0.25である、被覆工具が、耐摩耗性、耐チッピング性、耐欠損性に優れていると記載されている。
In Patent Document 4, a hard coating layer is provided on the surface of the tool base,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio Xavg in the total amount of Ti and Al in the composite nitride or composite carbonitride layer and the total amount of C and N in C The average content ratio Yavg (where Xavg and Yavg are both atomic ratios) satisfy 0.60 ≦ Xavg ≦ 0.95 and 0 ≦ Yavg ≦ 0.005, respectively.
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) Further, with respect to the composite nitride or composite carbonitride layer, each crystal having an NaCl type face-centered cubic structure in the composite nitride or composite carbonitride layer using an electron beam backscattering diffractometer When the crystal orientation of the grains is analyzed from the longitudinal section direction of the composite nitride or composite carbonitride layer, the normal of the {111} plane that is the crystal plane of the crystal grains with respect to the normal direction of the surface of the tool base is formed. The inclination angle is measured, and the inclination angles within the range of 0 to 45 degrees with respect to the normal direction among the inclination angles are divided into pitches of 0.25 degrees, and the frequencies existing in each division are tabulated. When the inclination angle frequency distribution is obtained, the highest peak is present in the inclination angle section within the range of 0 to 10 degrees, and the sum of the frequencies existing within the range of 0 to 10 degrees is in the inclination angle number distribution. Shows more than 45% of the total frequency,
(D) Individual crystals having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer when observed from the longitudinal section direction of the composite nitride or composite carbonitride layer Having a columnar structure having an average particle width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10;
(E) In each crystal grain having the NaCl-type face-centered cubic structure of the composite nitride or composite carbonitride layer, a composition formula: (Ti 1-x Al x ) (C y N 1- The periodic composition change of Ti and Al in y ) exists along one of the equivalent crystal orientations represented by <001> of the crystal grains, and the periodically changing x maximum value of x It is described that a coated tool having a difference Δx between an average and an average of a minimum value of 0.03 to 0.25 is excellent in wear resistance, chipping resistance, and fracture resistance.

特開2014−129562号公報JP 2014-129562 A 国際特許公開2017/090540号International Patent Publication No. 2017/090540 特開2015−193071号公報JP, 2015-193071, A 特開2016−64485号公報Japanese Patent Laid-Open No. 2006-64485

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている被覆工具は、耐酸化性が低く高速断続切削に供したときにはチッピングが発生しやすく、満足できる切削性能を有しているとはいえない。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance is required over a long period of use.
However, the coated tool described in Patent Document 1 has low oxidation resistance and is prone to chipping when subjected to high-speed intermittent cutting, and cannot be said to have satisfactory cutting performance.

また、前記特許文献2に記載された被覆工具は、高Al含有TiAlNと高Ti含有TiAlNとのAl含有割合の差が大きく、両者の界面における密着力が十分でないため高速断続切削に供した場合にはチッピングが発生しやすく、耐熱亀裂進展性も不十分であって、満足する切削性能を発揮するとは言えないという課題があった。   In addition, the coated tool described in Patent Document 2 has a large difference in the Al content ratio between high Al content TiAlN and high Ti content TiAlN, and the adhesive force at the interface between the two is not sufficient, so when subjected to high-speed intermittent cutting However, there is a problem that chipping is likely to occur and the thermal crack propagation is insufficient, and it cannot be said that satisfactory cutting performance is exhibited.

さらに、前記特許文献3および前記特許文献4に記載された被覆工具は、AlとTiの複合窒化物のAlとTiの周期的な組成変化を有し、耐チッピング性に優れるものの、AlとTiの周期的な組成変化の無い方向への耐亀裂伝播性には劣るため、より負荷の高い高速断続切削に供した場合にはチッピングが発生しやすく満足する切削性能を発揮し得ない場合があった。   Further, the coated tools described in Patent Document 3 and Patent Document 4 have a periodic composition change of Al and Ti of a composite nitride of Al and Ti, and have excellent chipping resistance, but Al and Ti Therefore, when subjected to high-speed intermittent cutting with higher load, chipping is likely to occur, and satisfactory cutting performance may not be exhibited. It was.

そこで、本発明は、より高負荷の高速断続切削加工に供したときであっても、優れた耐チッピング性、耐欠損性を備え、長期の使用にわって優れた切削性能を発揮する被覆工具を提供することを目的とする。   Accordingly, the present invention provides a coated tool that has excellent chipping resistance and fracture resistance and exhibits excellent cutting performance over a long period of use even when subjected to high-speed intermittent cutting with a higher load. The purpose is to provide.

本発明者らは、AlとTiの複合窒化物または複合炭窒化物層を含む硬質被覆層(以下、「AlTiCN層」ということがある)を蒸着形成した被覆工具の組織について鋭意検討したところ、高Al含有のAiTiCN領域(以下、高Al含有領域)と低Al含有のAlTiCN領域(以下、低Al含有領域)とのAl濃度差を所定の範囲に抑え、高Al含有領域が低Al含有領域に囲まれた二相組織とすると、高Al含有領域と低Al含有領域との3次元的な密着性が向上し、両者の界面が破壊起点となることを防止できるとの新たな知見を得た。   The inventors of the present invention have made extensive studies on the structure of a coated tool on which a hard coating layer including a composite nitride of Al and Ti or a composite carbonitride layer (hereinafter also referred to as “AlTiCN layer”) is formed by vapor deposition. The Al concentration difference between the high Al content AiTiCN region (hereinafter referred to as high Al content region) and the low Al content AlTiCN region (hereinafter referred to as low Al content region) is suppressed within a predetermined range, and the high Al content region is a low Al content region. New knowledge has been obtained that the two-phase structure surrounded by the metal improves the three-dimensional adhesion between the high Al content region and the low Al content region, and prevents the interface between the two from becoming the origin of fracture. It was.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層において、該相は組成式(Alx1Ti1−x1)(Cy11−y1)で表される高Al含有領域が組成式(Alx2Ti1−x2)(Cy21−y2)で表される低Al含有領域に囲まれている二相組織を有し、
AlのTiとAlの合量に占める平均含有割合x、xおよびCのCとNの合量に占める平均含有割合y、y(但し、x、x、y、yはいずれも原子比)が、それぞれ、0.70<x<0.93、0.40<x<0.85、0.0000≦y≦0.0050、0.0000≦y≦0.0050を満足し、高Al含有領域のAlのTiとAlの合量に占める含有割合xの最小値x1min、低Al含有領域のAlのTiとAlの合量に占める含有割合xの最大値x2max(但し、x1min、x2maxはいずれも原子比)が0.05<x1min−x2max<0.30を満足することを特徴とする表面被覆切削工具。
(2)前記二相組織は、前記硬質被覆層の縦断面において40面積%以上存在することを特徴とする(1)に記載の表面被覆切削工具。
(3)縦断面における前記高Al含有領域と前記低Al含有領域を含む80nm×80nmの領域において、該低Al含有領域に囲まれた該高Al含有領域の個数が10個以上1000個未満であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
である。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting in which a hard coating layer is provided on the surface of a tool base made of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body In the tool
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) the Ti and Al composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure;
(C) In the composite nitride or composite carbonitride layer of Ti and Al, the phase is composed of a high Al content region represented by a composition formula (Al x1 Ti 1-x1 ) (C y1 N 1-y1 ). Having a two-phase structure surrounded by a low Al-containing region represented by the formula (Al x2 Ti 1-x2 ) (C y2 N 1-y2 ),
Average content ratios x 1 , x 2 in the total amount of Ti and Al in Al and average content ratios y 1 , y 2 in the total amount of C and N in C (where x 1 , x 2 , y 1 , y 2 are atomic ratios) of 0.70 <x 1 <0.93, 0.40 <x 2 <0.85, 0.0000 ≦ y 1 ≦ 0.0050, 0.0000 ≦ y 2, respectively. ≦ 0.0050, the content ratio x 1 min of the content ratio x 1 in the total amount of Ti and Al in the high Al content region, the content ratio in the total content of Ti and Al in the low Al content region maximum x 2max of x 2 (where, x 1min, x 2max any atomic ratio) surface-coated cutting tool, wherein a satisfies 0.05 <x 1min -x 2max <0.30 .
(2) The surface-coated cutting tool according to (1), wherein the two-phase structure is present in an area of 40% by area or more in the longitudinal section of the hard coating layer.
(3) In the 80 nm × 80 nm region including the high Al content region and the low Al content region in the longitudinal section, the number of the high Al content regions surrounded by the low Al content region is 10 or more and less than 1000 The surface-coated cutting tool according to (1) or (2), wherein
It is.

本発明の被覆工具は、低Al含有領域に囲まれる高Al含有領域が存在することにより、熱伝導性が悪い切削材を含む高速断続切削加工時であっても3次元的に存在するAl組成が変化する界面において、亀裂進展が抑制され、優れた耐異常損傷性を発揮し、また、高Al含有領域と低Al含有領域とのAlの最小濃度差であるx1min−x2maxが、0.05<x1min−x2max<0.30を満たすことにより、高Al含有領域と低Al含有領域の3次元的密着性が高まり、その界面が破壊起点となることを防止する、という優れた効果を奏する。 Since the coated tool of the present invention has a high Al content region surrounded by a low Al content region, the Al composition exists three-dimensionally even during high-speed intermittent cutting including a cutting material with poor thermal conductivity. In the interface where the change occurs, crack growth is suppressed, excellent abnormal damage resistance is exhibited, and the minimum difference in Al concentration between the high Al content region and the low Al content region is x 1min -x 2max is 0. .05 <x 1min −x 2max <0.30, the three-dimensional adhesion between the high Al-containing region and the low Al-containing region is improved, and the interface is prevented from becoming a fracture starting point. There is an effect.

本発明のTiAlCN層の縦断面(層厚方向断面)のHAADF‐STEM像の一例である。It is an example of the HAADF-STEM image of the longitudinal cross section (layer thickness direction cross section) of the TiAlCN layer of this invention. 本発明のTiAlCN層の縦断面(層厚方向断面)の模式図である。It is a schematic diagram of the longitudinal cross-section (layer thickness direction cross section) of the TiAlCN layer of this invention. 本発明のTiAlCN層の縦断面における粒状結晶粒における二相組織の一例の拡大模式図である。It is an expansion schematic diagram of an example of the two phase structure in the granular crystal grain in the longitudinal section of the TiAlCN layer of the present invention. 本発明のTiAlCN層の柱状結晶の場合の二相組織の一例の模式図である。It is a schematic diagram of an example of the two-phase structure in the case of the columnar crystal of the TiAlCN layer of the present invention.

次に、本発明について、より詳細に説明する。   Next, the present invention will be described in more detail.

硬質被覆層の平均層厚:
本発明の硬質被覆層は、後述するように、組成式:(AlxiTi1−xi)(Cyi1−yi)(ただし、i=1または2)で表されるTiとAlの複合窒化物または複合炭窒化物(TiAlCN)層を少なくとも含む。このTiAlCN層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるためである。
Average thickness of hard coating layer:
As described later, the hard coating layer of the present invention is a composite of Ti and Al represented by the composition formula: (Al xi Ti 1-xi ) (C y i N 1-y i) (where i = 1 or 2). At least a nitride or composite carbonitride (TiAlCN) layer is included. This TiAlCN layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1.0 to 20.0 μm. The reason is that if the average layer thickness is less than 1.0 μm, the layer thickness is so thin that sufficient wear resistance for long-term use cannot be ensured, while the average layer thickness exceeds 20.0 μm. This is because the crystal grains of the TiAlCN layer are easily coarsened and chipping is likely to occur.

TiAlCN層内のNaCl型の面心立方晶構造を有する結晶相:
前記TiAlCN層において、NaCl型の面心立方晶構造を有する結晶粒を有する相が存在することが必要であり、その面積割合として60面積%以上であることが好ましい。これにより、高硬度であるNaCl型の面心立方晶構造を有する結晶粒の面積比率が六方晶構造の結晶粒に比べて相対的に高くなり、硬さが向上するという効果を得ることができる。この面積率は、85面積%以上がより好ましい。
Crystal phase having a NaCl-type face-centered cubic structure in the TiAlCN layer:
In the TiAlCN layer, a phase having crystal grains having a NaCl-type face-centered cubic structure must be present, and the area ratio is preferably 60 area% or more. As a result, the area ratio of the crystal grains having a highly hard NaCl type face centered cubic structure is relatively higher than that of the hexagonal crystal grains, and the effect of improving the hardness can be obtained. . As for this area ratio, 85 area% or more is more preferable.

TiAlCN層の組成:
図1は本発明のTiAlCN層の縦断面(層厚方向断面)のHAADF−STEM像を表す。図2はTiAlCN層の縦断面(層厚方向断面)の模式図を表し、図3は、この図2に示すTiAlCN層に存在する二相組織を有する結晶粒を拡大した模式図である。この図1(図1の模式図の図3)に示すように、結晶粒は四角形の結晶相(第1相:HAADF−STEM像では黒または濃い灰色)と、その周囲を取り囲む(例えば、網目状)結晶相(第2相:HAADF−STEM像では白または薄い灰色)が存在する組織である。この第1相、第2相のそれぞれに対して、EDS分析を行ったところ、第1相は高Al含有のTiAlCN相であり、第2相は低Al含有のTiAlCN相であることが判明した。また、図4は柱状結晶の場合の二相組織の一例を示す模式図である。
ここで、前記TiAlCN層は、第1相を組成式(Alx1Ti1−x1)(Cy11−y1)で表わし、第2相を同じく組成式(Alx2Ti1−x2)(Cy21−y2)で表わすと、AlのTiとAlの合量に占める平均含有割合x、xおよびCのCとNの合量に占める平均含有割合y、y(但し、x、x、y、yはいずれも原子比)が、それぞれ、0.70<x<0.93、0.40<x<0.85、0.0000≦y≦0.0050、0.0000≦y≦0.0050、xの最小値をx1min、xの最大値をx2maxとすると、0.05<x1min−x2max<0.30にあることが必要十分である。
これらの数値範囲とする理由は、
については、0.70以下になると硬質被覆層全体の平均Al含有割合が低下することにより硬さが低下し、耐摩耗性が損なわれ、一方、0.93以上になると硬さに劣る六方晶が析出しはじめ、耐摩耗性が低下し、
については、0.40以下になると硬さの低下に伴う耐摩耗性、耐チッピング性の低下の影響が大きくなり、一方、0.85以上になると低Al含有領域がエネルギー的に不安定となり、切削時のように刃先に断続的な機械的・熱的衝撃が加わる環境下において低Al含有領域と高Al含有領域の界面を中心に六方晶が析出するようになり強度低下を招き、破壊起点となってチッピング等の異常損傷を生じ、
1min−x2maxについては、0.05以下ではAl含有割合の差が小さいため、組成変調界面における亀裂伝播抑制が不十分となり、一方、0.30以上ではAl含有割合の差が大きいため、界面に生じる歪が大きくなり過ぎ、切削時に破壊起点となってチッピング等の異常損傷を生じる。
次に、x、x、y、y、x1min、x2maxの測定方法について説明する。
高Al含有領域と低Al含有領域のそれぞれに、ナノビーム回折を行い、NaCl型の面心立方構造の結晶粒であることを確認するとともに、EDS(ビーム径1nm)を用いて、膜厚方向中心の任意の20の領域で、高Al含有領域と低Al含有領域とを有する粒子の組成を分析して、高Al含有領域の平均Al含有割合xおよび低Al含有領域の平均Al含有割合xを求め、各領域のCのCとNの合量に占める平均含有割合y、yを測定する。そして、測定された20点の高Al含有領域のAl含有割合が1〜3番目に小さい測定値を平均し、x1minとして算出し、同様に測定された20点の低Al含有領域のAl含有割合の1〜3番目に大きい測定値を平均し、x2maxとして算出する。
また、少なくとも、前記任意の20の領域で測定される高Al含有領域のAl含有割合は全て0.7超え、0.93未満であること、または、前記任意の20の領域で測定される低Al含有領域のAl含有割合は全て0.40を超え0.85未満であることが、より望ましい。
なお、高Al含有領域が低Al含有領域に囲まれているとは、縦断面において高Al含有領域の周囲長の50%以上が低Al含有領域に接していることをいう。
Composition of TiAlCN layer:
FIG. 1 shows a HAADF-STEM image of a longitudinal section (a section in the layer thickness direction) of the TiAlCN layer of the present invention. FIG. 2 is a schematic diagram of a longitudinal section (layer thickness direction section) of the TiAlCN layer, and FIG. 3 is an enlarged schematic diagram of crystal grains having a two-phase structure existing in the TiAlCN layer shown in FIG. As shown in FIG. 1 (FIG. 3 of the schematic diagram of FIG. 1), the crystal grains surround a rectangular crystal phase (first phase: black or dark gray in the HAADF-STEM image) and its periphery (for example, mesh A structure in which a crystalline phase (second phase: white or light gray in the HAADF-STEM image) exists. When EDS analysis was performed on each of the first phase and the second phase, it was found that the first phase was a high Al content TiAlCN phase and the second phase was a low Al content TiAlCN phase. . FIG. 4 is a schematic diagram showing an example of a two-phase structure in the case of columnar crystals.
Here, in the TiAlCN layer, the first phase is represented by a composition formula (Al x1 Ti 1-x1 ) (C y1 N 1-y1 ), and the second phase is similarly represented by the composition formula (Al x2 Ti 1-x2 ) (C expressed in y2 N 1-y2), the average proportion occupied in the total amount of the average content x 1, x 2 and C of C and N to total the total amount of Ti and Al Al y 1, y 2 (where, x 1 , x 2 , y 1 and y 2 are all atomic ratios) of 0.70 <x 1 <0.93, 0.40 <x 2 <0.85, 0.0000 ≦ y 1 ≦, respectively. 0.0050,0.0000 ≦ y 2 ≦ 0.0050, the minimum value x 1min of x 1, and the maximum value of x 2 and x 2max, in 0.05 <x 1min -x 2max <0.30 It is necessary and sufficient.
The reason for these numerical ranges is
For x 1 is decreased the hardness by the average Al content of whole the hard layer becomes 0.70 or less is reduced, the wear resistance is impaired, whereas, less hardness becomes 0.93 or more Hexagonal crystals begin to precipitate, wear resistance decreases,
For x 2, wear resistance due to the decrease in the hardness becomes 0.40 or less, the influence of the decrease in chipping resistance is increased, whereas, a low Al-containing region energetically unstable 0.85 In the environment where intermittent mechanical and thermal impacts are applied to the cutting edge as in cutting, hexagonal crystals are precipitated around the interface between the low Al content region and the high Al content region, resulting in a decrease in strength. Causes abnormal damage such as chipping as a starting point of destruction,
For x 1min -x 2max , since the difference in Al content is small at 0.05 or less, crack propagation suppression at the composition modulation interface is insufficient, whereas, at 0.30 or more, the difference in Al content is large, The strain generated at the interface becomes too large, and becomes a starting point of fracture during cutting, causing abnormal damage such as chipping.
Then, x 1, x 2, y 1, y 2, x 1min, measuring method of x 2max will be described.
Nano beam diffraction is performed on each of the high Al content region and the low Al content region to confirm that it is a NaCl type face centered cubic crystal grain, and using EDS (beam diameter 1 nm), the center in the film thickness direction The composition of particles having a high Al content region and a low Al content region is analyzed in any 20 regions of the above, and the average Al content rate x 1 of the high Al content region and the average Al content rate x of the low Al content region are analyzed. 2 is obtained, and the average content ratios y 1 and y 2 in the total amount of C and N of C in each region are measured. Then, the measured value of the Al content of the 20 high Al-containing regions was averaged from the first to the third smallest, calculated as x 1 min , and the Al content of the 20 low Al-containing regions measured in the same manner The 1st to 3rd largest measured values of the ratio are averaged and calculated as x2max .
Further, at least the Al content ratios of the high Al content region measured in the 20 arbitrary regions are all greater than 0.7 and less than 0.93, or low as measured in the 20 arbitrary regions. It is more desirable that the Al content in the Al-containing region is more than 0.40 and less than 0.85.
The phrase “the high Al content region is surrounded by the low Al content region” means that 50% or more of the perimeter of the high Al content region is in contact with the low Al content region in the longitudinal section.

二相領域の縦断面における面積割合:
二相領域の縦断面における面積割合は、40%以上とすることが好ましい。その理由は、40%以上であれば、より確実に亀裂伝播の抑制がより一層確実になされるためである。
ここで、縦断面における二相領域の面積割合は、例えば、TiAlCN層の縦断面のTEM像(倍率:50000倍)より幅1μm×1μmの視野において求め、少なくとも5視野の平均値として算出する。
Area ratio in longitudinal section of two-phase region:
The area ratio in the longitudinal section of the two-phase region is preferably 40% or more. The reason is that the crack propagation is more reliably suppressed if it is 40% or more.
Here, the area ratio of the two-phase region in the longitudinal section is obtained, for example, from a TEM image (magnification: 50000 times) of the longitudinal section of the TiAlCN layer in a visual field having a width of 1 μm × 1 μm and calculated as an average value of at least five visual fields.

縦断面における高Al含有領域と低Al含有領域を含む80nm×80nmの領域において、低Al含有領域に囲まれた高Al含有領域の個数:
縦断面における高Al含有領域と低Al含有領域を含む80nm×80nmの領域において、低Al含有領域に囲まれた高Al含有領域の個数が10個以上1000個未満であることが好ましい。その理由は、10個未満ではひとつの領域の大きさが大き過ぎるため組成変調界面の亀裂伝播抑制が不十分になることがあり、1000個以上では高Al含有領域と低Al含有領域の界面数が増えることにより局所的な密着強度の低下や塑性変形を生じやすくなるため耐チッピング性あるいは耐摩耗性の低下を招くことがあるためである。
The number of high Al-containing regions surrounded by the low Al-containing region in the 80 nm × 80 nm region including the high Al-containing region and the low Al-containing region in the longitudinal section:
In the 80 nm × 80 nm region including the high Al content region and the low Al content region in the longitudinal section, the number of high Al content regions surrounded by the low Al content region is preferably 10 or more and less than 1000. The reason for this is that if the number is less than 10, the size of one region is too large and crack propagation suppression of the composition modulation interface may be insufficient, and if it is 1000 or more, the number of interfaces between the high Al content region and the low Al content region This is because a decrease in local adhesion strength and plastic deformation are liable to occur due to an increase in the thickness, which may result in a decrease in chipping resistance or wear resistance.

縦断面における高Al含有領域と前記低Al含有領域を含む80nm×80nmの領域において、低Al含有領域に囲まれた高Al含有領域の個数は以下のように求める。本発明のTiAlCN層の縦断面(層厚方向断面)のTEM像(倍率:500000倍)あるいはそのEDSマッピング像より、80nm×80nmの領域において組成差によるコントラストの違い等を、画像処理を行うことで高Al含有領域と低Al含有領域を特定し、色分けすることが出来る。画像認識により着色された高Al含有領域の数をカウントすることで低Al含有領域に囲まれた高Al含有領域の個数を求める。   In the 80 nm × 80 nm region including the high Al content region and the low Al content region in the longitudinal section, the number of high Al content regions surrounded by the low Al content region is determined as follows. From the TEM image (magnification: 500,000 times) of the longitudinal section (layer thickness direction section) of the TiAlCN layer of the present invention or its EDS mapping image, image processing is performed for differences in contrast due to composition differences in the 80 nm × 80 nm region. Thus, the high Al content region and the low Al content region can be specified and color-coded. By counting the number of high Al content regions colored by image recognition, the number of high Al content regions surrounded by the low Al content region is obtained.

柱状結晶組織を有し、その結晶粒の平均粒子幅Wが0.10〜3.00μm、平均アスペクト比Aが2.0〜10.0:
本発明において、TiAlCN層は柱状結晶組織を有し、その結晶粒の縦断面における平均粒子幅Wが0.10〜3.00μm、平均アスペクト比Aが2.0〜10.0であることが望ましい。その理由は、平均粒子幅Wが0.10μmよりも小さい微粒結晶になると粒界の増加による耐塑性変形性の低下、耐酸化性の低下により異常損傷に至りやすくなる。一方平均粒子幅Wが3.00μmよりも大きくなると粗大に成長した粒子の存在により、靱性が低下しやすくなる。また、平均アスペクト比Aが2.0よりも小さい粒状結晶になると切削時に皮膜表面に生じるせん断応力に対してその界面が破壊起点となりやすくなってしまいチッピングの原因となる。また、平均アスペクト比Aが10.0を超えると、切削時に刃先に微小なチッピングが生じ、隣り合う柱状組織に欠けが生じた場合に、皮膜表面に生じるせん断応力に対しての抗力が小さくなりやすく、柱状組織が破断することで一気に損傷が進行し、大きなチッピングを生じる。したがって、結晶粒の平均粒子幅Wが0.10〜3.00μm、平均アスペクト比Aが2.0〜10.0であることが望ましい。
次に、結晶粒の平均粒子幅Wと平均アスペクト比Aの算出方法について説明する。まず、硬質皮膜の工具基体に平行な方向の100μmの観察視野において結晶粒界を判定する。結晶粒界の判定方法としては、電子線後方散乱回折装置を用いて縦断面方向から0.01μm間隔の解析を行い、隣接する測定点(以下、ピクセルという)の間で5度以上の方位差がある場合、そこを粒界と定義する。ここで、縦断面方向とは、工具基体表面に垂直な方向を意味する。縦断面とは、工具基体表面に垂直な断面を意味する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。次に、ある結晶粒iの結晶粒の層厚方向の最大長さをH、結晶粒の面積をSとして求めて、結晶粒iの粒子幅WはW=S/Hとして算出する。さらに、結晶粒iのアスペクト比AはA=H/Wとして算出する。このようにして、任意の20の結晶粒の粒子幅W〜W20を平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記任意の20の結晶粒のアスペクト比A〜A20を平均し、前記結晶粒の平均アスペクト比Aとする。
なお、本発明ではアスペクト比Aが2.0よりも小さい結晶粒を粒状結晶、アスペクト比Aが2.0よりも大きい結晶粒を柱状結晶と、それぞれ、定義する。
It has a columnar crystal structure, the average grain width W of the crystal grains is 0.10 to 3.00 μm, and the average aspect ratio A is 2.0 to 10.0:
In the present invention, the TiAlCN layer has a columnar crystal structure, the average grain width W in the longitudinal section of the crystal grains is 0.10 to 3.00 μm, and the average aspect ratio A is 2.0 to 10.0. desirable. The reason for this is that when the average grain width W is smaller than 0.10 μm, it becomes easy to cause abnormal damage due to a decrease in plastic deformation resistance due to an increase in grain boundaries and a decrease in oxidation resistance. On the other hand, when the average particle width W is larger than 3.00 μm, the presence of coarsely grown particles tends to reduce toughness. In addition, when the average aspect ratio A is smaller than 2.0, the crystal becomes less likely to be a starting point of fracture due to shear stress generated on the surface of the coating during cutting, which causes chipping. Also, if the average aspect ratio A exceeds 10.0, the chip edge is slightly chipped at the time of cutting, and if the adjacent columnar structure is chipped, the resistance to the shear stress generated on the coating surface becomes small. It is easy, damage is advanced at a stretch by breaking the columnar structure, and large chipping occurs. Therefore, it is desirable that the average grain width W of the crystal grains is 0.10 to 3.00 μm and the average aspect ratio A is 2.0 to 10.0.
Next, a method for calculating the average grain width W and the average aspect ratio A of the crystal grains will be described. First, a crystal grain boundary is determined in an observation visual field of 100 μm in a direction parallel to the hard-coated tool base. As a method for determining a crystal grain boundary, an electron beam backscattering diffractometer is used to analyze an interval of 0.01 μm from the longitudinal cross-sectional direction, and an orientation difference of 5 degrees or more between adjacent measurement points (hereinafter referred to as pixels). If there is, it is defined as a grain boundary. Here, the longitudinal section direction means a direction perpendicular to the tool base surface. A longitudinal section means a section perpendicular to the tool base surface. A region surrounded by the grain boundary is defined as one crystal grain. However, a single pixel that has an orientation difference of 5 degrees or more with all adjacent pixels is not a crystal grain, and a pixel having two or more pixels connected is treated as a crystal grain. In this way, grain boundary determination is performed to identify crystal grains. Next, the maximum length of a crystal grain i in the layer thickness direction is determined as H i , and the area of the crystal grain is determined as S i , and the grain width W i of the crystal grain i is expressed as W i = S i / H i. Calculate as Furthermore, the aspect ratio A i grain i is calculated as A i = H i / W i. In this way, the particle widths W 1 to W 20 of 20 arbitrary crystal grains are averaged to obtain the average particle width W of the crystal grains. Similarly, the average aspect ratios A 1 to A 20 of the 20 arbitrary crystal grains are averaged to obtain the average aspect ratio A of the crystal grains.
In the present invention, crystal grains having an aspect ratio A smaller than 2.0 are defined as granular crystals, and crystal grains having an aspect ratio A larger than 2.0 are defined as columnar crystals.

下部層および上部層:
本発明では、硬質被覆層として前記TiAlCN層を設けることによって十分な耐チッピング性、耐摩耗性を有するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層が1.0〜25.0μmの合計平均層厚で設けられた場合には、これらの層が奏する効果と相俟って、一層優れた特性を発揮することができる。
Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物層を含む下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
In the present invention, the TiAlCN layer provided as the hard coating layer has sufficient chipping resistance and wear resistance. However, the Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide A lower layer comprising a Ti compound layer comprising one or more of the layers and having a total average layer thickness of 0.1 to 20.0 μm, and / or an upper portion comprising at least an aluminum oxide layer When the layers are provided with a total average layer thickness of 1.0 to 25.0 μm, combined with the effect produced by these layers, it is possible to exhibit further excellent characteristics.
Ti consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer, and having a total average layer thickness of 0.1 to 20.0 μm When a lower layer including a compound layer is provided, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20.0 μm, the crystal grains are likely to be coarsened. , Chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25.0 μm, the crystal grains are likely to be coarsened and chipping is caused. It tends to occur.

製造方法:
本発明のTiAlCN層は、例えば、次の条件におけるTiAlCN層の形成の後、一例としてあげるアニール処理工程を行うことによって、作製することができる。
TiAlCN層の形成:
反応ガス組成(容量%):
ガス群A:NH:2.00〜5.00%、H:60〜75%、
ガス群B:AlCl:0.60〜1.00%、TiCl:0.07〜0.40%、
:0.00〜0.50、N:0.00〜12.00%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜850℃、
供給周期1.000〜5.000秒、
1周期当たりのガス供給時間0.050〜0.120秒、
ガス群Aとガス群Bの供給の位相差0.045〜0.115秒
アニール処理:
アニール温度:900〜1000℃
アニール時間:1.0〜4.0時間
アニール雰囲気圧力:4.0〜5.0kPa
ガス組成:H雰囲気
Production method:
The TiAlCN layer of the present invention can be produced, for example, by performing an annealing process as an example after the formation of the TiAlCN layer under the following conditions.
Formation of TiAlCN layer:
Reaction gas composition (volume%):
Gas group A: NH 3 : 2.00 to 5.00%, H 2 : 60 to 75%,
Gas group B: AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.07 to 0.40%,
C 2 H 4: 0.00~0.50, N 2: 0.00~12.00%, H 2: remainder,
Reaction atmosphere pressure: 4.0-5.0 kPa, Reaction atmosphere temperature: 700-850 ° C.,
Supply cycle 1.000-5.000 seconds,
Gas supply time per cycle 0.050 to 0.120 seconds,
Phase difference of supply of gas group A and gas group B 0.045 to 0.115 seconds Annealing treatment:
Annealing temperature: 900-1000 ° C
Annealing time: 1.0 to 4.0 hours Annealing atmosphere pressure: 4.0 to 5.0 kPa
Gas composition: H 2 atmosphere

次に、本発明の被覆工具を実施例により具体的に説明する。
なお、以下の実施例では、工具基体として、WC基超硬合金を用いた場合について説明するが、TiCN基サーメットおよびcBN基超高圧焼結体を工具基体として用いた場合も同様である。また、被覆工具としてはインサートに限らず、ドリル、メタルソー、リーマー、タップなどの切削工具に、本発明の被覆工具は好適に使用できることは言うまでもない。
Next, the coated tool of the present invention will be specifically described with reference to examples.
In the following examples, the case where a WC-based cemented carbide is used as the tool base will be described. However, the same applies to the case where a TiCN-based cermet and a cBN-based ultrahigh-pressure sintered body are used as the tool base. Moreover, it cannot be overemphasized that the coating tool of this invention can be used suitably for cutting tools, such as a drill, a metal saw, a reamer, a tap, as a coating tool not only an insert.

原料粉末として、いずれも0.1〜3.0μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜CおよびISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 0.1 to 3.0 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. WC-based cemented carbide with the insert shape of ISO standard SEEN1203AFSN after sintering the green compact in vacuum of 5 Pa at a predetermined temperature within the range of 1370 to 1470 ° C. for 1 hour. Tool bases A to C made of WC and cemented bases D to F made of a WC-base cemented carbide having an insert shape of ISO standard CNMG120212 were manufactured.

次に、これらの工具基体A〜Fの表面に、CVD装置を用い、TiAlCN層をCVDにより形成した。
CVD条件は、次のとおりである。
表3に示される形成条件A〜I、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、N、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(%は、ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.00〜5.00%、H:60〜75%、ガス群BとしてAlCl:0.60〜1.00%、TiCl:0.07〜0.40%、C:0.00〜0.50、N:0.00〜12.00%、H:残、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜850℃、供給周期1.000〜5.000秒、1周期当たりのガス供給時間0.050〜0.120秒、ガス群Aとガス群Bの供給の位相差0.045〜0.115秒とし、所定時間熱CVD法による蒸着形成を行った。そして、その後、表4に示されるアニール処理条件O〜W、すなわち、温度:900〜1000℃、時間:1.0〜4.0時間、雰囲気圧力:4.0〜5.0kPaのH雰囲気で、アニール処理を行った。
前記の条件でTiAlCN層を形成することにより、表6に示す平均層厚、Alの平均含有割合x、x、x1min、x2max、Cの平均含有割合y、yを有する本発明被覆工具1〜18を製造した。
なお、本発明被覆工具1〜6、9、11、12、14、15、18については、表2に示される形成条件で、表5に示される下部層および/または上部層を形成した。
Next, a TiAlCN layer was formed by CVD on the surface of these tool bases A to F using a CVD apparatus.
The CVD conditions are as follows.
Formation conditions A to I shown in Table 3, that is, a gas group A composed of NH 3 and H 2 , a gas group B composed of TiCl 4 , AlCl 3 , N 2 , and H 2 , and a method for supplying each gas , The reaction gas composition (% is the capacity% with respect to the total of the gas group A and the gas group B), NH 3 : 2.00 to 5.00%, H 2 : 60 to 75%, gas as the gas group A As group B, AlCl 3 : 0.60 to 1.00%, TiCl 4 : 0.07 to 0.40%, C 2 H 4 : 0.00 to 0.50, N 2 : 0.00 to 12.00 %, H 2 : remaining, reaction atmosphere pressure: 4.0 to 5.0 kPa, reaction atmosphere temperature: 700 to 850 ° C., supply cycle of 1.000 to 5.000 seconds, gas supply time per cycle of 0.050 0.120 seconds, phase difference of supply of gas group A and gas group B 0.0 It was set to 45 to 0.115 seconds, and vapor deposition was performed by a thermal CVD method for a predetermined time. And after that, annealing conditions O to W shown in Table 4, that is, temperature: 900 to 1000 ° C., time: 1.0 to 4.0 hours, atmospheric pressure: 4.0 to 5.0 kPa H 2 atmosphere Then, annealing treatment was performed.
By forming the TiAlCN layer under the above-described conditions, the average layer thickness, the average Al content ratio x 1 , x 2 , x 1 min , x 2max , and the average C content ratio y 1 , y 2 shown in Table 6 are shown. Invention coated tools 1-18 were produced.
In addition, about this invention coated tool 1-6, 9, 11, 12, 14, 15, 18, 18, the lower layer and / or the upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 2.

また、比較の目的で、工具基体A〜Fの表面に、表3に示される形成条件A’〜I’で化学蒸着を行うことにより、表7に示される平均層厚(μm)を有し、TiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具1〜18を製造した。
なお、本発明被覆工具と同様に、比較被覆工具1〜7、10〜15については、表2に示される形成条件で、表5に示される下部層および/または上部層を形成した。
For the purpose of comparison, chemical vapor deposition is performed on the surfaces of the tool bases A to F under the formation conditions A ′ to I ′ shown in Table 3, so that the average layer thickness (μm) shown in Table 7 is obtained. Comparative coating tools 1 to 18 were manufactured by vapor-depositing a hard coating layer including a TiAlCN layer.
In addition, similarly to this invention coated tool, about the comparison coated tools 1-7, 10-15, the lower layer and / or upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 2.

また、本発明被覆工具1〜18、比較被覆工具1〜18の各構成層の工具基体に垂直な方向の断面(縦断面:層厚方向断面)を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される平均層厚であった。また、x、x、y、y等について、前述の方法にしたがって測定した。 Moreover, the cross section (longitudinal cross section: cross section in the layer thickness direction) perpendicular to the tool base of each constituent layer of the present coated tools 1 to 18 and comparative coated tools 1 to 18 is taken with a scanning electron microscope (5000 times magnification). When the average layer thickness was determined by measuring and averaging the five layer thicknesses within the observation field of view, both were the average layer thicknesses shown in Tables 6 and 7. Further, the x 1, x 2, y 1 , y 2 , etc., were measured according to the method described above.

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

Figure 2019162709
Figure 2019162709

次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜9、比較被覆工具1〜9について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
<切削試験A>
本発明被覆工具1〜9、比較被覆工具1〜9に対して実施した。
カッタ径: 125mm
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 1146min−1
切削速度: 450m/min、
切り込み: 1.0mm、
一刃送り量: 0.1mm/刃、
切削時間: 6分、
(通常切削速度は、150−250m/min)
表8に切削試験の結果を示す。なお、比較被覆工具1〜9については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Next, the present coated tools 1 to 9 and comparative coated tools 1 to 9 are as follows in the state where each of the various coated tools is clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured.
<Cutting test A>
It implemented with respect to this invention coated tool 1-9 and comparative coated tool 1-9.
Cutter diameter: 125mm
Work material: JIS / SCM440 block material having a width of 100 mm and a length of 400 mm Rotational speed: 1146 min −1
Cutting speed: 450 m / min,
Cutting depth: 1.0mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting time: 6 minutes,
(Normal cutting speed is 150-250 m / min)
Table 8 shows the results of the cutting test. In addition, about the comparison coated tools 1-9, since it reached the lifetime due to chipping generation | occurrence | production, the time until it reaches a lifetime is shown.

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具10〜18、比較被覆工具10〜18について、以下に示す、Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の4スリット溝入り材の乾式高速断続旋削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
<切削試験B>
本発明被覆工具10〜18、比較被覆工具10〜18に対して実施した。
被削材: Ni−19Cr−19Fe−3Mo−0.9Ti−0.5Al−5.1(Nb+Ta)合金の長さ方向等間隔4本溝入り
切削速度: 100m/min、
切り込み: 0.5mm、
送り: 0.2mm/rev、
切削時間: 7分
(通常切削速度は、60m/min)
表8に切削試験の結果を示す。なお、比較被覆工具10〜18については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 10-18 and comparative coated tools 10-18 are shown below. Conducted dry high-speed intermittent turning test on Ni-19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy 4-slit grooved material and measured the flank wear width of the cutting edge in all cases did.
<Cutting test B>
It implemented with respect to this invention coated tool 10-18 and comparative coated tool 10-18.
Work material: Ni-19Cr-19Fe-3Mo-0.9Ti-0.5Al-5.1 (Nb + Ta) alloy with four grooves at regular intervals in the length direction Cutting speed: 100 m / min,
Cutting depth: 0.5mm,
Feed: 0.2mm / rev,
Cutting time: 7 minutes (normal cutting speed is 60 m / min)
Table 8 shows the results of the cutting test. In addition, about the comparison coated tools 10-18, since the lifetime was reached because of chipping, the time until the lifetime is reached is shown.

Figure 2019162709
Figure 2019162709

表8に示される結果から、本発明被覆工具1〜18は、低Al含有領域に囲まれる高Al含有領域が存在することにより、亀裂進展が抑制され、優れた耐異常損傷性を発揮し、また、高Al含有領域と低Al含有領域とのAlの最小濃度差であるx1min−x2maxが、0.05<x1min−x2max<0.30を満たすことにより、高Al含有領域と低Al含有領域の3次元的密着性が高まり、その界面が破壊起点となることを防止するため、熱伝導性が悪い切削材を含む高速断続切削加工に用いた場合であってチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1〜18は、熱伝導性が悪い切削材を含む高速断続切削加工に用いた場合にはチッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Table 8, according to the present invention coated tools 1-18, the presence of a high Al-containing region surrounded by a low Al-containing region suppresses crack propagation, and exhibits excellent abnormal damage resistance. Further, when x 1min −x 2max which is the minimum concentration difference of Al between the high Al content region and the low Al content region satisfies 0.05 <x 1min −x 2max <0.30, In order to prevent three-dimensional adhesion in the low Al-containing region and the interface from becoming a starting point of fracture, chipping occurs when used for high-speed intermittent cutting including cutting materials with poor thermal conductivity. No long-term wear resistance. On the other hand, when the comparative coated tools 1 to 18 that do not satisfy even one of the matters defined in the coated tool of the present invention are used for high-speed intermittent cutting including a cutting material with poor thermal conductivity, Chipping occurs and the service life is reached in a short time.

前述のように、本発明の被覆工具は、熱伝導性が悪い被削材を含む高負荷が作用する高速断続切削加工であっても、高速断続切削加工の被覆工具として用いることができ、しかも、長期にわたって優れた耐摩耗性を発揮するから、切削装置の高性能化並びに切削加工の省力化及び省エネ化、さらには低コスト化に十分に満足できる対応ができるものである。   As described above, the coated tool of the present invention can be used as a coated tool for high-speed intermittent cutting even in high-speed intermittent cutting where a high load including a work material with poor thermal conductivity acts. Since it exhibits excellent wear resistance over a long period of time, it is possible to sufficiently satisfy the demand for higher performance of the cutting device, labor saving and energy saving of the cutting work, and further cost reduction.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記TiとAlの複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記TiとAlの複合窒化物または複合炭窒化物層において、該相は組成式(Alx1Ti1−x1)(Cy11−y1)で表される高Al含有領域が組成式(Alx2Ti1−x2)(Cy21−y2)で表される低Al含有領域に囲まれている二相組織を有し、
AlのTiとAlの合量に占める平均含有割合x、xおよびCのCとNの合量に占める平均含有割合y、y(但し、x、x、y、yはいずれも原子比)が、それぞれ、0.70<x<0.93、0.40<x<0.85、0.0000≦y≦0.0050、0.0000≦y≦0.0050を満足し、高Al含有領域のAlのTiとAlの合量に占める含有割合xの最小値x1min、低Al含有領域のAlのTiとAlの合量に占める含有割合xの最大値x2max(但し、x1min、x2maxはいずれも原子比)が0.05<x1min−x2max<0.30を満足することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm,
(B) the Ti and Al composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure;
(C) In the composite nitride or composite carbonitride layer of Ti and Al, the phase is composed of a high Al content region represented by a composition formula (Al x1 Ti 1-x1 ) (C y1 N 1-y1 ). Having a two-phase structure surrounded by a low Al-containing region represented by the formula (Al x2 Ti 1-x2 ) (C y2 N 1-y2 ),
Average content ratios x 1 , x 2 in the total amount of Ti and Al in Al and average content ratios y 1 , y 2 in the total amount of C and N in C (where x 1 , x 2 , y 1 , y 2 are atomic ratios) of 0.70 <x 1 <0.93, 0.40 <x 2 <0.85, 0.0000 ≦ y 1 ≦ 0.0050, 0.0000 ≦ y 2, respectively. ≦ 0.0050, the content ratio x 1 min of the content ratio x 1 in the total amount of Ti and Al in the high Al content region, the content ratio in the total content of Ti and Al in the low Al content region maximum x 2max of x 2 (where, x 1min, x 2max any atomic ratio) surface-coated cutting tool, wherein a satisfies 0.05 <x 1min -x 2max <0.30 .
前記二相組織は、前記硬質被覆層の縦断面において40面積%以上存在することを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the two-phase structure is present in an area of 40 area% or more in a longitudinal section of the hard coating layer. 縦断面における前記高Al含有領域と前記低Al含有領域を含む80nm×80nmの領域において、該低Al含有領域に囲まれた該高Al含有領域の個数が10個以上1000個未満であることを特徴とする請求項1または2に記載の表面被覆切削工具。   In the 80 nm × 80 nm region including the high Al content region and the low Al content region in the longitudinal section, the number of the high Al content regions surrounded by the low Al content region is 10 or more and less than 1000. The surface-coated cutting tool according to claim 1 or 2, characterized in that 前記TiとAlの複合窒化物または複合炭窒化物層において、前記相が柱状結晶組織を有し、その結晶粒の平均粒子幅Wが0.10〜3.00μm、平均アスペクト比Aが2.0〜10.0であることを特徴とする請求項1〜3のいずれか1項に記載の表面被覆切削工具。   In the composite nitride or composite carbonitride layer of Ti and Al, the phase has a columnar crystal structure, the average grain width W of the crystal grains is 0.10 to 3.00 μm, and the average aspect ratio A is 2. It is 0-10.0, The surface-coated cutting tool of any one of Claims 1-3 characterized by the above-mentioned.
JP2018053449A 2018-03-20 2018-03-20 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance Active JP7191287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053449A JP7191287B2 (en) 2018-03-20 2018-03-20 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053449A JP7191287B2 (en) 2018-03-20 2018-03-20 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2019162709A true JP2019162709A (en) 2019-09-26
JP7191287B2 JP7191287B2 (en) 2022-12-19

Family

ID=68065155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053449A Active JP7191287B2 (en) 2018-03-20 2018-03-20 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP7191287B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264196A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
JP7325720B2 (en) 2020-02-03 2023-08-15 三菱マテリアル株式会社 surface coated cutting tools
JP7326693B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
JP7326691B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
JP7326692B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
EP4173746A4 (en) * 2021-06-14 2023-08-23 Sumitomo Electric Hardmetal Corp. Cutting tool
JP7453616B2 (en) 2020-02-03 2024-03-21 三菱マテリアル株式会社 surface coated cutting tools

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121747A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2016030319A (en) * 2014-07-30 2016-03-07 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP2016137549A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
WO2017010374A1 (en) * 2015-07-15 2017-01-19 住友電気工業株式会社 Coating
WO2017090540A1 (en) * 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121747A (en) * 2012-12-20 2014-07-03 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2016030319A (en) * 2014-07-30 2016-03-07 三菱マテリアル株式会社 Surface coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2016064485A (en) * 2014-09-25 2016-04-28 三菱マテリアル株式会社 Surface coat cutting tool having hard coat layer exhibiting superior chipping resistance
JP2016130343A (en) * 2015-01-14 2016-07-21 住友電工ハードメタル株式会社 Hard coating, cutting tool and method of manufacturing hard coating
JP2016137549A (en) * 2015-01-28 2016-08-04 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
WO2017010374A1 (en) * 2015-07-15 2017-01-19 住友電気工業株式会社 Coating
WO2017090540A1 (en) * 2015-11-25 2017-06-01 三菱日立ツール株式会社 Titanium aluminum nitride hard film, hard film coated tool, method for producing titanium aluminum nitride hard film, and method for producing hard film coated tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325720B2 (en) 2020-02-03 2023-08-15 三菱マテリアル株式会社 surface coated cutting tools
JP7453616B2 (en) 2020-02-03 2024-03-21 三菱マテリアル株式会社 surface coated cutting tools
JP7326693B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
JP7326691B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
JP7326692B2 (en) 2020-04-13 2023-08-16 住友電工ハードメタル株式会社 Cutting tool and its manufacturing method
WO2022264196A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
EP4173746A4 (en) * 2021-06-14 2023-08-23 Sumitomo Electric Hardmetal Corp. Cutting tool

Also Published As

Publication number Publication date
JP7191287B2 (en) 2022-12-19

Similar Documents

Publication Publication Date Title
JP2019162709A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5187570B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4747324B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed heavy cutting
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2017113835A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP2015100870A (en) Surface-coated cutting tool with hard coating layer exhibiting superior chipping resistance in high speed intermittent cutting
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP2020055097A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP5861982B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent peeling resistance in high-speed intermittent cutting
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer
JP2019005855A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance
JP7325720B2 (en) surface coated cutting tools
JP7132548B2 (en) surface coated cutting tools
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2020055041A (en) Surface cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP2014136268A (en) Surface coating cutting tool with hard coating layer exhibiting superior chipping resistance in heavy intermittent cutting
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176797B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7453616B2 (en) surface coated cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221013

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221120

R150 Certificate of patent or registration of utility model

Ref document number: 7191287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150