JP2016137549A - Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance - Google Patents

Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance Download PDF

Info

Publication number
JP2016137549A
JP2016137549A JP2015014365A JP2015014365A JP2016137549A JP 2016137549 A JP2016137549 A JP 2016137549A JP 2015014365 A JP2015014365 A JP 2015014365A JP 2015014365 A JP2015014365 A JP 2015014365A JP 2016137549 A JP2016137549 A JP 2016137549A
Authority
JP
Japan
Prior art keywords
layer
composite
average
period
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014365A
Other languages
Japanese (ja)
Other versions
JP6478100B2 (en
Inventor
佐藤 賢一
Kenichi Sato
佐藤  賢一
翔 龍岡
Sho Tatsuoka
翔 龍岡
健志 山口
Kenji Yamaguchi
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015014365A priority Critical patent/JP6478100B2/en
Publication of JP2016137549A publication Critical patent/JP2016137549A/en
Application granted granted Critical
Publication of JP6478100B2 publication Critical patent/JP6478100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool with a hard coating layer having excellent hardness and toughness, and exerting excellent chipping resistance and defect resistance over a long term use.SOLUTION: The hard coating layer of a surface-coated cutting tool includes at least a composite nitride layer or composite carbonitride layer represented by a compositional formula: (TiAl)(CN). The average content ratio of Al, Xand that of C, Y(both Xand Yare atomic ratios) satisfy 0.60≤X≤0.95 and 0≤Y≤0.005. The crystal grain composing the composite nitride layer or composite carbonitride layer includes the crystal grain having a cubic crystal structure, and the prescribed periodic composition changes of Ti and Al comprising two short-period layers different in average Al content are formed in the crystal grain having the cubic crystal structure.SELECTED DRAWING: Figure 2

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention is a high-speed intermittent cutting process that involves high heat generation of alloy steel and the like, and an impact load is applied to the cutting edge, and the hard coating layer has excellent chipping resistance, so that it can be used for a long time. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al-based composite nitride layer is formed by physical vapor deposition as a hard coating layer on the surface of a tool substrate (hereinafter collectively referred to as a tool substrate), These are known to exhibit excellent wear resistance.
However, the conventional coated tool formed with the Ti-Al composite nitride layer is relatively excellent in wear resistance, but it tends to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Accordingly, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、工具基体表面に、組成式(AlTi1−x)N(ただし、原子比で、xは0.40〜0.65)を満足するAlとTiの複合窒化物層からなり該複合窒化物層についてEBSDによる結晶方位解析を行った場合、表面研磨面の法線方向から0〜15度の範囲内に結晶方位<100>を有する結晶粒の面積割合が50%以上であり、また、隣り合う結晶粒同士のなす角を測定した場合に、小角粒界(0<θ≦15゜)の割合が50%以上であるような結晶配列を示すAlとTiの複合窒化物層からなる硬質被覆層を蒸着形成することにより、高速断続切削条件においても硬質被覆層がすぐれた耐欠損性を発揮することが開示されている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合xを0.65以上にすることは困難で、より一段と切削性能を向上させることが望まれている。
For example, Patent Document 1 discloses a composite nitridation of Al and Ti that satisfies the composition formula (Al x Ti 1-x ) N (wherein x is 0.40 to 0.65) on the tool base surface. When the crystal orientation analysis by EBSD is performed on the composite nitride layer made of a material layer, the area ratio of crystal grains having a crystal orientation <100> within the range of 0 to 15 degrees from the normal direction of the surface polished surface is 50. %, And when the angle between adjacent crystal grains is measured, the crystallographic arrangement in which the proportion of the small-angle grain boundaries (0 <θ ≦ 15 °) is 50% or more is made of Al and Ti. It is disclosed that by forming a hard coating layer made of a composite nitride layer by vapor deposition, the hard coating layer exhibits excellent fracture resistance even under high-speed intermittent cutting conditions.
However, since this coating tool forms a hard coating layer by physical vapor deposition, it is difficult to increase the Al content ratio x to 0.65 or more, and it is desired to further improve the cutting performance. .

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−xAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Alの含有割合xの値を0.65〜0.95まで高めた(Ti1−xAl)N層の形成によって、切削性能にどのような影響を及ぼしているかについては明らかでない。
From such a viewpoint, a technique for increasing the Al content ratio x to about 0.9 by forming a hard coating layer by a chemical vapor deposition method has also been proposed.
For example, Patent Document 2 discloses that the value of the Al content ratio x is 0.65 to 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-x Al x ) N layer of 0.95 can be formed by vapor deposition, in this document, an Al 2 O 3 layer is further formed on the (Ti 1-x Al x ) N layer. Therefore, the value of the Al content ratio x is increased from 0.65 to 0.95 to form a (Ti 1-x Al x ) N layer. It is not clear what kind of influence the cutting performance has.

また、例えば、特許文献3には、TiCN層、Al層を内層として、その上に、化学蒸着法により、立方晶構造あるいは六方晶構造を含む立方晶構造の(Ti1−xAl)N層(ただし、原子比で、xは0.65〜0.90)を外層として被覆するとともに該外層に100〜1100MPaの圧縮応力を付与することにより、被覆工具の耐熱性と疲労強度を改善することが提案されている。 Also, for example, in Patent Document 3, a TiCN layer and an Al 2 O 3 layer are used as an inner layer, and a cubic structure (Ti 1-x Al) including a cubic structure or a hexagonal structure is formed thereon by chemical vapor deposition. x ) An N layer (wherein x is 0.65 to 0.90 in atomic ratio) is coated as an outer layer and a compressive stress of 100 to 1100 MPa is applied to the outer layer, whereby the heat resistance and fatigue strength of the coated tool are obtained. It has been proposed to improve.

特開2009−56540号公報JP 2009-56540 A 特表2011−516722号公報Special table 2011-516722 gazette 特表2011−513594号公報Special table 2011-513594 gazette

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、前記特許文献1に記載されている被覆工具は、(Ti1−xAl)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAlの含有割合xを高めることが困難であるため、例えば、合金鋼の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分であるとは言えないという課題があった。
一方、前記特許文献2に記載されている化学蒸着法で蒸着形成した(Ti1−xAl)N層については、Alの含有割合xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、工具基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
さらに、前記特許文献3に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
そこで、本発明は、合金鋼等の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the coated tool has even more chipping resistance, chipping resistance, Abnormal damage resistance such as peel resistance is required, and excellent wear resistance over long-term use is required.
However, in the coated tool described in Patent Document 1, a hard coating layer composed of a (Ti 1-x Al x ) N layer is deposited by physical vapor deposition, and the Al content ratio x in the hard coating layer is determined. Since it is difficult to increase, for example, when subjected to high-speed intermittent cutting of alloy steel, there is a problem that it cannot be said that the wear resistance and chipping resistance are sufficient.
On the other hand, for the (Ti 1-x Al x ) N layer deposited by the chemical vapor deposition method described in Patent Document 2, the Al content ratio x can be increased, and a cubic structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, there is a problem that the adhesion strength with the tool base is not sufficient and the toughness is inferior.
Furthermore, although the coated tool described in Patent Document 3 has a predetermined hardness and excellent wear resistance, it is inferior in toughness, so when it is used for high-speed intermittent cutting of alloy steel, etc. However, there is a problem that abnormal damage such as chipping, chipping and peeling is likely to occur, and it cannot be said that satisfactory cutting performance is exhibited.
Therefore, the present invention provides a coated tool that has excellent toughness and excellent chipping resistance and wear resistance over a long period of use even when subjected to high-speed intermittent cutting of alloy steel or the like. The purpose is to provide.

本発明者らは、前述の観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1−xAl)(C1−y)」で示すことがある)を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 In view of the above, the present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter referred to as “(Ti, Al) (C, N)” or “(Ti 1-x Al x ) ( As a result of intensive research to improve the chipping resistance and wear resistance of a coated tool in which a hard coating layer containing a chemical layer including C y N 1-y ) ”is formed by chemical vapor deposition. The following knowledge was obtained.

即ち、本発明者らは、硬質被覆層を構成する(Ti1−xAl)(C1−y)層の組成変化に着目し鋭意研究を進めたところ、(Ti1−xAl)(C1−y)層の立方晶結晶構造を有する結晶粒粒内にTiとAlの周期的な組成変化を形成させた場合に、立方晶結晶構造を有する結晶粒内に歪みが生じ、この歪が硬さと靭性の向上に寄与し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。 That is, the present inventors, constituting the hard layer (Ti 1-x Al x) (C y N 1-y) was advanced focused intensive studies on the composition change of the layer, (Ti 1-x Al x ) When the periodic composition change of Ti and Al is formed in the crystal grains having the cubic crystal structure of the (C y N 1-y ) layer, strain is generated in the crystal grains having the cubic crystal structure. As a result, the present inventors have found a novel finding that this strain contributes to the improvement of hardness and toughness, and as a result, the chipping resistance and fracture resistance of the hard coating layer can be improved.

具体的には、硬質被覆層が、化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し、また、複合窒化物または複合炭窒化物層の工具基体表面の法線方向に沿って、前記NaCl型の面心立方構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、該周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒は、その工具基体表面の法線方向に沿った組成変化の周期が50〜200nmである周期層から構成され、さらに前記周期層は、平均Al含有量の異なる2つの短周期層A層とB層からなることによって、NaCl型の面心立方構造を有する結晶粒に歪みを生じさせ、従来の硬質被覆層に比して、硬さを向上させるとともに、異なる組成変化周期の層の存在によるクラック進展抑制効果の向上により、耐チッピング性、耐欠損性が向上し、長期に亘ってすぐれた耐摩耗性を発揮することを見出した。 Specifically, the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al formed by chemical vapor deposition, and a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratio X avg in the total amount of Ti and Al in Al and the average content ratio Y avg in the total amount of C and N in C (where X avg and Y avg are either Also satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively, and the crystal grains constituting the composite nitride or composite carbonitride layer are NaCl-type. There are those having a face-centered cubic structure, and in the crystal grains having the NaCl-type face-centered cubic structure along the normal direction of the surface of the tool base of the composite nitride or the composite carbonitride layer. formula: (Ti 1-x Al x ) (C y N 1-y There is a periodic composition change of Ti and Al in the case of the crystal grains having the NaCl-type face-centered cubic structure in which the periodic composition change exists, and the composition change along the normal direction of the surface of the tool substrate. A crystal having a NaCl-type face-centered cubic structure, which is composed of a periodic layer having a period of 50 to 200 nm, and further comprising two short-period layers A and B having different average Al contents. Improves chipping resistance and chipping resistance by causing distortion in grains and improving hardness compared to conventional hard coating layers, and by improving crack growth suppression effect due to the presence of layers with different composition change periods The inventors have found that they exhibit excellent wear resistance over a long period of time.

そして、前述のような構成の(Ti1−xAl)(C1−y)層は、例えば、工具基体表面において反応ガス組成を周期的に変化させる以下の化学蒸着法によって成膜することができる。
用いる化学蒸着反応装置へは、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群Bがおのおの別々のガス供給管から反応装置内へ供給され、ガス群Aとガス群Bの反応装置内への供給は、例えば、一定の周期の時間間隔で、その周期よりも短い時間だけガスが流れるように供給し、ガス群Aとガス群Bのガス供給にはガス供給時間よりも短い時間の位相差が生じるようにして、工具基体表面における反応ガス組成を、(イ)ガス群A、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bと時間的に変化させることができる。ちなみに、本発明においては、厳密なガス置換を意図した長時間の排気工程を導入する必要は無い。従って、ガス供給方法としては、例えば、ガス供給口を回転させたり、工具基体を回転させたり、工具基体を往復運動させたりして、工具基体表面における反応ガス組成を、(イ)ガス群Aを主とする混合ガス、(ロ)ガス群Aとガス群Bの混合ガス、(ハ)ガス群Bを主とする混合ガス、と時間的に変化させることで実現する事が可能である。
工具基体表面に、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、例えば、ガス群AとしてNH:2.0〜3.0%、H:65〜75%、ガス群BとしてAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%、N:0.0〜12.0%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜1.5秒、ガス群Aの供給とガス群Bの供給の位相差0.40〜0.60秒として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1−xAl)(C1−y)層を成膜することができる。
The structure of (Ti 1-x Al x) (C y N 1-y) layer, such as described above, for example, formed by the following chemical vapor deposition of periodically changing the reaction gas composition in the tool substrate surface can do.
The chemical vapor deposition reactor to be used includes a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 , and H 2, respectively. The gas group A and the gas group B are supplied into the reactor from, for example, a constant cycle time interval so that the gas flows for a time shorter than the cycle. In the gas supply of the group A and the gas group B, a phase difference of a time shorter than the gas supply time is generated, and the reaction gas composition on the surface of the tool base is set to (i) gas group A, (b) gas group A and The mixed gas of gas group B and (c) gas group B can be changed with time. Incidentally, in the present invention, it is not necessary to introduce a long exhaust process intended for strict gas replacement. Therefore, as the gas supply method, for example, the gas supply port is rotated, the tool base is rotated, or the tool base is reciprocated to change the reaction gas composition on the tool base surface. This can be realized by changing the mixture gas in time, (b) the mixed gas of the gas group A and the gas group B, and (c) the mixed gas mainly of the gas group B.
For example, NH 3 : 2.0 to 3.0%, H 2 : 65 to 75 as the gas group A on the surface of the tool base, the reaction gas composition (volume% with respect to the total of the gas group A and the gas group B). %, Gas group B as AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 0.0 ˜12.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 10 to 30 seconds, gas supply time per cycle 0.5 to A phase difference of 0.40 to 0.60 seconds between the supply of the gas group A and the supply of the gas group B is set to 1.5 seconds, and a predetermined target layer thickness (Ti 1− it is possible to form a x Al x) (C y N 1-y) layer.

前述のようにガス群Aとガス群Bが工具基体表面に到達する時間に差が生じるように供給する事により、結晶粒内にTiとAlの局所的な組成差が形成され、その結果、特に、耐チッピング性、耐欠損性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮し得ることを見出した。   As described above, by supplying the gas group A and the gas group B so as to have a difference in the time required to reach the tool base surface, a local compositional difference between Ti and Al is formed in the crystal grains, and as a result, In particular, even when used for high-speed intermittent cutting of alloy steel, etc., where the chipping resistance and fracture resistance are improved and the cutting edge is subjected to intermittent and impact loads, the hard coating layer can be used over a long period of time. It has been found that excellent cutting performance can be exhibited.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合Xavgおよび複合窒化物または複合炭窒化物層のCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層の工具基体表面の法線方向に沿って、前記NaCl型の面心立方構造を有する結晶粒内にTiとAlの周期的な組成変化が存在し、該周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒は、その工具基体表面の法線方向に沿った組成変化の周期が50〜200nmである長周期層から構成され、さらに前記長周期層は、平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層における周期は3〜20nmであり、A層およびB層におけるAl含有量xの極大値の平均および極小値の平均のそれぞれの差Δx、Δxは、0.02<Δx<0.1、0.02<Δx<0.1を満たし、さらに、A層とB層から構成される長周期層におけるAl含有量xの極大値の平均および極小値の平均の差Δxは、0.05<Δx<0.25を満たし、かつ、Δx>(Δx+Δx)であることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示すことを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期は平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層から成る長周期層の周期は50〜200nmであり、その方位に直交する面内での短周期層A層とB層のAlのTiとAlの合量に占める含有割合平均Xo、Xoの変化はそれぞれ0.01以下であること特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a≦0.4aTiN+0.6aAlNの関係を満たすことを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5) 前記複合窒化物または複合炭窒化物層について該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が30面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする(1)〜(4)のいずれかに記載の表面被覆切削工具。
(6) 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)〜(5)のいずれかに記載の表面被覆切削工具。
(7) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)〜(6)のいずれかに記載の表面被覆切削工具。
(8) 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする(1)〜(7)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body In
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio X avg and the composite nitride or composite carbonitride layer in the total amount of Ti and Al of Al in the composite nitride or composite carbonitride layer The average content ratio Y avg (where X avg and Y avg are atomic ratios) in the total amount of C and N in C are 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦, respectively. 0.005 is satisfied,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) A periodic composition change of Ti and Al in the crystal grains having the NaCl type face-centered cubic structure along the normal direction of the surface of the tool base of the composite nitride or composite carbonitride layer. The crystal grains having the NaCl-type face-centered cubic structure in which the periodic composition change exists have a long-period layer in which the composition change period along the normal direction of the tool base surface is 50 to 200 nm Further, the long period layer is composed of two short period layers A layer and B layer having different average Al contents, and the period in the A layer and the B layer is 3 to 20 nm. Differences Δx 1 and Δx 2 between the average of the maximum value and the average of the minimum value of the Al content x in the B layer are 0.02 <Δx 1 <0.1 and 0.02 <Δx 2 <0.1, respectively. To a long-period layer composed of A layer and B layer Takes the difference [Delta] x 3 average mean and minimum value of the maximum value of the Al content x is 0.05 <met [Delta] x 3 <0.25, and wherein the [Delta] x 3> is (Δx 1 + Δx 2) A surface-coated cutting tool.
(2) For the composite nitride or composite carbonitride layer, using an electron beam backscatter diffractometer, individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer are used. When the crystal orientation is analyzed from the longitudinal section direction of the Ti and Al composite nitride or composite carbonitride layer, the normal line of the {100} plane which is the crystal plane of the crystal grain with respect to the normal direction of the tool base surface Measures the tilt angle formed by, and divides the tilt angle within the range of 0 to 45 degrees with respect to the normal direction among the tilt angles by pitch of 0.25 degrees, and counts the frequencies existing in each section When the inclination angle number distribution is obtained, the highest peak exists in the inclination angle section within the range of 0 to 12 degrees, and the highest peak exists in the inclination angle section within the range of 0 to 12 degrees. The total number of frequencies existing within the range of 0-12 degrees is The surface-coated cutting tool according to (1), which exhibits a ratio of 35% or more of the entire frequency in the inclination angle distribution.
(3) In a crystal grain having a NaCl-type face-centered cubic structure in which a periodic composition change of Ti and Al in the composite nitride or composite carbonitride layer exists, a periodic composition change of Ti and Al occurs. Two short-period layers A and B layers that exist along one of the equivalent crystal orientations represented by <001> of the crystal grains, and whose period along the orientation is different in average Al content The period of the long-period layer composed of the A layer and the B layer is 50 to 200 nm, and the combination of the Ti and Al of the short-period layer A layer and the B layer Al in a plane orthogonal to the orientation thereof. The surface-coated cutting tool according to (1) or (2), wherein changes in the content ratio average Xo A and Xo B in the amount are each 0.01 or less.
(4) For the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having a NaCl type face centered cubic structure is obtained from X-ray diffraction, and the crystal grains having the NaCl type face centered cubic structure are obtained. The lattice constant a satisfies the relationship of 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN with respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN. The surface-coated cutting tool according to any one of (1) to (3).
(5) When the composite nitride or composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer There are fine crystal grains having a hexagonal crystal structure at the grain boundary portion of the columnar structure, and the area ratio of the fine crystal grains is 30 area% or less, and the average grain size R of the fine crystal grains is 0. The surface-coated cutting tool according to any one of (1) to (4), wherein the surface-coated cutting tool is 01 to 0.3 μm.
(6) Ti carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti and Al The surface according to any one of (1) to (5), wherein there is a lower layer having a total average layer thickness of 0.1 to 20 μm. Coated cutting tool.
(7) The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. (1) to (6) The surface coating cutting tool in any one.
(8) The composite nitride or the composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reactive gas component. (1) to (7) The surface coating cutting tool in any one. "
It has the characteristics.

本発明について、以下に詳細に説明する。   The present invention will be described in detail below.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の平均層厚:
図1に、本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面模式図を示す。
本発明の硬質被覆層は、化学蒸着された組成式:(Ti1−xAl)(C1−y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
Average layer thickness of the composite nitride or composite carbonitride layer constituting the hard coating layer:
In FIG. 1, the cross-sectional schematic diagram of the composite nitride or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention is shown.
The hard coating layer of the present invention comprises at least a composite nitride or composite carbonitride layer of Ti and Al represented by a chemical vapor deposition composition formula: (Ti 1-x Al x ) (C y N 1-y ). Including. This composite nitride or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is particularly remarkable when the average layer thickness is 1 to 20 μm. The reason is that if the average layer thickness is less than 1 μm, the layer thickness is so thin that sufficient wear resistance over a long period of use cannot be ensured. On the other hand, if the average layer thickness exceeds 20 μm, Ti and Crystal grains of the Al composite nitride or composite carbonitride layer are likely to be coarsened, and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合Xavgが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は耐酸化性に劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xavgが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。したがって、Alの平均含有割合Xavgは、0.60≦Xavg≦0.95と定めた。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合Yavgが0≦Yavg≦0.005の範囲を外れると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005と定めた。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
Composition of composite nitride or composite carbonitride layer constituting hard coating layer:
The composite nitride or composite carbonitride layer constituting the hard coating layer of the present invention has an average content ratio X avg in the total amount of Ti and Al in Al and an average content ratio Y in the total amount of C and N in C Control is performed so that avg (where X avg and Y avg are atomic ratios) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
The reason is that when the average content ratio X avg of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in oxidation resistance, so that it is used for high-speed intermittent cutting of alloy steel and the like. In such a case, the wear resistance is not sufficient. On the other hand, when the average content ratio X avg of Al exceeds 0.95, the precipitation amount of hexagonal crystals inferior in hardness increases and the hardness decreases, so that the wear resistance decreases. Therefore, the average content ratio X avg of Al was determined as 0.60 ≦ X avg ≦ 0.95.
Further, when the average content ratio Y avg of the C component contained in the composite nitride or the composite carbonitride layer is a minute amount in the range of 0 ≦ Y avg ≦ 0.005, the composite nitride or the composite carbonitride layer The adhesion with the tool base or the lower layer is improved, and the lubrication improves the impact during cutting. As a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer are reduced. improves. On the other hand, when the average content ratio Y avg of the component C is out of the range of 0 ≦ Y avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reversed. Since it falls, it is not preferable. Therefore, the average content ratio Y avg of C was determined as 0 ≦ Y avg ≦ 0.005. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as Y avg .

また、前記複合窒化物または複合炭窒化物層の工具基体表面の法線方向に沿って、前記NaCl型の面心立方構造を有する結晶粒内にTiとAlの周期的な組成変化が存在し、周期的な組成変化が存在する前記立方晶構造を有する結晶粒において、図2に示すように、TiとAlの組成変化の周期は、工具基体表面の法線方向に沿った周期が50〜200nmである長周期層であり、さらに前記長周期層は平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層のそれぞれにおける周期は3〜20nmであり、A層およびB層におけるAl含有量xの極大値の平均および極小値の平均のそれぞれの差Δx、Δxは、0.02<Δx<0.1、0.02<Δx<0.1を満たし、周期層におけるAl含有量xの極大値の平均および極小値の平均の差Δxは、0.05<Δx<0.25を満たし、かつ、Δx>(Δx+Δx)とする。
ここで、短周期層の周期が3nm未満では靭性が低下し、耐欠損性の向上が望めない。一方、その周期が20nmを超える場合は異なる組成変化周期層が存在することによるクラック進展抑制効果が低減し、耐チッピング性が低下する。また、2つの短周期層から構成される長周期層についても、その周期が50nm未満では、異なる組成変化周期層を形成することによる靱性向上の効果が小さいため、耐欠損性および耐チッピング性の向上が望めず、一方、その周期が200nmを超えるとクラック進展を抑制することができず、耐欠損性、耐剥離性が低下する。
したがって、TiとAlの組成変化の周期は、工具基体表面の法線方向に沿った短周期層は3〜20nm、また、2つの短周期層から構成される長周期層は50〜200nmとする。
Further, there is a periodic composition change of Ti and Al in the crystal grains having the NaCl-type face-centered cubic structure along the normal direction of the surface of the tool base of the composite nitride or composite carbonitride layer. In the crystal grains having the cubic structure in which a periodic composition change exists, as shown in FIG. 2, the composition change period of Ti and Al is 50 to 50 along the normal direction of the tool base surface. The long-period layer is 200 nm, and the long-period layer is composed of two short-period layers A and B having different average Al contents, and the period of each of the A and B layers is 3 to 20 nm. The differences Δx 1 and Δx 2 between the average of the maximum value and the average of the minimum value of the Al content x in the A layer and the B layer are 0.02 <Δx 1 <0.1, 0.02 <Δx It met 2 <0.1, Al in periodic layer The difference [Delta] x 3 average mean and minimum value of the maximum value of Yuryou x is 0.05 satisfies the <[Delta] x 3 <0.25, and, [Delta] x 3> and (Δx 1 + Δx 2).
Here, if the period of the short-period layer is less than 3 nm, the toughness is lowered, and improvement in fracture resistance cannot be expected. On the other hand, when the period exceeds 20 nm, the crack progress suppressing effect due to the presence of different composition change periodic layers is reduced, and chipping resistance is lowered. In addition, for a long-period layer composed of two short-period layers, if the period is less than 50 nm, the effect of improving toughness by forming different composition-change period layers is small. On the other hand, if the period exceeds 200 nm, the progress of cracks cannot be suppressed, and the fracture resistance and peel resistance are reduced.
Therefore, the composition change period of Ti and Al is 3 to 20 nm for the short period layer along the normal direction of the surface of the tool base, and 50 to 200 nm for the long period layer composed of the two short period layers. .

また、短周期層を構成するA層およびB層のそれぞれにおけるxの極大値の平均および極小値の平均の差Δx、Δxが0.02以下であると組成差が小さいためクラック進展の抑制効果が小さくなり、耐チッピング性が低下する。一方、Δx、Δxが0.1以上であると、層の厚さに対して結晶粒の歪が大きくなりすぎ、格子欠陥が増加し硬さが低下する。
また、長周期層におけるxの極大値の平均および極小値の平均の差Δxが、0.05以下であると結晶粒の歪みが小さく十分な硬さ向上効果が見込めず、一方、Δxが0.25以上であると結晶粒の格子歪が大きくなりすぎ、格子欠陥が増加する為、硬さが低下し、さらに、Δx>(Δx+Δx)が成立しない場合には、短周期層がA層とB層の2層にわかれないため、クラック進展の抑制効果が小さい。
したがって、短周期層をA層とB層の2層から構成するとともに、A層およびB層のそれぞれにおけるxの極大値の平均および極小値の平均の差Δx、Δxは、0.02<Δx<0.1、0.02<Δx<0.1とし、また、短周期層のA層とB層から構成される周期層におけるxの極大値の平均および極小値の平均の差Δxは、0.05<Δx<0.25を満たし、かつ、Δx>(Δx+Δx)とする。
In addition, if the difference Δx 1 , Δx 2 between the average of the maximum value and the average value of x in each of the A layer and the B layer constituting the short period layer is 0.02 or less, the difference in composition is small, so The suppression effect is reduced and chipping resistance is reduced. On the other hand, if Δx 1 and Δx 2 are 0.1 or more, the distortion of crystal grains becomes too large with respect to the thickness of the layer, lattice defects increase, and hardness decreases.
Further, if the difference Δx 3 between the average of the maximum value and the minimum value of x in the long-period layer is 0.05 or less, the distortion of the crystal grains is small and a sufficient hardness improvement effect cannot be expected, whereas Δx 3 Is greater than or equal to 0.25, the lattice strain of the crystal grains becomes too large and the number of lattice defects increases, so that the hardness decreases, and if Δx 3 > (Δx 1 + Δx 2 ) does not hold, the short Since the periodic layer is not divided into two layers of the A layer and the B layer, the effect of suppressing crack propagation is small.
Accordingly, the short-period layer is composed of two layers of the A layer and the B layer, and the difference between the average maximum value and the average minimum value Δx 1 and Δx 2 of each of the A layer and the B layer is 0.02 <Δx 1 <0.1, 0.02 <Δx 2 <0.1, and the average of the local maximum value and the average of the local minimum values in the periodic layer composed of the A layer and the B layer of the short periodic layer The difference Δx 3 satisfies 0.05 <Δx 3 <0.25, and Δx 3 > (Δx 1 + Δx 2 ).

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内の立方晶構造を有する個々の結晶粒結晶面である{100}面についての傾斜角度数分布:
本発明の前記(Ti1−xAl)(C1−y)層について、電子線後方散乱回折装置を用いて立方晶構造を有する個々の結晶粒の結晶方位を、その縦断面方向から解析した場合、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角(図3(a)、(b)参照)を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜12度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の35%以上の割合となる傾斜角度数分布形態を示す場合に、前記TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層は、立方晶構造を維持したままで高硬度を有し、しかも、前述したような傾斜角度数分布形態によって硬質被覆層と基体との密着性が飛躍的に向上することから、本発明の立方晶構造を有する結晶粒は、前記のような傾斜角度数分布形態を備えることが望ましい。
図5に、本発明の一実施形態である立方晶構造を有する結晶粒について上記の方法で測定し、求めた傾斜角度数分布の一例をグラフとして示す。
{100} which is an individual crystal grain plane having a cubic structure in a Ti / Al composite nitride or composite carbonitride layer ((Ti 1-x Al x ) (C y N 1-y ) layer) Inclination angle number distribution on the surface:
Regarding the (Ti 1-x Al x ) (C y N 1-y ) layer of the present invention, the crystal orientation of individual crystal grains having a cubic structure using an electron beam backscattering diffractometer, and the longitudinal sectional direction thereof When analyzing from the above, the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal of the tool base surface (the direction perpendicular to the tool base surface on the cross-section polished surface) (FIG. 3A) , (B)) is measured, and among the tilt angles, the tilt angles within the range of 0 to 45 degrees with respect to the normal direction are divided into pitches of 0.25 degrees and exist in each section. When the frequencies to be counted are aggregated, the highest peak is present in the inclination angle section within the range of 0 to 12 degrees, and the total of the frequencies existing within the range of 0 to 12 degrees is the total of the frequencies in the inclination angle distribution. In the case of showing an inclination angle number distribution form having a ratio of 35% or more, the T The hard coating layer made of a composite nitride or composite carbonitride layer of Al and Al has a high hardness while maintaining a cubic structure, and further, the hard coating layer and the substrate have the inclination angle number distribution form as described above. Therefore, it is desirable that the crystal grains having the cubic structure of the present invention have the inclination angle number distribution form as described above.
FIG. 5 is a graph showing an example of the inclination angle number distribution obtained by measuring the crystal grains having a cubic structure according to an embodiment of the present invention by the above method.

また、図4に示すように、TiとAlの周期的な組成変化は、立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在すると、結晶粒の歪みによる格子欠陥が生じにくく、靭性、耐チッピング性が向上して好ましい。しかしながら、平均Al含有量の異なる2つの短周期層A層とB層から構成される長周期層の周期が50nm未満であると靭性が低下する。一方、200nmを超えると硬さの向上効果が見込めない。したがって、立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在する平均Al含有量の異なる2つの短周期層A層とB層から構成される長周期層の周期は、50〜200nmであることが好ましい。
また、前記のTiとAlの周期的な組成変化が存在する方位に直交する面内ではTiとAlの組成は実質的に変化せず、上記直交する面内での短周期層A層とB層のAlのTiとAlの合量に占める含有割合平均Xoの変化は0.01以下である。
As shown in FIG. 4, when the periodic composition change of Ti and Al is present along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, the crystal grains It is preferable that lattice defects due to the strain of the material hardly occur, and toughness and chipping resistance are improved. However, if the period of a long-period layer composed of two short-period layers A and B having different average Al contents is less than 50 nm, the toughness decreases. On the other hand, if it exceeds 200 nm, the effect of improving the hardness cannot be expected. Therefore, a length composed of two short-period layers A and B having different average Al contents present along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains. The period of the periodic layer is preferably 50 to 200 nm.
Further, the composition of Ti and Al does not substantially change in the plane orthogonal to the orientation in which the periodic composition change of Ti and Al exists, and the short-period layer A and B in the orthogonal plane are not changed. The change in the content ratio average Xo in the total amount of Ti and Al in the Al layer is 0.01 or less.

複合炭窒化物層内の立方晶結晶粒の格子定数a:
前記複合炭窒化物層について、X線回折装置を用い、Cu−Kα線を線源としてX線回折試験を実施し、立方晶結晶粒の格子定数aを求めたとき、前記立方晶結晶粒の格子定数aが、立方晶TiN(JCPDS00−038−1420)の格子定数aTiN:4.24173Åと立方晶AlN(JCPDS00−046−1200)の格子定数aAlN:4.045Åに対して、0.05aTiN+0.95aAlN≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすとき、より高い硬さを示し、かつ高い熱伝導性を示すことで、すぐれた耐摩耗性に加えて、すぐれた耐熱衝撃性を備える。なお、X線回折装置を用いて、測定範囲13°≦2θ≦130°、測定幅0.02°、測定時間0.5秒/stepの条件でX線回折を行い、得られた回折ピークから立方晶構造を有するTiとAlとMeの複合窒化物層または複合炭窒化物層に帰属するピークおよび結晶面を同定し、各々のピークに対して、使用するCu−Kα線の波長とピークの角度より結晶面の面間隔を算出し、面間隔の値から算出した格子定数の平均値を格子定数aとした。
Lattice constant a of cubic crystal grains in the composite carbonitride layer:
The composite carbonitride layer was subjected to an X-ray diffraction test using an X-ray diffractometer and Cu-Kα rays as a radiation source, and the lattice constant a of the cubic crystal grains was obtained. The lattice constant a is 0.000 for the lattice constant a TiN of the cubic TiN (JCPDS00-038-1420): 4.24173 and the lattice constant a AlN of the cubic AlN (JCPDS00-046-1200): 4.045. 05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a When satisfying the relationship of AlN , it exhibits higher hardness and high thermal conductivity, in addition to excellent wear resistance, Excellent thermal shock resistance. Using an X-ray diffractometer, X-ray diffraction was performed under conditions of a measurement range of 13 ° ≦ 2θ ≦ 130 °, a measurement width of 0.02 °, and a measurement time of 0.5 seconds / step. The peaks and crystal planes belonging to the composite nitride layer or composite carbonitride layer of Ti, Al, and Me having a cubic structure are identified, and for each peak, the wavelength and peak of the Cu-Kα line used The interplanar spacing of the crystal planes was calculated from the angle, and the average value of the lattice constants calculated from the interplanar spacing values was defined as the lattice constant a.

TiとAlの複合窒化物または複合炭窒化物層((Ti1−xAl)(C1−y)層)内の立方晶粒界に存在する微粒六方晶:
本発明の硬質被膜層(Ti1−xAl)(C1−y)層では、柱状組織の立方晶の粒界中に六方晶構造の微粒結晶粒を含有することができるが、柱状組織の立方晶粒界に靱性に優れた微粒六方晶が存在することで粒界における摩擦が低減し、靱性が向上する。このときの六方晶構造の微粒結晶粒の面積割合が30面積%を超えると相対的に硬さが低下し好ましくなく、また、六方晶構造の微粒結晶粒の平均粒径Rが0.01μm未満であると靱性向上の効果が見られず、0.3μmを超えると、硬さが低下し、耐摩耗性が損なわれるため、平均粒径Rは0.01〜0.3μmとすることが好ましい。
なお、本発明でいう粒界中に存在する六方晶構造の微粒結晶粒は、透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定することができ、また、六方晶構造の微粒結晶粒の平均粒子径は、粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、それらの平均値を算出することによって求めることができる。
Fine hexagonal crystals present at cubic grain boundaries in a composite nitride or composite carbonitride layer of Ti and Al ((Ti 1-x Al x ) (C y N 1-y ) layer):
In the hard coating layer (Ti 1-x Al x ) (C y N 1-y ) layer of the present invention, hexagonal crystal grains can be contained in the cubic grain boundaries of the columnar structure. The presence of fine hexagonal crystals with excellent toughness at the cubic grain boundaries in the columnar structure reduces friction at the grain boundaries and improves toughness. At this time, if the area ratio of the fine crystal grains having a hexagonal structure exceeds 30 area%, the hardness is relatively lowered, and the average grain size R of the fine crystal grains having a hexagonal structure is less than 0.01 μm. If it is, the effect of improving toughness is not seen, and if it exceeds 0.3 μm, the hardness decreases and the wear resistance is impaired, so the average particle size R is preferably 0.01 to 0.3 μm. .
Incidentally, the hexagonal structure fine grains existing in the grain boundary referred to in the present invention can be identified by analyzing the electron diffraction pattern using a transmission electron microscope, and the hexagonal structure fine grains. The average particle diameter of the crystal grains can be obtained by measuring the particle diameters of the particles existing within the measurement range of 1 μm × 1 μm including the grain boundaries and calculating the average value thereof.

下部層および上部層:
本発明の複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower layer and upper layer:
The composite nitride or composite carbonitride layer of the present invention alone has a sufficient effect, but one of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer. An upper layer comprising a layer or two or more Ti compound layers and having a lower layer having a total average layer thickness of 0.1 to 20 μm and / or an aluminum oxide layer having an average layer thickness of 1 to 25 μm In the case where layers are provided, it is possible to create better characteristics in combination with the effects of these layers. When providing a lower layer made of one or two or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer, the total average layer of the lower layer If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently achieved. On the other hand, if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently achieved. On the other hand, if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. .

本発明のTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することができる。
図1には、本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面の模式図を示す。
The hard coating layer including the composite nitride or composite carbonitride layer of Ti and Al of the present invention can be formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component.
In FIG. 1, the schematic diagram of the cross section of the composite nitride or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention is shown.

本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層が、化学蒸着法により成膜されたTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、複合窒化物または複合炭窒化物層を構成する結晶粒中にNaCl型の面心立方構造を有するものが存在し、また、複合窒化物または複合炭窒化物層の工具基体表面の法線方向に沿って、前記NaCl型の面心立方構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在し、組成変化の周期は50〜200nmであり、さらに前記周期層は平均Al含有量の異なる2つの短周期層A層とB層から構成されていることによって、NaCl型の面心立方構造を有する結晶粒に歪みを生じさせることによって、結晶粒の硬さが向上し、高い耐摩耗性を保ちつつ、靭性が向上する。
その結果、耐チッピング性、耐欠損性が向上し、切れ刃に断続的・衝撃的負荷が作用する合金鋼等の高速断続切削加工に用いた場合においても、硬質被覆層が、長期の使用に亘ってすぐれた切削性能を発揮するのである。
The present invention provides a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base, wherein the hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al formed by chemical vapor deposition. Including, when represented by the composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content ratio X avg in the total amount of Ti and Al in Al and the total amount of C and N in C The average content ratio Y avg (where X avg and Y avg are both atomic ratios) satisfy 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively, and complex nitriding In the crystal grains constituting the product or the composite carbonitride layer, there are those having a NaCl-type face-centered cubic structure, and along the normal direction of the surface of the tool base of the composite nitride or the composite carbonitride layer. And having the NaCl type face centered cubic structure In Akiratsubu composition formula: (Ti 1-x Al x ) (C y N 1-y) periodic composition variation of Ti and Al are present in the period of the change in composition is 50 to 200 nm, further The periodic layer is composed of two short-period layers A and B layers having different average Al contents, thereby causing distortion in crystal grains having a NaCl type face-centered cubic structure. Hardness is improved and toughness is improved while maintaining high wear resistance.
As a result, the chipping resistance and fracture resistance are improved, and the hard coating layer can be used for long-term use even when used for high-speed intermittent cutting of alloy steel and the like where intermittent and impact loads are applied to the cutting edge. It shows excellent cutting performance.

本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面を模式的に表した膜構成模式図である。It is the film | membrane structure schematic diagram which represented typically the cross section of the composite nitride or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention. 本発明の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の結晶粒における、A層とB層の2層から構成される短周期層(周期:3〜20nm)と長周期層(周期:50〜200nm)からなる周期的な組成変化の概略模式図を示す。A short period layer (period: 3 to 20 nm) composed of two layers of an A layer and a B layer in crystal grains of a composite nitride layer or composite carbonitride layer of Ti and Al constituting the hard coating layer of the present invention And a schematic diagram of a periodic composition change composed of a long-period layer (period: 50 to 200 nm). 工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角が(a)0度の場合(b)45度の場合を示した模式図である。When the inclination angle formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal of the tool base surface (the direction perpendicular to the tool base surface on the cross-section polished surface) is (a) 0 degree (b) It is the schematic diagram which showed the case of 45 degree | times. 本発明の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、TiとAlの周期的な組成変化が存在する立方晶構造を有する結晶粒について、TiとAlの周期的な組成変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に直交する面内でのTiとAlの組成変化は小さいことを模式的に表した模式図である。In the cross section of the composite nitride layer or composite carbonitride layer of Ti and Al constituting the hard coating layer of the present invention, a crystal grain having a cubic structure in which a periodic composition change of Ti and Al exists, Ti and A periodic composition change of Al exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains, and the composition of Ti and Al in a plane orthogonal to the orientation. It is a schematic diagram schematically showing that the change is small. 本発明の硬質被覆層を構成するTiとAlの複合窒化物層または複合炭窒化物層の断面において、立方晶構造を有する結晶粒について求めた傾斜角度数分布の一例を示すグラフである。It is a graph which shows an example of the inclination angle number distribution calculated | required about the crystal grain which has a cubic structure in the cross section of the composite nitride layer or composite carbonitride layer of Ti and Al which comprises the hard coating layer of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, manufacture tool bases A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
表4に示される形成条件A〜J、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0〜3.0%、H:65〜75%、ガス群BとしてAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%、N:0.0〜12.0%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜1.5秒、ガス群Aの供給とガス群Bの供給の位相差0.40〜0.60秒として、所定時間、熱CVD法を行い、表6に示される(Ti1−xAl)(C1−y)層を成膜することにより本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
Formation conditions A to J shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , a gas group B composed of TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 , H 2 , and each method of supplying gas, the reaction gas composition (volume% to the total of the combined gas group a and gas group B), NH 3 as a gas group a: 2.0~3.0%, H 2: 65~75 %, Gas group B as AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, Al (CH 3 ) 3 : 0 to 0.5%, N 2 : 0.0 ˜12.0%, H 2 : remaining, reaction atmosphere pressure: 4.5 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 10 to 30 seconds, gas supply time per cycle 0.5 to 1.5 seconds, phase difference between supply of gas group A and supply of gas group B 0.40 to 0.60 seconds And, a predetermined time, by thermal CVD method, to produce a present invention coated tool 15 by depositing (Ti 1-x Al x) (C y N 1-y) layer shown in Table 6 .
In addition, about this invention coated tools 6-13, the lower layer and upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 3.

前記本発明被覆工具1〜15の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層について、透過型電子顕微鏡を用いて複数視野に亘って観察したところ、立方晶構造を有する結晶粒からなる柱状組織の粒界部に六方晶構造の微粒結晶粒が存在する面積割合は30面積%以下であり、かつ、六方晶構造の微粒結晶粒の平均粒径Rは0.01〜0.3μmであることが確認された。なお、本発明でいう粒界中に存在する微粒六方晶の同定は透過型電子顕微鏡を用いて電子線回折図形を解析することにより同定した。微粒六方晶の平均粒子径は粒界を含んだ1μm×1μmの測定範囲内に存在する粒子について、粒径を測定し、微粒六方晶の総面積を算出した値から面積割合を求めた。なお、粒径は六方晶と同定した粒に対して外接円を作成し、その外接円の半径を求め、その平均値を粒径とした。   When the Ti and Al composite nitride or composite carbonitride layer constituting the hard coating layer of the inventive coated tool 1-15 is observed over a plurality of fields using a transmission electron microscope, a cubic structure is obtained. The area ratio in which the hexagonal structure fine crystal grains are present in the grain boundary portion of the columnar structure comprising the crystal grains is 30 area% or less, and the average grain size R of the hexagonal crystal grains is 0.01 It was confirmed to be ~ 0.3 μm. In addition, the identification of the fine-grained hexagonal crystal which exists in the grain boundary as used in the field of this invention was identified by analyzing an electron beam diffraction pattern using a transmission electron microscope. The average particle size of the fine hexagonal crystals was determined by measuring the particle size of particles present in the measurement range of 1 μm × 1 μm including the grain boundaries and calculating the total area of the fine hexagonal crystals. For the grain size, a circumscribed circle was created for the grains identified as hexagonal crystals, the radius of the circumscribed circle was determined, and the average value was taken as the grain size.

また、比較の目的で、工具基体A〜Dの表面に、表3および表4に示される比較成膜工程の条件で、表7に示される目標層厚(μm)で本発明被覆工具1〜15と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成し比較被覆工具1〜15を製造した。この時には、(Ti1−xAl)(C1−y)層の成膜工程中に、工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13と同様に、比較被覆工具6〜13については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Further, for the purpose of comparison, the coated tools 1 to 4 of the present invention are formed on the surfaces of the tool bases A to D with the target layer thickness (μm) shown in Table 7 under the conditions of the comparative film forming process shown in Tables 3 and 4. 15, comparative coating tools 1 to 15 were manufactured by vapor-depositing a hard coating layer including at least a composite nitride or composite carbonitride layer of Ti and Al. At this time, by forming a hard coating layer so that the reaction gas composition on the surface of the tool base does not change with time during the film forming process of the (Ti 1-x Al x ) (C y N 1-y ) layer. Comparative coated tools 1-15 were produced.
In addition, similarly to this invention coated tool 6-13, about the comparison coated tool 6-13, the lower layer and upper layer which were shown in Table 5 were formed on the formation conditions shown in Table 3.

本発明被覆工具1〜15、比較被覆工具1〜15の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ平均層厚を示した。
また、複合窒化物または複合炭窒化物層の平均Al含有割合Xavgについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合Xavgを求めた。平均C含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合YavgはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CHの供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CHを意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
The cross sections in the direction perpendicular to the tool base of each constituent layer of the inventive coated tools 1 to 15 and comparative coated tools 1 to 15 were measured using a scanning electron microscope (magnification 5000 times), and 5 points within the observation field of view. When the average layer thickness was measured and averaged to determine the average layer thickness, the average layer thickness was substantially the same as the target layer thickness shown in Tables 6 and 7.
In addition, regarding the average Al content ratio X avg of the composite nitride or the composite carbonitride layer, an electron beam was sampled in a sample whose surface was polished using an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer). Irradiation was performed from the surface side, and an average Al content ratio X avg of Al was obtained from an average of 10 points of the analysis result of the obtained characteristic X-rays. About average C content rate Yavg, it calculated | required by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average C content ratio Y avg indicates the average value in the depth direction of the composite nitride or composite carbonitride layer of Ti and Al. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as Y avg .

また、硬質被覆層の傾斜角度数分布については、立方晶構造のTiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体表面に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面と水平方向に長さ100μm、工具基体表面と垂直な方向の断面に沿って膜厚以下の距離の測定範囲内の該硬質被覆層について0.01μm/stepの間隔で、基体表面の法線(断面研磨面における基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、0〜12度の範囲内に存在する度数のピークの存在の有無を確認し、かつ0〜12度の範囲内に存在する度数の割合を求めた。その結果を、同じく、表6および表7に示す。 In addition, regarding the inclination angle number distribution of the hard coating layer, the cross section in the direction perpendicular to the tool base surface of the hard coating layer made of a composite nitride or composite carbonitride layer of cubic Ti and Al was used as the polished surface. In the state, it is set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface within the measurement range of the sectional polished surface with an irradiation current of 1 nA. Irradiate each individual crystal grain having a cubic crystal lattice, and use an electron backscatter diffraction imaging apparatus to measure the film thickness along the cross section in a direction perpendicular to the tool substrate surface and a length of 100 μm in the horizontal direction from the tool substrate surface. With respect to the normal surface of the substrate surface (direction perpendicular to the substrate surface in the cross-section polished surface) at an interval of 0.01 μm / step with respect to the hard coating layer within the measurement range of the following distance, Normal of some {100} plane Are measured, and based on the measurement results, the measured inclination angles within the range of 0 to 45 degrees are classified for each 0.25 degree pitch among the measured inclination angles. By counting the frequencies existing in the range, the presence or absence of a frequency peak existing in the range of 0 to 12 degrees was confirmed, and the ratio of the frequencies existing in the range of 0 to 12 degrees was determined. The results are also shown in Tables 6 and 7.

また、透過型電子顕微鏡を用いて、加速電圧200kVの条件において複合窒化物または複合炭窒化物層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行うことによって、前記立方晶構造を有する結晶粒内に、組成式:(Ti1−xAl)(C1−y)におけるTiとAlの周期的な組成変化が存在することを確認した。
さらに、周期的な組成変化が存在する前記立方晶構造を有する結晶粒について、同じく透過型電子顕微鏡を用いた微小領域の観察と、エネルギー分散型X線分光法(EDS)を用いた断面側からの面分析により、TiとAlの組成変化の周期を求め、TiとAlの組成変化の周期は、より周期の短い短周期層A層とB層の2層から構成されていることを確認した。また、上記A層およびB層のそれぞれにおけるxの極大値の平均および極小値の平均の差Δx、Δxを求めるとともに、2つの短周期層から構成される周期層におけるxの極大値の平均および極小値の平均の差Δxについても求めた。
具体的な測定手法は以下のとおりである。
該結晶粒について、前記面分析の結果に基づいて組成の濃淡から10周期分程度の組成変化が測定範囲に入る様に倍率を設定した上で、工具基体表面の法線方向に沿ってEDSによる線分析を5周期分の範囲で行い、TiとAlの周期的な組成変化の極大値と極小値のそれぞれの平均値の差を2つの短周期層から構成される長周期層の組成変化の極大値と極小値の差Δxとして求めた。また、2つの短周期層から構成される長周期層の組成変化の極大値側に組成の周期が存在する層をA層、長周期層の組成変化の極小値側に組成の周期が存在する層をB層とし、前記線分析を行った範囲においてA層およびB層の組成変化の極大値および極小値の平均値を算出し、その差をそれぞれΔx、Δxとして求めた。その結果を、同じく、表6および表7に示す。
In addition, a transmission electron microscope was used to observe a minute region of the composite nitride or composite carbonitride layer under the condition of an acceleration voltage of 200 kV, and from the cross-sectional side using energy dispersive X-ray spectroscopy (EDS). By performing surface analysis, periodic compositional changes of Ti and Al in the composition formula: (Ti 1-x Al x ) (C y N 1-y ) exist in the crystal grains having the cubic structure. It was confirmed.
Further, for the crystal grains having the cubic structure in which the periodic composition change exists, the microscopic region is observed using the transmission electron microscope, and the cross section side using the energy dispersive X-ray spectroscopy (EDS) is used. From the surface analysis, the period of Ti and Al composition change was obtained, and the period of Ti and Al composition change was confirmed to be composed of two layers of short-period layer A layer and B layer having a shorter period. . Further, the difference between the average value of the local maximum value of x and the average value of the local minimum value Δx 1 and Δx 2 in each of the A layer and the B layer are obtained, and The average difference Δx 3 between the average and the minimum value was also determined.
The specific measurement method is as follows.
For the crystal grains, the magnification is set so that the composition change of about 10 cycles from the density of the composition falls within the measurement range based on the result of the surface analysis, and then by EDS along the normal direction of the tool base surface. The line analysis is performed in the range of 5 periods, and the difference between the average values of the maximum and minimum values of the periodic composition change of Ti and Al is calculated as the composition change of the long period layer composed of two short period layers. It was determined as the difference Δx 3 of the maximum value and the minimum value. In addition, the layer having the composition period exists on the maximum value side of the composition change of the long-period layer composed of two short-period layers, and the layer having the composition period exists on the minimum value side of the composition change of the long-period layer. The layer was defined as layer B, and the maximum value and the minimum value of the composition change of layer A and layer B were calculated in the range where the line analysis was performed, and the differences were determined as Δx 1 and Δx 2 , respectively. The results are also shown in Tables 6 and 7.

また、該結晶粒について電子線回折を行うことで、TiとAlの周期的な組成変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期は平均Al含有量の異なる2つの短周期層A層とB層から構成される長周期層であることが確認出来た試料に対しては、その方位に沿ったEDSによる線分析を長周期層の5周期分の範囲で行い、極大値の該5周期の平均間隔を長周期層のTiとAlの周期的な組成変化の周期として求め、その方位に直交する方向に沿った線分析を行い、短周期層A層とB層のTiとAlの合量に占めるAlの含有割合平均XOA、XOBの最大値と最小値の差をTiとAlの組成変化として求めた。
その結果を、同じく、表6および表7に示す。
Further, by performing electron beam diffraction on the crystal grains, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains. For a sample that was confirmed to be a long-period layer composed of two short-period layers A and B with different average Al contents, the period along that direction was along that direction. Line analysis by EDS is performed in the range of 5 periods of the long period layer, and the average interval of the 5 periods of the maximum value is obtained as the period of periodic composition change of Ti and Al in the long period layer, and is orthogonal to the direction. A line analysis is performed along the direction, and the difference between the maximum value and the minimum value of the Al content ratio average X OA and X OB in the total amount of Ti and Al in the short period layer A and B layers is the composition of Ti and Al. Sought as a change.
The results are also shown in Tables 6 and 7.

また、前記立方晶結晶粒について、Cu−Kα線を線源としてX線回折を行って立方晶結晶粒の格子定数aを測定した。
その結果を、同じく、表6および表7に示す。
Further, the cubic crystal grains were subjected to X-ray diffraction using Cu-Kα rays as a radiation source, and the lattice constant a of the cubic crystal grains was measured.
The results are also shown in Tables 6 and 7.








つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜15、比較被覆工具1〜15について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
その結果を表8に示す。
Next, the present coated tools 1 to 15 and comparative coated tools 1 to 15 are described below in a state where all the various coated tools are clamped to the tool steel cutter tip portion with a cutter diameter of 125 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured.
The results are shown in Table 8.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験: 乾式高速正面フライス、センターカット切削加工、
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度: 994 min−1
切削速度: 390 m/min、
切り込み: 1.2 mm、
一刃送り量: 0.1 mm/刃、
切削時間: 8分、
(通常の切削速度は、220m/min)、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: Dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 994 min −1
Cutting speed: 390 m / min,
Cutting depth: 1.2 mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting time: 8 minutes,
(Normal cutting speed is 220 m / min),


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Blended in the composition shown in Table 9, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases α to γ made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 10, wet mixed for 24 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A cermet tool substrate δ was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表4に示される形成条件A〜J、すなわち、NHとHからなるガス群Aと、TiCl、Al(CH、AlCl、N、Hからなるガス群B、およびおのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:2.0〜3.0%、H:65〜75%、ガス群BとしてAlCl:0.6〜0.9%、TiCl:0.2〜0.3%、Al(CH:0〜0.5%、N:0.0〜12.0%、H:残、反応雰囲気圧力:4.5〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜1.5秒、ガス群Aの供給とガス群Bの供給の位相差0.40〜0.60秒として、所定時間、熱CVD法を行い、表12に示される(Ti1−xAl)(C1−y)層を成膜することによりことにより本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
Next, on the surfaces of these tool bases α to γ and tool base δ, using a normal chemical vapor deposition apparatus, formation conditions A to J shown in Table 4, that is, a gas group A composed of NH 3 and H 2 , , TiCl 4 , Al (CH 3 ) 3 , AlCl 3 , N 2 , H 2 , and a method for supplying each gas, the reactive gas composition (capacity relative to the total of gas group A and gas group B) the%), NH 3 as a gas group a: 2.0~3.0%, H 2: 65~75%, AlCl 3 as gas group B: 0.6~0.9%, TiCl 4: 0.2 ~0.3%, Al (CH 3) 3: 0~0.5%, N 2: 0.0~12.0%, H 2: remainder, reaction atmosphere pressure: 4.5~5.0KPa, reaction Atmospheric temperature: 700 to 900 ° C., supply cycle 10 to 30 seconds, gas supply per cycle During 0.5-1.5 seconds, as the phase difference 0.40 to 0.60 seconds of the feed supply and gas group B of the gas group A, a predetermined time, by thermal CVD method, shown in Table 12 (Ti the present invention coated tool 16-30 were prepared by by depositing 1-x Al x) (C y N 1-y) layer.
In addition, about this invention coated tools 19-28, the lower layer and upper layer which were shown in Table 11 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件かつ表13に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表13に示される比較被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28と同様に、比較被覆工具19〜28については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
For comparison purposes, the present invention is also applied to the surfaces of the tool bases α to γ and the tool base δ by using an ordinary chemical vapor deposition apparatus under the conditions shown in Tables 3 and 4 and the target layer thicknesses shown in Table 13. Comparative coating tools 16 to 30 shown in Table 13 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool.
In addition, similarly to this invention coating tool 19-28, about the comparison coating tool 19-28, the lower layer and upper layer which were shown in Table 11 were formed on the formation conditions shown in Table 3.

また、本発明被覆工具16〜30、比較被覆工具16〜30の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12および表13に示される目標層厚と実質的に同じ平均層厚を示した。
また、前記本発明被覆工具16〜30、比較被覆工具16〜28の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均C含有割合Yavg、(Ti1−xAl)(C1−y)層を構成する立方晶構造を有する結晶粒の{100}面の法線が工具基体表面の法線となす傾斜角度数分布におけるピークの確認と0〜10度の範囲内に存在する度数割合を測定した。
その結果を、表12および表13に示す。
Moreover, the cross section of each component layer of this invention coating tool 16-30 and comparative coating tool 16-30 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was obtained by averaging, all showed the same average layer thickness as the target layer thickness shown in Table 12 and Table 13.
Moreover, about the hard coating layer of the said invention coating tool 16-30 and the comparison coating tool 16-28, using the method similar to the method shown in Example 1, average Al content rate Xavg , average C content rate Y avg , (Ti 1-x Al x ) (C y N 1-y ) layer having a cubic structure {100} plane normal to the tool base surface normal angle distribution Confirmation of the peak and the frequency ratio existing in the range of 0 to 10 degrees were measured.
The results are shown in Table 12 and Table 13.

前記本発明被覆工具16〜30の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物の立方晶結晶粒内に、TiとAlの周期的な組成分布が存在していることを透過型電子顕微鏡(倍率200000倍)を用いて、エネルギー分散型X線分光法(EDS)による面分析により確認し、さらに、xの極大値の平均と極小値の平均の差Δxを求めた。
さらに、周期的な組成変化が存在する前記立方晶構造を有する結晶粒について、同じく透過型電子顕微鏡を用いた微小領域の観察と、エネルギー分散型X線分光法(EDS)を用いた断面側からの面分析により、TiとAlの組成変化の周期を求め、TiとAlの組成変化の周期は、より周期の短い短周期層A層とB層の2層から構成されていることを確認した。また、上記A層およびB層のそれぞれにおけるxの極大値の平均および極小値の平均の差Δx、Δxを求めるとともに、短周期層のA層とB層から構成される周期層におけるxの極大値の平均および極小値の平均の差Δxについても求めた。
また、該結晶粒について電子線回折を行うことで、TiとAlの周期的な組成変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期は平均Al含有量の異なる2つの短周期層A層とB層から構成される長周期層であることが確認出来た試料に対しては、その方位に沿ったEDSによる線分析を長周期層の5周期分の範囲で行い、極大値の該5周期の平均間隔を長周期層のTiとAlの周期的な組成変化の周期として求め、その方位に直交する方向に沿った線分析を行い、短周期層A層とB層のTiとAlの合量に占めるAlの含有割合平均XOA、XOBの最大値と最小値の差をTiとAlの組成変化として求めた。
また、前記立方晶結晶粒について、Cu−Kα線を線源としてX線回折を行って立方晶結晶粒の格子定数aを測定した。
Periodic composition distribution of Ti and Al exists in the cubic crystal grains of Ti and Al composite nitride or composite carbonitride constituting the hard coating layer of the inventive coated tool 16-30. Was confirmed by surface analysis using energy dispersive X-ray spectroscopy (EDS) using a transmission electron microscope (magnification: 200,000 times), and the difference Δx between the average of the maximum value of x and the average of the minimum value was obtained. .
Further, for the crystal grains having the cubic structure in which the periodic composition change exists, the microscopic region is observed using the transmission electron microscope, and the cross section side using the energy dispersive X-ray spectroscopy (EDS) is used. From the surface analysis, the period of Ti and Al composition change was obtained, and the period of Ti and Al composition change was confirmed to be composed of two layers of short-period layer A layer and B layer having a shorter period. . Further, the difference between the average of the local maximum value and the average of the local minimum value Δx 1 and Δx 2 in each of the A layer and the B layer is obtained, and the x in the periodic layer composed of the A layer and the B layer of the short periodic layer is obtained. The difference Δx 3 between the average of the local maximum and the average of the local minimum was also determined.
Further, by performing electron beam diffraction on the crystal grains, a periodic composition change of Ti and Al exists along one of the equivalent crystal orientations represented by <001> of the cubic crystal grains. For a sample that was confirmed to be a long-period layer composed of two short-period layers A and B with different average Al contents, the period along that direction was along that direction. Line analysis by EDS is performed in the range of 5 periods of the long period layer, and the average interval of the 5 periods of the maximum value is obtained as the period of periodic composition change of Ti and Al in the long period layer, and is orthogonal to the direction. A line analysis is performed along the direction, and the difference between the maximum value and the minimum value of the Al content ratio average X OA and X OB in the total amount of Ti and Al in the short period layer A and B layers is the composition of Ti and Al. Sought as a change.
Further, the cubic crystal grains were subjected to X-ray diffraction using Cu-Kα rays as a radiation source, and the lattice constant a of the cubic crystal grains was measured.

また、前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて立方晶構造を有する個々の結晶粒からなる柱状組織を、TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析し、粒界部に存在する微粒結晶粒の結晶構造、平均粒径Rおよび面積割合を測定した。
これらの結果を、表12および表13に示す。
In addition, with respect to the composite nitride or composite carbonitride layer, a columnar structure composed of individual crystal grains having a cubic structure using an electron beam backscattering diffractometer is used as a composite nitride or composite carbonitride of Ti and Al. Analysis was performed from the longitudinal cross-sectional direction of the layer, and the crystal structure, average particle diameter R, and area ratio of the fine crystal grains present in the grain boundary portion were measured.
These results are shown in Table 12 and Table 13.






つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具16〜30、比較被覆工具16〜30について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:390 m/min、
切り込み:1.0 mm、
送り:0.2 mm/rev、
切削時間:5 分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:325 m/min、
切り込み:1.2 mm、
送り:0.2 mm/rev、
切削時間:5 分、
(通常の切削速度は、200m/min)、
表14に、前記切削試験の結果を示す。
Next, in the state where each of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 16 to 30 and comparative coated tools 16 to 30 are shown below. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 390 m / min,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 325 m / min,
Cutting depth: 1.2 mm,
Feed: 0.2 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200 m / min),
Table 14 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表15に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine, normal conditions A certain pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. within a predetermined temperature, holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing apparatus, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA12041 (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the WC-based cemented carbide insert body having a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in mass%. After brazing using a brazing material of Ti-Zr-Cu alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, followed by finishing polishing. ISO regulations CNGA120412 tool substrate b having the insert shape, were manufactured, respectively b.


つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、実施例1と同様の方法により表3および表4に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表17に示される本発明被覆工具31〜40を製造した。
なお、本発明被覆工具34〜38については、表3に示される形成条件で、表16に示すような下部層、上部層を形成した。
Next, at least (Ti 1-x Al x ) under the conditions shown in Tables 3 and 4 by the same method as in Example 1, using a normal chemical vapor deposition apparatus on the surface of these tool substrates A and B. The present coated tools 31 to 40 shown in Table 17 were manufactured by vapor-depositing a hard coating layer including a (C y N 1-y ) layer with a target layer thickness.
In addition, about this invention coated tools 34-38, the lower layer and upper layer as shown in Table 16 were formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表18に示される比較被覆工具31〜40を製造した。
なお、本発明被覆工具34〜38と同様に、比較被覆工具34〜38については、表3に示される形成条件で、表16に示すような下部層、上部層を形成した。
For comparison purposes, a normal chemical vapor deposition apparatus is used on the surfaces of the tool bases i and b, and at least (Ti 1-x Al x ) (C y N 1 ) under the conditions shown in Tables 3 and 4. -Y ) The comparative coating tools 31-40 shown in Table 18 were manufactured by vapor-depositing the hard coating layer containing a layer with target layer thickness.
In addition, similarly to this invention covering tool 34-38, about the comparison covering tool 34-38, the lower layer and upper layer as shown in Table 16 were formed on the formation conditions shown in Table 3.

また、本発明被覆工具31〜40、比較被覆工具31〜40の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表17および表18に示される目標層厚と実質的に同じ平均層厚を示した。   Moreover, the cross section of each component layer of this invention coated tool 31-40 and comparative coated tool 31-40 is measured using a scanning electron microscope (5000 times magnification), and the layer thickness of five points in an observation visual field is measured. When the average layer thickness was obtained by averaging, all showed the average layer thickness substantially the same as the target layer thickness shown in Table 17 and Table 18.

また、前記本発明被覆工具31〜40、比較被覆工具31〜38の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合Xavg、平均C含有割合Yavg、(Ti1−xAl)(C1−y)層を構成する立方晶構造を有する結晶粒の{100}面の法線が工具基体表面の法線となす傾斜角度数分布におけるピークを確認するとともに0〜10度の範囲内に存在する度数割合を測定した。
さらに、実施例1に示される方法と同様な方法を用いて、立方晶結晶粒内に存在するTiとAlの周期的な組成変化におけるxの極大値の平均と極小値の平均の差Δx、また、短周期層と長周期層におけるΔx、Δx、Δx、<001>で表される等価の結晶方位のうちの一つの方位に沿って存在するTiとAlの長周期層の周期的な組成変化における周期と短周期層A層とB層の平均XOA、XOBの最大値と最小値の差、立方晶結晶粒の格子定数a、立方晶構造を有する個々の結晶粒からなる柱状組織の粒界部に存在する微粒結晶粒の結晶構造、平均粒径Rおよび面積割合を測定した。
その結果を、表17および表18に示す。
Moreover, about the hard coating layer of the said invention coating tool 31-40 and the comparative coating tool 31-38, using the method similar to the method shown in Example 1, average Al content rate Xavg , average C content rate Y avg , (Ti 1-x Al x ) (C y N 1-y ) layer having a cubic structure {100} plane normal to the tool base surface normal angle distribution The frequency ratio which exists in the range of 0 to 10 degree | times was confirmed while the peak in was confirmed.
Further, by using a method similar to the method shown in Example 1, the difference Δx between the average of the maximum value and the average of the minimum value in the periodic composition change of Ti and Al existing in the cubic crystal grains, Further, the period of the long-period layer of Ti and Al existing along one of the equivalent crystal orientations represented by Δx 1 , Δx 2 , Δx 3 , <001> in the short-period layer and the long-period layer. Period and short period layer in average composition change, average X OA between layer A and layer B, difference between maximum value and minimum value of X OB , lattice constant a of cubic crystal grains, and individual crystal grains having cubic structure The crystal structure, average particle diameter R, and area ratio of the fine crystal grains present in the grain boundary portion of the columnar structure were measured.
The results are shown in Table 17 and Table 18.




つぎに、各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具31〜40、比較被覆工具31〜40について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
工具基体:立方晶窒化ホウ素基超高圧焼結体、
切削試験: 浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 260 m/min、
切り込み: 0.1 mm、
送り: 0.1 mm/rev、
切削時間: 4分、
表19に、前記切削試験の結果を示す。
Next, carburization shown below about this invention covering tool 31-40 and comparative covering tool 31-40 in the state where all the various covering tools were screwed to the front-end | tip part of a tool steel cutting tool with a fixing jig. A dry high-speed intermittent cutting test was performed on the quenched alloy steel, and the flank wear width of the cutting edge was measured.
Tool substrate: Cubic boron nitride-based ultra-high pressure sintered body,
Cutting test: Dry high-speed intermittent cutting of carburized and quenched alloy steel,
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 260 m / min,
Cutting depth: 0.1 mm,
Feed: 0.1 mm / rev,
Cutting time: 4 minutes
Table 19 shows the results of the cutting test.


表8、表14および表19に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成する立方晶結晶粒内において、TiとAlの組成変化が存在することで、結晶粒の歪みにより、硬さが向上し、高い耐摩耗性を保ちつつ、靱性が向上する。しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性にすぐれ、その結果、長期の使用に亘ってすぐれた耐摩耗性を発揮することが明らかである。   From the results shown in Table 8, Table 14 and Table 19, the coated tool of the present invention is within the cubic crystal grains constituting the composite nitride or composite carbonitride layer of Al and Ti constituting the hard coating layer. The presence of Ti and Al composition changes improves the toughness while maintaining high wear resistance due to the distortion of the crystal grains. Moreover, even when used for high-speed intermittent cutting where intermittent and impactful high loads act on the cutting edge, it has excellent chipping resistance and chipping resistance, resulting in excellent wear resistance over a long period of use. It is clear that it will work.

これに対して、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成する立方晶結晶粒内において、TiとAlの組成変化が存在していない比較被覆工具については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。   On the other hand, for the comparative coated tool in which the composition change of Ti and Al does not exist in the cubic crystal grains constituting the composite nitride of Al and Ti or the composite carbonitride layer constituting the hard coating layer When used for high-speed intermittent cutting with high heat generation and intermittent / impact high loads acting on the cutting edge, it is clear that the life is shortened in a short time due to occurrence of chipping, chipping and the like.

前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a coated tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.

Claims (8)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAl)(C1−y)で表した場合、複合窒化物または複合炭窒化物層のAlのTiとAlの合量に占める平均含有割合Xavgおよび複合窒化物または複合炭窒化物層のCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.60≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)また、前記複合窒化物または複合炭窒化物層の工具基体表面の法線方向に沿って、前記NaCl型の面心立方構造を有する結晶粒内にTiとAlの周期的な組成変化が存在し、該周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒は、その工具基体表面の法線方向に沿った組成変化の周期が50〜200nmである長周期層から構成され、さらに前記長周期層は、平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層における周期は3〜20nmであり、A層およびB層におけるAl含有量xの極大値の平均および極小値の平均のそれぞれの差Δx、Δxは、0.02<Δx<0.1、0.02<Δx<0.1を満たし、さらに、A層とB層から構成される長周期層におけるAl含有量xの極大値の平均および極小値の平均の差Δxは、0.05<Δx<0.25を満たし、かつ、Δx>(Δx+Δx)であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of any of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm formed by a chemical vapor deposition method, and has a composition formula: (Ti 1-x Al x ) When expressed by (C y N 1-y ), the average content ratio X avg and the composite nitride or composite carbonitride layer in the total amount of Ti and Al of Al in the composite nitride or composite carbonitride layer The average content ratio Y avg (where X avg and Y avg are atomic ratios) in the total amount of C and N in C are 0.60 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦, respectively. 0.005 is satisfied,
(B) The composite nitride or composite carbonitride layer includes at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure,
(C) A periodic composition change of Ti and Al in the crystal grains having the NaCl type face-centered cubic structure along the normal direction of the surface of the tool base of the composite nitride or composite carbonitride layer. The crystal grains having the NaCl-type face-centered cubic structure in which the periodic composition change exists have a long-period layer in which the composition change period along the normal direction of the tool base surface is 50 to 200 nm Further, the long period layer is composed of two short period layers A layer and B layer having different average Al contents, and the period in the A layer and the B layer is 3 to 20 nm. Differences Δx 1 and Δx 2 between the average of the maximum value and the average of the minimum value of the Al content x in the B layer are 0.02 <Δx 1 <0.1 and 0.02 <Δx 2 <0.1, respectively. To a long-period layer composed of A layer and B layer Takes the difference [Delta] x 3 average mean and minimum value of the maximum value of the Al content x is 0.05 <met [Delta] x 3 <0.25, and wherein the [Delta] x 3> is (Δx 1 + Δx 2) A surface-coated cutting tool.
前記複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面方向から解析した場合、工具基体表面の法線方向に対する前記結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し該傾斜角のうち法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計し傾斜角度数分布を求めたとき、0〜12度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜12度の範囲内に存在する度数の合計が、前記傾斜角度数分布における度数全体の35%以上の割合を示すことを特徴とする請求項1に記載の表面被覆切削工具。   With respect to the composite nitride or composite carbonitride layer, the crystal orientation of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or composite carbonitride layer is determined using an electron beam backscattering diffraction apparatus. , When analyzed from the longitudinal cross-sectional direction of the composite nitride or composite carbonitride layer of Ti and Al, the inclination formed by the normal of the {100} plane, which is the crystal plane of the crystal grain, with respect to the normal direction of the tool base surface The angle is measured, and the inclination angle within the range of 0 to 45 degrees with respect to the normal direction is divided into pitches of 0.25 degrees, and the frequencies existing in each division are totaled to obtain the inclination angle. When the number distribution is obtained, the highest peak exists in the inclination angle section in the range of 0 to 12 degrees, the highest peak exists in the inclination angle section in the range of 0 to 10 degrees, and the 0 to 12 degrees. The sum of the frequencies present in the range of degrees is the slope The surface-coated cutting tool according to claim 1, characterized in that indicating the proportion of more than 35% of the total power in the frequency distribution. 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な組成変化が存在するNaCl型の面心立方構造を有する結晶粒において、TiとAlの周期的な組成変化が該結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期は平均Al含有量の異なる2つの短周期層A層とB層から構成されており、A層およびB層から成る長周期層の周期は50〜200nmであり、その方位に直交する面内での短周期層A層とB層のAlのTiとAlの合量に占める含有割合平均Xo、Xoの変化はそれぞれ0.01以下であること特徴とする請求項1または2に記載の表面被覆切削工具。 In the crystal grains having the NaCl-type face-centered cubic structure in which the periodic composition change of Ti and Al in the composite nitride or composite carbonitride layer exists, the periodic composition change of Ti and Al is the crystal grain. Exists along one of the equivalent crystal orientations represented by <001>, and the period along that orientation is composed of two short-period layers A and B having different average Al contents. The period of the long period layer composed of the A layer and the B layer is 50 to 200 nm, and occupies the total amount of Ti and Al of the Al of the short period layer A layer and the B layer in a plane orthogonal to the orientation. The surface-coated cutting tool according to claim 1 or 2, wherein the changes in the content average Xo A and Xo B are each 0.01 or less. 前記複合窒化物または複合炭窒化物層について、X線回折からNaCl型の面心立方構造を有する結晶粒の格子定数aを求め、前記NaCl型の面心立方構造を有する結晶粒の格子定数aが、立方晶TiNの格子定数aTiNと立方晶AlNの格子定数aAlNに対して、0.05aTiN+0.95aAlN≦a ≦ 0.4aTiN + 0.6aAlNの関係を満たすことを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。 With respect to the composite nitride or composite carbonitride layer, the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained from X-ray diffraction, and the lattice constant a of the crystal grains having the NaCl type face centered cubic structure is obtained. Satisfies the relationship of 0.05a TiN + 0.95a AlN ≦ a ≦ 0.4a TiN + 0.6a AlN with respect to the lattice constant a TiN of cubic TiN and the lattice constant a AlN of cubic AlN. The surface-coated cutting tool according to any one of claims 1 to 3. 前記複合窒化物または複合炭窒化物層について該層の縦断面方向から観察した場合に、複合窒化物または複合炭窒化物層内のNaCl型の面心立方構造を有する個々の結晶粒からなる柱状組織の粒界部に六方晶構造を有する微粒結晶粒が存在し、該微粒結晶粒の存在する面積割合が30面積%以下であり、該微粒結晶粒の平均粒径Rが0.01〜0.3μmであることを特徴とする請求項1乃至4のいずれかに記載の表面被覆切削工具。   When the composite nitride or the composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, a columnar shape composed of individual crystal grains having a NaCl-type face-centered cubic structure in the composite nitride or the composite carbonitride layer. There are fine crystal grains having a hexagonal crystal structure in the grain boundary portion of the structure, the area ratio of the fine crystal grains is 30 area% or less, and the average grain size R of the fine crystal grains is 0.01 to 0 5. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is 3 μm. 前記工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1乃至5のいずれかに記載の表面被覆切削工具。   One layer of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the composite nitride or composite carbonitride layer of Ti and Al The surface-coated cutting according to any one of claims 1 to 5, wherein there is a lower layer comprising a Ti compound layer composed of two or more layers and having a total average layer thickness of 0.1 to 20 µm. tool. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至6のいずれかに記載の表面被覆切削工具。   7. The upper layer including an aluminum oxide layer having an average layer thickness of at least 1 to 25 μm exists above the composite nitride or composite carbonitride layer. Surface coated cutting tool. 前記複合窒化物または複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜されたものであることを特徴とする請求項1乃至7のいずれかに記載の表面被覆切削工具。   The composite nitride or composite carbonitride layer is formed by a chemical vapor deposition method containing at least trimethylaluminum as a reaction gas component, according to any one of claims 1 to 7. Surface coated cutting tool.
JP2015014365A 2015-01-28 2015-01-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer Active JP6478100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014365A JP6478100B2 (en) 2015-01-28 2015-01-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015014365A JP6478100B2 (en) 2015-01-28 2015-01-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Publications (2)

Publication Number Publication Date
JP2016137549A true JP2016137549A (en) 2016-08-04
JP6478100B2 JP6478100B2 (en) 2019-03-06

Family

ID=56558744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014365A Active JP6478100B2 (en) 2015-01-28 2015-01-28 Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Country Status (1)

Country Link
JP (1) JP6478100B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114611A (en) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP2018118346A (en) * 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance
JP2018144115A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance
JP2018144224A (en) * 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool
WO2019065682A1 (en) * 2017-09-29 2019-04-04 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance
JP2019063900A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2019063982A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2019162709A (en) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2020151822A (en) * 2019-03-22 2020-09-24 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
WO2021070423A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021070422A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021070419A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021070421A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021070420A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021157609A1 (en) * 2020-02-03 2021-08-12 三菱マテリアル株式会社 Surface-coated cutting tool
US11241745B2 (en) 2019-10-10 2022-02-08 Sumitomo Electric Hardmetal Corp. Cutting tool including substrate and coating layer
US11241744B2 (en) 2019-10-10 2022-02-08 Sumitomo Electric Hardmetal Corp. Cutting tool
US11247277B2 (en) 2019-10-10 2022-02-15 Sumitomo Electric Hardmetal Corp. Cutting tool
US11253929B2 (en) 2019-10-10 2022-02-22 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2023190000A1 (en) * 2022-03-30 2023-10-05 三菱マテリアル株式会社 Surface-coated cutting tool
JP7437623B2 (en) 2020-03-27 2024-02-26 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326402A (en) * 2002-02-26 2003-11-18 Mitsubishi Materials Kobe Tools Corp Method for forming hard layer, providing excellent wear resistance in high speed cutting, on cutting tool surface
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014061588A (en) * 2012-08-28 2014-04-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003326402A (en) * 2002-02-26 2003-11-18 Mitsubishi Materials Kobe Tools Corp Method for forming hard layer, providing excellent wear resistance in high speed cutting, on cutting tool surface
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014061588A (en) * 2012-08-28 2014-04-10 Mitsubishi Materials Corp Surface-coated cutting tool
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114611A (en) * 2017-01-18 2018-07-26 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP7098932B2 (en) 2017-01-18 2022-07-12 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2018118346A (en) * 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance
JP2018144115A (en) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer excellent in chipping resistance and peeling resistance
JP7068646B2 (en) 2017-03-08 2022-05-17 三菱マテリアル株式会社 Surface coating cutting tool
JP2018144224A (en) * 2017-03-08 2018-09-20 三菱マテリアル株式会社 Surface-coated cutting tool
WO2019065682A1 (en) * 2017-09-29 2019-04-04 三菱マテリアル株式会社 Surface-coated cutting tool in which hard coating layer exhibits exceptional chipping resistance
JP2019063900A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2019063982A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7063206B2 (en) 2017-09-29 2022-05-17 三菱マテリアル株式会社 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2019119045A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7183522B2 (en) 2018-01-04 2022-12-06 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2019162709A (en) * 2018-03-20 2019-09-26 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7191287B2 (en) 2018-03-20 2022-12-19 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
JP2020151822A (en) * 2019-03-22 2020-09-24 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP7125013B2 (en) 2019-03-22 2022-08-24 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
WO2021070420A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
US11241745B2 (en) 2019-10-10 2022-02-08 Sumitomo Electric Hardmetal Corp. Cutting tool including substrate and coating layer
US11247277B2 (en) 2019-10-10 2022-02-15 Sumitomo Electric Hardmetal Corp. Cutting tool
US11253929B2 (en) 2019-10-10 2022-02-22 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021070423A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021070422A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
US11241744B2 (en) 2019-10-10 2022-02-08 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021070419A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
US11358226B2 (en) 2019-10-10 2022-06-14 Sumitomo Electric Hardmetal Corp. Cutting tool
WO2021070421A1 (en) 2019-10-10 2021-04-15 住友電工ハードメタル株式会社 Cutting tool
WO2021157609A1 (en) * 2020-02-03 2021-08-12 三菱マテリアル株式会社 Surface-coated cutting tool
EP4101565A4 (en) * 2020-02-03 2023-06-14 Mitsubishi Materials Corporation Surface-coated cutting tool
JP7329180B2 (en) 2020-02-03 2023-08-18 三菱マテリアル株式会社 surface coated cutting tools
JP7437623B2 (en) 2020-03-27 2024-02-26 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.
WO2023190000A1 (en) * 2022-03-30 2023-10-05 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP6478100B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6417959B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2015163423A (en) Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2017113835A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance and wear resistance
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2016083766A (en) Surface-coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6617917B2 (en) Surface coated cutting tool
JP2016124098A (en) Surface coated cutting tool excellent in chipping resistance and wear resistance
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190123

R150 Certificate of patent or registration of utility model

Ref document number: 6478100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150