JP2016124098A - Surface coated cutting tool excellent in chipping resistance and wear resistance - Google Patents

Surface coated cutting tool excellent in chipping resistance and wear resistance Download PDF

Info

Publication number
JP2016124098A
JP2016124098A JP2015252586A JP2015252586A JP2016124098A JP 2016124098 A JP2016124098 A JP 2016124098A JP 2015252586 A JP2015252586 A JP 2015252586A JP 2015252586 A JP2015252586 A JP 2015252586A JP 2016124098 A JP2016124098 A JP 2016124098A
Authority
JP
Japan
Prior art keywords
layer
average
layer thickness
crystal
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015252586A
Other languages
Japanese (ja)
Other versions
JP6650108B2 (en
Inventor
佐藤 賢一
Kenichi Sato
佐藤  賢一
翔 龍岡
Sho Tatsuoka
翔 龍岡
健志 山口
Kenji Yamaguchi
健志 山口
西田 真
Makoto Nishida
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of JP2016124098A publication Critical patent/JP2016124098A/en
Application granted granted Critical
Publication of JP6650108B2 publication Critical patent/JP6650108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool of which a hard coated layer exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting conditions.SOLUTION: In a surface coated cutting tool coated with a lower layer of Ti compound layer and an upper layer of TiAlCN layer, such inclination angle number distributions that inclination angles of normals on {422} faces of crystal grain of the Ti compound layer having 1 μm or more and an average layer thickness of 50% or more of the total average layer thickness of the lower layer and crystal grain of the TiAlCN layer of the upper layer for the normal direction of a base body surface fall into the range of 0 to 10° are respectively 30% or more, a TiAlCN crystal grain of which an inclination angle of the normal on {422} face for the normal direction on the base body surface falls into the range of 0 to 10° exists on an area on the upper layer corresponding to the maximum width of the direction parallel to the base body surface of the crystal grain of the Ti compound layer and the crystal grains occupy an area of 50% or more for the total area of TiAlCN crystal grains of which an inclination angle of the normal on {422} face for the normal direction on the base body surface falls into the range of 0 to 10°.SELECTED DRAWING: Figure 1

Description

本発明は、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件で行った場合でも、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示す表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides an excellent hard coating layer even when cutting various steels and cast irons at high speed and under high-speed intermittent heavy cutting conditions in which intermittent and impactful high loads act on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance and exhibits excellent cutting performance over a long period of time.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
前記(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide layer (hereinafter, referred to as an Al 2 O 3 layer) having an α-type crystal structure in a state where the upper layer is chemically vapor-deposited;
There is known a coated tool formed by vapor-depositing a hard coating layer composed of (a) and (b).

しかし、前述した従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削ではすぐれた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、硬質被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題点があった。
そこで、硬質被覆層の剥離、チッピングを抑制するために、上部層に改良を加えた各種の被覆工具が提案されている。
However, the above-mentioned conventional coated tools exhibit excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, for example, but when this is used for high-speed intermittent cutting, a hard coating layer is used. Peeling and chipping are likely to occur, and the tool life is shortened.
In view of this, various types of coating tools in which the upper layer is improved have been proposed in order to suppress peeling and chipping of the hard coating layer.

例えば、特許文献1には、工具基体の表面に、周期律表の4a、5a、6a属金属の炭化物、窒化物、炭窒化物の一種以上からなる非酸化膜を形成し、この上にα−Alを主とする酸化膜が形成したアルミナ被覆工具において、前記非酸化膜と前記酸化膜との間に周期律表の4a、5a、6a属金属の酸化物、酸炭化物、酸窒化物および酸炭窒化物の酸化物系の単層皮膜または多層皮膜からなるfcc構造を持つ結合層を形成し、かつ、非酸化膜と結合相がエピタキシャル関係にあるようにしたアルミナ被覆工具とすることによって、工具基体とアルミナ被膜との密着強度を高め、耐欠損性、耐剥離性、耐摩耗性を向上させる被覆工具が提案されている。 For example, in Patent Document 1, a non-oxide film made of one or more of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals in the periodic table is formed on the surface of a tool base, and α in the alumina coated tool having an oxide film was formed to a -al 2 O 3 as the main, the 4a of the periodic table between the non-oxide layer and the oxide film, 5a, oxides of 6a genus metal oxycarbide, acid An alumina-coated tool that forms a bonding layer having an fcc structure composed of a nitride or oxycarbonitride oxide-based single-layer film or multilayer film, and has a non-oxide film and a binder phase in an epitaxial relationship; Thus, there has been proposed a coated tool that increases the adhesion strength between the tool base and the alumina coating and improves the fracture resistance, peel resistance, and wear resistance.

また、例えば、特許文献2には、工具基体の表面に、1種以上の金属元素を含む窒化物,炭化物,炭窒化物からなり、これらの中から選ばれた化学組成の異なる2層以上が積層された硬質皮膜を有する切削工具において、表面側最外層の組成が(VTi1−u)(N1−v)、但し0.25≦u≦0.75,0.6≦v≦1であり、また、表面から第2番目の層の組成が、(AlTi1−x)(N1−y)、但し0.25≦x≦0.75,0.6≦y≦1であって、各層の厚さが0.4μm以上で、皮膜全体の厚さが0.8〜50μmであると共に、いずれの層も実質的に岩塩型結晶構造からなり、かつ、各層の結晶組織が界面で実質的にエピタキシャル成長していることによって、硬質皮膜の耐摩耗性及び密着性を向上させることが提案されている。 Further, for example, in Patent Document 2, the surface of a tool base is made of nitride, carbide, carbonitride containing one or more metal elements, and two or more layers having different chemical compositions selected from these are included. In a cutting tool having a laminated hard coating, the composition of the outermost layer on the surface side is (V u Ti 1-u ) (N v C 1-v ), where 0.25 ≦ u ≦ 0.75, 0.6 ≦ v ≦ 1, and the composition of the second layer from the surface is (Al x Ti 1-x ) (N y C 1-y ), where 0.25 ≦ x ≦ 0.75, 0.6 ≦ y ≦ 1, the thickness of each layer is 0.4 μm or more, the thickness of the entire film is 0.8 to 50 μm, and each layer substantially has a rock salt type crystal structure, and The crystal structure of each layer is substantially epitaxially grown at the interface, improving the wear resistance and adhesion of the hard coating. Has been proposed.

特開平10−18039号公報JP-A-10-18039 特開2001−181826号公報JP 2001-181826 A

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化すると共に、高切り込み、高送り等の断続重切削等で切刃には、衝撃的・断続的な高負荷が作用する傾向にあるが、前述の従来の被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速断続切削条件で用いた場合には、硬質被覆層の耐摩耗性が十分ではないため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. As a result, cutting speed has been further increased, high cutting depth, high feed, etc. There is a tendency for impact and intermittent high loads to act on the cutting edge due to intermittent heavy cutting, etc., but in the above-mentioned conventional coated tools, this is continuous cutting under normal conditions such as steel and cast iron. There is no problem when it is used for intermittent cutting, but especially when this is used under high-speed intermittent cutting conditions, the wear resistance of the hard coating layer is not sufficient, so the service life is reached in a relatively short time. is the current situation.

そこで、本発明者らは、前述のような観点から、工具基体表面上に形成した下部層を構成するTi化合物の結晶粒とその上に形成した上部層を構成するTiとAlの複合窒化物または複合炭窒化物(以下、場合により、TiAlCNと略記する)の結晶粒との間のエピタキシャル関係を制御することに、硬質被覆層全体としての耐チッピング性、耐摩耗性向上を図るべく鋭意研究を重ねた。
その結果、
(1)下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、NaCl型面心立方晶(以下、単に「立方晶」という場合もある。)の結晶構造を有するTi化合物層(好ましくは、Tiの炭窒化物(以下、「TiCN」と記す場合もある。)層)の結晶粒と、上部層を構成するTiAlCN層の結晶粒について、それぞれの結晶粒の{422}の法線が、基体表面の法線方向となす傾斜角の度数分布を測定した場合、前記法線方向に対して0〜10度の傾斜角区分に度数のピークが存在するとともに、該区分の傾斜角度数分布割合が、度数全体の30%以上であり、
(2)下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層(好ましくは、Tiの炭窒化物(TiCN)層)の結晶粒のうち、基体表面の法線方向と{422}の法線がなす傾斜角が0〜10度である結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、{422}の法線方向が基体表面の法線方向となす傾斜角が0〜10度であるTiAlCN結晶粒が存在し、かつ、この結晶粒が基体表面の法線方向と{422}の法線方向がなす傾斜角が0〜10度であるTiAlCN結晶粒の50%以上であることにより、下部層と上部層のエピタキシャル成長した結晶粒の形成割合を高め、しかも、基体表面の法線方向と{422}の法線がなす傾斜角が0〜10度である結晶粒の形成割合を高めることによって、硬さおよび下部層と上部層との付着強度が向上し、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件においても、硬質被覆層はすぐれた密着強度を有するとともに、すぐれた耐チッピング性、耐摩耗性を発揮するという知見を得た。
In view of the above, the inventors of the present invention, from the above-mentioned viewpoints, made Ti compound crystal grains constituting the lower layer formed on the surface of the tool substrate and a composite nitride of Ti and Al constituting the upper layer formed thereon. Or, intensive research to improve the chipping resistance and wear resistance of the hard coating layer as a whole by controlling the epitaxial relationship between the crystal grains of the composite carbonitride (hereinafter abbreviated as TiAlCN in some cases). Repeated.
as a result,
(1) Ti having an average layer thickness of 50% or more of the total average layer thickness of the lower layer, and having a crystal structure of NaCl-type face-centered cubic (hereinafter sometimes referred to simply as “cubic”) The crystal grains of the compound layer (preferably, the Ti carbonitride (hereinafter sometimes referred to as “TiCN”) layer) and the crystal grains of the TiAlCN layer constituting the upper layer are {422 }, When the frequency distribution of the inclination angle formed by the normal line to the normal direction of the substrate surface is measured, a frequency peak exists in the inclination angle division of 0 to 10 degrees with respect to the normal direction, and the division The inclination angle number distribution ratio of is 30% or more of the entire frequency,
(2) The crystal grains of a Ti compound layer (preferably a Ti carbonitride (TiCN) layer) having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and having a cubic structure Of these, in the region of the upper layer corresponding to the maximum width in the direction parallel to the substrate surface of the crystal grains whose inclination angle formed by the normal direction of the substrate surface and the normal of {422} is 0 to 10 degrees, {422} TiAlCN crystal grains having an inclination angle of 0 to 10 degrees with the normal direction of the substrate surface and the normal direction of {422} are the same as the normal direction of the substrate surface. By forming 50% or more of the TiAlCN crystal grains having an inclination angle of 0 to 10 degrees, the formation ratio of the epitaxially grown crystal grains of the lower layer and the upper layer is increased, and the normal direction of the substrate surface and {422} The shape of crystal grains whose inclination angle is 0 to 10 degrees By increasing the ratio, the hardness and adhesion strength between the lower layer and the upper layer are improved, and the hard coating is applied even in high-speed intermittent cutting conditions where the cutting blade is subjected to intermittent and impactful high loads at high speed. It has been found that the layer has excellent adhesion strength and exhibits excellent chipping resistance and wear resistance.

本発明は、上記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1〜20μmの合計平均層厚を有するTi化合物層であって、かつ、その内の1層は、1μm以上で且つ合計平均層厚の50%以上の平均層厚を有するTi化合物層であり、
(b)前記上部層は、1〜20μmの平均層厚を有するTiとAlの複合窒化物または複合炭窒化物層であり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層を、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(d)前記下部層のうち、合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒はNaCl型面心立方晶の結晶構造を有し、また、前記上部層のTiとAlの複合窒化物または複合炭窒化物層の結晶粒は、NaCl型面心立方晶構造単相またはNaCl型面心立方晶構造と六方晶構造の混相からなる結晶構造を有し、
(e)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の個々の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、基体表面の法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層のいずれにおいても、0〜10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合を示し、
(f)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
(2)前記下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層は、Tiの炭窒化物層であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Hard coating comprising a lower layer and an upper layer on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body In a surface-coated cutting tool in which a layer is formed,
(A) The lower layer has a total average layer thickness of 1 to 20 μm comprising one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. And one of them is a Ti compound layer having an average layer thickness of 1 μm or more and 50% or more of the total average layer thickness,
(B) The upper layer is a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm,
(C) the Ti and Al composite nitride or composite carbonitride layer,
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
The average content ratio X ave in the total amount of Ti and Al in Al and the average content ratio Y ave in the total amount of C and N in C (where X ave and Y ave are atomic ratios) Satisfy 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005,
(D) Among the lower layers, the crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness have a crystal structure of NaCl type face centered cubic crystal, and Ti of the upper layer The crystal grains of the composite nitride or composite carbonitride layer of Al and Al have a crystal structure composed of a single phase of the NaCl type face centered cubic structure or a mixed phase of the NaCl type face centered cubic structure and a hexagonal structure,
(E) Ti and Al composite nitride or composite carbonitride having a crystal grain of a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the cubic structure of the upper layer When the crystal orientation of each crystal grain of the physical layer is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, the method of the {422} plane which is the crystal plane of the crystal grain with respect to the normal direction of the substrate surface The inclination angle formed by the line is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees with respect to the normal direction of the substrate surface are divided for each pitch of 0.25 degrees. When the frequencies existing in the section are counted, the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the composite nitriding of Ti and Al having the cubic structure of the upper layer In either the product or the composite carbonitride layer, 0 to With the highest peak is present in the tilt angle sections of the range of 0 degrees, the sum of the frequencies present in the range of the 0 to 10 degrees, indicates the percentage of more than 30% of the total power at the inclination angle frequency distribution,
(F) In the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness among the lower layers, the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is 0 to 10 degrees. In the region of the upper layer corresponding to the maximum width of the crystal grains in the direction parallel to the substrate surface, the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees. And a crystal grain of the Ti and Al composite nitride or composite carbonitride layer having the cubic crystal structure, and the crystal grain is normal to the {422} plane with respect to the normal direction of the substrate surface The Ti and Al composite nitride or composite carbonitride layer having a cubic structure having an inclination angle of 0 to 10 degrees occupies an area ratio of 50% or more of the entire crystal grain area. A surface-coated cutting tool.
(2) The surface-coated cutting tool according to (1), wherein the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer is a Ti carbonitride layer. .
(3) An outermost surface layer including at least an aluminum oxide layer having an average layer thickness of 1 to 25 μm is further formed on the surface of the upper layer composed of the composite nitride or composite carbonitride layer of Ti and Al. The surface-coated cutting tool according to (1) or (2), wherein "
It has the characteristics.

以下に、本発明の被覆工具の硬質被覆層の構成層について詳細に説明する。   Below, the structural layer of the hard coating layer of the coating tool of this invention is demonstrated in detail.

図1に、本発明の硬質被覆層の層構造の概略模式図を示すが、図1においては、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層としては、立方晶構造のTiCN層を形成し、その上に、TiAlCN層からなる上部層を形成している。
図1からもわかるように、上部層と下部層の界面には、結晶粒が恰も界面を貫いて成長しているような結晶組織形態が観察される。
本発明でいう「下部層の結晶粒と上部層の結晶粒が{422}面の法線方向にエピタキシャル成長している」とは、このような結晶組織形態をいう。
FIG. 1 shows a schematic diagram of the layer structure of the hard coating layer of the present invention. In FIG. 1, the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer is cubic. A TiCN layer having a crystal structure is formed, and an upper layer made of a TiAlCN layer is formed thereon.
As can be seen from FIG. 1, a crystal structure form in which crystal grains grow through the interface is observed at the interface between the upper layer and the lower layer.
In the present invention, “the crystal grains of the lower layer and the crystal grains of the upper layer are epitaxially grown in the normal direction of the {422} plane” refers to such a crystal structure form.

下部層(Ti化合物層):
Ti化合物層(例えば、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層)は、基本的にはTiAlCN層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようになるほか工具基体および上部層のTiAlCN層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。しかしながら、その合計平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方、その合計平均層厚が20μmを越えると、特に高熱発生を伴う高速断続切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を1〜20μmと定めた。
さらに、下部層の{422}配向を引き継いで上部層をエピタキシャル成長させ、硬質被覆層の付着強度を向上させるために、前記下部層は、少なくとも立方晶構造を有し、平均層厚が1μm以上であって、かつ、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層(例えば、Tiの炭化物層、窒化物層、炭窒化物層、炭窒酸化物層があげられる)の結晶粒が、{422}配向を備えることが必要である。なお、{422}配向を備えるTi化合物層の平均層厚が1μm未満であるとき、または、下部層の合計平均層厚の50%未満であると、下部層の{422}配向性を引き継いだ上部層のエピタキシャル成長が不十分となり、上部層の耐チッピング性とともに付着強度の向上が図れない。
Lower layer (Ti compound layer):
Ti compound layers (eg, Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer) are basically Exists as a lower layer of the TiAlCN layer, and the hard coating layer has a high temperature strength due to its excellent high temperature strength. In addition, the hard coating layer adheres to both the tool base and the upper TiAlCN layer. It has the effect | action which maintains the adhesiveness with respect to a tool base | substrate. However, if the total average layer thickness is less than 1 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, the thermoplastic deformation is caused particularly in high-speed intermittent cutting with high heat generation. The total average layer thickness is determined to be 1 to 20 μm because it tends to occur and causes uneven wear.
Furthermore, in order to epitaxially grow the upper layer by taking over the {422} orientation of the lower layer and improve the adhesion strength of the hard coating layer, the lower layer has at least a cubic structure and an average layer thickness of 1 μm or more. And a Ti compound layer (for example, Ti carbide layer, nitride layer, carbonitride layer, carbonitride oxide layer) having an average layer thickness of 50% or more of the total average layer thickness of the lower layer. ) Crystal grains are required to have {422} orientation. In addition, when the average layer thickness of the Ti compound layer having {422} orientation is less than 1 μm or less than 50% of the total average layer thickness of the lower layer, the {422} orientation of the lower layer is inherited. The epitaxial growth of the upper layer becomes insufficient, and the adhesion strength cannot be improved together with the chipping resistance of the upper layer.

下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層としては、TiCN結晶粒からなるTiCN層を形成することが好ましい。
例えば、{422}配向性を有する下部層のTiCN層は、通常の化学蒸着装置を使用して、例えば、
反応ガス組成(容量%):TiCl 2.0〜2.5%、N 5〜10%、CO 0〜2%、CHCN 0.4〜0.6%、残部H
反応雰囲気温度:750〜800℃、
反応雰囲気圧力:5〜10kPa、
の条件で目標平均層厚になるまで化学蒸着することによって形成することができる。
As the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer, it is preferable to form a TiCN layer made of TiCN crystal grains.
For example, a lower TiCN layer having {422} orientation is formed by using a normal chemical vapor deposition apparatus, for example,
Reaction gas composition (volume%): TiCl 4 2.0-2.5%, N 2 5-10%, CO 0-2%, CH 3 CN 0.4-0.6%, balance H 2 ,
Reaction atmosphere temperature: 750 to 800 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
It can form by carrying out chemical vapor deposition until it becomes target average layer thickness on the conditions of.

上部層(立方晶構造単相または立方晶構造と六方晶構造の混相の結晶構造を有するTiAlCN層):
本発明の硬質被覆層の上部層は、化学蒸着された1〜20μmの平均層厚を有する立方晶構造単相または立方晶構造と六方晶構造の混相の結晶構造を有するTiAlCN層からなる。
本発明の上部層を構成するTiAlCN層は、{422}配向性を有するため、硬さが高く、すぐれた耐摩耗性を発揮するが、その平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、結晶粒が粗大化し、チッピングを発生しやすくなる。
したがって、上部層を構成するTiAlCN層の平均層厚は1〜20μmと定めた。
なお、上部層は、立方晶構造単層ばかりでなく、立方晶構造と六方晶構造の混相からなるTiAlCN層であってよい。
Upper layer (TiAlCN layer having a single crystal structure of cubic structure or a mixed crystal structure of cubic structure and hexagonal structure):
The upper layer of the hard coating layer of the present invention is a TiAlCN layer having a cubic single crystal structure having a mean layer thickness of 1 to 20 μm or a mixed crystal structure of a cubic structure and a hexagonal structure, which is chemically deposited.
Since the TiAlCN layer constituting the upper layer of the present invention has {422} orientation, it has high hardness and excellent wear resistance. However, if the average layer thickness is less than 1 μm, the layer thickness is thin. However, if the average layer thickness exceeds 20 μm, the crystal grains become coarse and chipping is likely to occur.
Therefore, the average layer thickness of the TiAlCN layer constituting the upper layer is determined to be 1 to 20 μm.
The upper layer may be a TiAlCN layer composed of a mixed phase of a cubic structure and a hexagonal structure as well as a cubic structure single layer.

本発明の上部層を構成するTiAlCN層を、組成式:(Ti1−xAl)(N1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足する。
ここで、Alの平均含有割合Xave (原子比)が0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xaveが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。
したがって、Alの平均含有割合Xave (原子比)は、0.60≦Xave≦0.95とする。
また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合(原子比)Yaveは、0≦Yave≦0.005の範囲の微量であるとき、上部層と下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の含有割合Yaveが0≦Yave≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下する。
したがって、C成分の含有割合Yave (原子比)は、0≦Yave≦0.005とする。
When the TiAlCN layer constituting the upper layer of the present invention is expressed by a composition formula: (Ti 1-x Al x ) (N 1-y C y ), the average content ratio X of the total amount of Ti and Al in Al The content ratio Y ave (where X ave and Y ave are atomic ratios) in the total amount of C and N in ave and C are 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦, respectively. 0.005 is satisfied.
Here, when the average content ratio X ave (atomic ratio) of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so high-speed intermittent cutting of alloy steel or the like When it is used, the wear resistance is not sufficient. On the other hand, when the average content ratio Xave of Al exceeds 0.95, the content ratio of Ti is relatively decreased, so that embrittlement is caused and chipping resistance is deteriorated.
Therefore, the average content ratio X ave (atomic ratio) of Al is set to 0.60 ≦ X ave ≦ 0.95.
Further, when the average content ratio (atomic ratio) Y ave of the C component contained in the composite nitride or composite carbonitride layer is a minute amount in the range of 0 ≦ Y ave ≦ 0.005, the upper layer and the lower layer As a result, the impact at the time of cutting is reduced by improving the lubricity, and as a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved. On the other hand, if the content ratio Y ave of the C component is out of the range of 0 ≦ Y ave ≦ 0.005, the toughness of the composite nitride or the composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reduced. To do.
Therefore, the content ratio Y ave (atomic ratio) of the C component is 0 ≦ Y ave ≦ 0.005.

下部層と上部層の結晶粒の{422}面についての傾斜角度数分布:
本発明の下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層、さらに、上部層の立方晶構造を有するTiAlCN層の個々の結晶粒の結晶方位について、電子線後方散乱回折装置を用いて、その縦断面方向から解析した場合、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、その傾斜角のうち、法線方向に対して0〜45度の範囲内にある傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合となる傾斜角度数分布形態を示すことが必要である。
ここで、下部層あるいは上部層のいずれかでも、{422}面についての傾斜角度数分布が前記の範囲を外れると、硬質被覆層全体としての{422}面配向性が低下し、硬さが低下することによって耐摩耗性が損なわれる。
さらに、下部層および上部層それぞれの{422}面配向性に加えて、下部層と上部層のエピタキシャル成長を促すためには、前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiAlCN層の結晶粒が存在し、かつ、該TiAlCNの結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiAlCN層の結晶粒全体の面積の50%以上の面積割合を占めることが必要である。
つまり、下部層と上部層との間でエピタキシャル成長しているTiAlCN結晶粒の面積割合が、立方晶構造を有するTiAlCN層の結晶粒全体の50%未満である場合には、エピタキシャル成長が十分でないため、下部層と上部層との密着強度向上が図られず、高速断続切削等において剥離等の異常損傷を発生しやすくなるからである。
本発明で定めた下部層の{422}面配向、上部層の{422}面配向とともに、さらに、下部層と上部層間での{422}面配向を有する結晶粒のエピタキシャル成長を促進させることによって、下部層と上部層の密着強度が向上するとともに、硬質被覆層全体としての硬さが向上する。
その結果、このような被覆工具は、例えば、合金鋼の高速断続切削等に供した場合であっても、チッピング、剥離等の発生が抑えられ、しかも、すぐれた耐摩耗性を発揮する。
図2、図3に、本発明の下部層と上部層について求めた傾斜角度数分布の一例を示すが、図2は、本発明の下部層の合計平均層厚の50%以上の平均層厚を有する立方晶構造のTiCN結晶粒について求めたグラフであり、図3は、上部層の立方晶構造のTiAlCN結晶粒について求めたグラフである。
Tilt angle number distribution about {422} planes of crystal grains of the lower layer and the upper layer:
Electron beam backscattering with respect to the crystal orientation of individual crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer of the present invention and the TiAlCN layer having a cubic structure of the upper layer When analyzed from the longitudinal section direction using a diffractometer, the normal of the {422} plane which is the crystal plane of the crystal grain with respect to the normal of the tool base surface (direction perpendicular to the tool base surface in the cross-section polished surface) Measures the inclination angle formed by, and among the inclination angles, the inclination angle within the range of 0 to 45 degrees with respect to the normal direction is divided into pitches of 0.25 degrees and the frequency existing in each division The maximum peak is present in the inclination angle section within the range of 0 to 10 degrees, and the total of the frequencies existing within the range of 0 to 10 degrees is 30% of the entire frequency in the inclination angle frequency distribution. Inclination angle number distribution form with the above ratio It is necessary to show.
Here, in either the lower layer or the upper layer, if the inclination angle number distribution with respect to the {422} plane is out of the above range, the {422} plane orientation as the entire hard coating layer is lowered, and the hardness is reduced. Abrasion resistance is impaired by lowering.
Further, in order to promote the epitaxial growth of the lower layer and the upper layer in addition to the {422} plane orientation of each of the lower layer and the upper layer, a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness In the region of the upper layer corresponding to the maximum width in the direction parallel to the substrate surface of the crystal grains whose inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees, There are crystal grains of the TiAlCN layer having the cubic structure in which the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees, and the TiAlCN crystal grains are An area ratio of 50% or more of the total area of the crystal grains of the TiAlCN layer having the cubic structure in which the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees. Need to occupy That.
That is, when the area ratio of the TiAlCN crystal grains epitaxially grown between the lower layer and the upper layer is less than 50% of the entire crystal grains of the TiAlCN layer having a cubic structure, the epitaxial growth is not sufficient. This is because the adhesion strength between the lower layer and the upper layer cannot be improved, and abnormal damage such as peeling tends to occur in high-speed intermittent cutting.
By promoting the epitaxial growth of grains having the {422} plane orientation of the lower layer and the {422} plane orientation of the upper layer as defined in the present invention, and the {422} plane orientation between the lower layer and the upper layer, The adhesion strength between the lower layer and the upper layer is improved, and the hardness of the entire hard coating layer is improved.
As a result, even when such a coated tool is used for, for example, high-speed intermittent cutting of alloy steel, the occurrence of chipping, peeling and the like is suppressed, and excellent wear resistance is exhibited.
FIG. 2 and FIG. 3 show an example of the inclination angle number distribution obtained for the lower layer and the upper layer of the present invention. FIG. 2 shows an average layer thickness of 50% or more of the total average layer thickness of the lower layer of the present invention. FIG. 3 is a graph obtained for the cubic TiAlCN crystal grains of the upper layer.

最表面層:
本発明は、1〜20μmの平均層厚を有する立方晶単相あるいは立方晶と六方晶の混相の結晶構造を有するTiAlCN層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層をさらに被覆形成することができる。
最表面層の酸化アルミニウム層は、硬質被覆層の高温硬さと耐熱性を高めるが、最表面層の平均層厚が1μm未満では前記特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が25μmを越えると、切削時に発生する高熱と切刃に作用する断続的かつ衝撃的高負荷によって、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになるため、その平均層厚は1〜25μmとすることが望ましい。
Outermost layer:
In the present invention, an oxide having an average layer thickness of 1 to 25 μm is formed on the surface of an upper layer composed of a TiAlCN layer having a cubic single-phase crystal structure or a cubic and hexagonal crystal structure having an average layer thickness of 1 to 20 μm. An outermost surface layer including at least an aluminum layer can be further formed.
The aluminum oxide layer of the outermost surface layer increases the high temperature hardness and heat resistance of the hard coating layer. However, if the average layer thickness of the outermost surface layer is less than 1 μm, the hard coating layer cannot be sufficiently provided with the above characteristics. If the average layer thickness exceeds 25 μm, the high heat generated during cutting and the intermittent and impactful high load acting on the cutting blade are likely to cause thermoplastic deformation causing uneven wear, which accelerates wear. Therefore, the average layer thickness is desirably 1 to 25 μm.

成膜方法:
本発明の下部層及び最表面層は、例えば、通常の化学蒸着方法、装置によって形成することができる。
例えば、平均層厚が1μm以上、かつ、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層として、TiC層、TiN層、TiCN層等を形成する場合には、通常の化学蒸着装置を使用して、
反応ガス組成(容量%):TiCl 2〜2.5%、N 5〜10%、CO 0〜2%、CHCN 0.4〜0.6%、残部H
反応雰囲気温度:750〜800℃、
反応雰囲気圧力:5〜10kPa、
の条件で目標平均層厚になるまで化学蒸着することによって、{422}面配向性を有するTiC層、TiN層、TiCN層等を成膜することができる。
また、上部層についても、通常の化学蒸着方法によって形成することもできるが、例えば、次のような蒸着法によって成膜することもできる。
即ち、工具基体を装着した化学蒸着反応装置へ、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群Bを、おのおの別々のガス供給管から反応装置内へ供給し、工具基体表面における反応ガス組成をガス群Aとガス群Bの供給条件を調節して制御し、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚、目標組成のTiAlCN層を成膜することができる。
Deposition method:
The lower layer and the outermost layer of the present invention can be formed by, for example, a normal chemical vapor deposition method and apparatus.
For example, when forming a TiC layer, TiN layer, TiCN layer, etc. as a Ti compound layer having an average layer thickness of 1 μm or more and an average layer thickness of 50% or more of the total average layer thickness of the lower layer, Using chemical vapor deposition equipment
Reaction gas composition (volume%): TiCl 4 2-2.5%, N 2 5-10%, CO 0-2%, CH 3 CN 0.4-0.6%, balance H 2
Reaction atmosphere temperature: 750 to 800 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
By performing chemical vapor deposition until the target average layer thickness is reached under the above conditions, a TiC layer, a TiN layer, a TiCN layer, or the like having {422} plane orientation can be formed.
The upper layer can also be formed by a normal chemical vapor deposition method, but can also be formed by, for example, the following vapor deposition method.
That is, a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , and H 2 are applied to a chemical vapor deposition reactor equipped with a tool base. The reaction gas composition on the surface of the tool base is controlled by adjusting the supply conditions of the gas group A and the gas group B, and the reaction atmosphere pressure is 2 to 5 kPa, the reaction atmosphere. By performing the thermal CVD method at a temperature of 700 to 900 ° C. for a predetermined time, a TiAlCN layer having a predetermined target layer thickness and target composition can be formed.

本発明の被覆工具は、下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層の結晶粒の{422}面の法線と基体表面の法線方向とのなす傾斜角が0〜10度の範囲である傾斜角度数分布が30%以上であり、また、上部層の立方晶構造を有するTiAlCN結晶粒についても、その{422}面の法線と基体表面の法線方向とのなす傾斜角が0〜10度の範囲である傾斜角度数分布が30%以上であり、さらに、下部層の合計平均層厚の50%以上の平均層厚を有し、かつ、立方晶構造を有するTi化合物層の結晶粒の{422}面とエピタキシャル成長する上部層のTiAlCN結晶粒の面積割合が、基体表面の法線方向となす傾斜角が0〜10度であるTiAlCN結晶粒全体の50%以上であることにより、下部層および上部層の硬さが向上し、さらに下部層と上部層の付着強度が向上し、その結果、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件においても、硬質被覆層はすぐれた耐チッピング性を示すとともに、長期の使用にわたってすぐれた耐摩耗性を発揮するのである。   The coated tool of the present invention has an average layer thickness of 50% or more of the total average layer thickness of the lower layer, and the normal of the {422} plane of the crystal grain of the Ti compound layer having a cubic structure and the substrate surface The tilt angle distribution with the tilt angle with the normal direction is 30% or more, and the TiAlCN crystal grains having the cubic structure of the upper layer also have the {422} plane. An inclination angle number distribution in which the inclination angle between the normal line of the substrate and the normal direction of the substrate surface is in the range of 0 to 10 degrees is 30% or more, and the average is 50% or more of the total average layer thickness of the lower layers. The tilt ratio between the area ratio of the {422} plane of the crystal grains of the Ti compound layer having a layer thickness and the cubic structure and the TiAlCN crystal grains of the upper layer epitaxially grown with respect to the normal direction of the substrate surface is 0 More than 50% of the entire TiAlCN crystal grains of -10 degrees As a result, the hardness of the lower layer and the upper layer is improved, and the adhesion strength between the lower layer and the upper layer is improved. As a result, the cutting blade is subjected to high loads at high speed and intermittently and shockingly. Even under high-speed intermittent cutting conditions, the hard coating layer exhibits excellent chipping resistance and also exhibits excellent wear resistance over a long period of use.

本発明の硬質被覆層の層構造の概略模式図を示す。The schematic model of the layer structure of the hard coating layer of this invention is shown. 本発明の下部層と上部層について求めた傾斜角度数分布のうち、下部層の合計平均層厚の50%以上の平均層厚を有する立方晶構造のTiCN結晶粒について求めたグラフの一例を示す。1 shows an example of a graph obtained for TiCN crystal grains having a cubic structure having an average layer thickness of 50% or more of the total average layer thickness of the lower layer in the distribution of inclination angle numbers obtained for the lower layer and the upper layer of the present invention. . 本発明の下部層と上部層について求めた傾斜角度数分布のうち、上部層の立方晶構造のTiAlCN結晶粒について求めたグラフの一例を示す。An example of the graph calculated | required about the TiAlCN crystal grain of the cubic structure of the upper layer among the inclination angle number distribution calculated | required about the lower layer and the upper layer of this invention is shown.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered at a predetermined temperature within a range of ˜1470 ° C. for 1 hour, and after sintering, manufacture tool bases A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, all TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
まず、表3に示される形成条件で、表7に示される下部層を形成し、
次いで、表5、表6に示される形成条件A〜J、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.5〜3.0%、H:50〜75%、ガス群BとしてTiCl:0.1〜0.15%、AlCl:0.3〜0.5%、N:0〜2%、C:0〜0.05%、H:残、反応雰囲気圧力:2〜5kPa、反応雰囲気温度:700〜900℃、供給周期1〜5秒、1周期当たりのガス供給時間0.15〜0.25秒、ガス供給Aとガス供給Bの位相差0.10〜0.20秒として、所定時間、熱CVD法を行って上部層を形成することにより、本発明被覆工具1〜10を作製した。
なお、本発明被覆工具8〜10については、表3に示される形成条件で、表7に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
First, under the formation conditions shown in Table 3, the lower layer shown in Table 7 is formed,
Next, the formation conditions A to J shown in Tables 5 and 6, that is, from the gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , H 2 As a gas group B and a gas supply method, the reaction gas composition (capacity% with respect to the total of the gas group A and the gas group B) is set to NH 3 : 1.5 to 3.0% as the gas group A. , H 2 : 50 to 75%, gas group B as TiCl 4 : 0.1 to 0.15%, AlCl 3 : 0.3 to 0.5%, N 2 : 0 to 2%, C 2 H 4 : 0 to 0.05%, H 2 : remaining, reaction atmosphere pressure: 2 to 5 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time per cycle 0.15 to 0.25 Seconds, the phase difference between gas supply A and gas supply B is 0.10 to 0.20 seconds, In the meantime, this invention coated tool 1-10 was produced by performing a thermal CVD method and forming an upper layer.
In addition, about this invention coated tools 8-10, the upper layer shown in Table 7 was formed on the formation conditions shown in Table 3.

また、比較の目的で、工具基体A〜Dの表面に、通常の化学蒸着装置を用い、表4に示される形成条件で、表8に示される下部層を形成し、表5、表6に示される条件かつ表8に示される目標層厚(μm)で本発明被覆工具1〜10と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。
なお、比較被覆工具8〜10については、本発明被覆工具8〜10と同様に、表4に示される形成条件で、表8に示される上部層を形成した。
For comparison purposes, the lower layers shown in Table 8 are formed on the surfaces of the tool bases A to D using the normal chemical vapor deposition apparatus under the formation conditions shown in Table 4, and Tables 5 and 6 show the results. A hard coating layer including at least a composite nitride or composite carbonitride layer of Ti and Al was formed by vapor deposition in the same manner as in the present invention coated tools 1 to 10 under the conditions shown and the target layer thickness (μm) shown in Table 8. .
In addition, about the comparison coating tools 8-10, the upper layer shown by Table 8 was formed on the formation conditions shown by Table 4 similarly to this invention coating tools 8-10.

本発明被覆工具1〜10、比較被覆工具1〜10の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表7および表8に示される目標層厚と実質的に同じ平均層厚を示した。   The cross sections in the direction perpendicular to the tool substrate of each constituent layer of the inventive coated tools 1 to 10 and comparative coated tools 1 to 10 were measured using a scanning electron microscope (magnification 5000 times), and 5 points in the observation field of view. The average layer thickness was measured and averaged to obtain the average layer thickness. As a result, the average layer thickness was substantially the same as the target layer thickness shown in Tables 7 and 8.

また、上部層のTiAlCN層のAlの平均含有割合Xaveについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合Xaveを求めた。
また、Cの平均含有割合Yaveについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YaveはTiAlCN層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYaveとして求めた。
Also, the average content X ave of Al TiAlCN layer of the upper layer, electron microprobe (Electron-Probe-Micro-Analyser : EPMA) using, in samples polished surface, an electron beam from the sample surface side Irradiation was performed, and the average content ratio Xave of Al was determined from the average of 10 points of the analysis result of the obtained characteristic X-rays.
Moreover, about average content ratio Yave of C, it calculated | required by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average content ratio Y ave of C indicates the average value in the depth direction for the TiAlCN layer. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is determined as an unavoidable C content ratio, and C 2 H 4 is intentionally determined. A value obtained by subtracting the unavoidable C content from the content (atom ratio) of the C component contained in the TiAlCN layer obtained when supplied was determined as Y ave .

また、硬質被覆層の傾斜角度数分布については、まず、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体表面と垂直方向に関しては1μmの測定範囲、また、工具基体表面と水平方向には50μmの範囲に亘り0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶構造を有する結晶粒個々に照射し、電子線後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、最高ピークが存在する傾斜角区分を求めるとともに、0〜10度の範囲内に存在する度数の割合を求めた。
表7および表8に、その結果を示す。
In addition, regarding the distribution of the inclination angle number of the hard coating layer, first, field emission is performed with the cross section of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer as a polished surface. Set in a lens barrel of a scanning electron microscope, an electron beam with an acceleration voltage of 10 kV at an incident angle of 70 degrees and an irradiation current of 1 nA, a measurement range of 1 μm in the direction perpendicular to the tool substrate surface, and the tool substrate surface In the horizontal direction, the crystal grains having a cubic crystal structure existing in the measurement range are irradiated at intervals of 0.1 μm / step over a range of 50 μm, and a tool is used by using an electron beam backscatter diffraction image apparatus. The inclination angle formed by the normal of the {422} plane, which is the crystal plane of the crystal grain, is measured with respect to the normal of the base surface (the direction perpendicular to the tool base surface on the cross-section polished surface). The angle of measurement In addition to dividing the measured inclination angle within the range of 0 to 45 degrees into every 0.25 degree pitch, and calculating the inclination angle classification where the highest peak exists by counting the frequencies existing in each division The ratio of the frequency existing in the range of 0 to 10 degrees was determined.
Tables 7 and 8 show the results.

次に、硬質被覆層の上部層の傾斜角度数分布についても、上部層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、70度の入射角度で10kVの加速電圧の電子線を1nAの照射電流で、工具基体表面と垂直方向に関しては0.5μmの測定範囲、また、工具基体表面と水平方向には100μmの範囲に亘り0.1μm/stepの間隔で、測定範囲内に存在する立方晶結晶構造を有する結晶粒個々に照射し、電子後方散乱回折像装置を用いて、工具基体表面の法線(断面研磨面における工具基体表面と垂直な方向)に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより、最高ピークが存在する傾斜角区分を求めるとともに、0〜10度の範囲内に存在する度数の割合を求めた。
表7および表8に、その結果を示す。
Next, with regard to the distribution of the number of inclination angles of the upper layer of the hard coating layer, it is set in a lens barrel of a field emission scanning electron microscope with the cross section of the upper layer being a polished surface, and 10 kV at an incident angle of 70 degrees. An electron beam with an acceleration voltage of 1 nA and an irradiation current of 1 nA, a measurement range of 0.5 μm in the direction perpendicular to the tool substrate surface, and a spacing of 0.1 μm / step over a range of 100 μm in the horizontal direction from the tool substrate surface Then, each crystal grain having a cubic crystal structure existing within the measurement range is irradiated, and the normal of the tool base surface (direction perpendicular to the tool base surface on the cross-section polished surface) is obtained using an electron backscatter diffraction image apparatus. In contrast, the inclination angle formed by the normal of the {422} plane, which is the crystal plane of the crystal grain, is measured, and based on the measurement result, the measurement inclination angle is in the range of 0 to 45 degrees. Measurement pitch is 0.25 degree pitch With partitioning, by aggregating the frequencies present in each segment, along with determining the tilt angle sections highest peak is present, to determine the percentage of power that exists in the range of 0 degrees.
Tables 7 and 8 show the results.

また、硬質被覆層の下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒と上部層のTiAlCN結晶粒について、電界放出型走査電子顕微鏡を用いて個々の結晶粒の結晶方位を解析し、工具基体表面の法線に対する個々の結晶粒の{422}面の法線がなす傾斜角を測定するとともに、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層における該結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることに該当するか否かを判定する。
すなわち、本発明被覆工具1〜10、比較被覆工具1〜10について、上部層と下部層の界面からの下部層の厚さ方向へ下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層1.0μmを含む範囲、また、上部層の厚さ方向へ1.0μm、さらに、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(2.0μm以上×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、2.0以上×50μmの測定領域を0.1μm/stepの間隔で、工具基体表面の法線に対して、前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層における該結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が存在することで本発明に規定するエピタキシャル関係を確認し、かつ、該結晶粒は、該測定領域である2.0以上×50μmの領域における基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めるか否かを求め、本発明に規定するかを判定する。
また前記電子後方散乱解析装置による測定で、下部層が立方晶である事を確認し、上部層のTiAlCNが立方晶又は立方晶と六方晶の混合である事を確認した。
表7、表8にこれらの値を示す。
In addition, regarding the crystal grains of the Ti compound layer and the TiAlCN crystal grains of the upper layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer of the hard coating layer, individual crystals are obtained using a field emission scanning electron microscope. Analyzing the crystal orientation of the grains, measuring the inclination angle formed by the normal of the {422} plane of each crystal grain with respect to the normal of the tool substrate surface, and measuring an average layer of 50% or more of the total average layer thickness of the lower layer In the region of the upper layer corresponding to the maximum width of the crystal grain in the direction parallel to the substrate surface in the Ti compound layer having a thickness, the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is 0-10. There is a crystal grain of a composite nitride or composite carbonitride layer of Ti and Al having the cubic structure within a range of degrees, and the crystal grain is a {422} plane with respect to the normal direction of the substrate surface The angle of inclination of the normal is in the range of 0-10 degrees It determines whether corresponding occupy an area percentage of 50% or more of crystal grains whole area of Ti and complex nitrides of Al or composite carbonitride layer having a cubic structure is within.
That is, for the inventive coated tools 1-10 and comparative coated tools 1-10, an average layer thickness of 50% or more of the total average layer thickness of the lower layer in the thickness direction of the lower layer from the interface between the upper layer and the lower layer. A measurement range (2.0 μm or more × 50 μm) of a cross-section polished surface of 1.0 μm in the thickness direction of the upper layer and 1.0 μm in the thickness direction of the upper layer and 50 μm in the direction parallel to the tool base surface. Set in a lens barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees on the polished surface is present in the measurement range of each polished surface with an irradiation current of 1 nA Irradiate each individual crystal grain having a cubic crystal lattice, and use an electron backscatter diffraction image apparatus to set a measurement area of 2.0 to 50 μm at a normal of the tool base surface at an interval of 0.1 μm / step. In contrast, the crystal plane of the crystal grain The inclination angle formed by the normal of the {422} plane is measured, and the maximum width in the direction parallel to the substrate surface of the crystal grains in the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer In the corresponding upper layer region, Ti and Al composite nitride or composite having the cubic structure in which the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees The epitaxial relationship defined in the present invention is confirmed by the presence of crystal grains of the carbonitride layer, and the crystal grains are in the normal direction of the substrate surface in the measurement region of 2.0 to 50 μm. 50% or more of the total crystal grain area of the Ti and Al composite nitride or composite carbonitride layer having the cubic structure in which the inclination angle of the normal of the {422} plane is in the range of 0 to 10 degrees To occupy the area ratio of It determines whether or not specified in.
Further, the measurement by the electron backscattering analyzer confirmed that the lower layer was cubic, and that the TiAlCN of the upper layer was cubic or a mixture of cubic and hexagonal.
Tables 7 and 8 show these values.









つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10と比較被覆工具1〜10について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。   Next, the present coated tools 1 to 10 and the comparative coated tools 1 to 10 are described below in a state where the various coated tools are all clamped to a tool steel cutter tip portion having a cutter diameter of 125 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed interrupted cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting blade was measured. The results are shown in Table 9.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験:乾式高速正面フライス、センターカット切削加工、
被削材:JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度:980 min−1
切削速度:385 m/min、
切り込み:1.5 mm、
一刃送り量:0.15 mm/刃、
切削時間:8分、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 980 min −1
Cutting speed: 385 m / min,
Cutting depth: 1.5 mm,
Single-blade feed rate: 0.15 mm / tooth,
Cutting time: 8 minutes


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体E〜Gをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Compounded in the formulation shown in Table 10, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to honing processing with an R of 0.07 mm. Tool bases E to G made of a WC-base cemented carbide having an insert shape of CNMG12041 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体Hを形成した。   In addition, as raw material powder, TiCN (mass ratio TiC / TiN = 50/50) powder, NbC powder, WC powder, Co powder, and Ni powder all having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 11, wet mixed with a ball mill for 24 hours, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A tool substrate H made of cermet was formed.

つぎに、これらの工具基体E〜Gおよび工具基体Hの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3、表5及び表6に示される条件で、少なくとも(Ti1−xAl)(C1−y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表12に示される本発明被覆工具11〜20を製造した。
なお、本発明被覆工具18〜20については、表3に示される形成条件で、表12に示すような上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of the tool bases E to G and the tool base H, and at least (Ti 1) under the conditions shown in Tables 3, 5 and 6 by the same method as in Example 1. -x Al x) (by C y N 1-y) layer is deposited formed at the target layer thickness of the hard coating layer containing was prepared present invention coated tool 11 to 20 shown in Table 12.
In addition, about this invention coated tools 18-20, the upper layer as shown in Table 12 was formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体E〜Gおよび工具基体Hの表面に、通常の化学蒸着装置を用い、表4、表5及び表6に示される条件かつ表13に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表13に示される比較被覆工具11〜20を製造した。
なお、本発明被覆工具18〜20と同様に、比較被覆工具18〜20については、表4に示される形成条件で、表13に示される上部層を形成した。
Further, for the purpose of comparison, a normal chemical vapor deposition apparatus was used on the surfaces of the tool bases E to G and the tool base H, and the conditions shown in Tables 4, 5 and 6 and the target layer thicknesses shown in Table 13 were used. Thus, comparative coated tools 11 to 20 shown in Table 13 were produced by vapor-depositing a hard coating layer in the same manner as the coated tool of the present invention.
In addition, similarly to this invention coated tool 18-20, about comparative coated tool 18-20, the upper layer shown in Table 13 was formed on the formation conditions shown in Table 4.

本発明被覆工具11〜20および比較被覆工具11〜20の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表12および表13に示される目標層厚と実質的に同じ平均層厚を示した。   The cross-section of each component layer of the present coated tool 11-20 and comparative coated tool 11-20 is measured using a scanning electron microscope (5000 times magnification), and the layer thicknesses at five points in the observation field are measured and averaged. As a result, the average layer thickness was found to be substantially the same as the target layer thickness shown in Tables 12 and 13.

上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、実施例1と同様にして求めた。
また、硬質被覆層の下部層および上部層の立方晶結晶構造を有する結晶粒の{422}面の法線が、工具基体表面の法線対してなす傾斜角および傾斜角度数分布については、実施例1と同様にして求めた。
さらに、界面を介して相互に隣接する下部層の結晶粒の{422}面の法線方向に対してエピタキシャル成長をなす上部層のTiAlCN結晶粒の面積割合については、実施例1と同様にして求めた。
表12、表13にこれらの値を示す。
The average Al content ratio X ave and the average C content ratio Y ave of the upper TiAlCN layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). .
In addition, regarding the tilt angle and the tilt angle number distribution formed by the normal of the {422} plane of the crystal grains having the cubic crystal structure of the lower layer and the upper layer of the hard coating layer with respect to the normal of the tool substrate surface, Determined in the same manner as in Example 1.
Further, the area ratio of the TiAlCN crystal grains in the upper layer epitaxially growing in the normal direction of the {422} plane of the crystal grains in the lower layer adjacent to each other through the interface is obtained in the same manner as in Example 1. It was.
Tables 12 and 13 show these values.





つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜20および比較被覆工具11〜20について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:390 m/min、
切り込み:1.0 mm、
送り:0.1 mm/rev、
切削時間:5 分、
(通常の切削速度は、 220m/min)、
切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
切削速度:325 m/min、
切り込み:1.5 mm、
送り:0.1 mm/rev、
切削時間:5 分、
(通常の切削速度は、 200m/min)、
表14に、切削試験の結果を示す。
Next, the present invention coated tools 11 to 20 and comparative coated tools 11 to 20 are shown below in a state where all of the various coated tools are screwed to the tip of the tool steel tool with a fixing jig. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 390 m / min,
Cutting depth: 1.0 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 325 m / min,
Cutting depth: 1.5 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200 m / min),
Table 14 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表15に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi−Zr−Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. These raw material powders are shown in Table 15. After blending into the blended composition, wet mixing with a ball mill for 80 hours, drying, and press-molding into a green compact with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa, and then this green compact Is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece, and this presintered body is separately prepared. A normal ultra high pressure sintering apparatus in a state of being superposed on a support piece made of WC base cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm Normal pressure: 4 Pa, temperature: prestressed at a predetermined temperature in the range of 1200 to 1400 ° C., holding time: 0.8 hours, and after sintering, the upper and lower surfaces are polished using a diamond grindstone, and the wire electric discharge machine Then, it is divided into predetermined dimensions, and Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA120212 (thickness: 4.76 mm × inscribed circle diameter: 12.7 mm 80) Ti- having a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the remainder in the brazing part (corner part) of the insert body made of WC-based cemented carbide with a diamond) After brazing using a brazing material of Zr-Cu alloy and processing the outer periphery to a predetermined dimension, the cutting edge is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to final polishing to achieve ISO. Standard CNGA12 Tool substrate b having a 412 insert shape, The filtrate was produced, respectively.


つぎに、これらの工具基体イ、ロの表面に、化学蒸着装置を用い、実施例1と同様に、表3に示される形成条件で、表16に示される下部層を形成し、表5、表6に示される条件で、所定時間、熱CVD法を行って上部層を形成することにより、本発明被覆工具21〜26を作製した。
なお、本発明被覆工具25〜26については、表3に示される形成条件で、表16に示される上部層を形成した。
Next, a lower layer shown in Table 16 is formed on the surface of these tool bases (a) and (b) using a chemical vapor deposition apparatus, under the formation conditions shown in Table 3, as in Example 1, Under the conditions shown in Table 6, the present invention coated tools 21 to 26 were produced by performing the thermal CVD method for a predetermined time to form the upper layer.
In addition, about this invention coated tools 25-26, the upper layer shown in Table 16 was formed on the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表4に示される形成条件で、表17に示される下部層を形成し、表5、表6に示される条件で、所定時間、熱CVD法を行って上部層を形成することにより、比較被覆工具21〜26を作製した。
なお、比較被覆工具25〜26については、表4に示される形成条件で、表17に示される上部層を形成した。
For comparison purposes, the lower layers shown in Table 17 are formed on the surfaces of the tool bases (a) and (b) using the usual chemical vapor deposition apparatus under the formation conditions shown in Table 4, and Tables 5 and 6 are used. Comparative coating tools 21 to 26 were produced by forming the upper layer by performing the thermal CVD method for a predetermined time under the conditions shown in FIG.
In addition, about the comparison coating tools 25-26, the upper layer shown in Table 17 was formed on the formation conditions shown in Table 4.

また、本発明被覆工具21〜26、比較被覆工具21〜26の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。   Moreover, the cross section of this invention coating tool 21-26 and the comparison coating tool 21-26 was measured using the scanning electron microscope, the layer thickness of five points in an observation visual field was measured, and it averaged and calculated | required the average layer thickness. .

上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、実施例1と同様にして求めた。
また、硬質被覆層の下部層および上部層の立方晶結晶構造を有する結晶粒の{422}面の法線が、工具基体表面の法線対してなす傾斜角および傾斜角度数分布については、実施例1と同様にして求めた。
さらに、界面を介して相互に隣接する下部層の結晶粒の{422}面の法線方向に対してエピタキシャル成長をなす上部層のTiAlCN結晶粒の面積割合については、実施例1と同様にして求めた。
表16、表17にこれらの値を示す。
The average Al content ratio X ave and the average C content ratio Y ave of the upper TiAlCN layer were determined in the same manner as Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). .
In addition, regarding the tilt angle and the tilt angle number distribution formed by the normal of the {422} plane of the crystal grains having the cubic crystal structure of the lower layer and the upper layer of the hard coating layer with respect to the normal of the tool substrate surface, Determined in the same manner as in Example 1.
Further, the area ratio of the TiAlCN crystal grains in the upper layer epitaxially growing in the normal direction of the {422} plane of the crystal grains in the lower layer adjacent to each other through the interface is obtained in the same manner as in Example 1. It was.
Tables 16 and 17 show these values.



つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具21〜26、比較被覆工具21〜26について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 255 m/min、
切り込み: 0.10 mm、
送り: 0.12 mm/rev、
切削時間: 4分、
表18に、前記切削試験の結果を示す。
Next, the present invention coated tools 21 to 26 and comparative coated tools 21 to 26 are shown below in a state where any of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig. Then, a dry high-speed intermittent cutting test of carburized and hardened alloy steel was performed, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 255 m / min,
Cutting depth: 0.10 mm,
Feed: 0.12 mm / rev,
Cutting time: 4 minutes
Table 18 shows the results of the cutting test.


表7〜9、12〜14、16〜18に示される結果から、本発明被覆工具1〜26は、界面を介して隣接する下部層の{422}配向を示す結晶粒と上部層の{422}配向を示すTiAlCN結晶粒がエピタキシャル成長をすることで、界面での付着密度が向上すると同時に、硬質被覆層が高硬度となるため、高熱発生を伴い、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続切削条件に用いた場合でも、硬質被覆層の耐チッピング性にすぐれるとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する。
これに対して、比較被覆工具1〜26では、高速断続切削加工においては、硬質被覆層のチッピング、欠損、剥離等の異常損傷の発生、耐摩耗性の低下により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7 to 9, 12 to 14, and 16 to 18, the coated tools 1 to 26 of the present invention show the {422} orientation of the lower layer adjacent through the interface and the {422} of the upper layer. } Epitaxial growth of TiAlCN crystal grains exhibiting orientation improves adhesion density at the interface, and at the same time, the hard coating layer has high hardness, resulting in high heat generation and intermittent / impact on the cutting edge. Even when used in high-speed intermittent cutting conditions where a high load is applied, the hard coating layer has excellent chipping resistance and excellent wear resistance over a long period of use.
On the other hand, in the comparative coated tools 1 to 26, in high-speed intermittent cutting, the service life is shortened in a relatively short time due to occurrence of abnormal damage such as chipping, chipping and peeling of the hard coating layer and a decrease in wear resistance. It is clear that

本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に断続的・衝撃的負荷な高負荷が作用する高速断続切削という厳しい切削条件下でも、すぐれた耐チッピング性、耐摩耗性が発揮されるものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   The coated tool of the present invention has severe cutting conditions such as high-speed intermittent cutting in which high loads such as intermittent and impact loads are applied to the cutting blade as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Excellent chipping resistance and wear resistance can be exhibited even under low conditions, so that it is possible to satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and lower costs. .

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1〜20μmの合計平均層厚を有するTi化合物層であって、かつ、その内の1層は、1μm以上で且つ合計平均層厚の50%以上の平均層厚を有するTi化合物層であり、
(b)前記上部層は、1〜20μmの平均層厚を有するTiとAlの複合窒化物または複合炭窒化物層であり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層を、
組成式:(Ti1−xAl)(C1−y
で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(d)前記下部層のうち、合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒はNaCl型面心立方晶の結晶構造を有し、また、前記上部層のTiとAlの複合窒化物または複合炭窒化物層の結晶粒は、NaCl型面心立方晶構造単相またはNaCl型面心立方晶構造と六方晶構造の混相からなる結晶構造を有し、
(e)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層の結晶粒および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の個々の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦断面方向から解析した場合、基体表面の法線方向に対する前記結晶粒の結晶面である{422}面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、基体表面の法線方向に対して0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分して各区分内に存在する度数を集計したとき、下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層および上部層の前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層のいずれにおいても、0〜10度の範囲内の傾斜角区分に最高ピークが存在するとともに、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布における度数全体の30%以上の割合を示し。
(f)下部層のうちの前記合計平均層厚の50%以上の平均層厚を有するTi化合物層において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である結晶粒の基体表面に平行な方向の最大幅に対応する上部層の領域において、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒が存在し、かつ、該結晶粒は、基体表面の法線方向に対する{422}面の法線の傾斜角が0〜10度の範囲内である前記立方晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒全体の面積の50%以上の面積割合を占めることを特徴とする表面被覆切削工具。
A hard coating layer consisting of a lower layer and an upper layer is formed on the surface of the tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. Surface coated cutting tools
(A) The lower layer has a total average layer thickness of 1 to 20 μm comprising one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. And one of them is a Ti compound layer having an average layer thickness of 1 μm or more and 50% or more of the total average layer thickness,
(B) The upper layer is a composite nitride or composite carbonitride layer of Ti and Al having an average layer thickness of 1 to 20 μm,
(C) the Ti and Al composite nitride or composite carbonitride layer,
Composition formula: (Ti 1-x Al x ) (C y N 1-y )
The average content ratio X ave in the total amount of Ti and Al in Al and the average content ratio Y ave in the total amount of C and N in C (where X ave and Y ave are atomic ratios) Satisfy 0.60 ≦ X ave ≦ 0.95 and 0 ≦ Y ave ≦ 0.005,
(D) Among the lower layers, the crystal grains of the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness have a crystal structure of NaCl type face centered cubic crystal, and Ti of the upper layer The crystal grains of the composite nitride or composite carbonitride layer of Al and Al have a crystal structure composed of a single phase of the NaCl type face centered cubic structure or a mixed phase of the NaCl type face centered cubic structure and a hexagonal structure,
(E) Ti and Al composite nitride or composite carbonitride having a crystal grain of a Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the cubic structure of the upper layer When the crystal orientation of each crystal grain of the physical layer is analyzed from the longitudinal cross-sectional direction using an electron beam backscattering diffractometer, the method of the {422} plane which is the crystal plane of the crystal grain with respect to the normal direction of the substrate surface The inclination angle formed by the line is measured, and among the measurement inclination angles, the measurement inclination angles within the range of 0 to 45 degrees with respect to the normal direction of the substrate surface are divided for each pitch of 0.25 degrees. When the frequencies existing in the section are counted, the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer and the composite nitriding of Ti and Al having the cubic structure of the upper layer In either the product or the composite carbonitride layer, 0 to With the highest peak is present in the tilt angle sections of the range of 0 degrees, the sum of the frequencies present in the range of the 0 to 10 degrees, it indicates the percentage of more than 30% of the total power at the inclination angle frequency distribution.
(F) In the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness among the lower layers, the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is 0 to 10 degrees. In the region of the upper layer corresponding to the maximum width of the crystal grains in the direction parallel to the substrate surface, the inclination angle of the normal of the {422} plane with respect to the normal direction of the substrate surface is in the range of 0 to 10 degrees. And a crystal grain of the Ti and Al composite nitride or composite carbonitride layer having the cubic crystal structure, and the crystal grain is normal to the {422} plane with respect to the normal direction of the substrate surface The Ti and Al composite nitride or composite carbonitride layer having a cubic structure having an inclination angle of 0 to 10 degrees occupies an area ratio of 50% or more of the entire crystal grain area. A surface-coated cutting tool.
前記下部層の合計平均層厚の50%以上の平均層厚を有するTi化合物層は、Tiの炭窒化物層であることを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein the Ti compound layer having an average layer thickness of 50% or more of the total average layer thickness of the lower layer is a Ti carbonitride layer. 前記TiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1〜25μmの平均層厚を有する酸化アルミニウム層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする請求項1または2に記載の表面被覆切削工具。   An uppermost surface layer including at least an aluminum oxide layer having an average layer thickness of 1 to 25 μm is further formed on the surface of the upper layer composed of the composite nitride or composite carbonitride layer of Ti and Al. The surface-coated cutting tool according to claim 1 or 2.
JP2015252586A 2014-12-26 2015-12-24 Surface coated cutting tool with excellent chipping and wear resistance Active JP6650108B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265550 2014-12-26
JP2014265550 2014-12-26

Publications (2)

Publication Number Publication Date
JP2016124098A true JP2016124098A (en) 2016-07-11
JP6650108B2 JP6650108B2 (en) 2020-02-19

Family

ID=56358548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015252586A Active JP6650108B2 (en) 2014-12-26 2015-12-24 Surface coated cutting tool with excellent chipping and wear resistance

Country Status (1)

Country Link
JP (1) JP6650108B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001347A (en) * 2016-07-01 2018-01-11 株式会社タンガロイ Coated cutting tool
KR20220091827A (en) * 2020-12-24 2022-07-01 한국야금 주식회사 Cvd film for cutting tool with enhanced wear resistance and chipping resistance
KR20220095633A (en) * 2020-12-30 2022-07-07 한국야금 주식회사 Cvd film for cutting tool with excellent peel resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181826A (en) * 1999-12-27 2001-07-03 Mmc Kobelco Tool Kk Hard film excellent in wear resistance and hard film- coated member
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2009113125A (en) * 2007-11-02 2009-05-28 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2014124754A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exerts excellent peeling and chipping resistances in high-speed intermittent cutting
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181826A (en) * 1999-12-27 2001-07-03 Mmc Kobelco Tool Kk Hard film excellent in wear resistance and hard film- coated member
JP2006334721A (en) * 2005-06-02 2006-12-14 Mitsubishi Materials Corp SURFACE COATED CERMET CUTTING TOOL WITH THICKENED alpha TYPE ALUMINUM OXIDE LAYER EXHIBITING EXCELLENT CHIPPING RESISTANCE
JP2009113125A (en) * 2007-11-02 2009-05-28 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2014124754A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exerts excellent peeling and chipping resistances in high-speed intermittent cutting
JP2014210333A (en) * 2013-04-01 2014-11-13 三菱マテリアル株式会社 Surface-coated cutting tool with hard coated layer exerting excellent chipping resistance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018001347A (en) * 2016-07-01 2018-01-11 株式会社タンガロイ Coated cutting tool
KR20220091827A (en) * 2020-12-24 2022-07-01 한국야금 주식회사 Cvd film for cutting tool with enhanced wear resistance and chipping resistance
KR102509585B1 (en) 2020-12-24 2023-03-14 한국야금 주식회사 Cvd film for cutting tool with enhanced wear resistance and chipping resistance
KR20220095633A (en) * 2020-12-30 2022-07-07 한국야금 주식회사 Cvd film for cutting tool with excellent peel resistance
KR102497484B1 (en) 2020-12-30 2023-02-08 한국야금 주식회사 Cvd film for cutting tool with excellent peel resistance

Also Published As

Publication number Publication date
JP6650108B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6402662B2 (en) Surface-coated cutting tool and manufacturing method thereof
JP6394898B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP6150109B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2014097536A (en) Surface coating cutting tool whose hard coating layer exerts excellent chipping resistance in high-speed intermittent cutting work
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016083766A (en) Surface-coated cutting tool
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6617917B2 (en) Surface coated cutting tool
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP2019005855A (en) Surface-coated cutting tool having hard coating layer excellent in chipping resistance
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200101

R150 Certificate of patent or registration of utility model

Ref document number: 6650108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150