JP2021137935A - Surface coating cutting tool - Google Patents
Surface coating cutting tool Download PDFInfo
- Publication number
- JP2021137935A JP2021137935A JP2020039955A JP2020039955A JP2021137935A JP 2021137935 A JP2021137935 A JP 2021137935A JP 2020039955 A JP2020039955 A JP 2020039955A JP 2020039955 A JP2020039955 A JP 2020039955A JP 2021137935 A JP2021137935 A JP 2021137935A
- Authority
- JP
- Japan
- Prior art keywords
- avg
- region
- area
- layer
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
本発明は、特に、合金鋼や鋳鉄等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性、耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 In particular, the present invention exhibits excellent cutting performance over a long period of use because the hard coating layer has excellent chipping resistance and abrasion resistance even in high-speed intermittent cutting of alloy steel, cast iron, etc. It relates to a surface coating cutting tool (hereinafter, may be referred to as a coating tool).
従来、炭化タングステン(以下、WCで示す)基超硬合金等の工具基体の表面に、硬質被覆層として、Ti−Al系の複合炭窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
ただ、前記従来のTi−Al系の複合炭窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削加工等の厳しい切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, there is a coating tool in which a Ti—Al-based composite carbonitride layer is coated and formed as a hard coating layer on the surface of a tool substrate such as a tungsten carbide (hereinafter referred to as WC) -based cemented carbide by a vapor deposition method. These are known to exhibit excellent wear resistance.
However, although the conventional covering tool coated with the Ti-Al-based composite carbonitride layer has relatively excellent wear resistance, abnormalities such as chipping when used under severe cutting conditions such as high-speed intermittent cutting. Since wear is likely to occur, various proposals have been made for improving the hard coating layer.
例えば、特許文献1には、基材上に蒸着されたTiAlCNのナノ結晶粒の周囲に非晶質炭素が存在する被覆層が開示され、この被覆層は潤滑性に優れ、基材との接着性がよいと記載されている。 For example, Patent Document 1 discloses a coating layer in which amorphous carbon exists around nanocrystal grains of TiAlCN deposited on a base material, and this coating layer has excellent lubricity and adheres to the base material. It is stated that the sex is good.
また、例えば、特許文献2には、炭素を含むナノ結晶粒を有する硬質皮膜であって、該硬質皮膜はAlと少なくとも一つの他の金属成分(Me1、Me2)および炭素と少なくとも一つの元素(E1、E2)を有し、その組成は、
(AlxMe1yMe2z)CuE1vE2w
ここで、
Me1、Me2:金属元素
x>0.4、x+y+z=1、y≧0、z≧0
0<u<1、u+v+w=1、v≧0、w≧0
であって、
結晶粒界の炭素濃度がナノ結晶粒内の炭素濃度よりも高いことを特徴とする硬質皮膜が開示され、この硬質皮膜は潤滑性が優れ、切削工具用であることが記載されている。
Further, for example, Patent Document 2 describes a hard film having nanocrystal grains containing carbon, wherein the hard film contains Al and at least one other metal component (Me1, Me2) and carbon and at least one element (Me1, Me2). It has E1, E2), and its composition is
(Al x Me1 y Me2 z) C u E1 v E2 w
here,
Me1, Me2: Metal element x> 0.4, x + y + z = 1, y ≧ 0, z ≧ 0
0 <u <1, u + v + w = 1, v ≧ 0, w ≧ 0
And
A hard film characterized in that the carbon concentration at the grain boundaries is higher than the carbon concentration in the nanocrystal grains is disclosed, and it is described that this hard film has excellent lubricity and is used for cutting tools.
さらに、例えば、特許文献3には、単層又は多層の層系で被覆された、金属、超硬合金、サーメットまたはセラミックスからの被覆物品であって、該層系が、少なくとも1つの硬質材料複合層を有しており、該複合層が、主相として立方晶TiAlCNおよび六方晶AlNを含有し、該立方晶TiAlCNが、≧0.1μmの結晶子サイズを有するTi1−xAlxCyNz(ここで、x>0.75、y=0〜0.25であり、かつz=0.75〜1である)であり、かつ、粒界領域内に非晶質炭素を0.01%〜20%の質量割合で含有していることを特徴とする切削工具用皮膜が記載されている。 Further, for example, Patent Document 3 describes a coated article from a metal, cemented carbide, cermet or ceramics coated with a single-layer or multi-layer system, wherein the layer system is at least one hard material composite. It has a layer, the composite layer contains cubic TiAlCN and hexagonal AlN as the main phase, and the cubic TiAlCN has a crystallite size of ≧ 0.1 μm Ti 1-x Al x Cy. N z (here, x> 0.75, y = 0 to 0.25, and z = 0.75 to 1), and the amorphous carbon is 0. A coating for cutting tools is described, which is characterized by being contained in a mass ratio of 01% to 20%.
近年の切削加工における省力化および省エネルギー化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具の硬質皮膜には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわたって優れた耐摩耗性が求められている。 In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the hard coating of covering tools has even more chipping resistance and resistance to chipping. Abnormal damage resistance such as chipping resistance and peeling resistance is required, and excellent wear resistance is required over a long period of use.
しかし、前記各公報に記載の被覆工具は、合金鋼や鋳鉄等の高速断続切削加工に供した場合には熱亀裂等の異常損傷が発生し、それを起点としたチッピングが発生しやすく、満足する切削性能を発揮するとはいえないものである。 However, when the covering tools described in the above publications are subjected to high-speed intermittent cutting of alloy steel, cast iron, etc., abnormal damage such as thermal cracks occurs, and chipping starting from the damage is likely to occur, which is satisfactory. It cannot be said that the cutting performance is exhibited.
そこで、本発明はこのような状況にかんがみてなされたものであって、特に、合金鋼や鋳鉄等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性や耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention has been made in view of such a situation, and in particular, even in high-speed intermittent cutting of alloy steel, cast iron, etc., the hard coating layer has excellent chipping resistance and wear resistance. It is an object of the present invention to provide a covering tool that exhibits excellent cutting performance over a long period of use.
本発明者は、TiとAlの複合炭窒化物層(以下、「TiAlCN層」ということがある)を硬質被覆層として含む被覆工具の耐チッピング性、耐摩耗性の向上を図るべく、鋭意検討を重ねた。 The present inventor has diligently studied to improve the chipping resistance and abrasion resistance of a coating tool containing a composite carbonitride layer of Ti and Al (hereinafter, sometimes referred to as "TiAlCN layer") as a hard coating layer. Was piled up.
その結果、TiAlCN層を構成する結晶粒の粒界近傍に、C含有割合が高くかつAl含有割合が低い領域が所定割合で存在するとき、TiAlCN層の硬さが向上することにより耐摩耗性が向上し、TiAlCN層に圧縮応力が付与されることにより耐チッピング性の向上がもたらされるという知見を得た。 As a result, when a region having a high C content ratio and a low Al content ratio exists at a predetermined ratio in the vicinity of the grain boundaries of the crystal grains constituting the TiAlCN layer, the hardness of the TiAlCN layer is improved and the abrasion resistance is improved. It was found that the TiAlCN layer was improved and the chipping resistance was improved by applying compressive stress to the TiAlCN layer.
本発明は、この知見に基づくものであって、以下のとおりのものである。
「(1)工具基体と該工具基体の表面のTiとAlとの複合炭窒化物層を含む硬質被覆層を有する表面被覆切削工具であって、
(a)前記複合炭窒化物層は結晶粒から構成され、NaCl型の面心立方構造を有する結晶粒が70面積%以上であり、
(b)前記複合炭窒化物層は、その組成を、
組成式:(Ti1−xAlx)(CyN1−y)で表したとき、
AlとTiの合量に占めるAlの含有割合xの平均値xavg、CとNの合量に占めるCの含有割合の平均値yavgが、それぞれ、0.60≦xavg≦0.95、0.000≦yavg≦0.010を満足し、
(c)前記NaCl型の面心立方構造を有する各結晶粒において、その結晶粒界から該結晶粒内に25nm離間した曲線に囲まれた範囲を領域α、該曲線と前記結晶粒界に囲まれた範囲を領域βとし、
前記領域αにおける前記xおよび前記yの平均値を前記結晶粒ごとに求めて、それらを平均したものを、それぞれ、xαavg、yαavgとし、
前記領域βにおいて、隣接するもの同士の全領域にわたり粒界に沿って50nm間隔で分割した測定領域を設け、該測定領域ごとに求めた前記xおよび前記yの平均値をそれぞれxβavg、yβavgとするとき、
関係式:0.10≦xβavg≦xαavg−0.10、yαavg+0.010≦yβavg≦0.680を満足する前記測定領域の面積の総和が前記領域βの総面積に対して5.0〜20.0面積%存在すること、
を特徴とする表面被覆切削工具。
(2)前記NaCl型の面心立方構造を有する結晶粒は、平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0であることを特徴とする前記(1)に記載された表面被覆切削工具。」
The present invention is based on this finding and is as follows.
"(1) A surface-coated cutting tool having a tool substrate and a hard coating layer including a composite carbonitride layer of Ti and Al on the surface of the tool substrate.
(A) The composite carbonitride layer is composed of crystal grains, and the crystal grains having a NaCl-type face-centered cubic structure are 70 area% or more.
(B) The composition of the composite carbonitride layer is as follows.
Composition formula: When expressed by (Ti 1-x Al x ) ( Cy N 1-y)
The average value x avg of the content ratio x of Al in the total amount of Al and Ti and the average value y avg of the content ratio of C in the total amount of C and N are 0.60 ≤ x avg ≤ 0.95, respectively. , 0.000 ≤ y avg ≤ 0.010,
(C) In each crystal grain having a NaCl-type face-centered cubic structure, a range surrounded by a curve separated from the crystal grain boundary by 25 nm in the crystal grain is surrounded by a region α, the curve and the crystal grain boundary. Let the area β be the area β
The average values of x and y in the region α were obtained for each crystal grain, and the averaged values were defined as xα avg and yα avg , respectively.
In the region β, measurement regions divided at intervals of 50 nm along the grain boundaries are provided over the entire region of adjacent ones, and the average values of x and y obtained for each measurement region are xβ avg and yβ avg, respectively. When
Relationship: 0.10 ≦ xβ avg ≦ xα avg -0.10, 5 total area of the measurement region satisfying the yα avg + 0.010 ≦ yβ avg ≦ 0.680 is the total area of the region β .0 to 20.0 area% present,
A surface coating cutting tool characterized by.
(2) The crystal grains having a NaCl-type face-centered cubic structure are characterized in that the average particle width W is 0.10 to 2.00 μm and the average aspect ratio A is 2.0 to 10.0. The surface-coated cutting tool according to (1). "
本発明の表面被覆切削工具は、合金鋼や鋳鉄等の高速断続切削加工であっても、硬質被覆層が優れた耐チッピング性や耐摩耗性を備えることにより、長期の使用にわたって優れた切削性能を発揮する。 The surface-coated cutting tool of the present invention has excellent cutting performance over a long period of time because the hard coating layer has excellent chipping resistance and abrasion resistance even in high-speed intermittent cutting of alloy steel, cast iron, etc. Demonstrate.
本発明について、以下に詳細に説明する。なお、本明細書および特許請求の範囲において、数値範囲を「A〜B」(A、Bは共に数値)で表現するときは、その範囲は上限値(B)および下限値(A)を含んでおり、上限値(B)と下限値(A)の単位は同じである。 The present invention will be described in detail below. In the present specification and the claims, when the numerical range is expressed by "A to B" (both A and B are numerical values), the range includes the upper limit value (B) and the lower limit value (A). The unit of the upper limit value (B) and the lower limit value (A) is the same.
TiAlCN層におけるNaCl型の面心立方構造を有する結晶粒の面積割合:
TiAlCN層は結晶粒から構成され、この結晶粒において、NaCl型の面心立方構造を有する結晶粒の面積割合は、層厚方向断面(工具基体の表面に垂直な断面で縦断面とも云う)において70面積%以上であることが好ましい。その理由は、70面積%以上であれば、確実に本発明の目的の達成に寄与できるためである。ここで、70面積%以上とは、その上限が100面積%(すべての結晶粒がNaCl型の面心立方構造を有すること)であってもよいことを意味する。この面積割合は、より好ましくは80面積%以上である。
なお、結晶粒がNaCl型面心立方構造である面積割合は、後述する粒界の判定時の結果を利用する。
Area ratio of crystal grains having a NaCl-type face-centered cubic structure in the TiAlCN layer:
The TiAlCN layer is composed of crystal grains, and in these crystal grains, the area ratio of the crystal grains having a NaCl-type face-centered cubic structure is the cross section in the layer thickness direction (the cross section perpendicular to the surface of the tool substrate, which is also called the vertical cross section). It is preferably 70 area% or more. The reason is that if it is 70 area% or more, it can surely contribute to the achievement of the object of the present invention. Here, 70 area% or more means that the upper limit may be 100 area% (all crystal grains have a NaCl-type face-centered cubic structure). This area ratio is more preferably 80 area% or more.
For the area ratio in which the crystal grains have a NaCl-type face-centered cubic structure, the results at the time of determining the grain boundaries, which will be described later, are used.
TiAlCN層の平均組成:
本発明におけるTiAlCN層は、組成式:(Ti1−xAlx)(CyN1−y)で表したとき、
TiとAlの合量に占めるAlの含有割合(以下、「Al含有割合」という)xの平均xavgが、CとNとの合量に占めるCの含有割合(以下、「C含有割合」という)yの平均yavgが、それぞれ、0.60≦xavg≦0.95、0.000≦yavg≦0.010(ただし、x、y、xavg、yavgはいずれも原子比)を満足するように定める。
なお、(Ti1−xAlx)と(CyN1−y)との比は特に限定されるものではないが、(Ti1−xAlx)を1とする場合、(CyN1−y)の比は0.8〜1.2とすることが好ましい。その理由は、(Ti1−xAlx)に対する(CyN1−y)の比が前記範囲内であれば、確実に本発明の目的が達成できるためである。
また、TiAlCN層は微量のOやCl等の不可避的不純物を含んでいても発明の効果を損なうことはない。
Average composition of TiAlCN layer:
The TiAlCN layer in the present invention is represented by the composition formula: (Ti 1-x Al x ) ( Cy N 1-y ).
The average x avg of the Al content ratio (hereinafter referred to as "Al content ratio") x in the total amount of Ti and Al is the C content ratio (hereinafter, "C content ratio") in the total amount of C and N. The average y avg of y is 0.60 ≤ x avg ≤ 0.95 and 0.000 ≤ y avg ≤ 0.010 (however, x, y, x avg , and y avg are all atomic ratios). To be satisfied.
The ratio of (Ti 1-x Al x ) to (C y N 1-y ) is not particularly limited, but when (Ti 1-x Al x ) is 1, (C y N) The ratio of 1-y ) is preferably 0.8 to 1.2. The reason is that if the ratio of ( Cy N 1-y ) to (Ti 1-x Al x ) is within the above range, the object of the present invention can be surely achieved.
Further, even if the TiAlCN layer contains a trace amount of unavoidable impurities such as O and Cl, the effect of the invention is not impaired.
前記のようにxavg、yavgの範囲を定めた理由は、以下のとおりである。
Al含有割合の平均xavgが0.60未満であると、TiAlCN層は硬さが劣るため、合金鋼や鋳鉄等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、0.95を超えると六方晶の結晶粒が析出し、耐摩耗性が低下する。したがって、0.60≦xavg≦0.95としたが、より好ましくは0.70≦xavg≦0.90である。
C含有割合の平均yavgを0.000≦yavg≦0.010と定めたのは、前記範囲において耐チッピング性を保ちつつ硬さを向上させることができるためである。したがって、0.000≦yavg≦0.010が好ましいとしたが、より好ましくは0.006≦yavg≦0.010である。
The reason for defining the range of x avg and y avg as described above is as follows.
If the average x avg of the Al content is less than 0.60, the hardness of the TiAlCN layer is inferior, so that the wear resistance is not sufficient when it is subjected to high-speed intermittent cutting of alloy steel, cast iron, etc. If it exceeds 0.95, hexagonal crystal grains are precipitated and the wear resistance is lowered. Therefore, 0.60 ≦ x avg ≦ 0.95 was set, but more preferably 0.70 ≦ x avg ≦ 0.90.
The average y- avg of the C content ratio was set to 0.000 ≦ y- avg ≦ 0.010 because the hardness can be improved while maintaining the chipping resistance in the above range. Therefore, 0.000 ≦ y avg ≦ 0.010 is preferable, but 0.006 ≦ y avg ≦ 0.010 is more preferable.
TiAlCN層のAl含有割合の平均xavgは、オージェ電子分光法(AES:Auger Electron Spectroscopy)を用い、縦断面を研磨した試料において、電子線を縦断面側から照射し、膜厚方向(工具基体の表面に垂直な方向)全長にわたって少なくとも5本の線分析を行って得られたオージェ電子の解析結果を平均したものである。 The average x avg of the Al content ratio of the TiAlCN layer is obtained by irradiating a sample whose vertical cross section has been polished using Auger electron spectroscopy (AES) from the vertical cross section side and in the film thickness direction (tool substrate). It is an average of the analysis results of Auger electrons obtained by performing at least 5 line analyzes over the entire length (in the direction perpendicular to the surface of the).
また、C含有割合の平均yavgは、二次イオン質量分析(SIMS:Secondary Ion Mass Spectrometry)により求める。すなわち、表面を研磨した試料において、TiAlCN層の表面側からイオンビームを70μm×70μmの範囲に照射し、イオンビームによる面分析とスパッタイオンビームによるエッチングとを交互に繰り返すことにより深さ方向の組成測定を行う。まず、TiAlCN層について層の深さ方向へ0.5μm以上侵入した箇所から0.1μm以下のピッチで少なくとも0.5μmの深さの測定を行ったデータの平均を求める。さらに、これを少なくとも試料表面の5箇所において繰返し算出した結果を平均してC含有割合の平均yavgとして求める。 In addition, the average yavg of the C content ratio is determined by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry). That is, in a sample whose surface has been polished, an ion beam is irradiated from the surface side of the TiAlCN layer to a range of 70 μm × 70 μm, and surface analysis by the ion beam and etching by a sputter ion beam are alternately repeated to form a composition in the depth direction. Make a measurement. First, the average of data obtained by measuring a depth of at least 0.5 μm at a pitch of 0.1 μm or less from a portion of the TiAlCN layer that has penetrated 0.5 μm or more in the depth direction of the layer is obtained. Further, the results of repeated calculations at least at 5 points on the sample surface are averaged and obtained as the average yavg of the C content ratio.
TiAlCN層のNaCl型の面心立方構造を有する結晶粒における粒界近傍領域と該領域でない領域の間における組成の関係:
図1に示すように、NaCl型の面心立方構造を有する各結晶粒において、その結晶粒界から該結晶粒内に25nm離間した曲線に囲まれた範囲を領域α、該曲線と前記結晶粒界に囲まれた範囲を領域βとし、
前記領域αにおける前記xおよび前記yの平均値を前記結晶粒ごとに求めて、それらを平均したものを、それぞれ、xαavg、yαavgとし、
前記領域βにおいて、隣接するもの同士の全領域にわたり粒界に沿って50nm間隔で分割した測定領域を設け、該測定領域ごとに求めた前記xおよび前記yの平均値をそれぞれxβavg、yβavgとするとき、
関係式:0.10≦xβavg≦xαavg−0.10、yαavg+0.010≦yβavg≦0.680を満足する前記測定領域の面積の総和が前記領域βの総面積に対して5.0〜20.0面積%存在することが好ましい。
ここで、x、y、xavg、yavg、xαavg、yαavg、xβavg、yβavgは、原子比である。
Composition relationship between the region near the grain boundary and the region other than the grain boundary in the crystal grain having a NaCl-type face-centered cubic structure of the TiAlCN layer:
As shown in FIG. 1, in each crystal grain having a NaCl-type face-centered cubic structure, a region α is defined as a range surrounded by a curve 25 nm away from the crystal grain boundary in the crystal grain, and the curve and the crystal grain. The area surrounded by the boundary is defined as the region β.
The average values of x and y in the region α were obtained for each crystal grain, and the averaged values were defined as xα avg and yα avg , respectively.
In the region β, measurement regions divided at intervals of 50 nm along the grain boundaries are provided over the entire region of adjacent ones, and the average values of x and y obtained for each measurement region are xβ avg and yβ avg, respectively. When
Relationship: 0.10 ≦ xβ avg ≦ xα avg -0.10, 5 total area of the measurement region satisfying the yα avg + 0.010 ≦ yβ avg ≦ 0.680 is the total area of the region β It is preferably present in an area% of 0 to 20.0.
Here, x, y, x avg, y avg, xα avg, yα avg, xβ avg, yβ avg is an atomic ratio.
その理由は、以下のとおりである。
xβavg>xαavg−0.10、yαavg+0.010>yβavgであると、転位の移動が抑制されにくいため、TiAlCN層の硬さが向上する効果が小さく、粒界近傍の格子定数が上がらないことで、TiAlCN層に圧縮応力が付与されず、耐チッピング性向上の効果も小さい。一方、xβavgが0.10未満あるいはyβavgが0.680を超えると、TiAlCN層の耐高温酸化性が劣るため耐チッピング性が低下する。したがって、0.10≦xβavg≦xαavg−0.10、yαavg+0.010≦yβavg≦0.680とした。
領域αと領域βの組成に関する前記関係式を満足する箇所が領域βに占める面積割合については、領域β内に存在する割合が5.0面積%未満であると、TiAlCN層の硬さ向上効果と耐チッピング性向上効果が小さく、20.0面積%を超えると、TiAlCN層の耐高温酸化性が劣るため耐チッピング性が低下する。したがって、この面積割合は5.0〜20.0面積%であることが好ましいとしたが、より好ましくは10.0〜20.0面積%である。
The reason is as follows.
xβ avg> xα avg -0.10, If it is yα avg +0.010> yβ avg, the movement of dislocations is difficult to suppress a small effect of improving the hardness of the TiAlCN layer, the lattice constant of the grain boundary vicinity Since it does not rise, compressive stress is not applied to the TiAlCN layer, and the effect of improving chipping resistance is small. On the other hand, when xβ avg is less than 0.10 or yβ avg exceeds 0.680, the high temperature oxidation resistance of the TiAlCN layer is inferior, so that the chipping resistance is lowered. Thus, 0.10 ≦ xβ avg ≦ xα avg -0.10, was yα avg + 0.010 ≦ yβ avg ≦ 0.680.
Regarding the area ratio of the region β that satisfies the above relational expression regarding the composition of the region α and the region β, if the ratio existing in the region β is less than 5.0 area%, the hardness improving effect of the TiAlCN layer is obtained. The effect of improving the chipping resistance is small, and if it exceeds 20.0 area%, the high temperature oxidation resistance of the TiAlCN layer is inferior, so that the chipping resistance is lowered. Therefore, the area ratio is preferably 5.0 to 20.0 area%, but more preferably 10.0 to 20.0 area%.
ここで、領域αと領域βの組成の測定方法について説明する。
まず、次のようにして、TiAlCN層を構成する結晶粒の結晶粒界を求め、結晶粒を特定する。すなわち、透過型電子顕微鏡(TEM:Transmission Electron Microscope)に付属する結晶方位解析装置を用いて、工具基体表面に垂直な表面研磨された面(縦断面)において、前記表面研磨面の法線方向に対して0.5〜1.0度に傾けた電子線をPrecession(歳差運動) 照射しながら、電子線を任意のビーム径および間隔でスキャンし、連続的に電子回折パターンを取り込み、個々の測定点の結晶方位を解析する。工具基体表面に平行な方向に幅50μm、縦は層厚(平均層厚)分の観察視野に対して結晶粒界を判定する。
Here, a method for measuring the composition of the region α and the region β will be described.
First, the crystal grain boundaries of the crystal grains constituting the TiAlCN layer are obtained and the crystal grains are specified as follows. That is, using a crystal orientation analyzer attached to a transmission electron microscope (TEM), a surface-polished surface (longitudinal section) perpendicular to the surface of the tool substrate is oriented in the normal direction of the surface-polished surface. On the other hand, while irradiating the electron beam tilted at 0.5 to 1.0 degrees with Precision (year difference motion), the electron beam is scanned at an arbitrary beam diameter and interval, and the electron diffraction pattern is continuously captured, and the individual electron diffraction patterns are captured. Analyze the crystal orientation of the measurement point. The grain boundaries are determined with respect to the observation field of view having a width of 50 μm in the direction parallel to the surface of the tool substrate and a layer thickness (average layer thickness) in the vertical direction.
なお、本測定に用いた電子回折パターンの取得条件は加速電圧200kV、カメラ長20cm、ビームサイズ2.4nmで、測定ステップは5.0nmである。このとき、測定した結晶方位は測定面上を離散的に調べたものであり、隣接測定点間の中間までの領域をその測定結果で代表させることにより、測定面全体の方位分布として求めるものである。なお、これら測定点で代表させた領域(以下、ピクセルということがある)として、正方形状のものを例示できる。このピクセルのうち隣接するもの同士の間で5度以上の結晶方位の角度差がある場合、または隣接するピクセルの片方のみがNaCl型の面心立方構造を示す場合は、これらピクセルの接する前記領域の辺を粒界とする。そして、この粒界とされた辺により囲まれた部分を1つの結晶粒と定義する。ただし、隣接するピクセル全てと5度以上の方位差がある、あるいは、隣接するNaCl型の面心立方構造を有する測定点がないような、単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。このようにして、粒界判定を行い、結晶粒を特定する。 The acquisition conditions of the electron diffraction pattern used in this measurement are an acceleration voltage of 200 kV, a camera length of 20 cm, a beam size of 2.4 nm, and a measurement step of 5.0 nm. At this time, the measured crystal orientation is obtained by examining the measurement surface discretely, and by representing the region up to the middle between adjacent measurement points with the measurement result, it is obtained as the orientation distribution of the entire measurement surface. be. As a region represented by these measurement points (hereinafter, may be referred to as a pixel), a square shape can be exemplified. If there is an angular difference of 5 degrees or more in crystal orientation between adjacent pixels, or if only one of the adjacent pixels exhibits a NaCl-type face-centered cubic structure, the region in which these pixels are in contact. The side of is the grain boundary. Then, the portion surrounded by the side defined as the grain boundary is defined as one crystal grain. However, pixels that exist independently, such as those with an orientation difference of 5 degrees or more from all adjacent pixels or no measurement point having an adjacent NaCl-type face-centered cubic structure, are not crystal grains and are 2 pixels or more. Are treated as crystal grains. In this way, the grain boundary is determined and the crystal grains are specified.
次に、前述の手順により特定された少なくとも10個のNaCl型の面心立方構造を有する結晶粒を含む観察視野を定義し、TEMを用いたエネルギー分散型X線分光法(EDS:Energy Dispersive X−ray Spectrometry)(ビーム径1nm)を用いて、面分析を行う。領域αについては、観察視野内のすべての領域αにおいて、前記xおよび前記yの平均値を前記NaCl型の面心立方構造を有する結晶粒ごとに求めて、それらを平均したものを、それぞれ、xαavg、yαavgとして算出する。そして、観察視野内のすべての領域βにおいて、隣接するもの同士の全領域にわたり粒界に沿って50nm間隔に分割した測定領域を設け、前記xおよび前記yの平均値を該測定領域ごとにそれぞれxβavg、yβavgとして算出し、0.10≦xβavg≦xαavg−0.10、yαavg+0.010≦yβavg≦0.680を満足する前記測定領域の面積の総和が観察視野内の領域βの総面積に対して占める面積割合を求める。 Next, an observation field containing at least 10 NaCl-type surface-centered cubic structures identified by the above procedure is defined, and energy dispersive X-ray spectroscopy (EDS: Energy Dispersive X) using TEM is used. Surface analysis is performed using −ray Spectrometry) (beam diameter 1 nm). Regarding the region α, the average values of the x and the y were obtained for each crystal grain having the NaCl-type face-centered cubic structure in all the regions α in the observation field of view, and the averages thereof were obtained. Calculated as xα avg and yα avg. Then, in all the regions β in the observation field, measurement regions divided at intervals of 50 nm along the grain boundary are provided over the entire regions of adjacent ones, and the average values of x and y are set for each measurement region, respectively. X? avg, calculated as yβ avg, 0.10 ≦ xβ avg ≦ xα avg -0.10, total area of the measurement region satisfying the yα avg + 0.010 ≦ yβ avg ≦ 0.680 is in the observation field of view The area ratio to the total area of the region β is calculated.
TiAlCN層の平均層厚:
本発明のTiAlCN層は、硬質被覆層を構成する。このTiAlCN層の平均層厚は1.0〜20.0μmが好ましい。平均層厚が1.0μm未満では、層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することがないことがあり、一方、その平均層厚が20.0μmを超えると、TiAlCN層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなることがある。平均層厚は、3.0〜15.0μmがより好ましい。
Average thickness of TiAlCN layer:
The TiAlCN layer of the present invention constitutes a hard coating layer. The average thickness of this TiAlCN layer is preferably 1.0 to 20.0 μm. If the average layer thickness is less than 1.0 μm, the wear resistance over a long period of time may not be sufficiently ensured because the layer thickness is thin. On the other hand, if the average layer thickness exceeds 20.0 μm, the TiAlCN layer Crystal grains are likely to be coarsened, and chipping may be likely to occur. The average layer thickness is more preferably 3.0 to 15.0 μm.
ここで、TiAlCN層の平均層厚は、例えば、集束イオンビーム装置(FIB:Focused Ion Beam system)、クロスセクションポリッシャー装置(CP:Cross section Polisher)等を用いて、TiAlCN層を任意の位置の縦断面(工具基体の表面に垂直な面)で切断して観察用の試料を作製し、その縦断面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて複数箇所(例えば、5箇所)で観察して、平均することにより得ることができる。 Here, the average thickness of the TiAlCN layer is determined by longitudinally traversing the TiAlCN layer at an arbitrary position by using, for example, a focused ion beam device (FIB: Focused Ion Beam system), a cross section polisher device (CP: Cross section microscope), or the like. A sample for observation is prepared by cutting on a surface (a surface perpendicular to the surface of the tool substrate), and the vertical section thereof is cut at a plurality of locations (for example, 5 locations) using a scanning electron microscope (SEM). It can be obtained by observing and averaging.
TiAlCN層の平均粒子幅と平均アスペクト比:
本発明において、TiAlCN層は柱状結晶組織を有し、その組織における結晶粒の縦断面における平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0であることがより好ましい。その理由は、平均粒子幅Wが0.10μmよりも小さい微粒結晶になると、粒界の増加によりチッピングの発生起点が多くなり、耐チッピング性が低下し、一方、平均粒子幅Wが2.00μmよりも大きくなると、粗大に成長した粒子の存在により、靱性が低下しやすくなることがあるためである。また、平均アスペクト比Aが2.0よりも小さい粒状結晶になると切削時に硬質被覆層の表面に生じるせん断応力に対してその界面が破壊起点となりやすくなってしまいチッピングの原因となることがあり、また、平均アスペクト比Aが10.0を超えると、切削時に刃先に微小なチッピングが生じ、隣り合う柱状結晶組織に欠けが生じた場合に、硬質被覆層表面に生じるせん断応力に対しての抗力が小さくなりやすく、柱状結晶組織が破断することで一気に損傷が進行し、大きなチッピングを生じることがある。したがって、結晶粒の平均粒子幅Wが0.10〜2.00μm、平均アスペクト比Aが2.0〜10.0であることがより好ましい。
Average particle width and average aspect ratio of TiAlCN layer:
In the present invention, the TiAlCN layer has a columnar crystal structure, and the average particle width W in the vertical cross section of the crystal grains in the structure is 0.10 to 2.00 μm, and the average aspect ratio A is 2.0 to 10.0. Is more preferable. The reason is that when the average particle width W is smaller than 0.10 μm, the number of starting points of chipping increases due to the increase in grain boundaries, and the chipping resistance decreases, while the average particle width W is 2.00 μm. This is because the toughness tends to decrease due to the presence of coarsely grown particles. Further, when the average aspect ratio A becomes a granular crystal smaller than 2.0, the interface tends to become a fracture starting point against the shear stress generated on the surface of the hard coating layer during cutting, which may cause chipping. Further, when the average aspect ratio A exceeds 10.0, minute chipping occurs at the cutting edge during cutting, and when the adjacent columnar crystal structure is chipped, the resistance to the shear stress generated on the surface of the hard coating layer. Is likely to become smaller, and the columnar crystal structure is broken, causing damage to proceed at once, which may cause large chipping. Therefore, it is more preferable that the average particle width W of the crystal grains is 0.10 to 2.00 μm and the average aspect ratio A is 2.0 to 10.0.
次に、結晶粒の平均粒子幅Wと平均アスペクト比Aの算出方法について説明する。まず、前述のとおりに、粒界の判定を行って結晶粒を特定する。次に、画像処理を行い、ある結晶粒iに対して工具基体と垂直方向(層厚方向)の最大長さHi、工具基体と水平方向の最大長さである粒子幅Wi、および面積Siを求める。結晶粒iのアスペクト比AiはAi=Hi/Wiとして算出する。このようにして、観察視野内の少なくとも20以上(i=1〜20以上)の結晶粒の粒子幅W1〜Wn(n≧20)を基に数1により面積加重平均し、前記結晶粒の平均粒子幅Wとする。また、同様にして前記結晶粒のアスペクト比A1〜An(n≧20)を求め、数2により面積加重平均して、前記結晶粒の平均アスペクト比Aとする。 Next, a method of calculating the average particle width W and the average aspect ratio A of the crystal grains will be described. First, as described above, the grain boundaries are determined to identify the crystal grains. Next, the image processing, certain maximum length H i, particle width W i is the maximum length of the tool substrate and the horizontal direction of the tool substrate and the direction perpendicular to the grain i (layer thickness direction), and area Find Si. The aspect ratio A i grain i is calculated as A i = H i / W i. In this way, the area-weighted average is performed by the number 1 based on the particle widths W 1 to W n (n ≧ 20) of at least 20 or more (i = 1 to 20 or more) crystal grains in the observation field, and the crystal grains are said. The average particle width W of. Further, in the same manner, the aspect ratios A 1 to An (n ≧ 20) of the crystal grains are obtained, and the area weighted average is obtained by the equation 2 to obtain the average aspect ratio A of the crystal grains.
その他の層:
硬質被覆層として、本発明の前記TiAlCN層を含む硬質被覆層は合金鋼や鋳鉄等の高速断続切削加工において、十分な耐チッピング性、耐摩耗性を有するが、前記硬質被覆層とは別に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、0.1〜20.0μmの合計平均層厚を有するTi化合物(化学量論的な化合物に限定されない)層を含む下部層を工具基体に隣接して設けた場合、および/または、少なくとも酸化アルミニウム(化学量論的な化合物に限定されない)層を含む層が1.0〜25.0μmの合計平均層厚で上部層として前記TiAlCN層の上に設けられた場合には、これらの層が奏する効果と相俟って、より一層優れた耐チッピング性、耐摩耗性を発揮することができる。
Other layers:
As the hard coating layer, the hard coating layer including the TiAlCN layer of the present invention has sufficient chipping resistance and abrasion resistance in high-speed intermittent cutting of alloy steel, cast iron, etc., but separately from the hard coating layer. Ti composed of one or more layers of a carbide layer, a nitride layer, a carbon nitride layer, a carbon oxide layer and a carbon dioxide oxide layer of Ti, and having a total average layer thickness of 0.1 to 20.0 μm. When a lower layer containing a compound (not limited to stoichiometric compound) layer is provided adjacent to the tool substrate and / or at least a layer containing an aluminum oxide (not limited to stoichiometric compound) layer When provided on the TiAlCN layer as an upper layer with a total average layer thickness of 1.0 to 25.0 μm, in combination with the effects of these layers, even more excellent chipping resistance, Abrasion resistance can be exhibited.
ここで、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると下部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると上部層の結晶粒が粗大化しやすくなり、チッピングを発生しやすくなる。 Here, if the total average layer thickness of the lower layer is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains of the lower layer tend to be coarsened and chipping occurs. It will be easier to do. Further, when the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited, while when it exceeds 25.0 μm, the crystal grains of the upper layer tend to be coarsened. , Chipping is likely to occur.
工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、または、cBN焼結体のいずれかであることが好ましい。
Tool base:
As the tool substrate, any substrate conventionally known as this type of tool substrate can be used as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co and further added with carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, It is preferably one of TiN, TiCN and the like as a main component), ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide and the like), or a cBN sintered body.
製造方法:
本発明のTiAlCN層の成膜方法は、例えば、以下のとおりである。後述するガス群Aとガス群Bを用いて、第1回から第n回までの成膜を行う。第n回の成膜で目標とするTiAlCN層の層厚を得る。各回の成膜は、表面に新たに膜を堆積し層厚の増える過程1と、粒界近傍のTi濃度とC濃度を高める過程2とからなる。各回の成膜は、過程1を一定時間行い、続いてこれの半分の時間で過程2を行う。なお、過程2では、過程1で成膜された層の表面に新たな層の堆積はほとんどなされず、層厚の変化は事実上無視できる。
Production method:
The method for forming the TiAlCN layer of the present invention is, for example, as follows. Using the gas group A and the gas group B, which will be described later, the first to nth film formations are performed. The target TiAlCN layer thickness is obtained in the nth film formation. Each film formation consists of a process 1 in which a new film is deposited on the surface to increase the layer thickness, and a process 2 in which the Ti concentration and the C concentration near the grain boundaries are increased. For each film formation, step 1 is carried out for a certain period of time, and then step 2 is carried out for half the time. In the process 2, a new layer is hardly deposited on the surface of the layer formed in the process 1, and the change in the layer thickness is practically negligible.
前記2種の反応ガス組成を例示すると、以下のとおりである。なお、ガス組成はガス群Aとガス群Bの組成和を100容量%としたものであり、以下、%で略記する。過程の記載がないガス組成は過程1および過程2で共通の組成範囲である。
ガス群A: NH3:2.0〜5.0%(過程1)、0.1〜0.3%(過程2)、
H2:65〜75%
ガス群B: AlCl3:0.54〜1.12%(過程1)、
0.01〜0.05%(過程2)、
TiCl4:0.05〜0.44%、
N2:0.0〜10.0%、
CH4:0.1〜5.9%、C2H4:0.1〜6.0%、
H2:残
反応雰囲気圧力:4.0〜5.0kPa
反応雰囲気温度:700〜850℃
ガス供給周期:2.00〜15.00秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒
Examples of the two types of reaction gas compositions are as follows. The gas composition is the sum of the compositions of the gas group A and the gas group B as 100% by volume, and is abbreviated as% below. The gas composition for which the process is not described is the composition range common to the process 1 and the process 2.
Gas group A: NH 3 : 2.0 to 5.0% (process 1), 0.1 to 0.3% (process 2),
H 2 : 65-75%
Gas group B: AlCl 3 : 0.54 to 1.12% (process 1),
0.01-0.05% (process 2),
TiCl 4 : 0.05 to 0.44%,
N 2 : 0.0 to 10.0%,
CH 4 : 0.1 to 5.9%, C 2 H 4 : 0.1 to 6.0%,
H 2 : Residual reaction atmospheric pressure: 4.0 to 5.0 kPa
Reaction atmosphere temperature: 700-850 ° C
Gas supply cycle: 2.00 to 15.00 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds
次に、実施例について説明する。
ここでは、本発明被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体として、前記の他のものを用いた場合であっても同様であるし、ドリル、エンドミルに適用した場合も同様である。
Next, an example will be described.
Here, as a specific example of the coated tool of the present invention, the one applied to the insert cutting tool using the WC-based cemented carbide as the tool base will be described, but it is the case where the other tool as described above is used as the tool base. The same applies to the case where it is applied to a drill or an end mill.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr3C2粉末、ZrC粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜C、および、ISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体D〜Fをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, ZrC powder, prepared TiN powder and Co powder, these raw material powders, It was blended to the blending composition shown in Table 1, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact having a predetermined shape at a pressure of 98 MPa to obtain this green compact. Vacuum sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, a tool substrate made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. Tool bases D to F made of WC-based superhard alloy having insert shapes of A to C and ISO standard CNMG120412 were manufactured, respectively.
次に、これら工具基体A〜Fの表面に、CVD装置を用いて、表2、表4に示す成膜条件によりTiAlCN層をCVDにより形成し、表7に示される本発明被覆工具1〜18を得た。
A1〜I1、A2〜I2は、それぞれ、前述の過程1、過程2にそれぞれ相当する。
Next, a TiAlCN layer is formed on the surfaces of these tool bases A to F by CVD under the film forming conditions shown in Tables 2 and 4, using a CVD apparatus, and the covering tools 1 to 18 of the present invention shown in Table 7 are formed. Got
A1 to I1 and A2 to I2 correspond to the above-mentioned processes 1 and 2, respectively.
前記の過程1では、表2、表4に示される形成条件を示す形成記号A〜I、A1〜I1、すなわち、ガス群AとしてNH3:2.0〜5.0%、H2:65〜75%、ガス群BとしてAlCl3:0.54〜1.12%、TiCl4:0.05〜0.44%、N2:0.0〜10.0%、CH4:0.1〜5.9%、C2H4:0.1〜6.0%、H2:残(%は、ガス群Aおよびガス群Bを合わせた全体に対する容量%)、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜850℃、ガス供給周期:2.00〜15.00秒、1周期当たりのガス供給時間:0.15〜0.25秒、ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒とし、所定時間、CVD法により、成膜を行った。前記の過程2では、表2、表4に示される形成条件を示す形成記号A〜I、A2〜I2、すなわち、ガス群AとしてNH3:0.1〜0.3%、H2:65〜75%、ガス群BとしてAlCl3:0.01〜0.05%、TiCl4:0.05〜0.44%、N2:0.0〜10.0%、CH4:0.1〜5.9%、C2H4:0.1〜6.0%、H2:残(%は、ガス群Aおよびガス群Bを合わせた全体に対する容量%)、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜850℃、ガス供給周期:2.00〜15.00秒、1周期当たりのガス供給時間:0.15〜0.25秒、ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒とし、所定時間、CVD法により、粒界近傍のTi濃度とC濃度を高めた。
表2に注釈がない形成記号による成膜では、過程2の成膜時間は、過程1の半分とした。
In the above process 1, the formation symbols A to I and A1 to I1 indicating the formation conditions shown in Tables 2 and 4, that is, NH 3 : 2.0 to 5.0% and H 2 : 65 as the gas group A. ~ 75%, AlCl 3 : 0.54 to 1.12% as gas group B, TiCl 4 : 0.05 to 0.44%, N 2 : 0.0 to 10.0%, CH 4 : 0.1 ~ 5.9%, C 2 H 4 : 0.1-6.0%, H 2 : Residual (% is the volume% of the total of gas group A and gas group B), reaction atmosphere pressure: 4. 0 to 5.0 kPa, reaction atmosphere temperature: 700 to 850 ° C., gas supply cycle: 2.00 to 15.00 seconds, gas supply time per cycle: 0.15 to 0.25 seconds, gas group A and gas The phase difference of the supply of group B was set to 0.10 to 0.20 seconds, and film formation was performed by the CVD method for a predetermined time. In the above process 2, the formation symbols A to I and A2 to I2 indicating the formation conditions shown in Tables 2 and 4, that is, NH 3 : 0.1 to 0.3% and H 2 : 65 as the gas group A. ~ 75%, AlCl 3 : 0.01 to 0.05% as gas group B, TiCl 4 : 0.05 to 0.44%, N 2 : 0.0 to 10.0%, CH 4 : 0.1 ~ 5.9%, C 2 H 4 : 0.1 to 6.0%, H 2 : Residual (% is the volume% of the total of gas group A and gas group B), reaction atmosphere pressure: 4. 0 to 5.0 kPa, reaction atmosphere temperature: 700 to 850 ° C., gas supply cycle: 2.00 to 15.00 seconds, gas supply time per cycle: 0.15 to 0.25 seconds, gas group A and gas The phase difference of the supply of group B was set to 0.10 to 0.20 seconds, and the Ti concentration and the C concentration near the grain boundary were increased by the CVD method for a predetermined time.
In the film formation using the formation symbols not noted in Table 2, the film formation time in process 2 was set to half that in process 1.
前記の条件でTiAlCN層を形成することにより、表7に示す本発明被覆工具1〜18を製造した。ここで、本発明被覆工具2、6、8、9、14、16〜18は、表6に示すように下部層および/または上部層を表5に示す成膜条件により成膜した。 By forming the TiAlCN layer under the above conditions, the covering tools 1 to 18 of the present invention shown in Table 7 were manufactured. Here, in the covering tools 2, 6, 8, 9, 14, 16 to 18 of the present invention, as shown in Table 6, the lower layer and / or the upper layer was formed under the film forming conditions shown in Table 5.
また、比較のために、これら工具基体A〜Fの表面に、CVD装置を用いて、表3、表4に示す成膜条件を示す形成記号a〜iでTiAlCN層をCVDにより形成し、表7に示される比較例被覆工具1〜18を得た。なお、b1〜i1、b2〜i2は、それぞれ、前述の過程1、過程2に相当する。
ここで、比較例被覆工具2、6、8、9、14、16〜18は、表6に示すように下部層および/または上部層を表5に示す成膜条件により成膜した。
Further, for comparison, a TiAlCN layer is formed on the surfaces of the tool bases A to F by CVD using the CVD apparatus with the formation symbols a to i indicating the film forming conditions shown in Tables 3 and 4, and the tables are shown. Comparative Examples Covering Tools 1 to 18 shown in No. 7 were obtained. In addition, b1 to i1 and b2 to i2 correspond to the above-mentioned process 1 and process 2, respectively.
Here, in Comparative Examples Covering Tools 2, 6, 8, 9, 14, 16 to 18, as shown in Table 6, the lower layer and / or the upper layer was formed under the film forming conditions shown in Table 5.
続いて、前記本発明被覆工具1〜9および比較被覆工具1〜9について、前記各種の工具基体A〜C(ISO規格SEEN1203AFSN形状)をいずれもカッタ径80mmの合金鋼製カッタ先端部に固定治具にてクランプした状態で、以下に示す、合金鋼の湿式高速正面フライス、センターカット切削加工試験1を実施し、切刃の逃げ面摩耗幅を測定した。表8に、切削加工試験1の結果を示す。なお、比較被覆工具1〜9については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 Subsequently, for the covering tools 1 to 9 and the comparative covering tools 1 to 9 of the present invention, the various tool substrates A to C (ISO standard SEEN1203AFSN shape) are fixed to the tip of an alloy steel cutter having a cutter diameter of 80 mm. The wet high-speed face milling and center-cut cutting test 1 of the alloy steel shown below was carried out with the tool clamped, and the flank wear width of the cutting edge was measured. Table 8 shows the results of the cutting test 1. It should be noted that the comparative covering tools 1 to 9 have reached the end of their life before the end of the cutting time due to the occurrence of chipping, so the time until the end of the life is shown.
切削加工試験1:湿式高速正面フライス、センターカット切削加工
カッタ径:80mm
被削材:JIS・SCM440 幅60mm、長さ250mmのブロック材
回転速度:1393min−1
切削速度:350m/min
切り込み:2.5mm
一刃送り量:0.25mm/刃
切削時間:6分
(通常の切削速度は、200m/min)
Cutting test 1: Wet high-speed face milling cutter, center cut cutting cutter diameter: 80 mm
Work material: JIS / SCM440 Block material with width 60 mm and length 250 mm Rotation speed: 1393 min -1
Cutting speed: 350m / min
Notch: 2.5 mm
Single blade feed amount: 0.25 mm / blade Cutting time: 6 minutes (normal cutting speed is 200 m / min)
また、前記本発明被覆工具10〜18および比較被覆工具10〜18について、前記各種の被覆工具基体D〜F(ISO規格CNMG120412形状)をいずれも合金鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下に示す、ダクタイル鋳鉄の湿式高速断続切削加工試験2を実施し、切刃の逃げ面摩耗幅を測定した。表9に、切削加工試験2の結果を示す。なお、比較被覆工具10〜18については、チッピング発生が原因で切削時間終了前に寿命に至ったため、寿命に至るまでの時間を示す。 Further, with respect to the covering tools 10 to 18 and the comparative covering tools 10 to 18 of the present invention, the various covering tool bases D to F (ISO standard CNMG120412 shape) are all fixed to the tip of the alloy steel cutting tool with a fixing jig. The wet high-speed intermittent cutting test 2 of ductile cast iron shown below was carried out in the state of being screwed, and the flank wear width of the cutting edge was measured. Table 9 shows the results of the cutting test 2. It should be noted that the comparative covering tools 10 to 18 have reached the end of their life before the end of the cutting time due to the occurrence of chipping, so the time until the end of the life is shown.
切削加工試験2:湿式高速断続切削加工
被削材:JIS・FCD700の長さ方向等間隔8本縦溝入り丸棒
切削速度:350m/min
切り込み:1.5mm
送り量:0.2mm/rev
切削時間:3分
(通常の切削速度は、200m/min)
Cutting test 2: Wet high-speed intermittent cutting Work material: JIS / FCD700 8 equidistant round bars in the length direction Cutting speed: 350 m / min
Notch: 1.5 mm
Feed amount: 0.2 mm / rev
Cutting time: 3 minutes (normal cutting speed is 200 m / min)
表8、表9に示される結果から、本発明被覆工具1〜18は、いずれも硬質被覆層が優れた耐チッピング性、耐剥離性を有しているため、合金鋼や鋳鉄の高速断続切削加工に用いた場合であってもチッピングの発生がなく、長期にわたって優れた耐摩耗性を発揮する。これに対して、本発明の被覆工具に規定される事項を一つでも満足していない比較被覆工具1〜18は、合金鋼や鋳鉄の高速断続切削加工に用いた場合にチッピングが発生し、短時間で使用寿命に至っている。 From the results shown in Tables 8 and 9, in each of the coating tools 1 to 18 of the present invention, since the hard coating layer has excellent chipping resistance and peeling resistance, high-speed intermittent cutting of alloy steel and cast iron Even when used for processing, chipping does not occur and excellent wear resistance is exhibited for a long period of time. On the other hand, the comparative covering tools 1 to 18 which do not satisfy even one of the matters specified in the covering tool of the present invention cause chipping when used for high-speed intermittent cutting of alloy steel or cast iron. It has reached the end of its useful life in a short time.
前述のように、本発明の被覆工具は、合金鋼や鋳鉄以外の高速断続切削加工の被覆工具としても用いることができ、しかも、長期にわたって優れた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化及び省エネルギー化、さらには低コスト化に十分に満足できる対応が可能である。 As described above, the covering tool of the present invention can also be used as a covering tool for high-speed intermittent cutting other than alloy steel and cast iron, and yet exhibits excellent chipping resistance and abrasion resistance for a long period of time. Therefore, it is possible to fully satisfy the improvement of the performance of the cutting device, the labor saving and the energy saving of the cutting process, and the cost reduction.
Claims (2)
(a)前記複合炭窒化物層は結晶粒から構成され、NaCl型の面心立方構造を有する結晶粒が70面積%以上であり、
(b)前記複合炭窒化物層は、その組成を、
組成式:(Ti1−xAlx)(CyN1−y)で表したとき、
AlとTiの合量に占めるAlの含有割合xの平均値xavg、CとNの合量に占めるCの含有割合の平均値yavgが、それぞれ、0.60≦xavg≦0.95、0.000≦yavg≦0.010を満足し、
(c)前記NaCl型の面心立方構造を有する各結晶粒において、その結晶粒界から該結晶粒内に25nm離間した曲線に囲まれた範囲を領域α、該曲線と前記結晶粒界に囲まれた範囲を領域βとし、
前記領域αにおける前記xおよび前記yの平均値を前記結晶粒ごとに求めて、それらを平均したものを、それぞれ、xαavg、yαavgとし、
前記領域βにおいて、隣接するもの同士の全領域にわたり粒界に沿って50nm間隔で分割した測定領域を設け、該測定領域ごとに求めた前記xおよび前記yの平均値をそれぞれxβavg、yβavgとするとき、
関係式:0.10≦xβavg≦xαavg−0.10、yαavg+0.010≦yβavg≦0.680を満足する前記測定領域の面積の総和が前記領域βの総面積に対して5.0〜20.0面積%存在すること、
を特徴とする表面被覆切削工具。 A surface-coated cutting tool having a tool substrate and a hard coating layer containing a composite carbonitride layer of Ti and Al on the surface of the tool substrate.
(A) The composite carbonitride layer is composed of crystal grains, and the crystal grains having a NaCl-type face-centered cubic structure are 70 area% or more.
(B) The composition of the composite carbonitride layer is as follows.
Composition formula: When expressed by (Ti 1-x Al x ) ( Cy N 1-y)
The average value x avg of the content ratio x of Al in the total amount of Al and Ti and the average value y avg of the content ratio of C in the total amount of C and N are 0.60 ≤ x avg ≤ 0.95, respectively. , 0.000 ≤ y avg ≤ 0.010,
(C) In each crystal grain having a NaCl-type face-centered cubic structure, a range surrounded by a curve separated from the crystal grain boundary by 25 nm in the crystal grain is surrounded by a region α, the curve and the crystal grain boundary. Let the area β be the area β
The average values of x and y in the region α were obtained for each crystal grain, and the averaged values were defined as xα avg and yα avg , respectively.
In the region β, measurement regions divided at intervals of 50 nm along the grain boundaries are provided over the entire region of adjacent ones, and the average values of x and y obtained for each measurement region are xβ avg and yβ avg, respectively. When
Relationship: 0.10 ≦ xβ avg ≦ xα avg -0.10, 5 total area of the measurement region satisfying the yα avg + 0.010 ≦ yβ avg ≦ 0.680 is the total area of the region β .0 to 20.0 area% present,
A surface coating cutting tool characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020039955A JP2021137935A (en) | 2020-03-09 | 2020-03-09 | Surface coating cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020039955A JP2021137935A (en) | 2020-03-09 | 2020-03-09 | Surface coating cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021137935A true JP2021137935A (en) | 2021-09-16 |
Family
ID=77667379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020039955A Pending JP2021137935A (en) | 2020-03-09 | 2020-03-09 | Surface coating cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021137935A (en) |
-
2020
- 2020-03-09 JP JP2020039955A patent/JP2021137935A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6738556B2 (en) | Surface coated cutting tool | |
JP6284034B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6617917B2 (en) | Surface coated cutting tool | |
JP2020055097A (en) | Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance | |
JP6850998B2 (en) | Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance | |
WO2020166683A1 (en) | Surface-coated cutting tool | |
JP2020131424A (en) | Surface-coated cutting tool | |
JP2016221672A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance | |
JP2020146820A (en) | Cutting tool with hard coating layer exhibiting excellent chipping resistance | |
JP2019119045A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance | |
US11998992B2 (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance | |
JP6774649B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP7453616B2 (en) | surface coated cutting tools | |
JP7325720B2 (en) | surface coated cutting tools | |
JP2021137935A (en) | Surface coating cutting tool | |
JP6796257B2 (en) | Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer | |
JP6857299B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
WO2021157609A1 (en) | Surface-coated cutting tool | |
JP6957824B2 (en) | Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer | |
JP2022030402A (en) | Surface-coated cutting tool | |
JP2020138301A (en) | Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance | |
JP7125013B2 (en) | A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance | |
JP2020055041A (en) | Surface cutting tool with hard coating layer exhibiting excellent chipping resistance | |
JP7492678B2 (en) | Surface-coated cutting tools | |
WO2016208663A1 (en) | Coated surface cutting tool |